
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Note on Information Loss: Local Quantum Physics
Perspective

Nakahara, E

成清, 修

https://hdl.handle.net/2324/1955688

出版情報：2018-08-07
バージョン：
権利関係：



Note on Information Loss:
Local Quantum Physics Perspective

E. Nakahara and O. Narikiyo ∗

(August 7, 2018)

Abstract

This note supports the arguments of information loss by Unruh
and Wald (arXiv:1703.02140) in terms of algebraic quantum theory.

1 Introduction

Last year Unruh and Wald published the arguments for the information
loss in the case of the black hole evaporation [1]. Most of the arguments,
however, had already appeared in Wald’s monograph [2] in 1994. In the past
two decades the arguments in the monograph did not have strong impact on
the study of the information paradox of the black hole. We suspect that the
reason is the lack of our understanding of the value of the algebraic quantum
theory.

Recently the value has been recognized widely [3] so that we feel that the
acceptance of their arguments1 has become easier than before.

In this note we review the known results of the algebraic quantum theory
relevant to discuss the information loss.

In the section 2 a vacuum is introduced as an entangled object. However,
we can always obtain a local description as discussed in the section 3. Such a
local description is consistent with the Unruh effect which is a manifestation
of an entanglement as discussed in the section 4. In the final section the
conclusion for the information loss is stated.

∗Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
1We do not mention their global argument on the basis of the Cauchy surface. We only

comment on their local argument that can be supported by local quantum physics.
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2 Entanglement

2.1 GNS construction

After [4]-§III.2.2 we briefly summarize the GNS construction.
First we assume the existence of a state ω which is a normalized positive

linear form for a *-algebra A. The state ω defines a Hilbert space Hω and
the representation πω of A in Hω. A itself is a linear space and we define a
vector |A⟩ as an equivalence class of A ∈ A:

|A⟩ = {A+N | N ∈ Nω} (1)

where Nω is a left ideal of A (AN ∈ Nω) with Nω = {A ∈ A | ω(A∗A) = 0}.
The scalar product is given by ⟨A|B⟩ = ω(A∗B). After the completion the
space of these vectors becomes a Hilbert space Hω ([6]-§A.2).

The representation πω(A) of A is given by

πω(A)|B⟩ = |AB⟩. (2)

We assume that I ∈ A where I is the unit element. The vector |Ω⟩ = |I⟩ is
cyclic2 and the state is expressed3 as

ω(A) = ⟨Ω|πω(A)|Ω⟩ (3)

where the normalization is given as ⟨Ω|Ω⟩ = ω(I) = 1.
Roughly Hω = πω(A)|Ω⟩ where πω(A)|Ω⟩ ≡ {πω(A)|Ω⟩ | A ∈ A} ([5]-

p.36). Precisely Hω = πω(A)|Ω⟩ where the overline means closure ([6]-p.39).
In this case we call πω(A)|Ω⟩ dense in Hω. |Ω⟩ is called a cyclic vector of the
representation πω ([6]-§2.3).

2.2 Reeh-Schlieder Property

“The set of vectors A(O)Ω generated from the vacuum by the polynomial
algebra of any open region is dense in H ([4]-Theorem 5.3.1)”.

This Reeh-Schlieder property4 is obvious from the GNS construction5.
2A representation π is called cyclic if there exists a vector |Ω⟩ in the representation

space H such that π(A)|Ω⟩ is dense in H. In this case |Ω⟩ is called a cyclic vector. It is
obvious that |I⟩ is a cyclic vector.

3Any vector |Ψ⟩ defines a state ω̃ as ω̃(A) = ⟨Ψ|πω(A)|Ψ⟩ if we put ω̃(A) = ω(B∗AB)
and |Ψ⟩ = πω(B)|Ω⟩.

4The vacuum in the theorem may be replaced by any vector with bounded energy ([4]-
Theorem 5.3.1-Remark(ii)). The vacuum vector Ω is not only cyclic but also separating:
if AΩ = BΩ, then A = B for A,B ∈ A(O) ([6]-Theorem 4.14).

