
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Combinatorial Metrical Task System Problem
under the Uniform Metric

Nakazono, Takumi
Department of Informatics, Kyushu University

Moridomi, Ken-ichiro
Department of Informatics, Kyushu University

Hatano, Kohei
Library, Kyushu Univerisity

Eiji, Takimoto
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/1932330

出版情報：2016-10. Springer
バージョン：
権利関係：

A Combinatorial Metrical Task System Problem
under the Uniform Metric

Takumi Nakazono1 ?, Ken-ichiro Moridomi1, Kohei Hatano2, and Eiji
Takimoto1

{moridomi.kenichiro, hatano, eiji}@inf.kyushu-u.ac.jp

1 Department of Informatics, Kyushu University
2 Library, Kyushu University

Abstract. We consider a variant of the metrical task system (MTS)
problem under the uniform metric, where each decision corresponds to
some combinatorial object in a fixed set (e.g., the set of all s-t paths of
a fixed graph). Typical algorithms such as Marking algorithm are not
known to solve this problem efficiently and straightforward implementa-
tions takes exponential time for many classes of combinatorial sets. We
propose a modification of Marking algorithm, which we call Weighted
Marking algorithm. We show that Weighted Marking algorithm still
keeps O(logn) competitive ratio for the standard MTS problem with
n states. On the other hand, combining with known sampling techniques
for combinatorial sets, Weighted Marking algorithm works efficiently for
various classes of combinatorial sets.

1 Introduction

The metrical task system is defined as a repeated game between the player and
the adversary. Given a fixed set C of states a metric δ : C×C → R+ and a initial
state c0 ∈ C, for each round t = 1, . . . , T , (i) the adversary reveals a (processing)
cost function ft : C → R+, (ii) the player chooses a state ct ∈ C, and (iii) the
player incurs the processing cost ft(ct) and the moving cost δ(ct, ct−1). The goal
of the algorithm is minimizing the cumulative (processing and moving) cost. The
performance of the algorithm is measured by the competitive ratio, that is, the
ratio of the cumulative cost of the algorithm to the cumulative cost of the best
fixed sequence of states in hindsight.

In the expert setting, i.e., where the decision set consists of n states, there are
many existing works on the MTS [8, 14, 4, 11, 5]. In particular, for the uniform
metric δ (which is defined as δ(i, j) = 1 if i 6= j and otherwise δ(i, j) = 0), the
MTS problem is well studied [8, 4, 14, 1]. Borodin et al. show the lower bound
of the competitive ratio of any randomized algorithm is Hn, where Hn is the
n-th harmonic number [8]. Especially, Abernethy et al. provide an algorithm
which uses the method of convex optimization, and shows the upper bound of
the competitive ratio of the algorithm is Hn +O(log log n) [1].

? Currently with Toshiba Solutions Corporation.

When we consider the situation where the decision set C is a combinatorial
set from {0, 1}d (e.g., the set of spanning trees or s-t paths of a graph), the com-
putational issue arises. A natural example of a combinatorial MTS is a routing
problem. For example, we consider a routing problem. Consider a fixed network
G = (V,E) where V is the set of routers (nodes) and E ⊆ V × V is the set of
d edges between routers and V includes two routers, the source s and the sink
t. The decision set C is the set of paths from s to t, whose size is exponential
in d. In general, for typical combinatorial sets, the size could be exponential
in the dimension size d as well and straightforward implementations of known
algorithms for the MTS take exponential time as well since time complexity of
these algorithms is proportional to the size n of the decision set.

In this paper, for the uniform metric, we propose a modification of the Mark-
ing algorithm [8], which we call the Weighted Marking algorithm. The weighted
Marking algorithm employs an exponential weighting scheme and can be viewed
as an analogue of the Hedge algorithm [12] for the MTS problem, whereas the
Marking algorithm is an analogue of the classical Halving algorithm. We prove
that the Weighted Marking algorithm retains O(log n) competitive ratio for
the standard MTS problem with n states. The expected running time of the
Weighted Marking algorithm at each round is the same as that of the original
one.

