
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Online Prediction under Submodular Constraints

Suehiro, Daiki
Department of Informatics, Kyushu University

Hatano, Kohei
Department of Informatics, Kyushu University

Kijima, Shuji
Department of Informatics, Kyushu University

Takimoto, Eiji
Department of Informatics, Kyushu University

他

https://hdl.handle.net/2324/1932327

出版情報：2012-10. Springer
バージョン：
権利関係：

Online Prediction under Submodular
Constraints

Daiki Suehiro1, Kohei Hatano1, Shuji Kijima1, Eiji Takimoto1, and Kiyohito
Nagano2

1 Department of Informatics, Kyushu University
2 University of Tokyo

{daiki.suehiro, hatano, kijima, eiji}@inf.kyushu-u.ac.jp1
nagano@sat.t.u-tokyo.ac.jp2

Abstract. We consider an online combinatorial prediction problem where
each combinatorial concept is represented as a vertex of a polyhedron de-
scribed by a submodular function (base polyhedron). In general, there are
exponentially many vertices in the base polyhedron. We propose polyno-
mial time algorithms with regret bounds. In particular, for cardinality-
based submodular functions, we give O(n2)-time algorithms.

1 Introduction

Online learning of combinatorial or structured concepts have gained much atten-
tion these days [8, 2, 11, 15]. Such combinatorial concepts includes shortest paths,
k-sets, spanning trees, permutations, and so on. In typical settings, we assume
a finite set C of combinatorial concepts where each concept can be represented
as a vector in Rn for some fixed n, i.e., C ⊆ Rn . Then we consider the follow-
ing protocol: For each trial t = 1, . . . , T , (i) the player predicts ct ∈ C, (ii) the
adversary returns a loss vector `t ∈ [0, 1]n, and (iii) the player incurs loss ct · `t.
The goal of the player is to minimize the regret:

∑T
t=1 ct ·`t−minc∈C

∑T
t=1 c ·`t.

There are some approaches to attack this type of problems. A naive approach
to minimize the regret in the above problem is to apply Hedge algorithm [6].
Hedge algorithm combines experts predictions, where each expert corresponds to
each concept in C. In general, however, the size of C is exponentially large w.r.t.
n. Therefore, a straightforward implementation of Hedge algorithm is inefficient.
There are some efficient online prediction methods for combinatorial concepts,
for example, PermELearn [8] and Component Hedge [11] and Comband in bandit
setting [2]. These methods consist of abstract subroutines.

Among subroutines, projection and decomposition are important and used
in many online learning algorithms (see, e.g., [17, 8, 11]). Here, the projection
routine, given a point, outputs its projection onto the convex hull of combina-
torial concepts and the decomposition routine, given finds a liner combination
of combinatorial concepts given a point of the convex hull. So far, for partic-
ular combinatorial concepts, we need to design projection and decomposition
subroutines individually.

2 Authors Suppressed Due to Excessive Length

In this paper, we investigate a unified and efficient projection and decomposi-
tion algorithms for a wide class of combinatorial concepts. The class we consider
is the set of vertices (extreme points) of a polyhedron described by a submodular
function f . In submodular function literature, the polyhedron is called (submod-
ular) base polyhedron and denoted asB(f) (we will give the definition later). That
is, we consider the situation where C is the set of extreme points in B(f). The
base polyhedron B(f) is defined using 2n linear constraints and it is known that
there are at most n! vertices [7]. Examples of our problems include experts, k-
sets [14], permutahedron [15], spanning trees [2, 11], truncated permutahedron,
and k-forest. To the best of our knowledge, the last two problems are new for
the online learning literature.

We propose projection and decomposition algorithms for the base polyhe-
dron B(f). The running times of the algorithms are both O(n6 +n5EO)), where
EO denotes the unit time to evaluate the submodular function. Furthermore,
for cardinality-based submodular functions, we derive O(n2)-time projection and
decomposition algorithms. Such examples include k-sets and (truncated) permu-
tahedron.

Our projection algorithms are designed for Euclidean distance and unnor-
malized relative entropy. So, we can combine them with Online Gradient De-
scent(OGD) [17] or Hedge [6], respectively. Combined with our projection and
decomposition algorithms for B(f), their regret bounds become O(Deuc

√
nT)

and O(
√
L∗f([n]) lnn+f([n]) lnn), respectively, whereDeuc = maxc,c′∈B(f) ‖c−

c′‖2, and L∗ = minc∈B(f)

∑T
t=1 c · `t.

Our contribution is to provide a unified view and efficient prediction strate-
gies for an online prediction problem with exponentially many candidates by
using rich theory of submodular function. Further, our O(n2)-time algorithms
for cardinality-based submodular functions are non-trivial for submodular opti-
mization as well.

We discuss the relationship between previous and our results. First, we com-
pare Follow the perturbed leader (FPL, [10]) with our algorithms. FPL uses an
algorithm which solves “offline” linear optimization. It is well known that linear
optimization over the base polyhedron is tractable and solved in O(n log n) time
[4, 7]. So, the running time of FPL for our problem is O(n log n) at each trial. On
the other hand, the regret of FPL is O(D1

√
nT), where D1 = maxc,c′∈C ‖c−c′‖1,

which is worse than ours.

Next, we consider an algorithm proposed by [9] which converts an offline
linear approximate optimization algorithm into the online one. This algorithm
has an approximate projection subroutine. But the running time of the projection
subroutine is O(Tn log n), which depends on T .

