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Abstract

We consider the problem of variable selection in the case that explanatory vari-
ables have some groups. We proposed the extension of relevance vector machine
(Tipping, 2001) for variable selection at a group level. In order to estimate a model,
we derive a new estimation algorithm along with traditional relevance vector ma-
chine. Simulation results demonstrate that our methodology performs well in vari-
ous situations.
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1 Introduction

Variable or feature selection has become one of the most important techniques for selecting

a subset of relevant variables when constructing statistical models. The purpose of variable

selection are improving the prediction performance of the predictors, providing faster and

more cost-effective predictors, and providing a better understanding of the underlying

true process generating data (Guyon and Elisseeff, 2003). Traditional methods include

stepwise procedures and best subset selection that accepts the best feature or rejects the

worst feature on the basis of some model selection criteria, such as Mallows’ Cp (Mallows,

1973; 1995), AIC (Akaike, 1973; 1974), BIC (Schwarz, 1978). However, they can cause

local optimum results and are very unstable (Brieman, 1996).

As the other variable selection technique, the shrinkage, penalized or regularization

method is used. Tibshirani (1996) proposed the lasso, which imposes an L1 penalty on re-

gression coefficients. The lasso is a special case of bridge estimation (Frank and Friedman,

1993). Owing to the nature of the L1 penalty, the lasso method encourages sparse solution
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which leads both shrinkage and automatic variable selection simultaneously. Therefore,

many lasso-type estimation methods have been proposed.

As one of the estimation methods that gives sparse solution like lasso-type, Tipping

(2001) proposed a Bayesian estimation procedure called the relevance vector machine

(RVM). It is known that RVM yields more sparse solution than support vector machine

(SVM; Vapnik, 1998). In addition, RVM is widely used in regression and classification

framework because of it’s manageability.

However, if it is assumed that the statistical model has groups of explanatory vari-

ables, ordinary lasso-type estimation methods and RVM can lead to unsatisfactory results

because they only select individual explanatory variables rather than explanatory factors.

In order to overcome this problem, we propose an extension of RVM for selecting these

groups effectively and derive new update algorithm. Our proposed method does not re-

quire choosing regularization parameters that adjusts the degree of the regularization,

whereas this is absolutely imperative for lasso-type regularization methods. The pro-

posed modeling procedure is investigated by analyzing Monte Carlo simulations including

regression and classification frameworks. The results demonstrate the effectiveness of the

proposed method in terms of prediction accuracy.

This paper is organized as follows. Section 2 describes ordinary RVM setting for linear

regression model. Therefore, we present new RVM estimation procedure for regression

model in Section 3, and extend the framework to classification case in Section 4. In

Section 5 we investigate the performance of our modeling techniques through Monte Carlo

simulations. Some concluding remarks are presented in Section6.

2 RVM regression

Suppose that we have n independent observations {(yi,xi); i = 1, 2, · · · , n}, where yi

is a random response variable and xi = (xi,1, · · · , xi,p)
T is a p-dimensional explanatory

variable vector. If x has G groups of variables, we can rewrite xi as xi = (xT
i,1, · · · , xT

i,G)T ,

where xi,g is a pg-dimensional explanatory variable vector corresponding to the gth group

(g = 1, · · · , G), that is, xi,g = (xi,g,1, · · · , xi,g,pg)
T and

∑G
g=1 pg = p. We consider the
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regression model

yi = β0 +
G∑

g=1

xT
i,gβg + εi, i = 1, 2, · · · , n, (1)

where β0 is an unknown intercept and βg is a pg-dimensional unknown coefficient vector.

If εi are independently, normally distributed with mean zero and variance ρ−1, the linear

regression model (1) has probability density function

f(yi|β, ρ) =
1√

2πρ−1
exp

[
−
{yi − (β0 +

∑G
g=1 xT

i,gβg)}2

2ρ−1

]
, i = 1, · · · , n. (2)

Next we suppose that the (p+1)-dimensional coefficient vector β = (β0, β
T
1 , · · · , βT

G)T

has Gaussian prior density

π(β|α) = (2π)−
p+1
2 |A|

1
2 exp

(
−1

2
βT Aβ

)
, (3)

where α = (α0, · · · , αp)
T is a (p + 1) hyperparameter vector and A = diag(α0, · · · , αp).