On the other hand, combining with efficient sampling techniques w.r.t. ex-
ponential weights on combinatorial objects (k-sets, s-t paths [18], stars in a
graph [10] permutation matrices [10, 15], permutation vectors [2]), the Weighted
Marking algorithm works efficiently for various classes of combinatorial sets.

1.1 Related Work

There are some existing works for combinatorial metrical task systems. Blum et
al. provide algorithms for the list update problem [6]. For the k-server problem,
which can be viewed as a combinatorial MTS problem, Koutsoupias et al. provide
a deterministic algorithm [17]. Bansal et al. improve the results of Koutsoupias et
al. by a randomization technique [3]. These algorithms are efficient and perform
well for specific problems, i.e., the list update problem and the k-server problem.
However, these algorithms are specialized for limited decision sets and we cannot
use them for other problems.

Buchbinder et al. consider combinatorial MTS problems where the decision
space is defined as a matroid [9]. The concept of matroid can express various
classes of combinatorial objects such as spanning trees. They show a unified
algorithm with a guaranteed competitive ratio. Their analysis is, however, ap-
plicable for a continuous “relaxed” space only. It is not known if there exists a
rounding scheme that approximately preserves the moving cost over the relaxed
space. Gupta et al. also consider combinatorial MTS problems over the basis of
a matroid [13]. They give a rounding algorithm and prove the competitive ratio
of a rounded solution, for a class of metrics including the Hamming distance but
not the uniform metric.

2 Preliminaries

A metrical task system (MTS) is a pair (C, δ) where C is a set of states and
δ : C × C → R+ is a metric. In particular, we consider a combinatorial setting
where C is a subset of {0, 1}d for some dimension d > 0. We denote by n the
size of C, that is, n = |C|. Typically, n is exponentially large in d. Moreover, we
only consider the uniform metric δ, that is,

δ(c1, c2) =

{
1 if c1 6= c2,

0 if c1 = c2.

The combinatorial MTS problem for (C, δ) is defined as the following protocol
between the algorithm and the adversary.

First the adversary chooses a task sequence σ = (`1, `2, . . . , `T), where each
`t ∈ [0, 1]d is called a loss vector. In other words, we assume the oblivious setting.
For a given initial state c0 ∈ C, the protocol proceeds in rounds, where in each
round t = 1, 2, . . . , T ,

1. the algorithm receives the loss vector `t ∈ [0, 1]d,
2. the algorithm chooses a state ct ∈ C, and
3. the algorithm suffers a cost given by ct · `t + δ(ct, ct−1).

The first term ct · `t of the cost is called the processing cost at round t, and the
second term δ(ct, ct−1) is called the moving cost at round t.

For a task sequence σ, the cumulative cost of an algorithm A is defined as

costA(σ) =

T∑
t=1

(ct · `t + δ(ct, ct−1)),

and the cumulative cost of the best offline solution is defined as

costOPT(σ) = min
(c∗1 ,c

∗
2 ,...,c

∗
T)∈CT

T∑
t=1

(c∗t · `t + δ(c∗t , c
∗
t−1)).

We measure the performance of algorithm A by its competitive ratio, which is
defined as

CR(σ) =
E[costA(σ)]

costOPT(σ)
,

where the expectation is with respect to the internal randomness of A. The goal
of the algorithm is to minimize the worst case competitive ratio maxσ CR(σ).
Note that the usual (non-combinatorial) MTS problem is a special case where
C consists of unit vectors.

We also require the algorithm A to produce a state ct in time polynomial
in d for each round t. Typically, the size n of C is exponential in d, and so we
cannot directly maintain all states c in C. Therefore, we assume two oracles to
access the state set C efficiently. The first one is the linear optimization oracle,
which solves the following decision problem:

OPT(C)

Input: L ∈ Rd+

Output:

{
0 if minc∈C c ·L < 1,

1 otherwise.

The assumption of this oracle is natural since the linear optimization problem
has a polynomial time algorithm for many useful state sets C.

The second one is a sampling oracle, which chooses a state c randomly ac-
cording to a certain probability distribution over C, where the distribution is
specified by a given parameter L ∈ Rd+. In particular, we consider two kinds of
sampling oracles, which will be defined later.