Component Hedge (CH, [11]) is also an efficient algorithm for predicting
among exponentially many combinatorial concepts. CH represents a combinato-
rial concept as a matrix and solves an entropy minimization problem with linear
constraints at each trial. CH has more known applications such as directed span-
ning trees, paths and so on. However, the class of concepts for which CH can
deal with seems incomparable with ours. In an algorithmic sense, our algorithm

Online Prediction Under Submodular Constraints 3

has advantages for some concepts. For example, for permutahedron and its trun-
cated one, it can be shown that CH requires O(n2) memory whereas ours uses
O(n) memory (see [15] for related discussion).

2 Preliminaries

For any fixed positive integer n, we denote by [n] the set {1, . . . , n}. A function
f : 2[n] → R is submodular if for any A,B ⊂ [n], f(A ∪ B) + f(A ∩ B) ≤
f(A) + f(B). For simplicity, we assume that f(∅) = 0. Given a submodular
function f , the base polyhedron is defined as

B(f) =

{
x ∈ Rn |

∑
i∈S

xi ≤ f(S), for any S ⊂ [n], and

n∑
i=1

xi = f([n])

}
.

A point in B(f) is an extreme point if it is not represented as a convex combina-
tion of other two points in B(f). Let C be the set of extreme points in B(f). In
general, there can be exponentially many extreme points in B(f). In this paper,
for any submodular function f , we assume an oracle that returns the value f(S)
for any input S.

2.1 Examples

We illustrate some examples of our problems. In particular, the last two problems
are new applications which are not previously studied.

Experts problem The classical expert problem [6] is an example of our problem.
In the expert problem, we are given n experts and the player would like to
predict as well as the best expert in hindsight. Here each expert i is represented
as n-dimensional unit vector ei whose i-th component is 1 and other components
are 0. Then, the corresponding submodular function f is the constant function
f(S) = 1, which is submodular.

k-sets The problem of k-sets is a generalization of Experts problem, where each
combinatorial concept corresponds to a set of k experts among n experts. This
problem was first considered by [14]. Each k-set is represented as a sum of k
different unit vectors. Then, C = {x ∈ {0, 1}n |

∑n
i xi = k}. Let f : 2[n] → R

such that f(S) = g(|S|), where g(i) = i, if i ≤ k and g(i) = k, if i > k. This
function is submodular since any concave function of |S| is submodular (see, e.g.,
[7]).

Spanning trees Online prediction problems of undirected or directed spanning
trees are studied in [2] and [11]. In this paper, we consider undirected spanning
trees. Let G = (V,E) be an undirected graph. Let f : 2E → R such that f(A) =
|V (A)|−s(A), where V (A) is the set of vertices of the subgraph induced by the set
A of edges, and s(A) is the number of the connected components of the subgraph
[5, 3]. Especially, the base polyhedron is called spanning tree polyhedron and
C = {x ∈ {0, 1}|E| | the set of edges{e | xe = 1} forms a spanning tree of G}.

4 Authors Suppressed Due to Excessive Length

Permutahedron Let C = {(i1, . . . , in) | (i1, . . . , in) is a permutation of {1, . . . ,
n}}. Each permutation corresponds to an element of Sn. The corresponding

submodular function is f(S) =
∑|S|
i=1(n + 1 − i). The base polyhedron B(f) is

called Permutahedron (see, e.g., [16, 7]). This concept class relates to an online
scheduling problem of n jobs with a single processor where the sum of flow time
of each job is to be minimized [15] . A different representation of permutations
and the related problem was also considered by [8].

Truncated permutahedron For k < n, let C = {(i1, . . . , in) | (i1, . . . , in) is a per-
mutation of 1, 2, . . . , n− k,and k (n− k)s}. For example, (2, 2, 2, 1) is a member
of C for n = 4 and k = 2. The corresponding function is f(S) = (n − k)|S| if

|S| ≤ k and f(S) = (n−k)k+
∑|S|
j=k+1(n+1−j), otherwise. This concept class is

also related to a generalized version of the online scheduling problem [15] where
the flow times of the first k jobs are neglected.

k-forest Let C denote the set of k-forests in a graph G = (V,E), where F ⊂
E is a k-forest if |F | = k and F does not contain a cycle in G. It is known
that C is a bases family of a truncation of a graphic matroid, that is known to
be another matroid. The corresponding function is f(X) = min{k,max{|F | |
F ⊆ X is a forest}}.

2.2 Extreme points of the base polyhedron

In this subsection, we will see the correspondence between the permutations of
[n] and the extreme points of the base polyhedron B(f).

Given a permutation σ = (i1, . . . , in) of [n] = {1, . . . , n}, the greedy algo-
rithm of [4] generates a point cσ ∈ Rn determined by

cσj = f({j′ ∈ [n] : ij′ ≤ ij})− f({j′ ∈ [n] : ij′ < ij}) for each j ∈ [n].

Then cσ is an extreme point of B(f). We will say that cσ is an extreme point
of B(f) generated by σ. Conversely, for each extreme point c of B(f), there is
a permutation that generates c.