5The GNS construction has nothing to do with the space-time. Thus the Reeh-Schlieder
property is understood as the relation of the algebra.
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2.3 Summary

The Reeh-Schlieder property tells us that a vacuum cannot be decomposed
into a product of space-like separated contributions [7]. Thus entanglement
properties6 do exist in local quantum physics.

3 Local Description

3.1 Local Quantum Physics

In this note we identify the algebraic quantum theory with the local quantum
physics [4].

The local quantum physics starts from the local measurement: “A phys-
ical theory starts from a description of the information about a physical
system obtained by measurements.” ([6]-p.14)

“Physical measurements are accompanied by errors.” ([6]-p.13) Thus we
have to consider the ‘physical topology’ of the states. ([6]-§1.6)

The state ω(A) is introduced as the expectation value of the observable A:
“The concept of states has been introduced in order to describe the results
of a measurement of a physical system.” ([6]-p.14)

The above measurement process is well described by von Neumann alge-
bra7 which is closed in the weak operator topology. ([6]-§2.2)

3.2 Quantum Mechanics

The local quantum physics is described by the type-III von Neumann alge-
bra,8 while usual quantum mechanics is described by the type-I von Neumann
algebra. The difference is significant as shown in the following.

For comparison we clarify the status of usual quantum mechanics.
Finite degrees of freedom: → The unitary evolution is meaningful.
Lack of causal structure: ← The speed of light is infinite.

6As noted in the previous footnote the GNS construction has nothing to do with the
space-time. Thus the entanglement properties are also understood as the relations of the
algebra.

7It is not known a priori so that we have to choose an algebra which describes the
situation of our local measurements appropriately. It is the type-III von Neumann algebra.

8The minimum review of von Neumann algebra necessary for our discussion is found
in [7, 8].
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3.3 Relativistic Quantum Fields

The above two insufficiencies are closely related: “an upper bound on the
propagation velocity of effects leads naturally to systems with an infinite
number of freedom (relativistic quantum fields)” ([7]-p.325).

The system with finite degrees of freedom exhibits no spontaneous sym-
metry breaking (SSB) which is the heart of the field theory of the standard
model. The generalized sector structure [9] of the type-III von Neumann
algebra gives a natural framework to describe the SSB.

3.4 Open System

3.4.1 Extrinsic Mixing

In usual quantum mechanics the total system is a closed system. If we divide
the total system into the inner system and its environment, the inner system
becomes an open system. The density operator ρ for the inner system evolves
as

ρ′ =
∑
i

ViρV
†
i (4)

where Vi is the Kraus operator [10]. Here i stands for the environmental
degrees of freedom. In the derivation of this evolution rule we need to trace
out the information of the environment.

The unitary evolution
ρ′ = UρU † (5)

is expected for a closed system with finite degrees of freedom.
A closed system is described as a pure state and an open system is de-

scribed as a mixed state.

3.4.2 Intrinsic Mixing

At the beginning of its description local quantum physics defines a local
region O of space-time. Then it considers the algebra A(O) of local observ-
ables. Finally it considers the net of local algebras. The net describes the
collection of open systems [4].

The state for the type-III von Neumann algebra is an intrinsically9 mixed
state [7]. In this case the label i distinguishes different ‘generalized’ sectors
[9]. It should be noted that the ‘generalized’ sector is defined in terms of the
factor.

9In this case we do not have to trace out some degrees of freedom. The ‘generalized’
sector structure is an inner structure of the states for the type-III von Neumann algebra.
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Usual quantum mechanics is the theory for a single sector. On the other
hand, a spontaneous symmetry breaking (SSB) occurs among different sec-
tors [9]. Thus local quantum physics can naturally describe SSB but usual
quantum mechanics cannot.

