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We demonstrate high-efficiency organic light-emitting devices employing the green
electrophosphorescent molecufa¢ tris(2-phenylpyridingiridium [Ir(ppy);], doped into various
electron-transport laygETL) hosts. Using 3-phenyl-4t’-naphthy)-5-phenyl-1,2,4-triazole as the

host, a maximum external quantum efficiencyef) of 15.4+-0.2% and a luminous power
efficiency of 402 Im/W are achieved. We show that very high internal quantum efficiencies
(approaching 100%care achieved for organic phosphors with low photoluminescence efficiencies
due to fundamental differences in the relationship between electroluminescence from triplet and
singlet excitons. Based on the performance characteristics of single and double heterostructures, we
conclude that exciton formation in(ppy); occurs within close proximity to the hole-transport layer/
ETL:Ir(ppy)s interface. ©2000 American Institute of Physid$S0003-695(00)00332-4

The recent demonstratibf of high-efficiency organic openings was used to define the cathode consisting of a 150-
light-emitting devicesOLEDS) using the electrophosphores- nm-thick Mg—Ag layer, with a 20-nm-thick Ag cap. Alter-
cent molecules 2,3,7,8,12,13,17,18-octaethy#2BH- natively, the cathode consisted of a 100-nm-thick layer of
porphine platinum(PtOEB and fac tris(2-phenylpyriding ~ Al-0.56 wt % Li.
iridium (Ir(ppy)s) led to the prospect of obtaining devices Current density(J) versus voltage(V) measurements
with internal quantum efficiencieszf,) of 100% through were obtained using a semiconductor parameter analyzer,
radiative recombination of both singlet and triplet excitons.with the luminance obtained by placing the OLEDs directly
In previous studie$® an external quantum efficiencyy{,,) onto the surface of a large-area calibrated silicon photodiode,
of 8% (corresponding tor;,,~40%) using a light-emitting thus avoiding corrections needed to account for non-
layer (EML) comprised of Ifppy); doped into a Lambertian spatial emission patterhdhe photolumines-
4,4'-N,N’-dicarbazole-bipheny{CBP) host was reported. cence(PL) and electroluminescendéL) transient decays
This remarkable result was ascrified bipolar carrier trans- were characterized using a streak camera following excita-
port in CBP along with a favorable triplet energy level align- tion by a nitrogen laser at a wavelengthxof 337 nm and a
ment between the host and the dopant which promotes effpulse width of~500 ps for PL, and by a pulse generator for
cient energy transfer between species. In this study, wé&L.
describe high-efficiency electrophosphorescent OLEDs A maximum 7g= 15.4+0.2% and power efficiency of
employing an electron-transport lay€dETL) as a host. 40*2 Im/W of the7%-Ir(ppy)s;-doped TAZ device using an
The ETL materials are 2,9-dimethyl-4,7-diphenyl- Al-Li cathode was obtaine(see Fig. 1, corresponding to
phenanthroline(BCP),® 1,3-bigN,N-t-butyl-pheny)-1,3,4-  7,,=80%. The value 0fy,, is almost double compared
oxadiazole (OXD7),° and 3-phenyl-44’-naphthy)-  with that previously reported for (ppy); deviceg with 7
5-phenyl-1,2,4-triazol€TAZ).” It has been previously estab- now approaching 100%. The device exhibits a gradual de-
lished that these materials possess good electron-transparease in quantum efficiency with increasing current, charac-
characteristics while also serving to block hole and excitorteristic of triplet—triplet annihilation observed in all electro-
transpor™’ Our experiments are consistent with,, ap- phosphorescent devicEsNevertheless, a high optical output
proaching 100%, suggesting that future work on increasingower of 2.5 mW/crh (corresponding to a luminance of
efficiency will realize the largest gains by focusing on im- ~4000 cd/m) with 7e.=10.0% was maintained even &t
proving light out-coupling from the OLED structure. =10 mA/cn?. At Ir(ppy); concentrations less than 2%, we

