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Abstract. The quadratic Wiener functional coming from the Anderson-Darling test statistic is
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1. Introduction

In 1952, T. Anderson and D. Darling ([1]) introduced a
statistical test, which is now called the Anderson-Darling
test, to assert if a sample of data arises from a paricular
probability distribution. Under the null hypothesis that
a sample of data {x1 < x2 < · · · < xn} comes from a
distribution with cumulative distribution function F , the
Anderson-Darling test statistic is defined by

A2
n = −n − 1

n

n∑
j=1

(2j − 1){log uj + log(1 − un−j+1)},

where ui = F (xi), i = 1, . . . , n.

If A2
n is large, the null hypothesis is rejected ([1, 2, 9]).

The test statistic A2
n admits the integral expression that

A2
n = n

∫ 1

0

(
νn(t)

n
− t

)
ψ(t)dt

(
νn(t) ≡ #{k |uk ≤ t}

)
.

Then, due to Donsker’s invariance principle ([3, 4]), as n →
∞, A2

n converges in law to the random variable∫ 1

0

b2
t

t(1 − t)
dt,

{bt}t∈[0,1] being the pinned Brownian motion ([1]). In [1],
Anderson-Darling studied the above random variable and
its extension

a2(ψ) =
∫ 1

0

b2
t ψ(t)dt,

where ψ : (0, 1) → [0,∞) is Borel measurable, by using
the Fourier series decomposition of the Gaussian process
{bt

√
ψ(t) }t∈[0,1].

The aim of of this paper is to investigate a2(ψ) from
the viewpoint of the Malliavin calculus, which enables one

to deal with such Wiener functional as a2(ψ) in a system-
atic manner ([6, 7, 10]). A Wiener functional is said to be
quadratic if its third derivative in the sense of the Malliavin
calculus vanishes. In the study of stochastic oscillatory in-
tegrals, which are a probabilistic counterpart of Feynman
path integrals, quadratic Wiener functionals play an essen-
tial role. Typical examples of quadratic Wiener functionals
are the square norm and the variance on the time interval
of the standard Brownian motion, and Lévy’s stochastic
area. See for example [7]. The Wiener functional a2(ψ)
gives a new example of a quadratic Wiener functional.

The Wiener functional a2(ψ) is a not only new but also
very important example. In our knowledge, the concrete
examples of quadratic Wiener functionals all relate to the
standard Brownian motion. As we shall see later, for ψ
which explodes at the order of (1 − t)−α at t = 1 for some
0 < α < 2, a2(ψ) is well-defined for the pinned Brownian
motion, but not for the standard Brownian motion.

In Section 2, a brief review on the Malliavin calculus,
in particular, stochastic oscillatory integrals will be given.
Section 3 is devoted to the studies of explicit expressions
of the stochastic oscillatory integral associated with a2(ψ).

2. The Malliavin calculus

2.1. Wiener space of pinned Brownian motion

In this subsection, we shall give a brief review on the one
dimensional classical Wiener space of pinned Brownian mo-
tion on [0, 1]. Let W0 be the space of real-valued contin-
uous functions w on [0, 1] with w(0) = w(1) = 0. Being
equipped with the uniform convergence norm, W0 is a real
separable Banach space. Denote by H0 the subspace of
W0 consisting of h which admits square integrable deriva-
tive h′; h(t) =

∫ t

0
h′(s)ds, t ∈ [0, 1], and

∫ 1

0
(h′(s))2ds < ∞.
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H0 is a separable Hilbert space with inner product

⟨h, g⟩ =
∫ 1

0

h′(t)g′(t)dt, h, g ∈ H0.

The associated norm of H0 is denoted by ∥ · ∥. It is easily
seen that H0 is embedded continuously and densely in W0.
The dual space W ′

0 of W0 is included in H0 continuously
and densely under the standard identification of H0 and
and its dual space H′

0. Let µ be a Gaussian measure on
(W0,B(W0)), B(W0) being the topological σ-field of W0,
such that

(1)
∫
W0

exp(
√
−1 ℓ)dµ = exp(−∥ℓ∥2/2) for any ℓ ∈ W ′

0,

where an element of W ′
0 is regarded as a random variable on

W0 in the natural manner. The triplet (W0,H0, µ) is the
one dimensional classical Wiener space of pinned Brownian
motion on [0, 1].