The posterior distribution for β given the data y = (y1, · · · , yn)T is defined by

π(β|y, α, ρ) =
f(y|β, ρ)π(β|α)∫
f(y|β, ρ)π(β|α)dβ

, (4)

where f(y|β, α) =
∏n

i=1 f(yi|β, α) and then, we see that the posterior distribution for β

has Gaussian density

π(β|y,α, ρ) = (2π)−
p+1
2 |Σ|−

1
2 exp

{
−1

2
(β − µ)T Σ−1(β − µ)

}
,

where the posterior covariance matrix and mean vector are respectively

Σ = (ρXT X + A)−1, µ = ρΣXT y, (5)

where X = (1n, X1, · · · , XG), Xg = (x1,g, · · · ,xn,g)
T (g = 1, · · · , G) and 1n denotes an

n-vector whose elements are all ones.

The values of hyperparameters α and ρ are determined by using expectation-maximization

(EM) updates, treating the coefficients as the hidden variables and maximizing the ex-

pected complete log-likelihood function

Eπ(β|y,α,ρ)[log f(y|β, ρ)π(β|α)], (6)
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where Eπ(β|y,α,ρ)[·] denotes an expectation with respect to the posterior distribution

π(β|y, α, ρ) over the coefficients given the data and hidden variables. Setting the deriva-

tives of (6) to zero, we obtain estimators of α, ρ given by

α̂j =
1

Σjj + µ2
j

, (ρ̂−1)new =
||y − Xµ||2 + (ρ−1)old

∑
k ηk

n
, j = 0, · · · , p. (7)

where ηj = 1 − αjΣjj, µj is the (j + 1)th element of µ and Σjj is the (j + 1)th diagonal

element of Σ and || · || is the Euclidian norm. Because these estimators depend on each

other, re-estimation of (5) and (7) is needed. The technique for estimation by sequential

computation based on the maximizing marginal likelihood is known as relevance vector

machine (RVM; Tipping, 2001) and encourages high sparsity. As the optimization of the

hyperparameters progresses, many αs tend towards infinity, so that most coefficients to

be estimated are approaching zero. However, when ordinary RVM is directly applied to

a regression model (1), individual explanatory variables can be selected instead of groups

of predictors.

In order to do variable selection adequately, we propose replacing the traditional Gaus-

sian prior (3) with

π(β|γ) = (2π)−
n
2 |Γ|

1
2 exp

(
−1

2
βT Γβ

)
, (8)

where γ = (γ0, γ1, · · · , γG)T is a (p + 1)-dimensional hyperparameter vector, γg =

(γg, · · · , γg)
T (g = 1, · · · , G) is a pg-dimensional hyperparameter vector, and Γ = diag(γ).

It becomes possible to select each variable group by grouped hyperparameters in prior

(8). In other words, our proposed method encourages sparsity at the group level instead

of at the element level.

For likelihood function (2) and prior density (8), we see that the posterior distribution

for β has Gaussian density

π(β|y, γ, ρ) = (2π)−
p+1
2 |Λ|−

1
2 exp

{
−1

2
(β − ξ)T Λ−1(β − ξ)

}
,

where the posterior covariance matrix and mean vector are respectively

Λ = (ρXT X + Γ)−1, ξ = ρΛXT y. (9)

Thus, maximizing the expected complete log-likelihood function leads to the following
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update:

γ̂0 =
1

Λ11 + ξ2
1

, γ̂g =
pg∑Sg

j=1+Sg−1
(Λjj + ξ2

j )
, (g = 1, · · · , G), (10)

(ρ̂−1)new =
||y − Xξ||2 + (ρ−1)old

∑
k ζk

n
, (11)

where S0 = 1, Sk = 1 +
∑k

j=1 pj (k = 1, · · · , G), ζj = 1− γjΛjj, ξj is (j + 1)th element of

ξ and Λjj is the (j + 1)th diagonal element of Λ.

3 RVM classification

Suppose that we have n independent observations {(yi, xi); i = 1, 2, · · · , n}, where yi is

a binary response variable (i.e., yi ∈ {0, 1}) and xi = (xi1, · · · , xip)
T is a p-dimensional

explanatory variable vector consisting of G groups, as described in the previous section

on regression. We consider the problem of constructing logistic models. In the logistic

model, we assume that

Pr(Yi = 1|xi) = p(xi), Pr(Yi = 0|xi) = 1 − p(xi), (12)

where Yi is regarded as a random variable distributed according to the Bernoulli distri-

bution in the form

f(yi|xi,β) = p(xi)
yi{1 − p(xi)}1−yi . (13)

The logistic model further assumes that

log

{
p(xi)

1 − p(xi)

