
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Development and Application of Statistical
Methods for Biological Network Inference from
Gene Expression Profiles

ウォン, プイ, シャン

https://doi.org/10.15017/1932015

出版情報：九州大学, 2017, 博士（農学）, 論文博士
バージョン：
権利関係：



Development and Application of Statistical Methods for
Biological Network Inference from Gene Expression Profiles

Wong Pui Shan

2018



Contents

Introduction 4

1 Materials 12

2 Homolog Comparison in the F. solaris Genome 14

2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Comparative Genomics . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Expression Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Significance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Gene Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Comparative Genomics . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Significance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Characterization by Gene Ontology . . . . . . . . . . . . . . . . . 22

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Activated Pathway Analysis for Triacylglycerol Biosynthesis 32

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Expression Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Gene Set Enrichment Analysis . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Enriched Pathway Graphs . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Gene Set Enrichment Analysis . . . . . . . . . . . . . . . . . . . . 36

1



3.2.3 Enriched Pathway Plots . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Investigation of Transcriptional Regulation Mechanisms 46

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Identifying Transcription Factors . . . . . . . . . . . . . . . . . . . 48

4.1.2 Expression Pattern Creation . . . . . . . . . . . . . . . . . . . . . . 49

4.1.3 Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4 Network Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.5 Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Transcription Factor Selection . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Gene Expression Patterns . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Transcription Factor Network . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 F. solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 A. thaliana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Discussion 75

Acknowledgements 84

References 84

2





Introduction

Experiments relying on the continuous observation of gene expression used to be very

time consuming and expensive to quantify. The techniques depended on hybridiza-

tion approaches using fluorescent tags and microarrays. They required the preparation

of a number of materials that increased the cost of the experiment, particularly if the

research required custom-made microarrays for specific genomes, enzymes or metabo-

lites [1]. They were also limited by the number of existing genome data that was being

researched, the small detection ranges of signals that were measured and the back-

ground noise in the data. These limits became a soft threshold on what type of research

could be carried out.

When John Craig Venter first ventured into genome sequencing, it signaled the start

of a new era in biology [2] [3]. The first genome sequencing project cost roughly US

$3 billion and took about 13 years with additional time taken for accuracy analyses. It

used a combination of Sanger sequencing and shotgun sequencing [4] [5] [6], as well

as other techniques which were improved upon by James Watson who took the next

step and completed the next genome sequencing in four months and cost less than US

$1.5 million to complete [7] [8]. The last decade has brought about dramatic changes

to the landscape of research involving genomes, resulting in the incredulous efficiency

of performing a sequencing run in one to two days and costing US $1,000 to $5,000 [9]

[10]. The developments achieved by those first generation sequencing methods have

helped to generate the concepts that led to the success of the current next-generation

sequencing methods (NGS).

NGS is the successor of the technology pioneered by Sanger sequencing [2] and is now

routinely used in research, and clinical and diagnostic applications for more involved

studies such as transcriptome profiling (miRNA-Seq) [11], chromatin immunoprecip-

itation with sequencing (high resolution ChIP-sequencing) [12] [13] [14] and locating

genetic variants such as single nucleotide polymorphisms (SNP) [15]. The initial com-

plication of genome sequencing was due a number of factors including the size of

genomes, in particular eukaryote genomes, the preparation and use of bacterial artifi-

4



cial chromosomes (BAC) and related operational difficulties, and the computing power

that was available at the time to align and store all the data. While Sanger sequencing

is highly accurate, it has a limited throughput which is throttled by the use of gels or

polymers. It is still used today for deep sequencing as the long fragments make it pos-

sible to resolve repeat regions but NGS has become the primary tool of choice for the

genomics field in general.

NGS was generated from an idea conceived from shotgun sequencing; the idea of mas-

sive parallel sequencing reactions. By building up on existing knowledge, it has several

advantages over its predecessors such as its cell free system, and cyclical and parallel

sequencing which gives higher coverage and throughput. NGS requires less reagents

overall, as sequencing has become possible by using single strands, and sequencing

reactions are able to be run on a single chip. These features work well with the short

overlapping repeat approach, which leads to better coverage and respectable accuracy

despite shorter reads since each region is sequenced many times. The improvement in

computational power and sequencing algorithms has also contributed in the popular-

ity of NGS as better computing power has made it possible to map many short reads to

scaffolds quickly, as reflected by Moore’s Law which shows a trend with the doubling

of computing power every two years.

NGS is available through several commercially available platforms. These include the

Roche GS-FLX 454 Genome Sequencer (454 sequencing), the Illumina Genome Ana-

lyzer (Solexa), the Applied Biosystems SOLiD analyzer, Polonator G.007 and the He-

licos HeliScope platforms. The platforms also come with supporting alignment and

assembly tools as well as analysis software such as Sequence Analysis Viewer for as-

sessing sequence quality, and Hiseq Analysis Software for alignments from Illumina

platforms. There are platform independent software available as well, with an ac-

tive community of user support available for them due to their popularity amongst

researchers such as MAQ [16], Bowtie 2 [17] [18], Tophat [19] [20] [21] and Cufflinks

[22], as well as full pipeline programs like QuickNGS [11]. These companies and soft-

ware developers have had an important impact on NGS development and strongly

influences on where the technology will go in the future [23].