2.3 Bregman divergence

Let Φ : Γ → R be a strictly convex function defined on a closed convex
set Γ ⊆ Rn. The Bregman divergence ∆Φ with respect to Φ is defined as
∆Φ(p, q) = Φ(p)−Φ(q)−∇Φ(q) ·(p−q). The function Φ is separable if there ex-
ists functions φi : Γi → R for i = 1, 2., . . . , n such that Γ = Γ1×Γ2×· · ·×Γn and
for any x = (x1, x2, . . . , xn) ∈ Γ , Φ(x) =

∑n
i=1 φi(xi). In particular, if all φi’s

are the same, then the function Φ is said to be uniformly separable. In this paper,
we will sometimes consider two particular uniformly separable convex functions,
the 2-norm function: ΦEUC(x) = 1

2‖x‖
2
2 defined on Rn, and the unnormalized

negative entropy function: ΦURE(x) =
∑n
i=1 xi lnxi −

∑n
i=1 xi defined on Rn>0.

Online Prediction Under Submodular Constraints 5

It is well known that these functions define the Euclidean distance and the un-
normalized relative entropy, respectively. That is, ∆EUC(x, z)

def
= ∆ΦEUC

(x, z) =
1
2

∑n
i=1(xi − zi)2, and ∆URE(x, z)

def
= ∆ΦURE

(x, z) =
∑n
i=1 xi ln xi

zi
+
∑n
i=1 zi −∑n

i=1 xi.

3 Algorithm

In this section, we propose an algorithm that predicts extreme points of the base
polyhedron B(f) and prove its regret bounds.

3.1 Main Structure

The main structure of the algorithm we use is shown in Algorithm 1. The algo-
rithm is Regularized Follow the Leader (RFTL) [?], which is a generalization of
Hedge or Online Gradient Decent(OGD, [17]) using Bregman divergence, com-
bined with our subroutines ProjectionΦ and Decomposition.

At each trial t, our version of RFTL runs Decomposition and get ct ∈ C
randomly so that E[ct] = xt. Then, RFTL updates xt to xt+ 1

2
. Finally, RFTL

computes the projection xt+1 of xt+ 1
2

onto the base polyhedron B(f) using the
procedure ProjectionΦ. Using RFTL itself is standard, but we need to design
efficient procedures for projection and decomposition.

Algorithm 1 RFTL with Projection and Decomposition

1. Let x1 be any point in B(f).
2. For t = 1, . . . , T

(a) Run Decomposition(xt) and get ct ∈ C randomly so that E[ct] = xt.
(b) Predict ct and incur a loss ct · `t.
(c) Update xt+ 1

2
as xt+ 1

2
= ∇Φ−1(∇Φ(xt)− η`t).

(d) Run ProjectionΦ(xt+ 1
2
) and get xt+1, the projection of xt+ 1

2
onto the base

polyhedron B(f). That is, xt+1 = arg infx∈B(f)∆Φ(x,xt+ 1
2
).

The following theorem is known.

Theorem 1 ([6, 17, ?]) Let C be the set of extreme points in B(f).

1. For Φ = ΦEUC, the expected regret of RFTL is O(Deuc

√
nT) for some η,

where Deuc = maxc,c′∈C ‖c− c′‖2.

2. For Φ = ΦURE, the expected regret of RFTL is O(
√
L∗Dure + Dure) for

some η and x1 ∈ B(f), where Dure = maxc∈C ∆ΦURE
(c,x1) and L∗ =

minc∈C
∑T
t=1 c · `t.

6 Authors Suppressed Due to Excessive Length

problem Hedge OGD

Experts O(
√
L∗ lnn) O(

√
nT)

k-sets O(
√
L∗k ln(n/k) + k ln(n/k)) O(

√
knT)

Spanning Trees O(
√
L∗n lnn+ n lnn) O(n

√
T)

Permutahedron O(n
√
L∗ lnn+ n2 lnn) O(n2

√
T)

Truncated Perm. O(
√
L∗(n2 − k2) lnn+ (n2 − k2) lnn) O((n− k)

√
n(n+ k)T)

k-forest O(
√
L∗k ln(n/k) + k ln(n/k)) O(

√
knT)

Table 1. The regrets of combinatorial concepts obtained using our projection and
decomposition algorithms.

For particular combinatorial concepts, we summarize their regret bounds in
Table 1.

To complete our analysis, we specify the procedures ProjectionΦ for sep-
arable strictly convex function Φ and Decomposition, respectively, in the fol-
lowing subsections. We will see that both of the two procedures are no harder
than the submodular function minimization problem. For a submodular function
f : 2[n] → R with f(∅) = 0, the submodular function minimization (SFM) is a
problem of finding a subset S ⊆ [n] with f(S) minimum. Many combinatorial
SFM algorithms are known (see [?]), and the fastest known strongly polyno-
mial algorithm of [13] runs in O(n6 + n5EO) time, where EO is the unit time
to evaluate the value of the submodular function. We will show that both of
the procedures ProjectionΦ and Decomposition can be implemented to run in
O(n6 + n5EO) time.

3.2 Projection

For any given point z ∈ Rn, the procedure ProjectionΦ in Algorithm 1 computes
the projection of z onto the base polyhedron B(f). We propose an efficient
construction of this procedure. Formally, the projection problem is stated as
follows:

ProjectionΦ(z) = arg inf
x∈B(f)

∆Φ(x, z)

sub. to:
∑
j∈S

xj ≤ f(S), ∀S ⊂ [n], and
n∑
j=1

xj = f([n]), (1)

where Φ(x) is separable. This convex optimization problem with exponentially
many constraints can be solved efficiently using the parametric submodular al-
gorithm of [12], which is a parametric extension of the SFM algorithm of [13].