}
= β0 +

G∑
g=1

xT
i,gβg + εi, i = 1, 2, · · · , n. (14)

Unlike regression framework, closed form expressions for both the posterior π(β|y,α)

and marginal likelihood p(y|α) are precluded. We therefore employ Taylor expansion

over centered at βM:

log π(β|y,α) ≈ log π(βM|y,α) + (β − βM)T ∂

∂β
log π(β|y,α)

∣∣∣∣
βM

−1

2
(β − βM)T

{
− ∂2

∂β∂βT
log π(β|y, α)

∣∣∣
βM

}
(β − βM). (15)
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Here, when βM is assumed to be the posterior mode, that is, the solution of ∂ log π(β|y,α)

/∂β = 0, the second term of (15) becomes equal to zero. Then, we approximate the

posterior distribution by Gaussian distribution.

Using the fact that ∂ log π(β|y,α)/∂β = 0,

∂

∂β
log π(β|y,α)

∣∣∣∣
βM

=
n∑

i=1

[
yi −

exp (βT
Mφ(xi))

1 + exp (βT
Mφ(xi))

]
φ(xi) − AβM

= XT (y − p) − AβM = 0

⇔ βM = A−1XT (y − p), (16)

where p = (p(x1), · · · , p(xn))T .

The Hessian of (15) is

∂2

∂β∂βT
log π(β|y,α)

∣∣∣
βM

= −
n∑

i=1

[
exp (βT

Mxi)

{1 + exp (βT
Mxi)}2

]
xix

T
i − A,

= −XT PX − A, (17)

where P denote an n × n diagonal matrix with Pii = p(xi){1 − p(xi)} for the ith di-

agonal element. This is then inverted to give the covariance matrix Σ for a Gaussian

approximation to the posterior, that is,

Σ = (XT PX + A)−1 (18)

As a result, the posterior distribution of coefficients β is obtained using the proposed

Gaussian prior (8) as follows:

π(β|y,γ) ≈ (2π)−
n
2 |Λ|−

1
2 exp

{
−1

2
(β − ξ)T Λ−1(β − ξ)

}
, (19)

where the posterior covariance matrix and mean vector are respectively

Λ = (XT PX + Γ)−1, ξ = A−1XT (y − p). (20)

The hyperparameter vector γ is updated using (10) in an analogous fashion to the regres-

sion case.

4 Numerical examples

In this section, we describe Monte Carlo simulations conducted to investigate the effec-

tiveness of our proposed regression method and the classification modeling procedures.

We use a simulation setting that is similar to that of Yuan and Lin (2006).
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4.1 Simulation study for regression

We compared the performance of the proposed method (Group RVM) with those of group

lasso (Yuan and Lin, 2006), group bridge (Huang et al., 2009; Breheny and Huang, 2009),

ordinary RVM and ordinary least-squares estimation of the full model. n = 100 observa-

tions were collected from the true regression model Y = u + ε for each simulation data

set. We considered the following four cases for the true regression models.

(a) 15 random variables X1, · · · , X15 were first simulated according to a centered mul-

tivariate normal distribution with covariance τ |i−j| between Xi and Xj. Then, Xi

is trichotomized as 0, 1 or 2 according to whether it is smaller than Φ−1(1
3
), larger

than Φ−1(2
3
), or in between. The response variable Y was simulated from the true

model

u = 2I(X1 = 1) − 1.5I(X1 = 0) + 2I(X3 = 1) + 1.5I(X3 = 0)

− 2I(X5 = 1) + 1.5I(X5 = 0),

where I(·) is the indicator function, and the noise ε is normally distributed with

mean 0 and variance 1.52.

(b) Both main effects and second-order interactions were considered. Four categorical

factors X1, X2, X3 and X4 were first generated in the same manner as in model (a).

The true regression model is

u = 5I(X1 = 1) + 4I(X1 = 0) − 5I(X2 = 1) − 4I(X2 = 0) + 2I(X1 = 1, X2 = 1)

− 3I(X1 = 1, X2 = 0) − 2I(X1 = 0, X2 = 1) + 3I(X1 = 0, X2 = 0),

with mean 0 and variance 22.

(c) 17 random variables Z1, · · · , Z16 and W were independently generated from a stan-

dard normal distribution. The covariates are then defined as Xi = (Zi + W )/
√

2.