The advantages offered by NGS has resulted in a more democratized sequencing land-

scape where most laboratories around the world have access to affordable and efficient

genome analyses technologies. By allowing more researchers to perform sequencing

experiments, NGS has invigorated many fields in biology such as biotechnology, foren-

sics, agrigenomics and clinical medicine, and advanced several new fields of study

such as personalized medicine, epigenomics and metabolomics. It has allowed the de
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novo assembly of many genomes to be possible including the panda [24], the Pacific

bluefin tuna [25], the sunflower [26] and the Antarctic midge [27], as well as the re-

sequencing of genomes that have already been processed such as Escherichia coli [28]

and Sesamum indicum [29].

Most importantly, the technological development of NGS has precipated major devel-

opments in other research that use sequences such as detecting genetic elements of

diseases and transcriptome analyses [30]. The NGS methods that rely on expressed

transcripts have been readily coopted in transcriptome experiments that typically use

RNA-Sequencing (RNA-Seq) to quantify cell transcripts at the time of sampling, pro-

viding a real-time snapshot of transcript levels. Since NGS is supremely efficient over

former methods, it has recently become more feasible to perform extensive studies that

incorporate multiple conditions during an extended period of time. The increased res-

olution to the data produces measurements containing more detail that is needed when

studying processes like gene expression regulation since it is a multi-component com-

plex system.

This influx of data being generated from NGS research has called attention to the need

for better data management for biologists from issues such as data security as well as

data sharing among international research groups. A significant part of the big data

dilemma is the ability to analyze data to keep up with the rate at which it is is being

produced and the ability to manipulate much larger data sets than in the past. The

size of standard data files can now include several thousand species in microbiome

studies or contain the expression of thousands of genes in experiments with three or

more variables, all the while, many journals call for multiple replicates for robustness.

The number of data points make it difficult to visualize the full experiment in one

diagram because of the limit of a physical screen size. Even a simple task of graphing

the raw data points may require a wait time for rendering. This culminates in data that

reach the barriers of what traditional hypothesis tests are able to analyze. This can be

demonstrated by the computing time it takes for some calculations to complete such as

linear models, bayesian inferences or covariance matrices. Consequently, new methods

should be developed alongside the progression of nucleic acid sequencing.

This analysis task is a major objective in the field of bioinformatics which applies sta-

tistical and computational analysis to biological data. The development of more appro-

priate and convenient data analysis tools is the key to understanding and exploring the

large amounts of data being outputted from sequencers by investigating what relation-

ships were recorded in the data and how the results can be interpreted in the context

of cellular signaling and metabolic processes. The investigations should yield testable
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hypotheses to lead the way for future projects.

NGS data presents some particular restrictions to analyses tools. In terms of the data

structure, NGS data tends to hold numerous and complex correlations between the

thousands of genes, as well as commonly having a noisy background signal compared

to a weak foreground signal if the investigation is focused on a small subset of genes.

The general statistical term is the large p, small n problem where the large number of

variables to small number of replicates make it difficult to identify true signals with an

appropriate level of false discovery rate [31]. It also makes it difficult to create models

without over fitting them since adding more variables to a model will make the model

fit the data better but it will be too specific and less useful as a model for other data

sets.

Current methods generally utilize strategies relying on linear or Bayesian statistics and

have been developed from the elements of other types of experiments such as detecting

differential gene expression in microarray analyses [32] [33]. Apart from the method-

ology of the analysis itself, another key step of NGS data analysis is the choosing or

developing of the correct data analysis techniques appropriate for the number of sam-

ples and variables of the project. This is largely solved by using multiple tools, either

in series to supplement the results of upstream tools such as gene ontologies (GO) [34]

or in parallel as a multi-faceted approach such as a combination of metabolic pathway

tools [35], gene network tools [36] and interactome tools [37].

The results also need to be presented visually so that the essential elements can be

quickly comprehended by viewers, such as the standard use of heat maps in microarray

data, sunburst compound graphs for showing a mixture of genomic information [38] or

metabolic pathways [39] [40] [41]. Many detailed visualization tools were created for

popular model organisms such as humans and mouse [42] [43] while more universal

tools tend be simple such as Venn diagrams [44], so projects on novel organisms have to

work quickly to annotate the genome as much as possible so that they can use notable

database accessions or create tools of their own. Finally, with the volume of data to be

analyzed, it is important that analysis tools are easily accessible, have a reasonably fast

run time and are intuitive to use. This is why many favorable and popular methods are

either internet tools like protein localization tool WoLF PSORT [45], complete software

packages like Geneious [46] or are part of a repository of tools like Bioconductor [47].

Due to the prevalence of NGS, studies on gene expression and regulation have ad-

vanced a great deal so that it is now possible to examine the complex processes of

eukaryotes instead of simpler prokaryotes [1]. As more genomes are being sequenced,

the landscape of cellular biology has progressed from identifying genes and classifying
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functions to transcriptomes, epigenomes and metabolomes. This technique has already

been applied to several standard eukaryotes such as Saccharomyces cerevisiae, Schizosac-

charomyces pombe, mouse and human cells [48] [49] [50] [51] [52] [53].