Theorem 2 ([12]) There is an algorithm that solves problem (1) for separable
strictly convex functions Φ in time O(n6 + n5EO).

Online Prediction Under Submodular Constraints 7

3.3 Decomposition

For any given point x in the base polyhedron B(f) ⊆ Rn, the procedure De-

composition in Algorithm 1 finds extreme points cσ
1

, . . . , cσ
K

in B(f) and

λ1, . . . , λK ∈ R>0 such that
∑K
i=1 λic

σi

= x and λ1 + · · ·+ λK = 1, where

each cσ
i

is an extreme point of B(f) generated by a permutation σi of [n] via
the greedy algorithm of [4]. In other words, this procedure represents x as a
convex combination of extreme points of B(f). Carathéodory’s Theorem guar-
antees that x ∈ B(f) can be represented as a convex combination of at most n
extreme points of B(f).

To describe the procedure Decomposition, let us briefly review a common
framework of algorithms for SFM. For a submodular function f ′ : 2[n] → R with
f ′(∅) = 0, the result of [4] implies

min
S
{f ′(S) : S ⊆ [n]} = max

z
{
n∑
j=1

min{0, zj} : z ∈ B(f ′)}. (2)

In many combinatorial SFM algorithms, including Orlin’s algorithm ([13]), we
finally obtain a minimizer S∗ ⊆ [n] and a maximizer z∗ ∈ B(f ′) of (2). Moreover,
we obtain z∗ ∈ B(f ′) as a convex combination of at most n extreme points
of B(f ′). By the use of this fact, we can give an efficient construction of the
procedure Decomposition.

For a given point x ∈ B(f), the function fx : 2[n] → R defined by fx(S) =
f(S) −

∑
j∈S xj (S ⊆ [n]) is submodular and satisfies fx(∅) = 0. For each

permutation σ of [n], let cσ be extreme points in B(f) generated by σ, and let
cσx be extreme points in B(fx) generated by σ. Then it holds that cσx = cσ −x.
In view of the definition of the base polyhedron, we have that minS⊆[n] fx(S) = 0
and the n-dimensional zero vector 0n is in B(fx). Therefore, z = 0n is the unique
optimal solution to the right hand side of (2) with f ′ = fx.

Now we describe the procedure Decomposition. Initially, we apply some com-
binatorial SFM algorithm, e. g. Orlin’s algorithm ([13]), to the submodular func-
tion fx. Then we obtain permutations σ1, . . . , σK of [n] and λ1, . . . , λK ∈ R>0

such that
∑K
i=1 λic

σi

x = 0, λ1 + · · · + λK = 1, and K ≤ n. As for the function
f , these permutations σ1, . . . , σK and positive coefficients λ1, . . . , λK generate
another point

∑K
i=1 λic

σi

. For this point, we obtain

K∑
i=1

λic
σi

=
K∑
i=1

λi(c
σi

x + x) =
K∑
i=1

λic
σi

x +
K∑
i=1

λix = x.

Thus we have a required representation of x. This gives the following.

Theorem 3 For any x ∈ B(f), there is an algorithm that gives a convex
combination representation of x using at most n extreme points of B(f) in
O(n6 + n5EO) time.

8 Authors Suppressed Due to Excessive Length

4 Algorithm for cardinality-based submodular functions

In this section, we propose more efficient projection and decomposition algo-
rithms when the underlying submodular function f is cardinality-based, i.e.,
f(S) = g(|S|) for some g : N → R. For projection, however, we only consider
the Euclidean distance and the unnormalized relative entropy, rather than any
Bregman divergence ∇Φ for a separable function Φ as in the previous section.

A cardinality-based submodular function f has the following nice property:
For any point x ∈ B(f) and any i, j ∈ [n], the vector x′ obtained by exchanging
xi and xj in x is also contained in B(f). A submodular function having this
property is said to be exchangeable.

The following lemma says that for any exchangeable submodular function f ,
the projection onto B(f) preserves the order of indices of vector with respect to
the inequality relation.

Lemma 1 Let x∗ be the projection of z in (1) under the Bregman divergence
∇Φ for a strictly convex and uniformly separable function Φ. Assume that the
submodular function f is exchangeable and z1 ≥ · · · ≥ zn. Then, it holds that
x∗1 ≥ x∗2 ≥ · · · ≥ x∗n.

Proof. Suppose on the contrary that x∗i < x∗j for some i < j. Let x̂ be the point
obtained by exchanging x∗i and x∗j in x∗. Then, by definition, we have x̂ ∈ B(f).
Furthermore, observe that

∆Φ(x∗, z)−∆Φ(x̂, z) =Φ(x∗)− Φ(x̂)−∇Φ(z) · (x∗ − x̂)

=φ(x∗i) + φ(x∗j)− φ(x∗i)− φ(x∗j)

− (φ′(zi)(x
∗
i − x∗j)− φ′(zj)(x∗j − x∗i))

=(x∗j − x∗i) · (φ′(zi)− φ′(zj)) ≥ 0,

which contradicts the assumption that x∗ is the projection. ut

In the following, we assume that z1 ≥ · · · ≥ zn without loss of generality (this
can be achieved by sorting). Lemma 1 implies that for any S ⊆ [n],

∑
i∈S x

∗
i ≤∑|S|

j=1 x
∗
j , which means that, if the right hand side is bounded by f(S) = g(|S|),

the left hand side is also bounded by g(|S|). Therefore, the projection problem
(1) is equivalent to the following problem with only n constraints:

min
x
∆Φ(x, z)

sub.to:

j∑
i=1

xi ≤ g(j), (for j = 1, . . . , n− 1), and

n∑
i=1

xi = g(n). (3)

Now we propose an efficient implementation of ProjectionΦ that solves the prob-
lem (3).

