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ON PROJECTIVE SPACE BUNDLE WITH NEF NORMALIZED
TAUTOLOGICAL LINE BUNDLE

KAZUNORI YASUTAKE

Abstract. In this paper, we study the structure of projective space bundles whose
relative anti-canonical line bundle is nef. As an application, we get a characterization of
abelian varieties up to finite étale covering.

Introduction

For a morphism between smooth projective varieties π : Y → X the relative anti-

canonical divisor −Kπ on Y is defined by the difference of anticanonical divisors −Kπ :=

−KY − π∗(−KX). J. Kollár, Y. Miyaoka and S. Mori proved that the relative anti-

canonical divisor of a non-constant generically smooth morphism cannot be ample in

arbitrary characteristic [7], [11]. In the case where π : Y = PX(E) → X is a projectiviza-

tion of vector bundle on X, we know that the relative anti-canonical divisor is positive

proportion of the normalized tautological divisor. Miyaoka studied the case where Y is a

curve and showed that the nefness of the normalized tautological divisor is equal to the

semistability of vector bundle [10]. Nakayama generalized this to the arbitrary dimension

in [13]. In this paper we study the more explicit structure of vector bundles with nef

normalized tautological divisor. In Section 1, we review the definition and some known

results. In Section 2, we treat semiample cases and show that a pullback of such a bundle

by some finite unramified covering is trivial up to twist by some line bundle. In Section

3, we treat the case where X is a blow-up of a smooth variety Z along smooth subvariety

or a projective bundle over a smooth variety Z. In these cases we show that the vector

bundle with nef normalized tautological divisor on X is isomorphic to the pullback of

vector bundle on K having the same property up to twist by the exceptional divisor. In

Section 4 we study manifolds whose tangent bundle have a nef normalized tautological

divisor. We prove such surfaces are isomorphic to a quotient of abelian surface by some

finite étale morphism. Moreover under the assumption that such a divisor is semiample,

we can show that finite étale covering of abelian varieties are all varieties satisfying this

property.
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notation

We will work, throughout this paper, over the complex number field C unless otherwise

mentioned. We freely use the customary terminology in algebraic geometry. Vector

bundles are often identified with the locally free sheaves of their sections, and these words

are used interchangeably. Line bundles are identified with linear equivalence classes of

Cartier divisors , and their tensor products are denoted additively.

1. Preliminary

At first we recall the notion of normalized tautological divisor defined in [13] which is

originally introduced by Y. Miyaoka as normalized hyperplane class in [10].

Definition 1.1. Let X be a smooth projective variety over algebraic closed field of

arbitrary characteristic and E a rank r vector bundle on X. A normalized tautological

divisor ΛE of E is a Q-divisor on X = PM(E) such that rΛE := rξE − π∗(det(E)) where ξE

is the tautological divisor on X = PM(E) and π is the natural projection π : PM(E) → M .

In particular, rΛE is linearly equivalent to the relative anti-canonical divisor −Kπ.

By virtue of the following theorem, we know that the normalized tautological divisor

ΛE of projective space bundle π : PM(E) → M cannot be ample.

Theorem 1.2. ([7],[11],[15],[4], char > 0) Let X and Y be smooth projective varieties

over an algebraically closed field of arbitrary charactristic and let π : X → Y be a non-

constant generically smooth morphism. Let H be an ample divisor on Y. For any positive

ϵ, the divisor −Kπ − ϵπ∗H is not nef. In particular, −Kπ is not ample.

Moreover N.Nakayama show that the relative anti-canonical divisor −Kπ of projective

space bundle π : PM(E) → M cannot be nef and big in characteristic 0. To state his

theorem, we recall the definition of numerical D-dimension of nef divisors on smooth

projective varieties.

Definition 1.3. Let X be an n-dimensional smooth projective variety, A an ample

divisor on X and D a nef divisor on X. We define the numerical D-dimension ν(D,X) of

D by

ν(D,X) = max{k ∈ N | Dk · An−k ̸= 0}.

We call D big if ν(D,X) = n.
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Theorem 1.4 ([13]). Let X be a smooth projective variety and E a rank r vector bundle

on X. Assume that the relative anti-canonical line bundle −Kπ of projective space bundle

π : PX(E) → X is nef. Then ν(−Kπ) = r − 1. In particular −Kπ cannot be nef and big.

2. vector bundles with semiample normalized tautological divisor

First we consider the case where −Kπ of projective bundle π : PX(E) → X is semiample.