Transcriptomics study the type and quantities of the different RNA molecules that are

found in a cell or population of cells at a given time. The aim is to create a record of tran-

scripts that exist for all species including sequence variations in populations [51] [53],

to determine which sections of genes are transcribed and to quantify how the quan-

tity of transcripts change at different times and conditions. Most commonly, mRNA

quantity is analysed but other non-coding RNA and small RNA can be important to

the end product as well. For many complex eukaryotes, there is also the difficulty of

cataloguing the different splicing variants for each gene and this is where the precision

of RNA-Seq can be of help. This often ties transcriptomics into proteomics and there is

much active research into how activity in the transcriptome lead to the proteome that

is observed as a result [54].

Epigenomics is the study of the processes that produce different phenotypes from a

single genotype such as gene expression regulation through chemical changes to DNA

that result in the restriction or access to translation binding sites so that genes are tran-

scribed [55]. It plays a large role in the initiation of different stages of development and

tissue differentiation where no biological information is transmitted to following gen-

erations of cells but there are observable physical differences between them [56]. Both

areas of study have the unique characteristic where the changes in gene expression are

dynamically influenced by environmental conditions compared to the genome itself

which is relatively static throughout the lifetime of an organism.

Transcriptomics has been particularly influenced by the progress of RNA-Seq by al-

lowing researchers to assess a whole transcriptome. Before NGS, it was very daunting

to undertake any research on the transcriptome of a novel organism as the methods

required that the genes and regulatory regions were already known, such as a fully

annotated and sequenced genome. NGS has removed many of those barriers so re-

search in transcriptomics has surged. Due to the complexity of interactions between

genes and their participation of multiple systems, time series experiments are the most

appropriate RNA-Seq approaches so far. The multiple time points are able to capture

the dynamics of whole regulatory networks by providing data to compare to, and en-

abling the identification of possible dependencies and regulators [57]. These types of

experiments give the best results when evaluating drug responses, cell product yields

and development of diseases.

There are different approaches to designing time series experiments with varying time
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points and conditions, but the one thing in common they all have is that the time points

increase the dimension of the data set, thus increasing complexity during data analysis

[58]. The most common type of analysis is identifying differentially expressed genes.

Due to the difficulty presented by the dimensionality of the data set and the recent

trend in time series experiments, there are only a small number of standard analysis

methods such as Next maSigPro [59] and EBSeq-HMM [60]. The common techniques

uses amongst them rely on Bayesian statistics or Gaussian processes. In contrast, there

are not so many downstream analysis methods that interpret the data in terms of func-

tion and context within what is already known. So far, current approaches have consid-

ered clustering and enrichment analyses, such as hierarchical Gaussian process model-

ing [61] and functional enrichment analysis in FGNet [62].

There is currently a scarcity of analysis methods that cater to time series RNA-Seq data

that focuses on the biology behind the data. This leads to a gap in the analysis pipeline

in contrast to experiments such as microarrays that have an established workflow from

analysis methods developed through much time and research. The current status of

data analysis development presents an opportune time to offer novel approaches in an

effort to complete a standard analysis pipeline. I will present three different analysis

methods that fills in the gap and show how they work using appropriate time series

RNA-Seq data. To that end, I have developed the methods that evaluates data in a

different way. Instead of averaging gene expression values over all time points, my

methods make use of the information from the change in expression as genes are up-

regulated and down-regulated at each time point. The methods rely on using model

organisms as a base template to compare to and to set up the initial framework. They

also use network inference as a model to explain and process the results of RNA-Seq

data. Each procedure can be successfully applied to a model organism to show how

it operates from a different direction of approach, although they are constructed to

function for experiments with limited samples from novel organisms.

The target organism chosen to demonstrate the featured analysis methods is the oleagi-

nous diatom, Fistulifera sp. strain JPCC DA0580 or F. solaris. This pennate diatom was

discovered in the junction of Sumiyo River and Yakugachi River, Kagoshima, Japan

(Matsumoto et al., 2010, 2014) with initial observations indicating an advantageous

propensity to produce biofuel compounds for industrial purposes [63]. It was chosen

due to the increased interest in diatoms as a source of bioactive compounds and its

potential use as a source of renewable biofuel as a recently discovered organism. Typ-

ically, algae demonstrate an ability to efficiently recycle carbon emissions and are, as a

group, responsible for approximately 20% of the global carbon fixation while diatoms
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themselves make up about 40% of marine sources [64] [65] [66] [67].

Interest in biofuel development derived from algae has risen due to several inherent

benefits [68] [69] [70]. Algal cultivation plants would require less land and yield more

biomass in contrast to terrestrial crops such as soybean, Jatropha, oil palm, sunflower

and corn [71] [72] [73] [74]. The development of cultivation technology enables algae

to be farmed in open tanks or closed columns where they do not deplete soil meant for

agricultural use. Depending on the species, they can use water sources such as waste or

saline water, further decreasing competition with agricultural crops. Oil accumulation

in microalgae is also typically higher in magnitude than that of biofuel crops as well

as faster in terms of rate production. They are also easier to work with in terms of ge-

netic engineering as their genomes are not as complex and their cell structure is easier

to manipulate[68] [69] [70] [75] [76]. These points are important for large-scale indus-

trial production to minimize competition with the production of consumable food or

with the preservation of neighboring habitats. However, in order for biofuels to be a

realistic source of alternative renewable energy, lipid production capabilities need to

be improved substantially. Production costs are still relatively high at US $300 - $2600

per barrel) compared to petroleum costs (US $40 - $80 per barrel) which leads to in-

tensive research on commercial scaling and decrease costs [77] [78] [79] [80]. Previous

investigations have inspected heterokonts, chlorophytes, dinoflagellates, haptophytes

and rhodophytes [81] [82] [83] [84] along with recent studies on Chlamydomonas rein-

hardtii and Nannochloropsis oceanica. These studies have contributed much insight into

metabolic pathways and genes that could be targeted for possible changes to increase

optimum lipid production.