3.4.3 Living Room

Unruh and Wald [1] use an illustration of ‘living room’ which is an open
system and described as a mixed state. The evolution of it is not unitary so
that the information of it is not conserved. If we say that the information is
lost in this case as Unruh and Wald do, the information loss is a daily event
regardless of the presence of a black hole. In local quantum physics the state
for a local space-time region O corresponds to the living room.

The discussions aiming to prove the conservation of the information in
the process of black hole evaporation seem to implicitly assume the following:
• The whole universe is in a pure state.
• The pure state evolves unitarily.
Both are irrelevant to the situation of local quantum physics.

3.5 Statistical Independence

The local algebras A1 and A2 are statistically independent [7], if there is a
state ω on A1 ∨ A2 such that

ω(AB) = ω1(A)ω2(B) (6)

for every pair of states ω1 on A1 and ω2 on A2 with A ∈ A1 and B ∈ A2.
Namely, states can be independently prescribed on each local algebra and
extended to a common uncorrelated state on the joint algebra [7].

This statistical independence is equivalent to the split property in the
following.

3.6 Factor

Here we introduce a factor. The factor plays a vital role to perform the
disentanglement.

If the von Neumann algebraM is a factor, the algebra B(H) of bounded
operators on H is “factorized” [8] intoM and its commutantM′. Here the
total Hilbert space H is separable: H = H1 ⊗H2. M andM′ are separable
asM = B(H1)⊗ I andM′ = I⊗ B(H2) so that B(H) = B(H1)⊗ B(H2).
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3.7 Split Property

In the following we assume the split property that follows from the nuclearity
requirement ([4]-§5.1).

For simplicity we employ the situation whereO1 ⊂ O2. The split property
[11] means that there is a type-I factor N such that

A(O1) ⊂ N ⊂ A(O2) (7)

where A(O) is the local algebra10 on O. We can set A(O1) ⊂ N = B(H1)⊗I.
Next we consider O3 which is separated from O2 in a space-like manner.

Then we can set A(O3) ⊂ N ′ = I⊗ B(H2).
Thus the split property leads to the statistical independence between

A(O1) and A(O3).

3.8 Local Preparability

The discussion in this subsection is a mixture of [7] and [12].
Let us start from an arbitrary input state ω. The target state is a normal

state φ.
To exploit the split property we introduce a local space-time region Oε

which includes O and slightly larger than O. In this way we can exploit
the split property for any O. The split inclusion is written as A(O) ⊂ N ⊂
A(Oε). The split property leads to A(O) ⊂ B(H1)⊗I and A(O′) ⊂ I⊗B(H2)
where O′ is separated from Oε in a space-like manner.

For the type-I local algebra N there is a normal state φ(A) = Tr{ρA}
with a density operator ρ. The density operator is written as ρ =

∑
i µiPi in

terms of the projection Pi where µi ≥ 0 and
∑

i µi = 1.
For A ∈ A(O) ⊂ N there is a spectral decomposition A =

∑
j ajPj with

a number aj. Namely, for the algebra embedded in N such a description is
almost exact approximation when the difference between O and Oε is small.

For every Pi ∈ N we can find Wi ∈ A(Oε) such that WiW
∗
i = Pi and

W ∗
i Wi = I by the type-III property of A(Oε).
The preparation operation of the state can be implemented by a local map

T for A ∈ A(O). Such a map is expressed in terms of the Kraus operator
Vi ≡

√
µiWi as T (A) =

∑
i V

∗
i AVi.

The transformation of ω(AB) via the local map T can be factorized as11

ω̃(AB) = φ(A)ω(B) (8)
10When O1 ⊂ O2, A(O1) ⊂ A(O2) is obvious.
11Since A =

∑
j ajPj , the relation PiAPi = aiPi holds. By multiplying this relation

from left with W ∗
i and right with Wi we obtain W ∗

i AWi = aiI. Then the map T works as
T (A) =

∑
i µiW

∗
i AWi =

∑
i µiaiI = φ(A)I. Therefore ω̃(AB) = ω(T (A)B) = φ(A)ω(B).
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where ω̃(AB) ≡ ω(T (A)B). Thus the map T embodies the statistical inde-
pendence (6).