If E ∼= Or
X is a trivial vector bundle on smooth projective variety X, the relative anti-

canonical divisor −Kπ = p∗(−KPr−1) is basepoint-free where p : PX(E) ∼= X×Pr−1 → Pr−1

is the second projection. In the case where dimX= 1 N. Nakayama shows the following

result.

Theorem 2.1 ([12]). Let π : X = PC(E) → C be a P1-bundle over a smooth curve C.

Then the following two conditions are equivalent:

(1) there is a finite étale morphism f : C̃ → C such that X ×C C̃ ∼= P1 × C̃ over C̃;

(2) the normalized tautological line bundle ΛE is semiample.

Remark 2.2. Forthermore N. Nakayama shows very interesting fact; for P1-bundle

PC(E) over a smooth curve C of genus g(C) > 1 the following two conditions are equiva-

lent:

(1) the normalized tautological line bundle ΛE is semiample.

(2) X has a surjective endomorphism g : X → X that is not isomorphism.

We generalize the result of N. Nakayama to arbitrary rank vector bundles and arbitrary

dimensional base manifolds.

Theorem 2.3. Let X be a smooth projective variety and E a rank r vector bundle

on X. Assume that the relative anti-canonical divisor −Kπ of projective space bundle

π : Y = PX(E) → X is semiample. Then there exist a finite étale morphism f : X ′ → X

such that f ∗E is trivial up to twist by a line bundle.

Proof. From the semiampleness of −Kπ we have a fibration ϕ : Y → Z ⊆ PN defined

by the basepoint-free divisor −mKπ for m ≫ 0 and the Stein factorization.

Y = PX(E)
ϕ

//

π

²²

Z ⊆ PN

X

By Theorem 1.4 we have dim Imϕ(Y ) = r − 1. We may asuume that Z is smooth by the

replacement Z with PN . Let S = ϕ−1(z) be a general fiber of ϕ then S is smooth and

π|S : S → X is finite surjective. We will show that π|S is unramified i.e. ΩS
∼= π∗ΩX |S.

In this situation we have the morphism Φ : Tπ → TY → ϕ∗TZ . By the restriction of this

morphism to S we have the generically injective morphism Tπ|S → ϕ∗TZ |S ∼= ON
S since
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ϕ is generically smooth. Taking some direct summand we have a generically injective

morphism between vector bundles of same rank Tπ|S → Or−1
S . From the semiampleness of

−Kπ we know that the determinant morphism −Kπ|S → OS is isomorphism. Therefore

we get an isomorphism Tπ|S ∼= Or−1
S . Taking the dual we also have an isomorphism

Ωπ|S ∼= Or−1
S . Next we consider the exact sequence

0 → (π|S)∗ΩX → ΩS → Ωπ|S → 0.

It is sufficient that Ωπ|S = 0. From the argument mentioned above we know the morphism

Φ∨ : ϕ∗ΩZ |S ∼= ON
S → ΩY |S → Ωπ|S ∼= Or−1

S is surjective. Since S is smooth subscheme

of Y we have an exact sequence

0 → N ∨
S/Y → ΩY |S → ΩS → 0.

The image of ϕ∗ΩZ |S in ΩY |S is contained in N ∨
S/Y since the image of ϕ∗ΩZ |S in ΩS is

0. Therefore we have a surjection N ∨
S/Y → Ωπ|S → 0. From the following commutative

diagram we have Ωπ|S = 0.

0 // N ∨
S/Y

//

²²

ΩS

²²
Ωπ|S //

²²

Ωπ|S //

²²

0

0 0

Taking a base-change by the étale morphism π|S : S → X, we have a finite étale morphism

g : PS(π|∗S(E)) → PX(E) and the natural projection π̃ : PS(π|∗S(E)) → S has a smooth

section. By using this argument repeatedly, we have a finite étale morphism f : X ′ → X

such that the natural projection π′ : PX′(f∗(E)) → X ′ has sufficiently many disjoint

sections. Therefore we can show that PX′(f∗(E)) ∼= X ′ × Pr−1 and we have f ∗E is trivial

up to twist by a line bundle. ¤

3. vector bundles with nef normalized tautological divisor on some

special varieties

Next we consider the case where the normalized tautological divisor ΛE is nef. To state

Theorems proved by Y.Miyaoka and N.Nakayama we review the definition of stability of

vector bundles.

Definition 3.1. Let E be a vector bundle on smooth projective variety X of dimension

n and A an ample line bundle on X. E is said to be A-semistable in the sense of Takemoto-

Mumford if

µ(F) 6 µ(E)

for every non-zero subsheaf F ⊂ E where µ(F) := c1(F).An−1/rank(F).
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Theorem 3.2. ([10], char > 0) Let E be a rank r vector bundle on smooth projective

curve C over a field k of characteristic p > 0.