Oleaginous algae, as well as other land plants and various bacteria, can metabolize

sunlight and carbon dioxide into chemical energy by reducing carbon molecules into

long-chain fatty acids. They accumulate these compounds naturally as a means of

energy storage similar to the storage in developing seeds, fruits and leaves [85]. The

major product for biofuel production however, are neutral lipids such as triacylglycerol

(TAG). The lipid production capabilities can be induced and enhanced in various stress

conditions such as low nutrition, low nitrogen, salt stress and sulfur deprivation. This

normally occurs at the expense of cell growth as the organism diverts glucose towards

energy storage [86] [87] [88]. The reduction in growth and increase in lipid accumu-

lation vary substantially depending on the duration and magnitude of stress from the

environment as well as the type of algae [89] [90]. F. solaris is distinctly different with

regards to oil accumulation and has the ability to accumulate lipids while undergoing

logarithmic growth [91]. Additionally, it is able to reach a high neutral lipid content
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while doing so (40% to 60%, w/w) [63] [91] [92]. The lipids produced by F. solaris are

mainly composed of methyl palmitate (C16:0) and methyl palmitoleate (C16:1), both of

which can be used as biodiesel fuel [93].

Discovering the mechanisms by which F. solaris is able to achieve such a unique feature

can lead to the genetic modification of other algae to bestow similar production per-

formance. Current methods rely on the over expression of positive regulation genes

or the knock-out of those genes involved in negative regulation [89] [94] [95]. While

they have met with some success, the effectiveness of such changes nonetheless rely on

the understanding of the effect of the target genes in the relevant metabolic processes

attributed to lipid accumulation [96].

The application of these methods on the F. solaris data set will illustrate that the analyses

can be performed on small sample data from a novel organism collected at multiple

time points. The results will be combined to show how a combination of methods will

contribute to the overarching biological processes that can be extracted from a time

series RNA-Seq experiment.
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Chapter 1

Materials

The featured methods are applied to several RNA-Seq gene expression data sets from

three organisms; F. solaris, Phaeodactylum tricornutum and Arabidopsis thaliana. F. solaris

is a novel diatom that is closely related to the model diatom P. tricornutum while A.

thaliana is the model plant organism. The F. solaris data is featured in all methods while

the P. tricornutum data is used in section 2.1.1 and A. thaliana data is used in section

4.1.2.

The F. solaris genome was sequenced by the Roche 454 GS FLX Titanium DNA Pyrose-

quencer and the library is built by the GS FLX Titanium General Library Preparation

Kit as per manufacturer instructions. The RNA-Seq expression data was measured us-

ing Illumina Genome Analyzer IIx and sampled while it was cultured in control and

treatment substrates. The treatment substrate of artificial sea water is the f/2 medium

(Guillard and Ryther, 1962) (75 mg NaNO3, 6 mg Na2HPO4 · H2O, 0.5 µg vitamin B12,

0.5 µg biotin, 100 µg thiamine HCl, 10 mg Na2SiO3 · 9H2O, 4.4 mg Na2-EDTA, 3.16

mg FeCl3 · 6H2O, 12 µg CoSO4 · 5H2O, 21 µg ZnSO4 · 7H2O, 0.18 mg MnCl2 · 4H2O,

70 µg CuSO4 · 5H2O, and 7 µg Na2MoO4 · 2H2O per litre of artificial seawater). The

control substrate is a 10 fold dilution of the above substrate [93]. The treatment sub-

strate induces oil accumulation over a period of three days so the cultures are initially

in the control substrate and subsequently introduced to the treatment substrate, and

sampled at successive the time points 0, 24, 48 and 60 hours after the introduction. The

RNA-Seq data is reported in Reads Per Kilobase per Million (RPKM) [50] and aligned

to the genome using Bowtie v0.12.7 [17] [18]. The RPKM values were then calculated

by ERANGE software v3.2 [50].

P. tricornutum is one of the main model organisms for pennate diatoms and is studied

for its ease of transformation and annotated genome information [97] [98] [99]. The

expression data for P. tricornutum is measured from samples cultured in control and
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treatment substrates taken at 48 hours after being introduced to the substrates [100].

The substrate is a f/2-Si medium from Daya Bay, Huizhou, China (75 mg NaNO3, 5.65

mg NaH2PO4 · 2H2O, 4.16 mg Na2 EDTA, 3.15 mg FeCl3 · 6H2O, 0.01 mg CuSO4 ·
5H2O, 0.022 mg ZnSO4 · 7H2O, 0.01 mg CoCl2 · 6H2O, 0.18 mg MnCl2 · 4H2O, 0.006

mg Na2MoO4 · 2H2O, 0.0005 mg vitamin B12, 0.1 mg vitamin B1 and 0.0005 mg Biotin

per litre of natural seawater). The nitrogen was removed for the treatment substrate

and introduced into the control substrate.