3 The Marking algorithm

Here we apply the Marking algorithm [8] to the combinatorial MTS problem.
The Marking algorithm is a simple randomized algorithm whose competitive
ratio is upper bounded by 2Hn ≤ 2(lnn + 1), where Hn is the n-th harmonic
number.

Below we describe how the Marking algorithm works. For a naive implemen-
tation, it maintains the cumulative processing costs l[c] for all states c ∈ C. For
each round t,

1. Observe the loss vector `t and update l[c] = l[c] + c · `t for all c ∈ C.
2. If l[ct−1] < 1 then output ct = ct−1.
3. Else choose a state ct uniformly at random from the set of states c with
l[c] < 1, and output ct.

4. If no such states exist, then reset l[c] = 0 for all c ∈ C and choose a state ct
uniformly at random from C, and output ct.

Note that Line 2 and Line 3 intuitively mean that the Marking algorithm
does not change states until l[ct] ≥ 1. As is well known as a folklore (See, e.g.,
[7]), we can assume without loss of generality that the loss vectors `t are small
enough so that l[ct] ≤ 1 always holds. In the appendix we give more detailed
discussion. In other words, the Marking algorithm changes states only when
l[ct] = 1.

Of course, the naive implementation of the Marking algorithm is not efficient
because it maintains the cumulative processing cost l[c] for all states c ∈ C.
Instead, we can maintain the cumulative loss vector L =

∑
t `t, which implicitly

maintains l[c] as l[c] = c · L for all c. Furthermore, the sampling problem at
Line 3 can be restated as the following problem in terms of L, which we call
Sampling 1.

Sampling 1

Input: L ∈ Rd+,
Output: c ∈ CL = {c ∈ C | c ·L < 1} uniformly at random.

Note that the problem Sampling 1 is only defined when CL 6= ∅, but we can
check whether the condition holds by using the linear optimization oracle for
OPT(C). Moreover, the uniform sampling at Line 4 is also restated as Sampling 1
with L = 0. So, if we assume a linear optimization oracle for OPT(C) and a
sampling oracle for Sampling 1, then we can emulate the Marking algorithm in
O(d) time per round. We give this implementation of the Marking algorithm in
Algorithm 1.

Algorithm 1 An implementation of the Marking algorithm

Input: A linear optimization oracle for OPT(C) and a sampling oracle for Sampling 1
Initialize: Let L = 0.
For each round t = 1, 2, . . . , T ,

1. Observe the loss vector `t and update L = L + `t.
2. Let ct = ct−1 and output ct.
3. If ct ·L ≥ 1, then

(a) If minc∈C c ·L ≥ 1, then reset L = 0. // use the linear optimization oracle
(b) Choose a state ct ∈ CL uniformly at random. // use the sampling oracle

The question that naturally arises is that for what state set C, the problem
Sampling 1 is efficiently solved. Unfortunately, we do not know any non-trivial
sets C that have polynomial time algorithm for Sampling 1. We could use MCMC
sampling methods to design approximate sampling, but it seems hard to show
theoretically guaranteed performance bounds for many natural state sets C.

4 The Weighted Marking algorithm

The computational cost of the sampling problem Sampling 1 would be due to
the fact that the support of the sampling distribution is restricted to the set CL.
So, we relax the distribution to a continuous distribution whose support is not
restricted to CL.

Specifically, we propose the following sampling problem, called Sampling 2.

Sampling 2

Input: L ∈ Rd+,

Output: c ∈ C chosen with probability πL(c) =
exp(−ηc ·L)∑

c∈C exp(−ηc ·L)
,

where η > 0 is a parameter.

In words, the new sampling distribution πL is such that πL(c) is a monotone
decreasing function with respect to its cumulative processing cost l[c] = c·L. So,
the probability that a state c with large l[c] is chosen is very low, and thus we
will see that the support of πL is essentially restricted to a set {c ∈ C | c·L < L}
for some L > 1.

Unlike Sampling 1, there are known efficient implementations of Sampling 2
for several combinatorial objects such as k-sets, s-t paths [18], permutation ma-
trices [10, 15], stars in a graph [10] and permutation vectors [2].