Online Prediction Under Submodular Constraints 9

Algorithm 2 Projection under Euclidean distance

Input: z ∈ Rn satisfying that z1 ≥ z2 ≥ · · · ≥ zn.
Output: projection x of z onto B(f).

1. Let i0 = 0.
2. For t = 1, . . . ,

(a) Let Ct(i) =
g(i)−g(it−1)−

∑i
j=it−1+1 zj

i−it−1
, for i = 1, . . . , n

and it = arg mini:it−1+1≤i≤n C
t(i),

if there are multiple minimizers, choose the largest one as it.
(b) Set xi = zi + Ct(it), for it−1 + 1 ≤ i ≤ it.
(c) If it = n, then break.

3. Output x.

4.1 Projection under Euclidean distance

First we give an algorithm which computes ProjectionΦEUC
under Euclidean

distance. We show the algorithm in Algorithm 2. Then we prove the following.

Theorem 4 (i) Given z, Algorithm 2 outputs the projection of x onto the base
polyhedron B(f). (ii) The time complexity of Algorithm 2 is O(n2).

Proof. By KKT condition(see, e.g., [1]), x∗ is the solution of the problem (3) if
and only if there exists α1, . . . , αn−1 and η such that

x∗i = zi −
i∑

j=1

αj − η, (for i = 1, . . . , n− 1), and x∗n = zn − η,

n∑
i=1

x∗i = g(n),

αi(

i∑
j=1

x∗j − g(i)) = 0, αi ≥ 0,

i∑
j=1

x∗j ≤ g(i) (for i = 1, . . . , n− 1). (4)

Now we show that there indeed exists α1, . . . , αn−1 such that the output x of
ProjectionΦEUC

(z) satisfies the optimality conditions (4), which suffices to prove
the first statement. To do so, first we show that Ct−1(it−1) ≤ Ct(it) for each
iteration t. By the definition of Ct−1(it−1), we have Ct−1(it−1) ≤ Ct−1(it).
Observe that

Ct−1(it) =
g(it)− g(it−2)−

∑it
j=it−2+1 zj

it − it−2

=
g(it)− g(it−1)−

∑it
j=it−1+1 zj + g(it−1)− g(it−2)−

∑it−1

j=it−2+1 zj

(it − it−1) + (it−1 − it−2)

=
(it − it−1)(Ct(it)) + (it−1 − it−2)(Ct−1(it−1))

(it − it−1) + (it−1 − it−2)
.

10 Authors Suppressed Due to Excessive Length

Since Ct−1(it−1) ≤ Ct−1(it),

(it − it−1)(Ct−1(it−1))

(it − it−1) + (it−1 − it−2)
≤ (it − it−1)(Ct(it))

(it − it−1) + (it−1 − it−2)
.

By simplifying this, we get Ct−1(it−1) ≤ Ct(it), as desired.
Then we determine each αit so that −αit + Ct+1(it+1) = Ct(it), i.e., αit =

Ct+1(it+1) − Ct(it) and fix η to be CT (n), where T satisfies iT = n. Note that
since Ct(it) ≤ Ct+1(it+1), each αit is strictly positive. For other i /∈ {i1, . . . , iT },
we set αi = 0. Then, each xit can be expressed as

xit = zi+C
t(it) = zi−(αit+αit+1

+· · ·+αiT)−η = zi−(αit+αit+1+· · ·+αin−1
)−η.

Similarity, for other i such that it−1 < i < it, we have

xi = zi+C
t(it) = zi−(αit+αit+1+· · ·+αn−1)−η = zi−(αi+αi+1+· · ·+αn−1)−η.

To check if the specified αis and η satisfies the optimality conditions (4), observe
that (i) for each it,

it∑
j=1

xj =

it−1∑
j=1

xj +

it∑
j=it−1+1

(zj + Ct(it)) = g(it−1) + (g(it)− g(it−1)) = g(it)

and αit > 0, and (ii) for each i such that it−1 < i < it,

i∑
j=1

xj =

it−1∑
j=1

xj +

i∑
j=it−1+1

(zj + Ct(it)) ≤
it−1∑
j=1

xj +

i∑
j=it−1+1

(zj + Ct(i))

= g(it−1) + (g(i)− g(it−1)) = g(i)

and αi = 0.
Finally, the algorithm terminates in time O(n2) since the number of itera-

tion is at most n and each iteration takes O(n) time, which proves the second
statement of the lemma. ut

4.2 Projection under unnormalized relative entropy

Next we propose an algorithm for ProjectionΦURE
. We construct the projection

algorithm by generalizing the one used for permutahedron [15] . Note that the
algorithm is also a generalization of the capping algorithm in [14]. The algo-
rithm shown in Algorithm 3 outputs the solution which satisfies the optimality
conditions, and following theorem holds.

Theorem 5 (i) Given z, the Algorithm 3 outputs the projection of x onto the
base polyhedron B(f). (ii) The time complexity of Algorithm 3 is O(n2).