The A. thaliana expression data is measured during the transition from vegetative de-

velopment to flowering stages [101]. The full data set spans 10 days with a sample

taken each day. The methods are applied to data measured from the M4 sample be-

cause this model organism is known to start floral transition around that time while

earlier time points are during vegetative growth. The data was measured by Illumina

HiSeq2000 and sampled from carefully synchronized plants so that samples were at

the same growth stage as much as possible.

The expression data for all organisms were normalized to decrease the effect of very

high or very low RPKM values in the following analysis methods. This is necessary

as RNA-Seq is a competitive profiling method such that extreme values can distort

the analysis. The RPKM values are corrected using the sRAP package in R [102] [103]

with the recommended threshold of 0.1 for minimizing the influence of the number of

reads. The normalization process also log transforms the RPKM values so that they

become logged gene expression. Sequences with RPKM values of 0 for all time points

and conditions are excluded from all analyses.

For all methods, the F. solaris genome was annotated with KEGG annotations by se-

quence alignment software SSEARCH that is run with the MIQS substitution matrix

[40] [104] [41]. The cut off E-value for match establishment is 0.0001. The KEGG an-

notations is used in conjunction with the full KEGG database for annotations to other

databases such as UNIPROT.
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Chapter 2

Homolog Comparison in the F.

solaris Genome

Initial investigations provide a broad overview of a novel organism so genome com-

parisons are a strategic way to start that. Through some of these initial investigations,

it has been noted that F. solaris is related to other known diatoms such as Thalassiosira

pseudonana and also particularly to the model diatom P. tricornutum. By relying on

the information gathered from annotated genomes that are close in evolutionary and

sequence distance, the annotation of F. solaris can be assembled faster.

A comparison of their genome sizes suggests that F. solaris underwent duplication

events since the F. solaris genome has 20,470 genes while P. tricornutum has 10,402 genes

and T. pseudonana has 11,776 genes. This is further emphasized when comparing the F.

solaris genome to itself where it was noted that many genes are present in duplicates of

highly conserved but not identical sequences. It is common to observe genome dupli-

cation in plants, such as maize, where the duplicated genes bestow increased genetic

variation and viability since duplications lead to more sequence space for evolution to

act on [105] [106] [107]. Although many duplicated genes can lose their functions and

become lost, there are known duplicate genes that have retained function and continue

to contribute to organism fitness [108] [109]. It is also possible that some gene dupli-

cates can acquire new functions that contribute to an organisms survival so examining

duplicates can be a worthwhile pursuit [110]. In algae, the duplications appear to in-

crease adaptations to stress response mechanisms such as nutrient deprivation [111]

which in turn makes the algae valuable as a biofuel source as the process typically

involves environmental stress.

Close inspection of genome similarity also reveal that the majority of homologous F.
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solaris and P. tricornutum genes include genes that are known to affect lipid accumula-

tion such as those in photosystem I and II [112] [113]. These genes and other pathways

related to lipid metabolism have overlapping processes among P. tricornutum and other

diatoms [99] [114], indicating that the underlying mechanisms are closely related. This

association in lipid production between F. solaris and P. tricornutum has helped deter-

mine putative pathways for fatty acid desaturation in F. solaris. However, although F.

solaris and P. tricornutum share similar lipid metabolic genes and pathways, the precise

mechanisms that control the level and duration of expression is unknown. The dif-

ferences in lipid production and accumulation suggests that the lipid metabolic genes

are being expressed under different regulation mechanisms between the two species.

These factors and metabolic cellular processes are likely to be involved in the unique

capacity of F. solaris to simultaneously grow and accumulate lipids.

These genomic features of F. solaris establishes a base for comparison analyses. This

method is made to target the difference in gene expression between two data sets by

relying on the existence of homologous genes and their involvement in identical path-

ways. The data sets that will be used are from F. solaris and P. tricornutum while they

were cultured in similar nutrient deprived conditions that induces the accumulation of

lipids. By using data sets that are as similar as possible, the power of detection can be

increased for better results. Attention was specifically focused on the expression of the

homologous genes only as they contain the fundamental differences between the two

gene regulation mechanisms. The method establishes that differences in regulation ex-

ists and then isolates the genes related to the observed differences. They are examined

for particular expression patterns with a strong focus on identifying expression pat-

terns present in one but not the other data set. Homologous genes exhibiting different

levels of expression with particularly polarizing patterns are sorted into groups where

they are characterized by functions and pathways to describe the patterns observed in

the analysis. In this application of this method on F. solaris data, the identified groups

that are of most interest are the ones associated with lipid metabolism.

2.1 Method

2.1.1 Comparative Genomics

The sequences of F. solaris were compared to sequences of other species to identify ho-

mologs between F. solaris and P. tricornutum. The initial search was performed against

the full KEGG database [41] [40] and the species of the top matching sequence were

noted while F. solaris sequences without a suitably stringent match was removed from
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further analysis. The remaining F. solaris sequences with KEGG matches were screened

against P. tricornutum and T. pseudonana sequences where it was confirmed that the

best species to use for comparative study was P. tricornutum. The resulting sequences

from F. solaris and P. tricornutum were assigned as homologs and used in the rest of the

analysis.

