SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Some relations between Semaev’ s summation
polynomials and Stange’s elliptic nets

Saito, Tsunekazu
Graduate School of Mathematics, Kyushu University

Yokoyama, Shun’ ichi
Graduate School of Mathematics, Kyushu University

Kobayashi, Tetsutaro
Nippon Telegraph and Telephone Corporation

Yamamoto, Go
Nippon Telegraph and Telephone Corporation

https://hdl.handle. net/2324/19584

HhRIE#R : Journal of Math-for-Industry (JMI). 3 (A), pp.89-92, 2011-04-04. Faculty of
Mathematics, Kyushu University
N— 30

HEFIBAMR

KYUSHU UNIVERSITY




Journal of Math-for-Industry, Vol. 3 (2011A-9), pp. 89-92

w Math-for-industry
Education & Research Hub

Some relations between Semaev’s summation polynomials and Stange’s
elliptic nets

Tsunekazu Saito, Shun’ichi Yokoyama, Tetsutaro Kobayashi and Go Yamamoto

Received on February 21, 2011 / Revised on March 23, 2011

Abstract. There are two decision methods for the decomposition of multiple points on an elliptic
curve, one based on Semaev’s summation polynomials and the other based on Stange’s elliptic nets.
This paper presents some relations between these two methods. Using these relations, we show that
an index calculus attack for the elliptic curve discrete logarithm problem (ECDLP) over extension
fields via an elliptic net is equivalent to such an attack via Semaev’s summation polynomials.
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1. INTRODUCTION

1.1. SEMAEV’S SUMMATION POLYNOMIALS AND INDEX
CaLcuLus ATTACK FOR THE ECDLP OVER EX-

TENSION FIELDS

Let k be a field and F be an elliptic curve defined over £k on
an affine plane A?(k). For a point P = (z(P),y(P)) € E
and a nonnegative integer m, a evaluation of

mP =0

is obtained using the m-division polynomial 1, associated
with F.

Semaev gave the following theorem for decomposition of
multiple points,

U1P1+"'+vnpn:07

where vy, ...,v, are integers and Py,..., P, are points on

E.
Theorem 1 (Semaev [7]). 1. For any elliptic curve de-

fined over arbitrary field k and any integer n € Z>o,
there exists a polynomial

Su(X1,.. ., Xn) € K[X1,. .., X0]

such that for any points Py,..., P, € FE, there exist
€1,...,€6n € {1} such that 1Py + -+ + €, P, =0 if
and only if Sp(x(Py),...,x(P,)) =0.

2. Suppose char(k) # 2,3 and E : y*> = 42® + ax + b;
then polynomial S, is given explicitly as follows:

Sa2(X1, Xo2) = X1 — Xo,
S3(X1, X2, X3) = (X1 — X2)?X3

a b
-2 ((Xl + X>) (Z + X1X2> + 2) X3

(X = 9) b+ ),

89

and

Sn(Xla-“aXn) = ResX(Sj(Xl,... ,Xj_l,X),

Sn—jt+2(Xj, ..

foranyn >4 and 3 < j <n—1. Here Resx stands
for resultant with respect to X.

M 7X7747X))’

8. The degree of polynomial Sy, as a polynomial in X; is

2n72

By Gaudry, it was shown that the Semaev’s summa-
tion polynomials are useful for an index calculus attack for
its elliptic curve discrete logarithm problem over extension
fields [5].

Let F, be a finite field with ¢ elements, where ¢ is a
prime such that ¢ # 2,3, and Fy» is the extension field
of degree n. The elliptic curve discrete logarithm prob-
lem (ECDLP) over extension fields is for elliptic curve E
over the extension field Fyn, for any point P € E(Fy») and
A € (P), the problem to find the minimal integer m such
that A = mP. If ¢ is a pseudo-Mersenne prime number
and the extension field has a binomial or trinomial as its
minimal polynomial, a protocol in elliptic curve cryptogra-
phy based on the ECDLP over extension fields results in
faster running algorithms than that based on the ECDLP
over prime fields because the modular reduction of finite
fields can be computed [2].

It is important to analyze how secure a high-level cryp-
tography technique is. Therefore we build an algorithm
to solve the ECDLP over extension fields efficiently, and
calculate the algorithmic calculation complexity. In the
process, we will make use of a famous algorithm for the
index calculus attack on the ECDLP over extension fields
via Semaev’s summation polynomials [5].

Now we define the factor basis of E(Fg»),

§={P € E(Fs)| z(P) € Fy},



90

and let s be the size of §. An index calculus attack for the
ECDLP over extension fields is defined by the following
steps:

Step 1. For i = 1...,s and random integers m; € Z/ord PZ
we assume the relation given by m; P = ZFE& firF.