Consequently “any state on A(O) ∨ A(O′) can be disentangled12 by a
local operation in A(Oε).” ([7]-Theorem 5)

3.9 Quantum Channel

In this subsection we consider the isometry in a quantum channel [13]. Its
construction is parallel to the procedure in the last subsection.

We start from a channel N which is a map N : L(HA) → L(HB) where
L(H) is the set of all bounded linear maps of the Hilbert space H.

Then we introduce an isometric extension (Stinespring dilation)W : HA →
HB ⊗HE of the channel N under the condition for XA ∈ L(HA)

TrE{WXAW
†} = N (XA). (9)

This isometry behaves as

W †W = IA, WW † = PBE (10)

where PBE is a projection of the tensor-product Hilbert spaceHB⊗HE. Such
a behavior is expected if we consider the isometry as a rectangular matrix.

The isometry is explicitly constructed as [13]

W =
∑
j

Nj ⊗ |j⟩ (11)

where Nj is the Kraus operator such that

N (ρA) =
∑
j

NjρAN
†
j . (12)

3.10 Entanglement-Breaking Channel

The procedure of the disentanglement can be easily demonstrated in the
channel theory. ([13]-§4.6.7)

Roughly the disentanglement is possible if the channel has a Kraus rep-
resentation. In usual quantum mechanics the Kraus representation is intro-
duced extrinsically by the trace-out of the environmental degrees of freedom.
On the other hand, in local quantum physics the Kraus representation is
intrinsic because of the ‘generalized’ sector structure [9].

12Given a state ω on A(O) ∨ A(O′) there is an isometry {Wi} ∈ A(Oε) such that

ω̃(AB) = ω(A)ω(B)

for all A ∈ A(O) and B ∈ A(O′). ([7]-p.343)
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3.11 Local Filter

In this subsection we collect the conclusions reached by researchers of local
quantum physics.

They needs a device to gain the data of the local measurement. The local
map T which we employed describes the status of the device: “this operation
T is used to represent the measuring devise itself.” ([14]-pp.213-214)

In order to introduce the isometry we expand the local region of measure-
ments slightly. Under such a situation the disentanglement is possible. “The
existence of the local filter for a state in a certain domain means that the
state in that domain can be prepared by using some apparatus in a domain
which is a little bigger than the original one.” ([6]-p.191)

The local filter13 is introduced by Buchholz, Doplicher and Longo [15].
In the following we quote several sentences appeared in [15]-pp.5-6:

• All local observables can also be grounded on the basic experimental
fact that it is possible to fix locally certain specific physical situations
irrespective of the given initial conditions of the world.

• Pure filters are familiar from systems with a finite numbers of degrees
of freedom. In quantum field theory, however, a pure filter cannot
be a (local) observable, because it affects in a sharp way all states at
arbitrarily large space-like distances. On the other hand, one never
attempts to measure pure filters. In practice one is content with the
possibility of fixing states within limited space-time regions. It is an
important empirical fact that this can be achieved with an experimen-
tal set-up where only the parameters of the states in question enter.
Phrased differently: by suitable monitoring experiments one can estab-
lish a definite state within a given region, irrespective of the unknown
and complicated details of the rest of the world. So locally, such exper-
iments have the same effect as a pure filter. Translating these facts into
the setting of quantum field theory one is led to introduce the concept
of a local filter for a given state.

• The empirical situation just described then suggests that all physi-
cally reasonable theories have to admit such local filters. We shall
demonstrate now that this condition, which expresses a principle of
experimental definiteness, implies the split property.

13Our isometry is a local filter revised in [12]. Yngvason’s review [7] is written based
on [12] entitled “Local Preparability of States and the Split Property in Quantum Field
Theory.” This title summarizes our strategy for local description.
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3.12 Summary

We can perform a disentanglement so that we can make our measurements
in local laboratories meaningful. It is a local description without knowing
the other regions of the universe.