2.1.2 Expression Data

The fold change expression of the F. solaris homologs with four time points were sepa-

rated from the full set of expression data. These were checked with the homologs found

in subsection 2.1.1 since some sequences were not found in the expression data and vice

versa. The comparison data was the fold change expression data of P. tricornutum with

one time point. The fold change of the P. tricornutum homologs were extracted from

the full data set and was also checked since the same P. tricornutum homolog could be

the homolog to multiple F. solaris sequences.

The F. solaris data contained more than one fold change value per sequence while the P.

tricornutum data contains one fold change value per sequence. The fold change value

chosen to represent F. solaris in the rest of the analysis was decided by comparing the

fold change at each time point with the fold change of P. tricornutum. The fold change

profile most similar to P. tricornutum was the fold change at 60 hours which is consistent

with previous observations [91]. This was then chosen to be used for analysis together

with the expression data for P. tricornutum taken at 48 hours. These fold change values

were checked using the lsmeans package in R [102] [115] to compute linear combina-

tions of more than one mean with species, condition, and homology as factors.

The F. solaris genome contains duplicate sequences so there were F. solaris homologs

that were best matched to the same P. tricornutum sequence. The fold change of F. solaris

homologs were averaged across each matching P. tricornutum homolog using Equation

2.1.1 such that each homolog was in the analysis only once.

Fx =
Σ∀isi

n
(2.1.1)

where Fx is the average fold change for F. solaris homologs that were best matched

to P. tricornutum sequence x, si is the ith F. solaris homolog that is best matched to P.

tricornutum sequence x and n is the number of F. solaris homolog that were best matched

to P. tricornutum sequence x.

The prepared fold changes for each F. solaris Fx and P. tricornutum x homolog were then
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used to calculate the difference in fold change between the two diatoms as detailed in

Equation 2.1.2. The difference in fold change was used as the criterion to quantify the

variation between F. solaris and P. tricornutum in the rest of the analysis.

Dx = Px − Fx (2.1.2)

where Dx is the difference between the average fold change of F. solaris sequences ho-

mologous to P. tricornutum sequence x and the fold change of P. tricornutum sequence

x, Px is the fold change of P. tricornutum sequence x and Fx is the average fold change

for F. solaris homologs that were best matched to P. tricornutum sequence x.

2.1.3 Significance Test

A threshold test was applied to differentiate fold change differences from that of the

background of expected differences. The differences were approximated by a normal

distribution through the Central Limit Theorem so they were standardized by trans-

forming the differences in fold change Dx into z-scores by using Equation 2.1.3.

zx =
Dx − E(D)

SD(D)
(2.1.3)

where zx is the z-score of Dx, Dx is the difference between the average fold change of

F. solaris sequences homologous to P. tricornutum sequence x and the fold change of P.

tricornutum sequence x, E(D) is the expected value of Dx for all x and SD(D) is the

standard deviation of Dx for all x.

The threshold was calculated by setting a significance level of 1%, and using the dis-

tribution of zx to infer a cut off value. Fold change differences between F. solaris and P.

tricornutum homologs outside the threshold were selected as being significantly higher

or lower than expected.

2.1.4 Gene Ontology

The gene ontologies of the significant homologs were tested for significance using the

hypergeometric test in the GOstats package in R [102] [116]. The GOstats package was

used due to the inclusion of an option to perform a conditional hypergeometric test. It

avoids an issue created when testing gene ontologies that are in a hierarchical structure

of the gene ontology graph. The resulting p-values were corrected for multiple testing
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using Bonferroni’s correction method. Gene ontologies with a p-value < 0.05 were

selected to represent their respective group.

2.2 Results

2.2.1 Comparative Genomics

Species codes: Frequency

PTI: 13898

Unique: 2368

TPS: 2244

PIF: 190

TVA: 73

BFO: 72

OLU: 60

NVE: 51

<10: 1514

Figure 2.1: The species assignment of 20,470 F. solaris genes from searching the

KEGG database. The species codes corresponds to the following species,

in order from top to bottom: Phaeodactylum tricornutum (PTI), Thalas-

siosira pseudonana (TPS), Phytophthora infestans (PIF), Trichomonas vaginalis

(TVA), Branchiostoma floridae (BFO), Ostreococcus lucimarinus (OLU) and

Nematostella vectensis (NVE). Assignments to species with less than 10

matches were consolidated into the <10 group for clarity.

A total of 13,898 out of 20,470 F. solaris genes were observed to be most similar to P.

tricornutum genes (68%) against the KEGG database (Figure 2.1). This was the largest

majority of matched results. It was followed by unmatched or novel genes, and then by

T. pseudonana genes. The remaining genes were matched with those from other algae

and microorganisms. Since the majority of the matches were P. tricornutum genes, it

confirmed that they should be kept and used as the homolog genes for comparisons

for the remainder of the analysis.