Now we modify the Marking algorithm by assuming the sampling oracle for
Sampling 2, as well as assuming the linear optimization oracle for OPT(C). The
modified version is called the Weighted Marking algorithm. The difference from
the Marking algorithm is that (1) it does not change states until its cumulative
processing cost reaches L instead of 1, and (2) it uses πL as the sampling dis-
tribution instead of the uniform distribution over CL. Note that the Weighted
Marking algorithm resets the cumulative loss vector as L = 0 when minc∈C c ·L
reaches 1, which is the same condition as the Marking algorithm. So, unlike the
Marking algorithm, resetting L may happen at some round where the cumulative
processing cost of the current state does not reach L, since L 6= 1.

The detailed description of the Weighted Marking algorithm is given in Al-
gorithm 2.

Algorithm 2 Weighted Marking algorithm

Input: A linear optimization oracle for OPT(C) and a sampling oracle for Sampling 2
Parameter: η > 0 and L > 1 such that ne−ηL ≤ e−η/2.
Initialize: Let L = 0.
For each round t = 1, 2, . . . , T ,

1. Observe the loss vector `t and update L = L + `t.
2. Let ct = ct−1 and output ct.
3. If minc∈C c ·L ≥ 1 then // use the linear optimization oracle

(a) Reset L = 0.
(b) Choose a state ct ∈ C with probability πL(c) // use the sampling oracle

4. Else if ct ·L ≥ L, then
(a) Repeat

Choose a state ct ∈ C with probability πL(c) // use the sampling oracle
Until ct ·L < L.

For convenience, we define the notion of phases for analyzing the behavior
of the Weighted Marking algorithm. A phase is an interval {t | tb ≤ t ≤ te}
of rounds such that the resetting happens at round tb − 1 and te but does not
happen at every round tb ≤ t < te.

Again, as is well known as a folklore, we assume without loss of generality that
the loss vectors `t are small enough so that it always holds that minc∈C c ·L ≤ 1
at Line 3 and it always hold that ct · L ≤ L at Line 4. In other words, a phase
ends (resetting happens) only when minc∈C c ·L = 1 and states ct are changed
only when ct ·L = L. These assumptions greatly simplifies the analysis.

More formally, the assumption is described as follows:

Assumption 1 Whenever the previous state ct−1 satisfies ct−1 ·L < L, where
L is the cumulative loss vectors up to round t− 1 in the current phase, and the

phase did not end at round t − 1, i.e., minc∗∈C c∗ · L < L, then `t satisfies the
two conditions:

1. ct−1 · (L + `t) ≤ L, and
2. minc∗∈C c∗ · (L + `t) ≤ 1.

We assume Assumption 1 holds throughout this section. In the appendix, we
briefly explain why the assumption holds without loss of generality.

In the next theorem, we give an upper bound of the competitive ratio of the
Weighted Marking algorithm.

Theorem 1. Let η = ln 2n, and L = 2. Then for any task sequence σ =
(`1, `2, . . . , `T), the competitive ratio of the Weighted Marking algorithm is upper
bounded by

CR(σ) ≤ 6e lnn+ 9.

Moreover, the expected running time per round is O(d + Tlin + TSamp2), where
Tlin is the running time of the linear optimization oracle and TSamp2 is that of
the sampling oracle for Sampling 2.

To prove this theorem, we show that the cumulative moving cost in each
phase is O(log n). So in the following, we fix a particular phase I = {tb, . . . , te}.
For each round t ∈ I, Lt denotes the cumulative loss vector L at Line 1 at round
t. Note by definition that minc∗∈C c∗ ·Lte = 1.