4 Unruh Effect

4.1 KMS Property

The Gibbs state ω for a finite system is represented by the trace ω(A) =
Tr{ρA} where ρ = e−βH/Tr{e−βH} is the density operator. The equilibrium
state has the KMS property

ω(A(t)B) = ω(BA(t+ iβ)) (13)

where A(z) ≡ eiHzAe−iHz with complex z. This property is easily shown14

only using the cyclic property of the trace.
This property also holds for infinite systems.

4.2 HHW Property

Haag, Hugenholtz and Winnink found a modular structure in the Gibbs
state15.

Here we consider the algebra A of n × n matrices. By giving the scalar
product ⟨A|B⟩ ≡ Tr{A∗B} the algebra A can be identified with a Hilbert
space H. In H we distinguish the left representation π: π(A)B ≡ AB and
the right representation π′: π′(A)B ≡ BA∗. π′(A) becomes the commutant
of π(A): π′(A) = π(A)′.

We introduce an involution J by JA = A∗ where J is anti-unitary and
J2 = I. This involution J maps π(A) onto its commutant:

Jπ(A)J = π(A)′. (14)

The ‘vector’ Ω defined16 by Ω = ρ1/2 is cyclic and separating. The Gibbs

14See [4]-§V.1.1.
15Although they also discussed the case of infinite degrees of freedom, we only discuss

the finite case after [16]. In [16] all the proofs of the statements are given.
16The factor ρ1/2also defines important quantities in other theories:

• the vacuum in the thermo field dynamics [17]

• the Kraus operator in the quantum fluctuation theorem [18].
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state ω is written as ω(A) = ⟨Ω|π(A)|Ω⟩ = (⟨Ω|π′(A)|Ω⟩)∗ which is consistent
with the GNS representation. Within this subsection we put β = 1.

Next we introduce other involutions Sπ(A)|Ω⟩ = π(A)∗|Ω⟩ and Fπ′(A)|Ω⟩ =
π′(A)∗|Ω⟩ where S and F do not conserve norms in general. S and F
are related to J by a positive operator ∆ as17 S = J∆1/2 = ∆−1/2J and
F = J∆−1/2 = ∆1/2J . This positive operator ∆ is related to the time-
evolution operator U(z) as follows.

The time-evolution operator is defined by U(t) = π(eiHt)π′(eiHt) which
acts as U(t)A = eiHtAe−iHt. In terms of the positive operator U(t) = ∆it.

Symbolically we define the modular HamiltonianK byK = π(H)−π′(H).
In terms of the modular Hamiltonian ∆ = e−K and U(t) = e−iKt.

4.3 Tomita Property

We consider the von Neumann algebraM∈ B(H) in the standard form18.
The modular conjugation J bringsM into its commutantM′:

JMJ =M′. (15)

The modular operator ∆ forms an automorphism:

∆itM∆−it =M. (16)

These are the Tomita properties ([5]-C.23). The HHW properties shown
in the last subsection are carried over to the case of infinite degrees of free-
dom.

Mathematically the most primitive modular structure is seen in the rep-
resentation of the locally compact group. In its left representation π(t)|s⟩ =
|t−1s⟩. On the other hand, in its right representation π′(t)|s⟩ = ∆(t)1/2|st⟩
where ∆(t) is the modular function.

Physically the modular conjugation J leads to a significant consequence:
the modular Hamiltonian K is not positive. Its negative part is suppressed19

with respect toM and its positive part is suppressed with respect toM′.