To further validate the use of the P. tricornutum genome for comparing gene expres-

sion data, another sequence alignment was performed against the P. tricornutum and T.

pseudonana genomes only (Figure 2.2). The majority of the F. solaris sequences (73%) are
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Species codes: Frequency

PTI: 14880

TPS: 3084

Unmatched: 2506

Figure 2.2: The species assignment of 20,470 F. solaris genes from searching the P.

tricornutum and T. pseudonana genomes only. When searching in this

reduced space of two diatom genomes, there are more F. solaris matches to

P. tricornutum and T. pseudonana than in Figure 2.1, and more T. pseudonana

matches compared to unmatched sequences.

more similar to P. tricornutum, affirming that the best organism to perform a compara-

tive analysis on is P. tricornutum.

Due to gene duplication in many of the F. solaris genes, there were genes that were

matched to the same P. tricornutum genes multiple times. Overall, there were 13,898 F.

solaris genes which best matched to 6,589 P. tricornutum genes. The matching frequency

showed two distinct patterns (Table 2.1). As the number of matched F. solaris genes in-

creased, the frequency of the match type decreased. For example, there were 438 F.

solaris genes which best matched the same P. tricornutum gene 3 times. In contrast to

that, 26 F. solaris genes were best matched the same P. tricornutum gene 26 times. Addi-

tionally, the frequency of matches of even numbers were often higher than the matches

of odd numbers. For example, there were 1044 F. solaris genes matching the same P.

tricornutum gene 4 times but only 150 F. solaris genes matched the same P. tricornutum

gene 5 times.

After completing the genome comparison, the gene expression was also investigated

to verify that the data sets were analogous. The difference in gene expression between

F. solaris and P. tricornutum was examined with an exploratory analysis utilizing vi-

sual graphs and distribution tests (Figure 2.3). The difference in gene expression was
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examined across species, condition and homology using an unweighted ANOVA. The

significance test found a significant interaction between species and homology (p-value

< 0.05). The differences between the means of species and homology were inspected

in more detail and no statistical significance in gene expression was found between the

homologous genes of both diatoms (p-value < 0.05), and homologous F. solaris genes

and non-homologous P. tricornutum genes. The comparisons between gene expression

showed that only homologous F. solaris sequences are comparable with P. tricornutum.

No. of F. solaris sequences to one

P. tricornutum sequence
Frequency of occurence

1 656

2 10,792

3 438

4 1,044

5 150

6 288

7 98

8 56

9 27

10 100

11 44

12 48

13 52

14 28

15 30

21 21

26 26
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Table 2.1: A summary of the number of sequence matches of F. solaris sequences

on the P. tricornutum genome. The left column shows the number of F.

solaris sequences that best matched one identical P. tricornutum sequences.

The right column shows the number of F. solaris sequences for which such

a match occurred. For example, in the first row there were 656 F. solaris

sequences that best matched one P. tricornutum sequence each, in the sec-

ond row, there were 10,792 F. solaris sequences that were best matched to

one P. tricornutum sequence for each pair of F. solaris sequences and in the

third row, there were 438 F. solaris sequences that were best matched to

one P. tricornutum sequence for every three F. solaris sequences, etc. The

sequence matching shows that even numbers of matches were more com-

mon than odd numbers of matches and that most P. tricornutum sequences

were matched by two different F. solaris sequences.

After the exploratory analysis, the expression data for both F. solaris and P. tricornu-

tum was filtered to only include homologous sequences from each species. The rest of

the analysis was performed on 13,898 F. solaris entries and 6,589 P. tricornutum entries

identified from the previous analysis. F. solaris sequences matched to the same P. tricor-

nutum sequence had their RPKM values averaged as shown in Equation 2.1.1, resulting

in 6,589 pairs of sequence expression data.

2.2.2 Significance Test

The difference in fold change was examined between homologous F. solaris genes and

P. tricornutum genes to identify gene pairs with a difference in fold change in F. solaris

compared to P. tricornutum. Following the threshold calculation detailed in Equation

2.1.3, the significance percentage was set at 1% in order to select sequences only if their

calculated z-scores were lower than -2.5758 or higher than 2.5758. The presence of

any interaction was checked for first, between the fold change of the two diatoms by

plotting them on each axis. However, the data points were observed to cluster around

the center, showing that the majority of the fold change in both organisms are very

close to 0 (Figure 2.4).

After applying the threshold on the data set, the effect was visualized by highlighting

the points that were over the threshold (Figure 2.4). The points that were identified

were often extreme pairings of gene expression where F. solaris fold change was high

and P. tricornutum fold change was low and vice versa. The threshold did not identify

genes with very low high fold change or very low fold change in both data sets.

Overall, 194 F. solaris genes and 91 P. tricornutum genes were chosen from the data set.
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These genes were categorized into four groups according to the direction of the fold

change of the genes in F. solaris and P. tricornutum. Those with positive fold change in

both diatoms were placed in group 1, those with positive fold change in F. solaris and

negative fold change in P. tricornutum were placed in group 2, those with negative fold

change in F. solaris and positive fold change in P. tricornutum were placed in group 3,

and those with negative fold change in both diatoms were placed in group 4. They

represent the quadrants in Figure 2.4 if the graph was quartered at the x and y axes.

The largest group formed was group 3 followed by group 2, 4 and 1.