Let G = {c ∈ C | c · Lte < L} be the goal set, meaning that if we choose
a state in G at some round t ∈ I, i.e., ct ∈ G, then the Weighted Marking
algorithm never changes the state until the end of the phase. Note that c∗ ∈ G
and so G 6= ∅. Let c1, c2, . . . , cn be the members of C. (This is an abuse of
notation. Do not confuse them with the states ct the algorithm chooses at round
t.) For any ci 6∈ G, we can define ti ∈ I such that ci ·Lti = L. Then, without loss
of generality, we assume t1 ≤ t2 ≤ · · · ≤ tn−|G| and cn = c∗, i.e., cn · Lte = 1.
Moreover, we assume |G| = 1 just for simplicity. Clearly, the algorithm changes
states only at some rounds in {t1, . . . , tn−1}. Let t(k) be the round where the
algorithm makes the k-th change of states. For any state c ∈ C, we define the
weight function Wk(c) as

Wk(c) :=

{
e−ηc·Lt(k) if c ·Lt(k) < L,
0 if c ·Lt(k) ≥ L.

Let W k :=
∑

c∈CWk(c). Then Wk(c)/W k is the probability of choosing state c
at the k-th change of states. One can see that Wk(c) is monotonically decreasing
w.r.t. k because Lt is monotonically increasing vector w.r.t. t.

If the best offline solution changes its state in the phase, then its cumulative
moving cost is at least 1, and otherwise its cumulative processing cost is at least
1 by the definition of the phase. This immediately implies the following lemma.

Lemma 2. For any sequence of loss vectors (`1, `2, · · · , `T), the best offline
solution suffers cost at least 1 on each phase.

On the other hand, whenever the Weighted Marking algorithm changes states
(i.e., suffers the moving cost of 1) from ct(k−1) to ct(k) , then its cumulative
processing cost from t(k−1) to t(k) is at most L. This implies the following lemma.

Lemma 3. For any sequence of loss vectors (`1, `2, · · · , `T), the cumulative pro-
cessing cost of the Weighted Marking algorithm is at most L times the cumulative
moving cost on each phase.

The following lemma provides the probability of ending a phase.

Lemma 4. For any α ∈ (0, 1) and for any k, if αW k ≤ e−η holds then the
phase will end at the k + 1-th change of the state with probability at least α.

Proof. By the assumption cn · Lte = 1, if the algorithm choose cn then the
algorithm will change its state at the end of the phase te, i.e. if the state cn is
chosen then the phase rests only 1 change. By cn ·L ≤ 1, we get Wk(cn) ≥ e−η
for any k. Using this and the condition of the lemma, we get

α ≤ e−η

W k

≤ Wk(cn)

W k

.

Here, the right hand side is the probability of the state cn will be chosen by the
Weighted Marking algorithm. ut

The following lemma guarantees the probability of choosing cn becomes
higher at each change of the state.

Lemma 5. For any α ∈ (0, 1), for any k, if αW k ≥ e−η holds then

Pr[W k+1 ≤ αW k] > α.

Proof. Summing up weights of states from n, n − 1, · · · and consider when the
sum gets greater than αW k. E.g. consider ik s.t.

∑n
i=ik+1Wk(ci) ≤ αW k and∑n

i=ik
Wk(ci) > αW k.

Assume that the Weighted Marking algorithm chooses the state cs at the
k-th change of the state. If s ≥ ik, the algorithm changes its state at t(k+1) and
then Wk+1(ci) = 0 for any i ≥ ik by the definition of W and ik. Thus,

W k+1 =

n∑
i=1

Wk+1(ci) =

n∑
i=ik+1

Wk+1(ci).

Because Wk is monotonically decreasing w.r.t. k, one can get

n∑
i=ik+1

Wk+1(ci) ≤
n∑

i=ik+1

Wk(ci) ≤ αW.

So we get if s ≥ ik then W k+1 ≤ αW . The probability of the Weighted Marking
algorithm choosing the state cs such that s ≥ ik satisfies

Pr[s ≥ ik] =

∑n
i=ik

Wk(ci)

W k

>
αW k

W k

= α.

ut

By Lemma 4, one can get the following immediately.

Lemma 6. For any α ∈ (0, 1) and round t(k), if αW k ≤ e−η then the expected
number of remaining changes of states in the phase is less than 1

α + 1.

Because of Wk is monotonically decreasing w.r.t. k and Lemma 5, one can
get the following lemma.

Lemma 7. For any k, for any α ∈ (0, 1), if αW k ≤ e−η then the expectation of
m such that W k+m ≤ αW k is E[m] < 1

α .