17S = J∆1/2 is an essential relation in the Gibbs state. The derivation of it given in
[4]-§V.1.4 is as follows. It is crucial to notice that |Ω⟩ = |e−βH/2⟩/Z1/2 explicitly. Here
Z ≡ Tr{e−βH}. In GNS representation π(X)|Ω⟩ = |XΩ⟩ and π′(Y )|Ω⟩ = |ΩY ∗⟩. Thus
e−βK/2|AΩ⟩ = |ΩA⟩. On the other hand, J |A∗Ω⟩ = |ΩA⟩, since J |X⟩ = |X∗⟩. Using
J−1 = J we obtain Je−βK/2|AΩ⟩ = |A∗Ω⟩. This is equal to Je−βK/2π(A)|Ω⟩ = π(A∗)|Ω⟩.

18In this Hilbert space H there is a unit vector Ω that is cyclic and separating forM.
19The property J∆J = ∆−1 and JE

(+)
κ J = E

(−)
κ plays an important role. Here E

(±)
κ is

the spectral projection of K. ([4]-V.2.1)
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4.4 Takesaki Property

We consider the vacuum vector Ω that is the eigenvector of the modular
Hamiltonian with zero eigenvalue.

The vacuum expectation value shows the KMS property20:

⟨Ω|A(t)BΩ⟩ = ⟨Ω|BA(t− i)Ω⟩ (17)

for A,B ∈M.
This is the Takesaki property. In [19]-p.79: “A characteristic feature of

relativistic quantum field theory is the existence of vacuum fluctuations for all
local observables. Actually, the vacuum state, restricted to a bounded region
O, has many features of an equilibrium state at nonzero temperature.”

The property (17) is confirmed by a direct calculation ([4]-§V.2.1). The
calculation shows that the modular operator ∆ represents the vacuum fluc-
tuation.

In relation to the space-time the von Neumann algebra M in the last
subsection is the local algebra A(O). A and B have support on O so that
the vacuum expectation value in (17) reduces to the expectation value by
the local measurement at O. The state for the local measurement is a mixed
one as discussed in the subsection of open system.

4.5 Bisognano-Wichmann Property

In the last paragraph of §4.5 in [2]: “The Reeh-Schlieder theorem implies
that the restriction of the ordinary vacuum state to O defines a mixed state.
The Unruh effect provides an excellent illustration of this phenomenon.”

Bisognano and Wichmann did this illustration in terms of modular struc-
ture. They found21 that the modular operator is

∆it
O = U(Λ1(2πt)) (18)

and the modular conjugation is

JO = ΘU(R1(π)) (19)

for the wedge O = {x ∈ M |x1 > |x0|} in the Minkowski space M . Here U
is the representation of the Lorentz group and Θ is the PCT operator. The
operation Λ1 is the boost in x1-direction and R1 is the rotation around the
x1-direction.

For a uniformly accelerated observer in this wedge the vacuum state looks
like a thermal state ([4]-§V.4.1).

20The KMS property is equal to ⟨Ω|ABΩ⟩ = ⟨Ω|B∆−1AΩ⟩ as written in (15.7)-[7].
21See [4]-§V.4.1 and [7]-§15.3.4.
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4.6 Thermo Field Dynamics

The HHW properties are also implemented [20] in the framework of the
thermo field dynamics [17].

The vacuum |Ω⟩ that is the eigenvector of the modular Hamiltonian K
with zero energy is described as the coherent state in terms of the thermal
pairs. Such a coherent state shows the Unruh effect [21].

4.7 Summary

The local quantum physics is compatible with the entangled vacuum. An
entanglement leads to the Unruh effect. Such an effect results from the fact
that our observation can reach only restricted part of the universe.

5 Conclusions

In the discussion of the information paradox of the black hole the conservation
of the information of the universe became a central issue. However, such
information is not a local observable.

The information might be meaningful if we consider a closed system with
finite degrees of freedom described as a pure state. The evolution of such a
system is unitary and the information is conserved.

On the other hand, the situation of the measurements in the local quan-
tum physics is completely different. We measure an open system with infinite
degrees of freedom described as a mixed state. The evolution of such a system
is not unitary.

Although the local quantum physics cannot describe the global structure
of the space-time (gravity itself), it can describe the Unruh effect which is
an essential observable effect of gravity.

Consequently the paradox has been lost.
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