The proof is also a generalization of the proof in [15] and omitted due to the
space constraints.

Online Prediction Under Submodular Constraints 11

Algorithm 3 Projection under unnormalized relative entropy

Input: z ∈ Rn satisfying that z1 ≥ z2 ≥ · · · ≥ zn.
Output: projection x of z onto B(f).

1. Let i0 = 0.
2. For t = 1, . . . ,

(a) Let Ct(i) =
g(i)−g(it−1)∑i
j=it−1+1 zj

, for i = 1, . . . , n

and it = arg mini:it−1+1≤i≤n C
t(i),

if there are multiple minimizers, choose the largest one as it.
(b) Set xi = ziC

t(it), for it−1 + 1 ≤ i ≤ it.
(c) If it = n, then break.

3. Output x.

4.3 Decomposition

In this subsection, we describe how to represent a point x ∈ B(f) by a con-
vex combination of extreme points of B(f). More precisely, we are concerned
with the following randomized rounding problem; given a point x ∈ B(f),

output an extreme point X of B(f) with a probability such that E[X]
def
=∑k

j=1 Pr
[
X = cj

]
· cj = x for an appropriate k > 0.

As a preliminary step, we explain the following Propositions 6, 7, and 8,
which are well-known facts (see e.g., [7]). Let a ∈ R>0 be a constant satisfying

a > g(n − 1) − g(n), and we define f̃ : 2[n] → R by f̃(S)
def
= f(S) + a|S| for

any S ⊆ [n]. Notice that f̃ is clearly a cardinality based function; let g̃(z)
def
=

g(z) + a· z then f̃(S) = g̃(|S|) holds.

Proposition 6 The function f̃ is cardinality based submodular, as well as mono-
tone increasing, i.e., g̃(i) < g̃(i+ 1) for each i ∈ [n− 1].

Note that f̃(∅) = 0, and f̃(S) > 0 hold for any S (∅ ⊂ S ⊆ [n]).

Proposition 7 A point x is in B(f) if and only if x̃
def
= x + a1 is in B(f̃). A

point c is an extreme point of B(f) if and only if c̃
def
= c+a1 is an extreme point

of B(f̃).

Proposition 8 Suppose x ∈ B(f) satisfies x =
∑k
j=1 λjc

j for λj > 0 (j ∈ [k])

satisfying
∑k
j=1 λj = 1 and cj ∈ B(f) (j ∈ [k]). Then, x̃

def
= x + a1 ∈ B(f̃)

satisfies x̃ =
∑k
j=1 λj c̃

j where c̃j
def
= cj + a1 ∈ B(f̃).

Now, let f̃ : 2[n] → R≥0 be a cardinality based submodular function which
is monotone increasing, then we consider the randomized rounding problem;
given a point x̃ ∈ B(f̃), output an extreme point X of B(f̃) with a probability

such that E[X]
def
=
∑k
j=1 Pr

[
X = c̃j

]
· c̃j = x̃ for an appropriate k > 0. By

Proposition 8, it is easily transformed into the case from a general cardinality

12 Authors Suppressed Due to Excessive Length

based submodular function. Without loss of generality, we may assume that x̃1 ≥
· · · ≥ x̃n in the following. We remark that our randomized rounding algorithm
is a generalization of [15] for the permutahedron, in a sense.

To begin with, we define special points in B(f̃), which we call partially av-
eraged points. Suppose q̃ ∈ B(f̃) satisfies that q̃1 ≥ q̃2 ≥ · · · ≥ q̃n, then, q̃ is

a partially averaged point if
∑i
j=1 q̃j = g̃(i) holds for each i ∈ [n] satisfying

q̃i > q̃i+1. Notice that if q̃i > q̃i+1 = · · · = q̃j > q̃j+1 hold for i, j ∈ [n] then
qi+1 = · · · = qj = (g̃(j) − g̃(i))/(j − i). This means that the partially averaged
point is uniquely determined only by a sequence of equalities(=)/inequalities(>).
We simply say “a partially averaged point of x̃” (x̃ ∈ B(f̃)) as a partially av-
eraged point determined by a sequence of equalities/inequalities derived from
x̃1 ≥ x̃2 ≥ · · · ≥ x̃n of x̃.

Proposition 9 Suppose q̃ ∈ B(f̃) is a partially averaged point satisfying q̃1 ≥
q̃2 ≥ · · · ≥ q̃n. Let Π

def
= {σ ∈ Sym(n) | q̃σ(1) ≥ q̃σ(2) ≥ · · · ≥ q̃σ(n)}, and let

c̃σ = (c̃σ1 , . . . , c̃
σ
n) for σ ∈ Π denote the extreme point defined by hyperplanes∑i

j=1 c̃
σ
σ(j) = g̃(i) for all i ∈ [n]. Note that σ 6= σ′ does not imply c̃σ 6= c̃σ

′
in

general. Then, q̃ = 1
|Π|
∑
σ∈Π c̃

σ.

Proof. Suppose i ∈ [n− 1] satisfies q̃i > q̃i+1. Since any σ ∈ Π satisfies q̃σ(1) ≥
q̃σ(2) ≥ · · · ≥ q̃σ(n), we see that {σ(1), . . . , σ(i)} = [i] holds for any σ ∈ Π. This

implies that
∑i
j=1 c̃

σ
j =

∑i
j=1 c̃

σ
σ(j) = g̃(i). Since q̃ is a partially averaged point,

remember that
∑i
j=1 q̃j = g̃(i) holds, too.