We say that a sequence W = {W 1,W 2, · · · ,WK} of weights is α-fast de-
creasing at the round t(k+1) if W k+1 ≥ αW k holds.

Proof (Proof of Theorem 1). Assume that the Weighted Marking algorithm
changes its state at K times in a phase. By Lemma 6, if αW k′ ≤ e−η holds
then we have

E[K] ≤ k′ + 1

α
+ 1.

Thus, we need to estimate k′ s.t. αW k′ ≤ e−η to bound E[K].
Let αW k′ ≤ e−η holds after α-fast decreasing K ′ times, then

αK
′
W 0 ≤W k′ ≤

eη

α
.

By W 0 = n, we get αK
′
n ≤ e−η

α and rearranging, K ′ ≤ 1
ln 1
α

(lnn+ η)− 1. Using

Lemma 7,

E[k′] ≤ E[m]K ′ =
1

α
K ′ =

1

α ln 1
α

(lnn+ η)− 1

α
.

Thus, the number of changing of states at a phase is

E[K] ≤ E[k′] +
1

α
+ 1 =

1

α ln 1
α

(lnn+ η) + 1.

The bound of E[K] is minimized when α = 1/e. So we get E[K] ≤ e(lnn+η)+1.
Setting η = ln 2n, we get E[K] ≤ 2e lnn+ 3. By Lemma 3,

E[(cumulative processing cost)] ≤ L× E[(cumulative moving cost)].

At each phase, we have

E[Cumulative loss]

= E[Cumulative processing cost] + E[Cumulative moving cost]

≤ 3× E[K]

≤ 6e lnn+ 9.

By Lemma 2, at each phase the best offline solution has the cumulative process-
ing cost at least 1. Thus we get the bound of the competitive ratio. ut

Next, we prove the running time of the Weighted Marking algorithm. The
key point of analysis of the Weighted Marking algorithm is the number of calls
to the oracle for Sampling 2 at Line 4-(a) of the pseudo code. The following
lemma gives a theoretical bound of retrying.

Lemma 8. The expected number of calls to the sampling oracle at Line 4-(a) is
at most 2.

Proof. For any state c such that c · L ≥ L, the probability that the sampling
oracle chooses c is

exp(−ηc ·L)∑
c′ exp(−ηc′ ·L)

≤ exp(−ηL)

exp(−ηcn ·L)

≤ exp(−ηL)

exp(−η)

since cn · L < 1. By the union bound, the probability that the sampling oracle
chooses some c with c ·L ≥ L is at most

n exp(−ηL)

exp(−η)
=

1

2

by our choice of η and L. ut

5 Conclusion and future work

In this paper, we proposed the Weighted Marking algorithm for combinatorial
MTS problems under the uniform metric space, and proved its competitive ratio
is at most 6e lnn + 9 = O(log n). We showed that, by combining with existing
sampling techniques for exponential weights over combinatorial objects, the pro-
posed algorithm runs efficiently for several combinatorial classes, e.g., s-t paths
and k-sets.

There are several open problems to investigate. First one is to provide a lower
bound of the competitive ratio of the combinatorial MTS. In particular, it still
remains open to prove Ω(log d) or Ω(log n) lower bounds for some combinatorial
class of the decision set.

Secondly, it is not known if FPL [16] is applicable for the combinatorial MTS
problem. If so, the sampling oracle is no longer necessary and we could efficiently
solve MTS problems for more classes of combinatorial objects.

Finally, the hardness of the Sampling 1(C) is not known, either. Our conjec-
ture is, it is #P hard for a specific class.

Acknowledgments

We thank anonymous reviewers for useful comments. Hatano is grateful to the
supports from JSPS KAKENHI Grant Number 16K00305. Takimoto is grateful
to the supports from JSPS KAKENHI Grant Number 15H02667. In addition,
the authors acknowledge the support from MEXT KAKENHI Grant Number
24106010 (the ELC project).