Step 2. Compute values logp F; from the linear equation

mq F1
m F

2l p= (fij) 2
ms Fy

Step 3. For random m,m’ € Z/ord PZ redefine the relation
by
mA+m/P = Z frF.
Feg

Step 4. Compute logp A using the form given in step 3 and
logp Fj.

To obtain a relation between a random point m;P €
E(F,n) and points of the factor basis §, Gaudry gave a
decomposition algorithm using Semaev’s summation poly-
nomial S,,.

Theorem 2 (Gaudry [5]). For any point P in E(Fy) and
Q1,...,Qn € Fy, the following three conditions are equiv-
alent.

(1). There are points Fiy,...,F, € § such that (Fy) =
le'“;x(Fn):Qn andP:F1++Fn

(2).

For the (n + 1)-th Semaev’s summation polynomial

Sn+1;
Sn+1(Q17 ey Qna ‘T(P)) =0.
(3). Lez;{ti\i =1,...,n} be a basis of field extension Fyn /T,
an

n

Sn+1(X17 s 7X7L; ZL'(P)) = ZSiL-‘rl,P(Xl) s 7Xn)ti7
i=1

where 531+1,P € Fy[Xa,...,X,]; then (Qn, ...

a By rational point of V(s i p,---

riety defined by s}, 1 p,- ..

) Qn) 18

s Sni1,p), the va-

n
»Snt1,P-

Using this theorem, we will obtain the desired relations
by solving algebraic equations using either the Grobner ba-
sis or multipolynomial resultant [3]. This attack was cre-
ated and estimated by Diem [4] and improved by Nagao,
Joux, and Vitse [10],[6].

Stange gave a decision method for the decomposition
problem with multi-variable elliptic functions. Let k be
a number field, and E be an elliptic curve over k. The
Weierstrass o function is

oz)=2 ] (1—z>exp(i+;;>7

weLp\{0}
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where Lg is the lattice on C associated with the elliptic
curve E.

For an integer vector v = (vy,...,v,) € Z™ and complex
variables z = (z1,...,2,) € C", Stange defined the multi-
variable elliptic function

o(vizr+ -+ vnzn)

U,(2) = .
: [T, o (z) 2= 2 [T e 0 (2 + 2) e

This function has a period Lg for each variable. We are
able to assume a point P on F corresponds to a point on
C by the pullback 7! : E ~ C/Lg — C. Stange gave
the following decision method for decomposition of points
by ¥, (2).

Theorem 3 (Stange [8]). For points Pi,..., P, € E such
that P; # £P;(i # j) and an integer vector v = (v1,...,vy),
v Pr+---+v, P, =0 holds if and only if ¥,(P1,..., P,) =
0.

Moreover, for fixed points Py, . .
+Pj(i # j), the map

., P, € E such that P; #

W .z"
v — U, (P,..

_,k-7

- P)

is called the elliptic net associated with Py, ..., P,. This el-
liptic net satisfies the condition that for any integer vectors
p’ q7 /,17 S 6 Zn7

Wi(p+q+s)W(p—qW(r+s)W(r)
+W(g+r+ s)W(g—r)W(p+ s)W(p)
+W(r+p+ )W —p)W(g+s)W(q) =0.

This elliptic net is an expansion of elliptic divisibility
sequences which satisfy the following relation:

hernhmfnh% = hn+1hn71h3n + herlhmflh?y

2. RELATIONS BETWEEN SEMAEV’S
SUMMATION POLYNOMIALS AND STANGE’S
ELLIPTIC NETS

Let k£ be a number field and K a rational function field
generated by functions p(z1),. .., p(2z,), where p(z;) is the
Weierstrass p function. Let

L =k(p(21), ¢ (21), - -

be the Galois extension over K. Then its Galois group
Gal(L/K) = {£1}" acts on L as follows: for any (e, ...
Gal(L/K) and f(z1,...,2,) € L,

.,En).f(Zl, N

Semaev’s summation polynomial is used to check a decom-
position using only = coordinates of points on an elliptic
curve. In this case, S, is regarded as a polynomial in K.
On the other hand, ¥, () is regarded as an element in L in
general. Note that for a vector v, ¥, (2) is an intermediate
field of L/K.

s 90(2n), 9 (20))

(617.. 7Zn):f(6121,...76nzn).