Next, suppose q̃i > q̃i+1 = · · · = q̃j > q̃j+1 hold for i, j ∈ [n]. From the above

arguments, we see that
∑j
k=i+1 c̃

σ
k = g̃(j) − g̃(i) holds for any σ ∈ Π. For an

arbitrary σ ∈ Π, let σ′ ∈ Sym(n) satisfy σ′(k) = σ(k) for each k (k ≤ i or

k > j), then σ′ is also in Π. Thus, let r̃
def
= 1
|Π|
∑
σ∈Π c̃

σ for convenience, then

we see that r̃i+1 = · · · = r̃j = (g̃(j) − g̃(i))/(j − i) hold. Since q̃ is a partially
averaged point, remember that q̃i+1 = · · · = q̃j = (g̃(j) − g̃(i))/(j − i) hold,
too. ut

Proposition 9 and its proof immediately suggest an algorithm for randomized
rounding of a partially averaged point; generate σ ∈ Π uniformly at random,
and output c̃σ. It’s running time is O(n), clearly.

Now, we explain our Algorithm 4, which provides a convex combination of
partially average points representing x̃ ∈ B(f̃), i.e., given x̃ ∈ B(f̃), find par-

tially average points q̃1, . . . , q̃K and λ1, . . . , λK ∈ R>0 such that
∑K
i=1 λiq̃

i = x̃

and
∑K
i=1 λi = 1. Once we obtain such a convex combination, it is clear to obtain

an algorithm for randomized rounding into partially average points. Combining
the above arguments concerning Proposition 9, we obtain a desired algorithm.
We will prove the following lemma on Algorithm 4.

Theorem 10 Algorithm 4 provides a convex combination of at most n partially
averaged points representing an arbitrarily given x̃ ∈ B(f̃). Its running time is
O(n2).

Online Prediction Under Submodular Constraints 13

Algorithm 4 Decomposition by partially average points

Input: x̃ ∈ B(f̃) satisfying that x̃1 ≥ x̃2 ≥ · · · ≥ x̃n.
Output: Partially average points q̃1, . . . , q̃K and λ1, . . . , λK ∈ R>0 s.t.

∑K
i=1 λiq̃

i =

x̃,
∑K
i=1 λi = 1.

1. Let x̃1 = x̃ and λ = 1.
2. For t = 1, . . . ,

(a) Find a partially averaged point q̃t for x̃t.

(b) Let λt = min

{
λ, min
i∈[n−1]

{
x̃ti−x̃

t
i+1

q̃ti−q̃
t
i+1
| q̃ti 6= q̃ti+1

}}
.

(c) Let x̃t+1 = x̃t − λtq̃t and let λ = λ− λt.
(d) If λ = 1 then let K = t and break.

3. Output q̃1, . . . q̃K and λ1, . . . , λK .

To show Theorem 10, we show the following lemmas.

Lemma 2 At any iteration t in Algorithm 4, x̃t satisfies that x̃ti ≥ x̃ti+1 for any
i ∈ [n− 1].

Proof. We give an inductive proof with respect to t. In case of t = 1, it is clear.
In case of t > 1, we assume x̃t−1i ≥ x̃t−1i+1 holds for any i ∈ [n−1]. If x̃t−1i = x̃t−1i+1,

then q̃t−1i = q̃t−1i+1 holds, from the definition of q̃t−1. Thus

x̃ti = x̃t−1i − λt−1q̃t−1i = x̃t−1i+1 − λt−1q̃
t−1
i+1 = x̃ti+1

and we obtain the claim. If x̃t−1i > x̃t−1i+1, then q̃t−1i > q̃t−1i+1 holds, and

x̃t+1
i − x̃t+1

i+1 = x̃ti − x̃ti+1 − λt(q̃ti − q̃ti+1) = (q̃ti − q̃ti+1)

(
x̃ti − x̃ti+1

q̃ti − q̃ti+1

− λt
)
≥ 0

where the last inequality comes from the definition of λt, followed by λt ≤
min

i∈[n−1]

{(
x̃ti+1 − x̃ti

)
/
(
q̃ti+1 − q̃ti

)
| q̃ti+1 6= q̃ti

}
. ut

Lemma 3 In Algorithm 4, x̃K+1 (= x̃K − λK q̃K) = 0 holds.

Proof. Without loss of generality, we may assume that x̃1 ≥ x̃2 ≥ · · · ≥ x̃n, for
simplicity of notations. First we show x̃K+1 ≥ 0. Since Lemma 2, if there exists
j ∈ [n] satisfying that x̃K+1

j < 0, then x̃K+1
n < 0 holds. Thus it is enough to show

x̃K+1
n ≥ 0. Let i∗ = min{j ∈ [n] | x̃Kj = x̃Kn }. Then we have x̃Ki∗ = x̃Ki∗+1 = · · · =
x̃Kn and q̃Ki∗ = q̃Ki∗+1 = · · · = q̃Kn . Hence, we get x̃K+1

i∗ = x̃K+1
i∗+1 = · · · = x̃K+1

n . In
case of i∗ ≥ 2, x̃ti∗−1 > x̃ti∗ holds for any t ∈ [K], meaning that q̃ti∗−1 > q̃ti∗ holds
for any t ∈ [K]. Thus we can see that