Organic layers were deposited by high-vacuumobserved a decrease ig,~ 3% along with additional blue
(10" ®Torr) thermal evaporation onto a clean glass subhost emission X~440nm), while at high lppy); concen-
strate precoated with an indium—tin—oxid@O) layer with  trations, a significant decrease iR,; was also observed due
a sheet resistance of-20 /0. A 60-nm-thick film  to aggregate-induced quenching.
of  4,4-bigN,N’-(3-tolyl)aming]-3,3 -dimethylbiphenyf We summarize the performance of(dpy)s-doped
(HMTPD) served as the hole-transport layefTL). Next, a  OLEDs with four hosts and cathode metals, including previ-
25-nm-thick EML consisting of 6% —8%(ppy); was doped  ously reported data for CBP as a Haist the inset of Fig. 1.
into various electron-transporting hosts via thermal codepoThe use of an Al-Li cathode in TAZ-based devices slightly
siton. A 50-nm-thick layer of trig8-hydroxy- enhancesy,,,, reflecting the improved electron-injection ef-
quinolinealuminum (Alg) was used to transport and inject ficiency of Li over that of Mg due to the comparatively low
electrons into the EML. A shadow mask with 1-mm-diam work function of Li. We observed that both TAZ and OXD7
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o FIG. 2. Photoluminescence decay transients of 1pl);:0OXD7(50 nm),
FIG. 1. External quantum and power efficiencies of an ITO/HMT&D 7%-I(ppy)s: TAZ(50  nm),  7%-Inppy)s:BCP50  nm,  7%-Ippy)s:

nm)/7%-Ir(ppy)3: TAZ (25 nm/Alqz(50 nm/Al-Li (100 nm) OLED. A maxi- CBR(50 nm), and 100%-lfppy)5(50 nm. Excitation power density is-5
mum external quantum efficiency=15.4% and power efficiency of 40 16 op.

Im/W were obtainedinsets The chemical structures of HMTPD and TAZ.

External quantum efficiencies(,,) and photoluminescence decay tintes

for Ir(ppy)s doped into various hosts. in Fig. 4. The DH device with a 2.5-nm-thick EM(curve i
shows an EL transient decay time=f 320+ 15ns) compa-
showed comparably high values gf,;, while devices with  rable with that of the SH devicer{380=20ns) with a
BCP and CBP hosts exhibited30% lower efficiencies. As 30-nm-thick EML (curve i). The slightly reduced lifetime of
shown Fig. 2, the room-temperature transient phosphoresceiite DH device may be due to a high density of triplet exci-
lifetime of 7%-Ir(ppy)3:BCP in TAZ and OXD7 isr=650 tons confined within a very narrow EML, leading to en-
+35ns, compared with= 380+ 20 ns in 7%-Ifppy);:BCP  hanced triplet-triplet annihilatiol. On the other hand, the
and 7%-Ifppy);:CBP. Since the phosphorescence efficiencySH device with a 2.5-nm-thick EMlcurve iii) shows a very
is approximately proportional to the lifetinfehe longer life-  short lifetime (~=50+3 ns), suggesting the presence of sig-
time in TAZ and OXD7 is consistent with the higher EL nificant dissipative nonradiative transitions. We note, also,
efficiencies of these devices. We note that all of thethat in the thinnest EML SH structure, thedpy); triplets
Ir(ppy)s-doped hosts showed one order of magnitude longe@re strongly quenched by the adjacent Algyer with its
lifetime compared to that of a neat film in which significantly less energetic, nonradiative triplet state. The DH

Ir(ppy)s—Ir(ppy);  exciton interactions, i.e., ‘“self- structure consisting of HMTPD and BCP double blocking
guenching,” increase the probability for nonradiative decay.
To elucidate the emission mechanisms leading to high 20 prrerrere e rrerr e T [T e

efficiency, we varied the EML thickness from 2.5 to 30 nm

while maintaining both the HTL and ETL thicknesses at 50

and 40 nm, respectively. This device is a single heterostruc-
ture (SH) due to the barrier to charge carriers and excitons
only at the HTL/EML interface. These devices were com-

pared with a double heterostructtft¢éDH) comprised of an

ST N
ST Dot

% 2.6eV

EML: Ir{ppy),-BCP

External quantum efficiency (%)

EML sandwiched between the HTHMTPD) and a 10-nm- 32V | 33ev e 1
thick neat ETL, as shown in the inset of Fig. 3. Figure 3 1L HTL ETL ETL ]
shows the thickness dependencergf, at a fixed current : - HMTPD BOP | A ]
density of 0.1 mA/cr for both SH and DH devices using 5 5"_; 550V oo
BCP as a host. At an EML thickness ef15 nm, a signifi- HOMO lover ||| 876V =

cant decrease ofye,; Was observed in the SH device, while X — Pu— — ya— Pa— s
nexi= 9% was retained even with a 2.5-nm-thick EML in the
DH device. This suggests the confinement of both charge
carriers and triplet excitons within the very thin EML, char- FiG. 3. External quantum efficiendy) of single (SH) and double hetero-
acteristic of the DH architecture. structure (DH) OLEDs as a function of light-emitting-layer thickness.
In both the SH and DH devices, the EL spectral shape he SH and DH structures are composed of ITO/HMTEDNM/