(1) If p = 0, ΛE is nef if and only if E is µ-semistable.

(2) If p > 0, ΛE is nef if and only if E is strongly µ-semistable i.e. all the Frobenius

pull backs of E are µ-semistable.

Theorem 3.3 ([13]). Let E be a rank r vector bundle on smooth complex projective

variety X of dimension d. Then the following conditions are equivalent:

(1) ΛE is nef;

(2) E is µ-semistable and

(c2(E) − 2r

r − 1
c2
1(E)).Ad−2 = 0

for an ample divisor A;

(3) There is a filtration of vector subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

such that Ei/Ei−1 are projectively flat and the averaged first Chern classes µ(Ei/Ei−1)

are numerically equivalent to µ(E) := c1(E)/rankE for any i.

Here, a vector bundle E is called projectively flat if it admits a projectively flat Hermit-

ian metric. Nakayama shows that projectively flat vector bundles are induced from some

representations of the fundamental group of the base space.

Proposition 3.4 ([13]). Let E be a vector bundle of rank r on a smooth complex

projective variety X. Then E is projectively flat if and only if the associated Pr−1-bundle

π : PX(E) → X is induced from a projective unitary representation π1(X) → PU(r).

By using this fact, we immediately get the following result.

Theorem 3.5. Let X be a smooth projective variety and E a rank r vector bundle on

X. Assume that X is simply connected and the normalized tautological line bundle Λ = ΛE

of E is nef. Then E is trivial up to twist by a line bundle.

Proof of Theorem 3.5. On a simply connected manifold we can prove that there are only

trivial projectively flat vector bundles up to twist by Proposition 3.4. From Theorem 3.3

(3), we know that E is constructed by an extension of such vector bundles. We can denote

E1 = L⊕r1 for some line bundle L. For the bundle E2 we have an exact sequence

0 → E1 = L⊕r1 → E2 → E2/E1 = M⊕r2 → 0.

By virtue of Theorem 3.3 (3) we know that the averaged first Chern class µ(E2) is numerical

equivalence to µ(E2/E1). From this we easily get L is isomorphic to M. Since h1(OX) = 0

the extension above split and we have E2
∼= L⊕r1+r2 . Using this argument repeatedly we

can show that E is trivial up to twist by a line bundle. ¤



6 K. YASUTAKE

Corollary 3.6. Let X is a rationally connected variety and E a vector bundle on X.

If the normalized tautological line bundle Λ = ΛE of E is nef then E is trivial up to twist

by a line bundle.

In positive characteristic case, If the base manifold is surface we can prove the same

statement as in Corollary 3.6.

Theorem 3.7. (char > 0) let S be a smooth projective rational surface over an alge-

braically closed field k of positive characteristic p > 0 and E a vector bundle of rank r on

S. Assume that the anticanonical bundle of the projection π : PS(E) → S is nef, then E is

isomorphic to a trivial bundle up to twist.

To show this we prepare the following lemma.

Lemma 3.8. (char > 0) Let S be a smooth projective surface E a rank r vector bundle

on S and f : S ′ → S a blow-up of S at a point p. If f ∗(E) is isomorphic to a vector bundle

L⊕r for some line bundle L on S ′, then E is also isomorphic to a vector bundle M⊕r for

some line bundle M on S.

Proof. Let C be a exceptional divisor of f. Then f∗(E) is trivial on C i.e. f ∗(E)|C ∼=
L|C⊕r ∼= OC

⊕r. By the Krull-Schmidt theorem of vector bundle [2], we have L|C ∼=
OC . Therefore there exists a line bundle M such that f ∗(M) ∼= L. Hence we have

f ∗(E ⊗M−1) ∼= OS′
⊕r. Therefore we have E ⊗M−1 ∼= OS

⊕r. ¤

Proof of Theorem 3.7. Since S is rational, we have a birational map f : S 99K P2. Let

X
p

ÃÃA
AA

AA
AAq

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

S ϕ
//_______ P2

be a resolution of indeterminacy of ϕ. By assumption we can show that Λq∗E is nef. Since

p is a composition of blow-ups of a point, we can use Theorem 3.11 and we get a vector

bundle E ′ on P2 such that q∗E ⊗ L = p∗E ′ for some line bundle L on X. Moreover ΛE ′

is nef. For any line l in P2 we have a decomposition E ′|l ∼=
⊕

Or
l by the argument as

in proof of Theorem 3.6. In particular E ′ is a uniform vector bundle on P2. Hence E ′ is

isomorphic to a trivial vector bundle. Therefore q∗E ⊗L = p∗E ′ is a trivial vector bundle

on X. From Lemma 3.8 we know that E is trivial up to twist by a line bundle on S. ¤

If X is not rationally connected, even if X is uniruled, there is a non-trivial vector

bundle E such that the normalized tautological divisor is nef.