∑n
j=i∗ q̃

t
j = g̃(n)− g̃(i∗ − 1) holds for any

t ∈ [K], from the definition of q̃t. Then we obtain

n∑
j=i∗

K∑
t=1

λtq̃
t
j =

K∑
t=1

λt (g̃(n)− g̃(i∗ − 1)) = g̃(n)− g̃(i∗ − 1) ≤
n∑

j=i∗

x̃j

14 Authors Suppressed Due to Excessive Length

where the last inequality is due to constraints of B(f̃)
∑i∗−1
j=1 x̃j ≤ g̃(i∗− 1) and∑n

j=1 x̃j = g̃(n). Thus we obtain that
∑n
j=i∗ x̃

K+1
j =

∑n
j=i∗

(
x̃j −

∑K
t=1 λtq̃

t
j

)
≥

0. As discussed above, x̃K+1
i∗ = x̃K+1

i∗+1 = · · · = x̃K+1
n holds, and we obtain

x̃T+1
n ≥ 0. In case of i∗ = 1, the proof is done in a similar way.

Now we show x̃K+1 = 0. Since x̃ ∈ B(f̃),
∑n
j=1 x̃

K+1
j = g̃(n) holds. In a

similar way as the proof of x̃K+1 ≥ 0,

n∑
j=1

K∑
t=1

λtq̃
t
j =

K∑
t=1

λt

n∑
j=1

q̃tj =

K∑
t=1

λtg̃(n) = g̃(n).

Since xK+1 ≥ 0, x̃K+1 = x̃−
∑K
t=1 λtq̃

t = 0. ut

Lemma 4 The number of iterations K is at most n.

Proof. From the definition of λt, there is at least one i ∈ [n] satisfying that
x̃ti > x̃ti+1 and x̃t+1

i = x̃t+1
i+1. If x̃ti = x̃ti+1, then x̃t+1

i = x̃t+1
i+1 as discussed in the

proof of Lemma 2. Now the claim is clear. ut

Proof of Theorem 10. Since Lemma 3, it is clear that the output
∑K
t=0 λtq̃

t

by Algorithm 4 is equal to an arbitrarily given x̃ ∈ B(f̃). It is not difficult to
see that every lines in Algorithm 4 is done in O(n). Hence, the running time of
Algorithm 4 is O(n2) by Lemma 4. ut

Note that, by modifying Algorithm 4, we can design an algorithm for ran-
domized rounding of x ∈ B(f) using only O(n) space, with the same time
complexity of O(n2). We can also improve the algorithm with a time complexity
of O(n log n) using a heap, with O(n) space.

5 Conclusion

In this paper, we consider an prediction problem over the base polyhedron de-
fined by a submodular function and propose efficient prediction algorithms. An
open problem is to derive a tight lower bound of the regret of our problem.

Acknowledgements

We thank anonymous reviewers for their helpful comments. This work is sup-
ported in part by JSPS Grand-in-Aid for Young Scientists (B) 23700178, JSPS
Grand-in-Aid for Scientific Research (B) 23300003, and Aihara Project, the
FIRST program from JSPS.

Online Prediction Under Submodular Constraints 15

References

1. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

2. N. Cesa-Bianchi and G. Lugosi. Combinatorial Bandits. In Proceedings of the 22nd
Conference on Learning Theory, 2009.

3. S. Chopra. On the spanning tree polyhedron. Operations Research Letters, 8(1):25–
29, 1989.

4. J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combi-
natorial Structures and Their Applications, pages 69–87, 1970.

5. J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming,
1(1):127–136, 1971.

6. Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

7. S. Fujishige. Submodular functions and optimization. Elsevier Science, 2nd edition,
2005.

8. D. P. Helmbold and M. K. Warmuth. Learning Permutations with Exponential
Weights. Journal of Machine Learning Research, 10:1705–1736, 2009.

9. S. Kakade, A. T. Kalai, and L. Ligett. Playing games with approximation algo-
rithms. SIAM Journal on Computing, 39(3):1018–1106, 2009.

10. A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

11. W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging Structured Concepts.
In Proceedings of the 23rd Conference on Learning Theory, pages 93–105, 2010.

12. K. Nagano. A faster parametric submodular function minimization algorithm and
applications. Technical Report METR 2007–43, Department of Mathematical In-
formatics, Graduate School of Information Science and Technology, University of
Tokyo, 2007.

13. J. B. Orlin. A Faster Strongly Polynomial Time Algorithm for Submodular Func-
tion Minimization. In Proceedings of the 12th International Conference on Integer
Programming and Combinatorial Optimization (IPCO), pages 240–251, 2007.

14. M. K. Warmuth and D. Kuzmin. Randomized Online PCA Algorithms with Regret
Bounds that are Logarithmic in the Dimension. Journal of Machine Learning
Research, 9:2287–2320, 2008.

15. S. Yasutake, K. Hatano, S. Kijima, E. Takimoto, and M. Takeda. Online Linear
Optimization over Permutations. In Proceedings of the 22nd International Sympo-
sium on Algorithms and Computation (ISAAC 2011), pages 534–543, 2011.

16. G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics 152.
Springer-Verlag, 1995.

17. M. Zinkevich. Online convex programming and generalized infinitesimal gradi-
ent ascent. In Proceedings of the Twentieth International Conference on Machine
Learning (ICML ’03), pages 928–936, 2003.