. .. . %-Ir(ppy)3:BCR(variablg/Alq(40 nm)/MgAg(150 nm/Ag(20 nm) and
due to I(ppy)s; triplet emission(with a peak wavelength of 1 16HMTPD(50 NM/7%-Ir(ppy)s:BCPVariable/BCR10 nmy/Alg(40 nm/

Amax=515nm are independent of the EML thickness. Even MgAg(150 nm/Ag(20 nm), respectively. In the DH structure, a highwas
in the SH structure with a 2.5-nm-thick EML, the spectral retained even with a light-emitting-layer thickness of only 2.5 nget:

[ ; Energy levels of the constituent materials used in a DH OLED as referenced
shape IS Id.entlcal to t.hat .Of the nea(rjpy)g, PL spectrum, to vacuum. The highest occupied molecular orbii#OMO) and the lowest
with a negligible contribution from Alg unoccupied molecular orbitdl UMO) energies are indicatedee Ref. 19

The EL transient decays of the three devices are showand are unknown for (ppy); (dashed lines
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via intersystem crossingISC) from the metal-to-ligand
charge-transfer singlet statdLCT), since direct excitation
to the triplet state {MLCT) is prohibited. Thus, the phos-
phorescence quantum yiel@®¢) follows:

T ——
10° | (PHTL/EML(30nm)/Alq

£ PomPram P 1)
:2 P ISC KP+ KNP’
% 107 gl — ‘ where @ g represents the probability for 1SGsp is the
E [ ssoem- J="’7exdmm T phosphorescence emission rate, apgd that of nonemissive
m o triplet decay. Under electrical excitation, both singlet and
10° N triplet excitons are directly created on either the guest or host
| . molecules with a statistical splitting af~25% singlets and
O | IO (1— x)~75% triplets** Thus, #;y follows:
10‘4 I 1 n 1 1 " n n n 1 1 1 1 " KP
) 500 1000 1500 Nine=[(1=x)+ xPsc] e e (2
; Kp™T Knp
Time (ns)

For consistent interpretation of both the EL and PL data, we

FIG. 4. Transient electroluminescence decay of the followiigsingle conclude for | that ko> kno and @ ,e~=40%. Since
heterostructure (SH):  ITO/HMTPD(50 nmy/7%-Ir(ppy)s:BCP(30 nm)/ (PPY)s p= NP ISC ‘

Alq(40 nm/MgAg(150 nm/Ag(20 nm), (ii) double heterostructuréDH): the intrinsic phos.phoresc.ence eﬁiCier{OVP/(KP+’fNP)] is
ITO/HMTPD(50 nm)/7%-Ir(ppy)3:BCP(2.5 nm)/BCP(10 nm)/Alg (40 nm)/ already near to its maximum value, further efficiency en-
MgAg(150 nm/Ag(20 nm), and (i) SH: ITO/HMTPD(50nm/  hancement is limited even if we haesc=100%. Hence,
7%-Ir(ppy);:BCA2.5 nm/AIq(40 nm/MgAG(150 nm/Ag(20 nm) under a4 fyrther increase OLED efficiency beyond that obtained via

100 ns, 9V pulse excitatiorinset: Energy-level diagram of (ppy)s. The | h h f h .
ligand singlet state !igand) and metal-to-ligand charge-transfer singlet electrophosphorescence, we must focus on schemes to In-

state £MLCT) were determined by the absorption peaks in toluene solutioncrease light out-coupling by incorporating minOC&ViﬂéS,
(1075 M). Also, the triplet MLCT state {MLCT) was estimated from the  shaped substraté&!® or an index-matching mediuff:*®
phOSphor‘?SC‘a?Ce p_te_akNF*f q)rﬁ;\:A,Li'T'h "?‘”tdq’NPtare quantum V"?"t‘s_ for  Also, phosphorescent materials with low-PL efficiencies ap-
nonemissive transitions fro , intersystem crossing, intrinsic ) . X S
1SSV N mersy g, MNSIC pear to be useful in EL devices provided that the intrinsic

phosphorescent transitions, and nonemissive transitions fHeioCT, . N
respectively. phosphorescence efficiency is high.
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