Example 3.9. (char > 0) Let C be a smooth elliptic curve and Y = C × P1. Then Y

is uniruled and h1(Y,OY ) = h1(C,OC) = 1. Let E be a nontrivial extension of trivial line

bundles 0 → OC → E → OC → 0. Then ΛE = ξE is nef.
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However we get following results.

Theorem 3.10. (char > 0) Let ϕ : X = PY (F) → Y be a Pd-bundle on a smooth

projective variety Y, E a vector bundle of rank r on X and π : PX(E) → X the natural

projection. Assume the normalized tautological divisor ΛE is nef. Then there exists a

vector bundle E ′ on Y such that E = ϕ∗E ′ such that ΛE ′ is nef.

Proof. Let F be a fiber of π. Then we have E|F ∼=
r⊕

OPd(a) where a is an integer.

Since a is independent from the choice of the fiber F. Therefore E ⊗ O(−aξF) = π∗E ′

where E ′ is a rank r vector bundle on Y. Because π′ : PX(E) → PY (E ′) is surjective and

ΛE = π′∗ΛE ′ , we have ΛE ′ is nef. ¤

Theorem 3.11. (char > 0) Let ϕ : X → X ′ be the blow-up of smooth variety along a

smooth subvariety Y ⊂ X ′ and E a vector bundle of rank r on X. Assume that ΛE is nef.

Then there exists a vector bundle E ′ such that E ⊗ L = ϕ∗E ′ where L is a line bundle on

X. Moreover ΛE ′ is nef.

To prove this we use the following results.

Proposition 3.12. (char > 0) Let X be a smooth projective variety and E a vector

bundle on X. Assume that the normalized tautological line bundle Λ = ΛE of E is nef.

Then for any rational curve γ : P1 → X on X, γ∗(E) is trivial up to twist by a line

bundle.

Proof. We have a splitting :

γ∗E ∼= OP1(a1) ⊕OP1(a2) ⊕ · · ·OP1(ar),

where a1 6 a2 6 · · · 6 ar. We have the morphism γ′ : PP1(γ∗E) → PX(E) indeced by γ.

We denote natural projections by π : PX(E) → X and π′ : PP1(γ∗E) → P1 . Then we have

rΛγ∗E = rξγ∗E − π′∗det(γ∗E) = rγ∗ξE − γ∗π∗det(E) = rγ∗ΛE .

Since ΛE is nef by assumption, Λγ∗E is also nef. Let C be the section of γ∗E associated

with the quotient line bundle γ∗E → OP1(a1) → 0. We have

rΛγ∗E .C = rξγ∗E .C − π′∗det(γ∗E).C = ra1 −
r∑

i=1

ai > 0.

Therefore we get a1 = a2 = · · · = ar. Hence γ∗E is trivial up to twist by a line bundle. ¤

Theorem 3.13. ([1], char > 0) Let ϕ : X → X ′ be the blow-up of smooth variety along

a smooth subvariety Y ⊂ X ′ and E a vector bundle on X. Assume that E is trivial for any

fiber of ϕ. Then there exists a vector bundle X ′ such that E = ϕ∗E ′.
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Proof of Theorem 3.11. By virtue of theorem 3.13, we only have to show that E is trivial

on the fiber F of ϕ. In this case F is isomorphic to Ps−1 where s is the codimension of

Y in X ′. From Proposision 3.12 we know that E|F is uniform bundle on F. Therefore

we have E|F ∼= ⊕rOPs−1(a). For two distinct fibers F1 and F2 of ϕ, we have c1(E|F1) =

c1(E)|F1 = c1(E)|F2 = c1(E|F2). Therefore a is independent from the choice of F. Hence

there exist a vector bundle E ′ on X ′ and a integer k such that E ⊗OX(aE) = ϕ∗E ′ where

E is the exceptional divisor of ϕ. In this case we have ΛE = ϕ∗ΛE ′ . Since ΛE is nef and ϕ

is surjective, ΛE ′ is also nef. ¤

4. nefness of normalized tautological bundle of tangent bundle

In this section we consider the nefness of the normalized tautological line bundle of

tangent bundle of manifolds.

Proposition 4.1. (char > 0) Let X be a manifold contains a rational curve f : P1 →
X. Then the normalized tautological line bundle of tangent bundle ΛTX

of X is not nef.