References

1. J. Abernethy, P. L. Bartlett, N. Buchbinder, and I. Stanton. A Regularization
Approach to Metrical Task Systems. In Proceedings of the 21st International Con-
ference on Algorithmic Learning Theory (ALT’10), volume LNCS 6331, pages 270–
284, 2010.

2. N. Ailon, K. Hatano, and E. Takimoto. Bandit Online Optimization Over the
Permutahedron. In Proceedings of 25th International Conference on Algorithmic
Learning Theory(ALT 2014), volume 8776 of LNCS, pages 215–229, 2014.

3. N. Bansal, N. Buchbinder, A. Madry, and J. S. Naor. A polylogarithmic-
competitive algorithm for the k-server problem. J. ACM, 62(5):40:1–40:49, Nov.
2015.

4. Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polylog(n)-competitive algo-
rithm for metrical task systems. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 711–719, New York, NY,
USA, 1997. ACM.

5. Y. Bartal, B. Bollobas, and M. Mendel. A ramsey-type theorem for metric spaces
and its applications for metrical task systems and related problems. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 396–
405, Oct 2001.

6. A. Blum, S. Chawla, and A. Kalai. Static optimality and dynamic search-optimality
in lists and trees. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’02, pages 1–8, Philadelphia, PA, USA, 2002. So-
ciety for Industrial and Applied Mathematics.

7. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, New York, NY, USA, 1998.

8. A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical
task system. J. ACM, 39(4):745–763, Oct. 1992.

9. N. Buchbinder, S. Chen, J. S. Naor, and O. Shamir. Unified algorithms for online
learning and competitive analysis. Mathematics of Operations Research, 41(2):612–
625, 2016.

10. N. Cesa-Bianchi and G. Lugosi. Combinaotrial Bandits. Journal of Computer and
System Sciences, 78(5):1404–1422, 2012.

11. A. Fiat and M. Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM Journal on Computing, 32(6):1403–1422, 2003.

12. Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

13. A. Gupta, K. Talwar, and U. Wieder. Changing bases: Multistage optimization for
matroids and matchings. In ICALP (1), volume 8572 of Lecture Notes in Computer
Science, pages 563–575. Springer, 2014.

14. S. Irani and S. Seiden. Randomized algorithms for metrical task systems. Theo-
retical Computer Science, 194(12):163 – 182, 1998.

15. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algo-
rithm for the permanent of a matrix with nonnegative entries. Journal of the ACM,
51:671–697, 2004.

16. A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

17. E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, Sept. 1995.

18. E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal
of Machine Learning Research, 4(5):773–818, 2004.

A On Assumption 1

As is well known as a folklore, we can assume without loss of generality that the
loss vectors `t are small enough, so that Assumption 1 is satisfied.

Assumption 1 Whenever the previous state ct−1 satisfies ct−1 ·L < L, where
L is the cumulative loss vectors up to round t− 1 in the current phase, and the
phase did not end at round t − 1, i.e., minc∗∈C c∗ · L < 1, then `t satisfies the
two conditions:

1. ct−1 · (L + `t) ≤ L, and
2. minc∗∈C c∗ · (L + `t) ≤ 1.

This is because, when `t violates the assumption, then we can replace `t by
a sequence of non-negative loss vectors `t1 , `t2 , . . . , `tk so that `t = `t1 + · · ·+`tk
and the new sequence of loss vectors satisfy the assumption in the following way:

1. If the first condition is violated, i.e., ct−1 · (L + `t) = a > L, then we let

α1 =
L− ct−1 ·L
a− ct−1 ·L

.

Otherwise, we let α1 = 1. In the former case, we can easily verify that
0 < α1 < 1 and ct−1 · (L + α1`t) = L.

2. If the second condition is violated, i.e., minc∗∈C c∗ · (L + `t) > 1, then we
let 0 < α2 < 1 be such that minc∗∈C c∗ · (L + α2`t) = 1. Otherwise, we
let α2 = 1. Note that, in the former case, we can find such α2 efficiently by
binary search.

3. Let α = min{α1, α2} and `t1 = α`t and `t2 = (1 − α)`t. Then, clearly `t1
satisfies Assumption 1. If `t2 still violates the assumption, then repeat the
same procedure for `t2 recursively.