The response variable follows

u = 2X3
3 + 2X2

3 + 2X3 + 2X3
6 − 2X2

6 − 4X6,

where ε ∼ N(0, 22).
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(d) Covariates X1, · · · , X10 were generated in the same manner as in model (c). Then,

these 10 covariates X11, · · · , X20 were trichotomized as in the first two models. The

true regression model is given by

u = 2X3
3 + 2X2

3 + 2X3 +
2

3
X3

6 − 2X2
6 +

4

3
X6 + 2I(X11 = 1) − 2I(X11 = 0),

where ε ∼ N(0, 22).

We performed 200 repetitions, then calculated averages of mean squared errors (MSE)

defined by MSE =
∑n

α{uα − ŷα}/n and the standard deviations to assess the goodness

of fit. In order to choose the optimal smoothing parameter, we use a Cp-type criterion

(Yuan and Lin, 2006) for the group lasso and AIC, GCV, BIC (Huang et al., 2009) for

group bridge. Table 1 and 2 displays simulation results with mean of number of factors (or

interactions) selected, their standard deviations, MSE, and standard deviations of MSE

for (a) to (d). In all cases, our proposed modeling procedure minimized the MSE, thus

improving the accuracy of prediction. The proposed method tend to select the variables

included in a true model whereas group lasso tend to include extra variables.
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Table 1: Comparison of results for regression simulations (τ = 0).

Case Method Criterion Number of groups MSE
(a) Group RVM – 2.90 (0.33) 0.36 (0.34)

Group lasso Cp 9.67 (2.90) 0.43 (0.19)
Group bridge AIC 10.45 (1.90) 0.58 (0.21)
Group bridge GCV 7.25 (1.79) 0.42 (0.18)
Group bridge BIC 7.24 (1.75) 0.43 (0.19)

RVM – 8.46 (1.80) 0.45 (0.20)
Least square – 15 (0) 0.82 (0.24)
True model – 3 0

(b) Group RVM – 4.09 (0.97) 0.45 (0.22)
Group lasso Cp 7.48 (1.75) 0.55 (0.24)
Group bridge AIC 8.68 (1.05) 1.07 (0.34)
Group bridge GCV 5.35 (1.19) 0.65 (0.26)
Group bridge BIC 6.82 (1.37) 0.82 (0.30)

RVM – 6.82 (1.20) 0.55 (0.22)
Least square – 10 (0) 1.06 (0.28)
True model – 3 0

(c) Group RVM – 2.51 (0.69) 0.34 (0.22)
Group lasso Cp 13.26 (2.78) 1.06 (0.40)
Group bridge AIC 13.77 (1.55) 1.48 (0.38)
Group bridge GCV 7.61 (2.02) 0.78 (0.29)
Group bridge BIC 9.91 (2.23) 1.02 (0.35)

RVM – 3.17 (1.11) 0.55 (0.30)
Least square – 16 (0) 1.93 (0.37)
True model – 2 0

(d) Group RVM – 5.73 (1.57) 0.57 (0.27)
Group lasso Cp 16.18 (3.51) 1.17 (0.46)
Group bridge AIC 16.23 (2.09) 1.53 (0.41)
Group bridge GCV 9.61 (2.53) 0.93 (0.36)
Group bridge BIC 11.68 (2.48) 1.11 (0.38)

RVM – 9.35 (2.71) 0.83 (0.33)
Least square – 20 (0) 2.00 (0.42)
True model – 3 0
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Table 2: Comparison of results for regression simulations (τ = 0.5).

Case Method Criterion Number of groups MSE
(a) Group RVM – 2.97 (0.29) 0.31 (0.26)

Group lasso Cp 9.53 (2.89) 0.40 (0.18)
Group bridge AIC 10.09 (1.91) 0.54 (0.21)
Group bridge GCV 6.92 (1.89) 0.39 (0.17)
Group bridge BIC 6.97 (1.86) 0.39 (0.18)

RVM – 8.07 (1.84) 0.41 (0.18)
Least square – 15 (0) 0.78 (0.23)
True model – 3 0

(b) Group RVM – 3.92 (0.38) 0.38 (0.19)
Group lasso Cp 7.67 (1.94) 0.60 (0.26)
Group bridge AIC 8.53 (1.19) 0.88 (0.31)
Group bridge GCV 5.28 (1.33) 0.55 (0.23)
Group bridge BIC 6.16 (1.39) 0.63 (0.25)

RVM – 6.58 (1.16) 0.57 (0.23)
Least square – 10 (0) 1.16 (0.29)
True model – 3 0

(c) Group RVM – 2.53 (0.74) 0.33 (0.20)
Group lasso Cp 13.32 (2.61) 1.05 (0.41)
Group bridge AIC 13.68 (1.63) 1.46 (0.40)
Group bridge GCV 7.24 (2.25) 0.79 (0.31)
Group bridge BIC 9.59 (2.24) 1.01 (0.35)