Let bt, t ∈ [0, 1], be the coordinate mapping on W0;
bt(w) = w(t), w ∈ W0. Due to (1), {bt}t∈[0,1] is a con-
tinuous Gaussian process with mean zero and covariance
function ∫

W0

btbsdµ = t ∧ s − ts, t, s ∈ [0, 1],

where t ∧ s = min{t, s}.

2.2. Quadratic Wiener functionals

For a separable Hilbert space K, we say that a K-valued
Wiener functional F belongs to D∞(K) if F is infinitely
differentiable in the sense of the Malliavin calculus, and its
derivatives of all orders including itself are p-th integrable
with respect to µ for any p > 1 (cf. [5, 8]). The k-th
derivative of F is denoted by ∇kF . Denoting by H0 ⊗ K
the Hilbert space of Hilbert-Schmidt operators of H0 to
K equipped with the Hilbert-Schmidt norm, we define the
adjoint operator ∇∗ : D∞(H0 ⊗ K) → D∞(K) of ∇ by∫

W0

⟨∇∗F, G⟩dµ =
∫
W0

⟨F,∇G⟩dµ,

F ∈ D∞(H0 ⊗ K), G ∈ D∞(K),

where, for the sake of simplicity, we have also used ⟨·, ·⟩ to
denote the inner products on H0 ⊗ K and K.

Thinking of a symmetric U ∈ H⊗2
0 ≡ H0 ⊗ H0 as a

constant function on W0 with values in H⊗2
0 , we set

QU = (∇∗)2U.

If U is of trace class, we define

qU = QU + trU.

It is easily checked ([5, 8]) that the third derivative of func-
tional F ∈ D∞(R) vanishes, i.e., ∇3F = 0, if and only if
F admits an expression as

F =
1
2
QU + ∇∗h + c,

where

U = ∇2F, h =
∫

X

∇Fdν, and c =
∫

X

Fdν.

It is known (cf. [6]) that
Proposition 1. Let U ∈ H⊗2

0 be symmetric, and h ∈ H0.
For ζ ∈ C with |ζ| < 1/∥U∥op, where ∥ · ∥op denotes the
operator norm, it holds that∫

W0

e(ζ/2)QU+η∇∗hdµ

=
{
det2(I − ζU)

}−1/2
eη2⟨(I−ζU)−1h,h⟩/2

for every η ∈ C, where det2 is the Carleman-Fredholm
determinant, and ⟨·, ·⟩ was extended complex bi-linearly to
the complexified Hilbert space H0⊗C of H0. If, in addition,
U is of trace class, then∫

W0

e(ζ/2)qU+η∇∗hdµ

=
{
det(I − ζU)

}−1/2
eη2⟨(I−ζU)−1h,h⟩/2,

where det is the Fredholm determinant.
It is a routine to extend the above identity to ζ’s in a

much larger domain in C by holomorphic continuation.
Such a Wiener integral as in the above proposition is

called a stochastic oscillatory integral, and is a probabilistic
counterpart to the Feynman path integrals.

2.3. Square norm on measure space

We review briefly the result in [10].
Let E be a topological space, E its Borel σ-field, and σ a

σ-finite measure on (E, E). Consider a continuous mapping
E ∋ e 7→ fe ∈ H0, where the topology of H0 is the strong
one, i.e., comes from the norm. Assume that

(A0)
∫

E

∥fe∥2σ(de) < ∞.

Due to Assumption (A0), one can define F ∈ L2(µ) by the
Bochner integral

F =
1
2

∫
E

(∇∗fe)2σ(de),

and the non-negative definite, symmetric Hilbert-Schmidt
operator A : H0 → H0 of trace class by

⟨Ah, g⟩ =
∫

E

⟨fe, h⟩⟨fe, g⟩σ(de), h, g ∈ H0.

Then

trA =
∫

E

∥fe∥2σ(de) and F = qA/2.

Denote by a1, a2, . . . the eigenvalues of A, counted with
multiplicity, and {hn}∞n=1 the corresponding orthonormal
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basis (ONB in short) of H0. In conjunction with Proposi-
tion 1, we have that

(2)
∫
W0

eζF+η∇∗hdµ

=
{ ∞∏

n=1

(1 − ζan)
}−1/2

exp
(

η2

2

∞∑
n=1

⟨hn, h⟩2H
1 − ζan

)
for ζ, η ∈ C with |ζ| < 1/max{an : n = 1, 2, . . . }.

3. Stochastic oscillatory integral
associated with a2(ψ)

In this section, we investigate the stochastic oscillatory in-
tegral associated with general a2(ψ).