€n) €
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Theorem 4. For any integer n € Z>o and elliptic curve
E over a number field k,

NL/K(\I/v(Z)) = Sn(p(v12’1), ey @(Unzn))Q
x I Yo, (20)> .
H1§s<t§n(@(zs) — p(z4))2" s

The left-hand side of the equation in this theorem, which
is defined as

NL/K(\I]’U(Z)) = H \I/v(Elzl,...,enzn)
€1,...,en€{£1}
— HEI""’E"E{il} \P(Elvl,...,envn)(z)
H1§s<t§n(@('zs) - p(zt))2”*1usut ’

checks whether for points Pj,..., P, € E such that P; #
+P;, (i # j) there exist €1, ..., €, € {£1} such that ;v P+
-+ epv, P, = 0. Furthermore, the Semaev’s summa-
tion polynomial \S,, is irreducible and is a material provid-
ing a method to obtain precise decompositions, the norm
Nk (Vy(2)) has Sy (p(vi21), ..., p(vn2n)) as a factor. On
the other hand, the second factor of the right-hand side

H?=1 W, (%‘)2”
H1<s<t<n(p(zs) - p(Zt))2n71”sUt

checks whether v; P; = 0 and P, = £P;, (¢ # j) hold. How-
ever, this factor is not essential for the decomposition de-
cision.

The above shows that Semaev’s summation polynomial
Sy, and the norm of an elliptic net play the same role for the
purpose of decision of the decomposition of points on an el-
liptic curve. Moreover, to eliminate p’(z;) from ¥, (z) and
to reduce K for an index calculus attack for the ECDLP
using Semaev’s summation polynomial and deciding de-
composition using only the z coordinate, we compute coef-
ficients of Irr(¥,(z), L/ K ). However, arbitrary coeflicients
of Irr(W, (2), L/ K') except Nk (¥,(2)) do not have a func-
tion for checking a decomposition of points on an elliptic
curve.

Lemma 1. For any n € Z>3, Semaev’s summation poly-
nomial Sy, satisfies

Sn(@(21)7 AR p(zn))
= Snfl(@(zl>7 ) @(anl))Q

% H (p(z1 + €220+ - -
62,.-~75n—1€{i1}

+ 6n—lzn—l)

—(2n))

2n—2

= (p(z1) = p(22))

(p(z1 + €222+ + €n—iZn_i)
=1 €9,...,6n—,€{E£1}
i—1

—p(zn—it1))
Proof. When n = 3, then
S3(p(21), p(22), p(23))
= Sa(p(21), p(22))? (921 + 22) — p(23))
x(p(21 — 22) — p(23))

is obvious by the additional formula of the Weierstrass p
function. We assume that the equation of the lemma is
satisfied up to n — 1.

Sn(p(z1), .- 0(zn))
= Resx(Ss3(p(21), p(22), X), Sn-1(p(23), - -, p(2n), X))
(

= Resx(S2(p(21),0(22)° [] (21 + e222) — X),

ea==1
k) p(zn))Q
(p(z3 + €aza+ -

Sn—a2(p(z3), ..
+ Enzn) - X))
Sa(p(21), p(22))2" " Suz(p(z3), .., p(zn))>

X H (p(2z1 + €222)

€2,€4,...,en €{£1}

—p(zs+esza+ -+ €p2n))

n—2 271—2

(9(z3) — p(24))

X H (p(z3 + €224 + -+ + €n—izn—i)
i cey€n—1

—9(2n-i+1))
< I

€2,€4,...,en €{£1}

(p(21 + €222)

—p(z3 +esza+ -+ €pzn)).

Thus, the candidate zeros of Sy, (p(z1),...,p(zn)) are {z €
C"|z1 + €229 € L} with order 27720 {z € C"|23 + €424 +
o +e€n_it12n—it1 € Lg} with order 2!+ fori =1,... ,n—
3, and {z € C™|z1 + €222 + -+ + €2, € Lg} with order
1. On the other hand, we can determine the candidates of
the poles in the same way. Therefore, the zeros and poles
are {z € C"|z1 + €229+ -+ - + €2, € Ly} with order 1 and
{z € C"z € Lg,fors =1,...,n—1, z; + Z;:l €%, ¢
Lg,(i#4j,j=1,...,s)} with order 2"~ 1.
The zeros and poles of the right-hand side of the equation
given in this lemma,

n—2
(@(212) — p(22))?
X H H (p(z1 + €222+ - + €n_iZn—i)
i=1 ez,...,en—i€{£1}

—p(zn-i41))*
are same as those of the left-hand side.

The zeros and poles of S, (p(21),. .., p(z,)) are the same
as the ones of the right-hand side of this equation. We com-
pute the Taylor expansions of both sides of the equation
around z; + z2 = 0. Both the coefficients of the (—2)-order
terms of these series with respect to z; 4+ z5 are 1. There-
fore, the lemma is true by Liouville’s theorem[] O

Using Lemma 1, we will prove Theorem 4.

Proof. The claim of this theorem is

H \Ij(vl7e2v27~~7envn)(217 B Zn)

= Sn(p(v121),..., p(vn2n)) H?:1 v, (Zi)Q

n—1
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When n = 2, this claim is obvious by the additional
formula of the ¢ function.