RVM – 3.43 (1.27) 0.55 (0.27)
Least square – 16 (0) 1.90 (0.38)
True model – 2 0

(d) Group RVM – 5.79 (1.64) 0.58 (0.25)
Group lasso Cp 16.39 (3.35) 1.21 (0.45)
Group bridge AIC 16.49 (2.11) 1.55 (0.40)
Group bridge GCV 9.09 (2.37) 0.91 (0.33)
Group bridge BIC 11.37 (2.52) 1.11 (0.37)

RVM – 9.20 (2.46) 0.82 (0.32)
Least square – 20 (0) 2.01 (0.40)
True model – 3 0
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4.2 Simulation study for classification

We compared the performance of the proposed method with those of group lasso for the

logistic regression (Meier et al., 2008), group bridge, ordinary RVM and ordinary least

squares estimation of the full model. The simulation data were collected from the true

model Y = 1/{1 − exp (u)}, and then Y was dichotomized as 0 or 1 if it was smaller

than 0.5 or not, respectively. n = 400 observations were used in each simulation run. We

considered the following four cases for the true models as follows.

(a) 15 random variables X1, · · · , X15 were first simulated according to a centered mul-

tivariate normal distribution with covariance τ |i−j| between Xi and Xj. Then Xi

is divided into four categories as 0, 1, 2, and 3 using the quartiles of the standard

normal distribution. The response variable Y was simulated from true model

u = 2I(X1 = 0) + 4I(X1 = 1) + 2I(X1 = 2)

− 2I(X3 = 0) + 4I(X3 = 1) − 2I(X3 = 2)

+ 2I(X5 = 0) − 4I(X5 = 1) + 2I(X5 = 2),

where I(·) is the indicator function.

(b) Both main effects and second-order interactions were considered. Four categorical

factors X1, X2, X3 and X4 were first generated as in model (a). The true regression

model is

u = 2I(X1 = 0) − 4I(X1 = 1) − 2I(X1 = 2)

+ 4I(X2 = 0) − 2I(X2 = 1) − I(X2 = 2)

− 1.5I(X1 = 0, X2 = 0) + 2I(X1 = 0, X2 = 1) + 2.5I(X1 = 0, X2 = 2)

+ 1.5I(X1 = 1, X2 = 0) + 1.8I(X1 = 1, X2 = 1) + 2I(X1 = 1, X2 = 2)

+ 2.2I(X1 = 2, X2 = 0) + 2.4I(X1 = 2, X2 = 1) − 2.6I(X1 = 2, X2 = 2).

(c) 21 random variables Z1, · · · , Z20 and W were independently generated from a stan-

dard normal distribution. The covariates were then defined as Xi = (Zi + W )/
√

2.

The response variable follows

u = 2X4
2 + 3X3

2 + 4X2
2 + 2X2 − 3X4

3 − 4X3
3 − 2X2

3 − 3X3.
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(d) Covariates X1, · · · , X10 were generated in the same fashion as in model (c). Then,

the 10 covariates X11, · · · , X20 were trichotomized as in models (a) and (b). The

true regression model is given by

u = 2X4
2 + 3X3

2 + 4X2
2 + 2X2 − 3X4

3 − 4X3
3 − 2X2

3 − 3X3.

+ 2I(X11 = 0) − 2I(X11 = 1) + 2I(X11 = 2).

We performed 200 repetitions, then calculated averages of test error rates (ERR) and

the standard deviations for n/2 test data to assess the goodness of fit. The smoothing

parameter of group lasso is selected by using two-fold cross validation (CV) based on

log-likelihood (Meier et al., 2008) and that of group bridge is chosen by AIC, GCV and

BIC (Breheny and Huang, 2009). Table 3 and 4 display simulation results of the mean

of number of factors (or interactions) selected, their standard deviations, ERR, and the

standard deviations of ERR for (a) to (d). In all cases, our proposed modeling procedure

minimized the ERR, thus improving the accuracy of prediction. The proposed method

tend to select the variables included in a true model whereas group lasso tend to include

extra variables.
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Table 3: Comparison of results for classification simulations (τ = 0).