3.1. General a2(ψ)

In this subsection, we apply the results in the previous
section to general a2(ψ).

Let ψ : (0, 1) → [0,∞) be Borel measurable and assume
that

(A1)
∫ 1

0

t(1 − t)ψ(t)dt < ∞.

For each t ∈ [0, 1], we consider the coordinate mapping bt

as an element of W ′
0 ⊂ H0, and, to emphasize this, write

ft for bt;
ft(w) = w(t), w ∈ W0.

For square integrable v : [0, 1] → R, defining hv ∈ H0 by

hv(t) =
∫ t

0

v(s)ds −
(∫ 1

0

v(s)ds

)
t, t ∈ [0, 1],

we have that

(3) ⟨hv, g⟩ =
∫ 1

0

v(s)g′(s)ds, g ∈ H0.

Hence ft ∈ H0 is represented as

ft(s) = t ∧ s − ts, s ∈ [0, 1].

In particular,
∥ft∥2 = t(1 − t).

By Assumption (A1),∫ 1

0

∥ft∥2ψ(t)dt < ∞,

and hence Assumption (A0) in Subsection 2.3 is satisfied
with E = [0, 1] and σ(dt) = ψ(t)dt. Thus, we can now
define the quadratic Wiener functional

Fψ =
1
2

∫ 1

0

(∇∗ft)2ψ(t)dt.

It is easily seen (cf. [5, 8]) that

∇∗ℓ = ℓ for every ℓ ∈ W ′
0.

This yields that ∇∗ft(w) = w(t), w ∈ W0, and hence

Fψ =
1
2
a2(ψ)

As was seen in Subsection 2.3,

(4) a2(ψ) = 2Fψ = qAψ
,

where the Hilbert-Schmidt operator Aψ : H0 → H0 is given
by

⟨Aψh, g⟩ =
∫ 1

0

h(t)g(t)ψ(t)dt, h, g ∈ H0.

In what follows, we investigate the eigenvalues of Aψ.
Since Aψ is non-negative definite and symmetric, the eigen-
values of Aψ are all non-negative real numbers. Consider
the following conditions;

(A2)
∫ 1

0

{t(1 − t)}1/2ψ(t)dt < ∞.

(A3) ψ > 0 a.e. on (0, 1).

(A4) ψ is continuous on (0, 1).

Since |h(t)| ≤
√

2t(1 − t) ∥h∥ for t ∈ [0, 1], under (A2), hψ
is integrable on (0, 1).
Proposition 2. (i) Assume (A2). Then it holds that

(5) (Aψh)(t) = −
∫ t

0

∫ s

0

h(u)ψ(u)duds

+
(∫ 1

0

∫ s

0

h(u)ψ(u)duds

)
t, t ∈ [0, 1].

(ii) Assume (A2) and (A3). Then ker Aψ = {0}.
(iii) Assume (A2) and (A4). Let h ∈ H0. Then h is an
eigenfunction corresponding to an eigenvalue λ ≥ 0 of Aψ

if and only if h ∈ C1([0, 1]) ∩ C2((0, 1)) and satisfies that

(6) λh′′ = −ψh on (0, 1).

Before proceeding to the proof, using the assertion (iii),
we give the theorem on the decomposition of Aψ and the
infinite product expression of the oscillatory integral associ-
ated with a2(ψ). To do so, we introduce some notation. For
φ ∈ C([0, 1]) and a ∈ R, we denote by σ(φ; a) the set of all
g ∈ C([0, 1]) ∩ C2((0, 1)) such that g ̸≡ 0, g(0) = g(1) = 0
and φg′′ = ag on (0, 1), and set

σ(φ) = {a ∈ R |σ(φ; a) ̸= ∅}.

Theorem 1. Assume (A2), (A4), and that

(A5) ψ > 0 on (0, 1) and 1/ψ ∈ C([0, 1]),
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where “1/ψ ∈ C([0, 1])” means that 1/ψ : (0, 1) → (0,∞)
admits a continuous extension to [0, 1].
(i) If −λ < 0,∈ σ(1/ψ) and there is a g ∈ σ(1/ψ;−λ) such
that gψ is integrable on [0, 1], then 1/λ is an eigenvalue of
Aψ, and g is an eigenfunction associated with 1/λ.
(ii) Suppose that there exist −λn < 0,∈ σ(1/ψ) and gn ∈
σ(1/ψ;−λn), n = 1, 2, . . . , such that each gnψ is integrable
on [0, 1] and {gn}∞n=1 is an ONB of H0. Then