Proof. By Lemma 3.12 we know that f∗(TX) ∼= O(a)⊕n for some integer a > 2 for

any rational curve f : P1 → X. Therefore we have deg(f ∗(−KX)) = na > 0. In particular

KX is not nef. If KX is not nef, then we can find a rational curve g : P1 → X on X such

that deg(g∗(−KX)) 6 n + 1 by Theorem 1.13 in [9]. This is a contradiction. ¤

From this Proposition, we immediately prove the following result.

Corollary 4.2. (char > 0) Let X be a smooth projective variety over algebraically

closed field k = k̄ of arbitrary characteristic. If Kodaira dimension κ(X) = −∞ or X is

not minimal then the normalized tautological line bundle of tangent bundle ΛTX
of X is

not nef.

In the case where the Kodaira dimension κ(X) = 0 and X is minimal, the canonical

divisor is numerical trivial. Therefore the nefness of the normalized tautological line

bundle of tangent bundle is equivalent to the nefness of tangent bundle. F.Campana and

T.Peternell proved that in this case there is an étale covering T → X from abelian variety

T.

Theorem 4.3 ([3] Theorem 2.3). Let X be a smooth projectie manifold. Assume that

the tangent bundle TX is nef and KX is nef, then the canonical bundle is numerical trivial

KX ≡ 0 and there is an étale covering T → X from abelian variety T.

The case where Kodaira dimension κ(X) > 1 is very difficult in general. But the case

where dimX = 2 we can obtain the following result.

Proposition 4.4. Let S be a smooth projective minimal surface with the Kodaira di-

mension κ(S) > 1. Then the normalized tautological line bundle of tangent bundle ΛTS
is

not nef.
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Proof. If the Kodaira dimension κ(S) = 1, then S is a relatively minimal elliptic

surface π : S → C. By virtue of Theorem 3.3 if ΛTS
is nef we have c1(S)2 = c2(S) = 0.

Therefore we have the Euler character χ(OS) = 0 and a singular fiber of S is multiple

fiber from corollary 16 and 17 in [6]. By canonical bundle formula for elliptic surfaces (c.f

Theorem 15 in [6]) we obtain

KS = π∗(KC ⊗ L) ⊗OS(
∑

i

(mi − 1)Fi)

where L is a line bundle on C of deg(L) = 0 and Fi is the multiple fiber of π with the

multiplicity mi. We consider the exact sequence of sheaves 0 → π∗(ΩC) → ΩS. This sheaf

morphism drops rank on multible fibers. Therefore we can get the torsion-free subsheaf

0 → π∗(ΩC) ⊗ OS(
∑

i

(mi − 1)Fi) → ΩS. In this case we have π∗(ΩC) ⊗ OS(
∑

i

(mi −

1)Fi) ≡num KS. Since KS is not numerical trivial, for an ample divisor A we have

µA(π∗(ΩC) ⊗ OS(
∑

i

(mi − 1)Fi)) = A.KS > A.KS/2 = µA(ΩS). This is a contradiction

to the semistability of ΩS.

If the Kodaira dimension κ(S) = 2 i.e. S is of general type, we have 0 < c2
1(S) 6

3c2(S) < 4c2(S) = c2
1(S) by Theorem 3.3 and Miyaoka-Yau inequality. It is a contradic-

tion. ¤

Combining with these result we have a characterization of abelian surface up to finite

étale covering.

Theorem 4.5. Let S be a smooth projective surface. If the normalized tautological

line bundle of tangent bundle is nef, then there is an étale covering T → S from abelian

surface T.

In higher dimensional case we have the following characterization of abelian variety up

to finite étale covering .

Theorem 4.6. (E. Sato) Let X be a smooth projective variety of n dimensional. If the

normalized tautological line bundle of tangent bundle is semiample, then there is an étale

covering T → X from abelian variety T.

Proof. By virtue of Theorem 4.1 we may assume that X is minimal. From Theorem

2.3 we have a finite étale covering f : X̃ → X such that TX̃
∼= f∗TX

∼= L⊕n for some line

bundle L on X̃. If κ(X) > 1 we have KX̃ .An−1 = −nL.An−1 > 0 for an ample divisor on

X̃. By Proposition 2 in [5] we know that the universal covering space of X is isomorphic

to the direct product Dn where D is an open disc D = {z ∈ C||z| < 1}. It contradicts to

the decomposition into same line bundles TX̃
∼= L⊕n. Therefore we may consider only the

case where κ(X) 6 0. In this case there is an étale covering T → X from abelian variety

T by Corollary 4.2 and Theorem 4.3. ¤
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