We assume that this claim is true up to n — 1. Under
this assumption,

II

€2,...,en€{£1}
Hez,u.,ene{il} o(v121 + €2v222 + - - + €,Un21)
H?:l O’(zi)Q—eiejwvj Hl§i<j§n o(z + Zj)ﬁiﬁjvi’l)j

-

€250y en—16€{£1}

\11(1)1,521)2...,en11,,,)(Zl7 cee ,Zn)

((p(ulzl 4 €v920 + ...

+en—1Vn-12n-1) — 9(Vn2n))
" o(z1 +€z9 4+ - + en,lzn,l)za(znf)
[T, oz '
= U, (Zn)zn_l

H ‘P(Ul;€2v2s-~~75nflvnfl)(217"
€2,...,en—1E€{E1}

< I

€2,...,€n_1€{£1}

-7'211—1)2
(@(1}12’1 + €2V222 + ...

+€n—1vn—1zn—1) - p(vnzn))

= Su-1(p(vrz1), .oy 9Wn-120-1))? [] Wo, (20)*
=1

< I

52,...,en,1€{i1}

(@(vlzl + €2V222 + ...

+€n71f0n712n71) - p(vnzn))

= Sn<p(1}121), ceey p(vnzn)) H v, (Zi)Qnil.

i=1

2.1. SOME REMARKS

In this paper, we assume that an elliptic curve is defined
over a number field. This assumption is unnecessary and
this theorem is generalized to any finite field, by reduc-
tion theory. An index calculus attack for the ECDLP over
extension fields via elliptic nets vanishing y coordinate is
the same as the one via Semaev’s summation polynomials,
hence the relation given by Theorem 4.

However, it is an open problem to give relations between
random points on an elliptic curve and points on the factor
basis for an index calculus attack via elliptic nets directly
using a Grobner basis. For the purpose of determining
relations, it is sufficient to solve algebraic equations from
the descent of elliptic nets for a base field F,. For any point
P € E(Fyn), we compute the rational polynomial

\I,(l ..... 1)(X1,Y1,...,Xn,Y;“LIZ‘(P),y(P))
€ Fyn (X1, Y1, .., X, Vo).

We decompose this rational polynomial for basis field F,
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as follows:

W, 1) (X, Y,

n

- X, Yo, 2(P), y(P))

=Y oW (X1, Y1, X Vo)t
i=1

where {t'|i = 1,...,n} is a basis of Fy/F, and @g) is a
rational polynomial in F,(X1,Y1,...,X,,Y,). Then, we
have given the F, rational points of V(@S), .. .,@g)) to
obtain relations of decomposition by factor basis.

REFERENCES

[1] Aoki, K., Kobayashi, T. and Nagai, A.: Supplemen-
tal Document for Odd Characteristic Extension Fields,
Standards for Efficient Cryptography, 2009.

[2] Bailey, D. and Paar, C..  Optimal Extension
Fields for Fast Arithmetic in Public-Key Algorithm,
CRYPTO98, LNCS 1462 (1998), Springer.

[3] Cox, D., Little, J. and O’ Shea, D: Using Algebraic
Geometry, Springer, 2005.

[4] Diem, C.: On the discrete logarithm problem in elliptic
curves, Preprint, 2009.

[5] Gaudry, P.: Index calculus for abelian varieties of
small dimension and the elliptic curve discrete loga-
rithm problem, J. Symbolic Computation 44 (2009),
1690-1702.

[6] Joux, A. and Vitse, V.: Elliptic Curve Discrete Log-
arithm Problem over Small Degree Extension Fields,
Preprint.

[7] Semaev, L. Summation polynomials and the discrete
logarithm problem on elliptic curves, Preprint, 2004.

[8] Stange, K.: The Tate pairing via elliptic nets, In Proc.
of Pairing 2007.

[9] Ogura, N., Kanayama, N., Uchiyama, S. and Okamoto
E.:  Cryptographic Pairings Based on Elliptic Nets,
Preprint.

[10] Nagao, K. I.: Decomposition Attack for the Jacobian
of a Hyperelliptic Curve over an Extension Field, Al-

gorithmic Number Theory, 2010, Springer.

Tsunekazu Saito and Shun’ichi Yokoyama

Graduate School of Mathematics, Kyushu University, Fukuoka

812-8581, Japan

E-mail: t-saito(at)math.kyushu-u.ac.jp
s-yokoyama(at)math.kyushu-u.ac.jp

Tetsutaro Kobayashi and Go Yamamoto

Nippon Telegraph and Telephone Corporation, Tokyo 180-

8585, Japan

E-mail: kobayashi.tetsutaro(at)ntt.lab.co.jp
yamamoto.go(at)ntt.lab.co.jp