Aψ =
∞∑

n=1

1
λn

gn ⊗ gn,

where h ⊗ h ∈ H0 ⊗H0 is defined by (h ⊗ h)(g) = ⟨h, g⟩h,
g ∈ H0. Moreover, it holds that

(7)
∫
W0

eζa2(ψ)+η∇∗hdµ

=
{ ∞∏

n=1

(
1 − 2ζ

λn

)}−1/2

exp
(

η2

2

∞∑
n=1

⟨h, gn⟩2

1 − (2ζ/λn)

)
for ζ, η ∈ C with |ζ| < 1/(2 max{1/λn : n = 1, 2, . . . }) and
h ∈ H0.

Proof. (i) By the assumption, it holds that

g′′ = − 1
λ

gψ on (0, 1).

Since gψ is integrable on [0, 1], this implies that g′ extends
to a continuous function on [0, 1]. Hence g ∈ C1([0, 1]), and
hence g ∈ H0. By Proposition 2 (iii), λ is an eigenvalue of
Aψ, and g is a corresponding eigenfunction.
(ii) In conjunction with (2) and (4), the assertion (i) yields
the second assertion.

Proof of Proposition 2. (i) By an elementary change of va-
riables, we see that∫ 1

0

h(t)g(t)ψ(t)dt =
∫ 1

0

g′(t)
(
−

∫ t

0

h(u)ψ(u)du

)
dt.

By (3), this implies (5).
(ii) Suppose that Aψh = 0. By Assumption (A2) and (5),
hψ = 0 a.e. Then Assumption (A3) and the continuity of
h implies that h = 0.
(iii) The necessity is an immediate consequence of (i) and
the continuity of hψ on (0, 1).

Conversely, suppose that h ∈ H0 belongs to C1([0, 1]) ∩
C2((0, 1)) and satisfies (6). Due to the continuity of h′ on
[0, 1] and the integrability of hψ on [0, 1], integrating (6),
we obtain that

λh′(s) = λh′(0) −
∫ s

0

h(u)ψ(u)du, 0 ≤ s ≤ 1.

Since h(0) = 0, integrating again, we see that

λh(t) = λh′(0)t −
∫ t

0

∫ s

0

h(u)ψ(u)duds, 0 ≤ t ≤ 1.

This yields that

λh(t) = −
∫ t

0

∫ s

0

h(u)ψ(u)duds

+
(∫ 1

0

∫ s

0

h(u)ψ(u)duds

)
t, 0 ≤ t ≤ 1,

which, by the assertion (i), means that Aψh = λh.

It is an easy exercise of Calculus to see that the eigen-
values of Aψ is also computable via the following integral
kernel which was used in [1] to obtain the Fourier decom-
position of the Gaussian process {bt

√
ψ(t) }t∈[0,1].

Proposition 3. Assume (A2). Then it holds that

(8) Aψh(t) =
∫ 1

0

(t ∧ s − ts)ψ(s)h(s)ds, t ∈ [0, 1].

In particular, if λ > 0 is an eigenvalue of Aψ and h ∈ H0

is a corresponding eigenfunction, then g(t) =
√

ψ(t)h(t)
satisfies the integral equation with symmetric kernel (t ∧
s − ts)

√
ψ(t)

√
ψ(s);

λg(t) =
∫ 1

0

(t ∧ s − ts)
√

ψ(t)
√

ψ(s) g(s)ds, t ∈ [0, 1].

3.2. Anderson-Darling test statistic

We now restrict our attention to the case where

ψ(t) = ψAD(t) =
1

t(1 − t)
,

i.e. the case corresponding to the Anderson-Darling test
statistic. ψAD satisfies Assumptions (A1)–(A5). Our aim
of this subsection is to calculate eigenvalues and eigenfunc-
tions of AψAD . To state the main result of this subsection,
we need some notation. We denote by Pn(x) n = 0, 1, . . . ,
the Legendre polynomials defined as the coefficients of the
Taylor expansion of (1 − 2xη + η2)−1/2 in η ([11]);

(1 − 2xη + η2)−1/2 =
∞∑

n=0

Pn(x)ηn.