Case Method Criterion Number of groups ERR (%)
(a) Group RVM – 3.01 (0.07) 13.22 (2.42)

Group lasso CV 13.20 (1.40) 13.57 (2.48)
Group bridge AIC 7.61 (1.85) 13.66 (2.51)
Group bridge GCV 12.05 (2.64) 14.22 (2.64)
Group bridge BIC 3.61 (0.76) 13.41 (2.49)

RVM – 6.88 (1.69) 13.56 (2.39)
Least square – 15 (0) 15.08 (2.66)
True model – 3 0

(b) Group RVM – 3.81 (0.79) 10.99 (2.35)
Group lasso CV 8.47 (1.03) 11.23 (2.44)
Group bridge AIC 5.29 (1.42) 11.48 (2.54)
Group bridge GCV 8.33 (1.08) 13.18 (2.96)
Group bridge BIC 3.39 (0.60) 10.95 (2.35)

RVM – 7.66 (0.94) 11.85 (2.65)
Least square – 10 (0) 12.77 (2.71)
True model – 3 0

(c) Group RVM – 2.23 (0.50) 10.15 (4.72)
Group lasso CV 14.81 (2.91) 10.99 (4.68)
Group bridge AIC 6.18 (2.78) 11.80 (4.77)
Group bridge GCV 7.27 (3.43) 12.03 (4.89)
Group bridge BIC 2.68 (0.84) 11.26 (4.47)

RVM – 3.05 (1.18) 10.77 (4.82)
Least square – 16 (0) 14.14 (4.96)
True model – 2 0

(d) Group RVM – 3.21 (0.58) 9.29 (3.68)
Group lasso CV 16.23 (2.58) 10.72 (3.91)
Group bridge AIC 7.79 (2.83) 10.19 (3.96)
Group bridge GCV 9.82 (3.92) 10.71 (4.20)
Group bridge BIC 3.68 (0.89) 9.40 (3.69)

RVM – 6.42 (2.11) 10.23 (3.88)
Least square – 20 (0) 13.25 (4.30)
True model – 3 0
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Table 4: Comparison of results for classification simulations (τ = 0.5).

Case Method Criterion Number of groups ERR (%)
(a) Group RVM – 3.03 (0.16) 13.10 (2.55)

Group lasso CV 13.04 (1.57) 13.32 (2.59)
Group bridge AIC 7.49 (1.86) 13.26 (2.51)
Group bridge GCV 11.84 (2.13) 13.93 (2.79)
Group bridge BIC 3.55 (0.73) 13.21 (2.51)

RVM – 6.60 (1.64) 13.15 (2.41)
Least square – 15 (0) 14.90 (2.75)
True model – 3 0

(b) Group RVM – 4.04 (0.95) 13.48 (2.33)
Group lasso CV 8.48 (1.19) 13.66 (2.38)
Group bridge AIC 5.55 (1.58) 14.20 (2.61)
Group bridge GCV 8.23 (1.24) 15.26 (2.56)
Group bridge BIC 2.31 (0.50) 13.56 (2.44)

RVM – 7.46 (0.96) 14.28 (2.45)
Least square – 10 (0) 15.15 (2.60)
True model – 3 0

(c) Group RVM – 2.15 (0.47) 10.93 (4.88)
Group lasso CV 15.17 (2.95) 12.42 (4.89)
Group bridge AIC 6.84 (2.92) 13.23 (8.97)
Group bridge GCV 9.42 (4.03) 13.82 (9.09)
Group bridge BIC 2.79 (1.34) 12.39 (9.04)

RVM – 3.17(1.40) 11.82 (4.88)
Least square – 16 (0) 15.48 (5.42)
True model – 2 0

(d) Group RVM – 3.22 (0.61) 10.24 (3.89)
Group lasso CV 16.72 (2.40) 11.76 (3.95)
Group bridge AIC 7.85 (2.58) 11.16 (3.96)
Group bridge GCV 10.62 (3.63) 11.75 (4.21)
Group bridge BIC 3.60 (0.91) 10.34 (3.88)

RVM – 6.16(2.00) 11.15 (3.97)
Least square – 20 (0) 14.25 (4.46)
True model – 3 0
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5 Concluding remarks

We have proposed a group variable selection procedure along with the technique of RVM.

When we apply our proposed method to the statistical model which has the groups

of explanatory variables, proper estimation and variable selection at a group level are

conducted. Our proposed method does not require choosing regularization parameter,

whereas it is necessary for lasso-type regularization methods. The effectiveness of the

proposed modeling procedures has been shown through various numerical examples.
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Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA& Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expan-
sions



MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type (A2 + A1)
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