It admits the explicit expression as

Pn(x) =
[n/2]∑
j=0

(−1)j (2n − 2j)!
2nj!(n − j)!(n − 2j)!

xn−2j ,

where [a] stands for the largest integer less than or equal
to a. Our first goal of this subsection is that
Theorem 2. Let

hn(t) = 4t(1 − t)P ′
n(2t − 1), t ∈ [0, 1]

and h̃n = hn/∥hn∥, n = 1, 2, . . . It then holds that

(9) AψAD =
∞∑

n=1

1
n(n + 1)

h̃n ⊗ h̃n,
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Moreover, it holds that

(10)
∫
W0

eζa2(ψAD)+η∇∗hdµ

=
{ ∞∏

n=1

(
1 − 2ζ

n(n + 1)

)}−1/2

× exp
(

η

2

∞∑
n=1

⟨h, hn⟩2

1 − (2ζ/{n(n + 1)})

)
for ζ, η ∈ C with |ζ| < 1 and h ∈ H0.

Proof. The proof is carried out by adapting the observa-
tion in [1] to our framework. By Theorem 1, it suffices to
study σ(1/ψAD; a). Thus we need to investigate the ordi-
nary differential equation (ODE in short);

t(1 − t)h′′(t) = λh(t), t ∈ (0, 1), h(0) = h(1) = 0.

Through the change of variables t = (x + 1)/2, we shall
investigate the ODE

(11)

{
(1 − x2)g′′(x) = λg(x), x ∈ (−1, 1),
g(−1) = g(1) = 0.

The Ferrers’ associated Legendre function of degree n
and order 1 given by

Pn,1(x) = (1 − x2)1/2P ′
n(x)

is an eigenfunction associated with the eigenvalue −n(n+1)
of the differential operator

L1 = (1 − x2)
d2

dx2
− 2x

d

dx
− 1

1 − x2
on (−1, 1).

For details, see [11]. Moreover, notice that, for any ϕ ∈
C2((−1, 1)), g ≡ (1 − x2)1/2ϕ satisfies that

(1 − x2)g′′ = (1 − x2)1/2L1ϕ on (−1, 1).

Thus
gn = (1 − x2)1/2Pn,1 = (1 − x2)P ′

n

solves the ODE (11) with λ = −n(n + 1).
Define

hn(t) = 4t(1 − t)P ′
n(2t − 1) = gn(2t − 1), t ∈ [0, 1].

Then
hn ∈ σ(1/ψAD;−n(n + 1)).

Since hn ∈ C∞([0, 1]) and hn(0) = hn(1) = 0, hnψAD is
integrable. By Theorem 1, hn ∈ H0 and

(12) AψADhn =
1

n(n + 1)
hn.

We shall now show that {hn}∞n=1 is dense in H0. To do
so, let

kn(t) = tn+1 − t, t ∈ [0, 1], n = 1, 2, . . .

Suppose that h ∈ H0 is perpendicular to all kn, n = 1, 2, . . .
Then

0 = ⟨h, kn⟩ = (n + 1)
∫ 1

0

h′(t)tndt, n = 1, 2, . . .

This implies that h′ is constant, and hence h = 0. Thus
{kn}∞n=1 spans H0. Since P ′

n and kn/{t(1 − t)} are both
polynomials of order n − 1, {hn}∞n=1 also spans H0.

Thus the expression (9) holds. The identity (10) is an
immediate consequence of (9) and Theorem 1.

The infinite product in Theorem 2 can be replaced by an
elementary function;
Corollary 1. It holds that

(13)
∫
W0

eζa2(ψAD)+η∇∗hdµ =
(

−2πζ

cos(π
2

√
1 + 8ζ )

)1/2

× exp
(

η

2

∞∑
n=1

⟨h, hn⟩2

1 − (2ζ/{n(n + 1)})

)
for ζ, η ∈ C with |ζ| < 1 and Re ζ > −1/8, and h ∈ H0.

Proof. Recall the well known identity that

cos
(

π

2
z

)
=

∞∏
n=1

(
1 − z2

(2n − 1)2

)
.

Substitute z =
√

1 + 4x to have

cos
(

π

2
√

1 + 4x

)
= (−4x)

∞∏
n=2

(
1 − 4x + 1

(2n − 1)2

)
.

Since

1 − 4x + 1
(2n − 1)2

=
(

1 − x

n(n − 1)

)(
1 − 1

(2n − 1)2

)
,

we obtain that

cos
(

π

2
√

1 + 4x

)
= (−4x)

∞∏
n=1

(
1 − x

n(n + 1)

)
lim
x→1

cos((π/2)x)
1 − x2

= −πx
∞∏

n=1

(
1 − x

n(n + 1)

)
.

Thus, by Theorem 2, we obtain the desired identity.
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