The gene expressions of each group were plotted separately to inspect the degree of

differences in fold change (Figure 2.5). The expressions of genes in group 1 were dis-

tinguished by a larger fold change in P. tricornutum compared to F. solaris. The P. tricor-

nutum genes also had a smaller range of gene expression than F. solaris genes, although

this could have been attributed to the smaller number of P. tricornutum genes. The

most relevant group of interest was group 2 as it was composed of up regulated F. so-

laris genes and down regulated P. tricornutum genes. Here, the absolute fold change

of P. tricornutum genes were larger than F. solaris genes but in the opposite direction

to group 1. Additionally, the mean gene expressions of F. solaris genes and the mean

control expression of P. tricornutum genes were more similar than the mean treatment

expression of P. tricornutum. In contrast to group 2, group 3 consisted of down regu-

lated F. solaris genes and up regulated P. tricornutum genes. Although the mean fold

change directions are reversed, the degree of differences are similar in value. The gene

expressions in group 4 were similar to group 1 where the P. tricornutum fold change

values were larger than F. solaris fold change values. However, the gene expressions

for both diatoms had a larger range than those in group 1.

2.2.3 Characterization by Gene Ontology

The final part of the method sorted the genes into groups by gene expression so that

they were distinct from each other. To find how the genes within each group were

related to each other, an analysis was used that employed GO terms. Each group was

characterized by the over-represented ontologies found by testing the terms using the

hypergeometric test (Table 2.2).

Group 1 contained 6 F. solaris genes and 3 P. tricornutum genes that shared 6 gene on-

tologies between them. The significant over-represented gene ontologies that were

identified were 4-aminobutyrate transaminase activity, pyridoxal phosphate binding,

transferase activity (transferring nitrogenous groups), amino acid transport, organic

acid transport and organic anion transport (Table 2.2).
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Group 2 was larger than Group 1 and contained 35 F. solaris genes and 16 P. tricornutum

genes represented by 20 gene ontologies. The hypergeometric test narrowed the list

of gene ontologes down to 8 terms (Table 2.2). In general, they are related to cAMP-

dependent protein kinases for regulating glycogen, sugar and lipid metabolism, hydro-

lase activity, isomerase activity, GTP cyclohydrolase activity, protein phosphorylation

and transferase complex.

Group 3 was the largest group with 121 F. solaris genes and 57 P. tricornutum genes and

it had the highest number of representative gene ontologies at 94 terms. As a result,

some of the significant gene ontologes consisted of broad terms such as localization and

membrane. The full list contained seven types of dehydrogenase activities, three reduc-

tase activities and three transmembrane transporter activities (Table 2.2). There were

four specific singular terms, N2-acetyl-L-ornithine:2-oxoglutarate 5-aminotransferase

activity, methylcrotonoyl-CoA carboxylase activity, oxygen-dependent

protoporphyrinogen oxidase activity, phytochromobilin:ferredoxin oxidoreductase ac-

tivity, and three broader terms, steroid binding, lactate transport and tetrapyrrole

metabolic process. Also of note are the presence of terms related to mitochondria and

chlorophyll in this group.

Group 4 was smaller than groups 1 and 2 and was made up of 32 F. solaris genes and 15

P. tricornutum gene. Altogether there were 16 gene ontologies between them. The sig-

nificant gene ontologies were L-ascorbate peroxidase activity, oxidoreductase activity

(acting on peroxide as acceptor), antioxidant activity, inorganic anion exchanger activ-

ity, response to oxidative stress, photosynthesis (light harvesting) and photosynthesis

(Table 2.2). A few terms were related to oxidative stress and photosynthesis while oth-

ers were related to transporter and peroxidase activity.

Group Gene Ontology Corrected P-value

1 4-Aminobutyrate transaminase activity 3.86× 10−5

1 Pyridoxal phosphate binding 4.25× 10−4

1 Transferase activity, transferring nitrogenous groups 9.91× 10−3

1 Amino acid transport 0.0133

1 Organic acid transport 0.0157

1 Organic anion transport 0.0197

2 GTP cyclohydrolase I activity 6.76× 10−4

2 cAMP-dependent protein kinase complex 9.82× 10−4

2 cAMP-dependent protein kinase regulator activity 2.59× 10−3

2 Phosphomannomutase activity 4.04× 10−3

2 Cyclohydrolase activity 4.04× 10−3

23



2 Transferase complex 0.0120

2 Protein phosphorylation 0.0130

2 Kinase regulator activity 0.0346

3 Epoxide dehydrogenase activity 4.21× 10−5

3 5-Exo-hydroxycamphor dehydrogenase activity 4.21× 10−5

3 2-Hydroxytetrahydrofuran dehydrogenase activity 4.21× 10−5

3 Mevaldate reductase activity 4.21× 10−5

3 3-Keto sterol reductase activity 4.21× 10−5

3 3-Ketoglucose-reductase activity 4.21× 10−5

3 Membrane 1.16× 10−4

3 Gluconate dehydrogenase activity 1.25× 10−4

3
C-3 sterol dehydrogenase (C-4 sterol decarboxylase)

activity
1.25× 10−4

3 Isocitrate dehydrogenase activity 1.25× 10−4

3 Ammonium transmembrane transporter activity 2.90× 10−4

3 Steroid dehydrogenase activity 1.04× 10−3

3 Transport 1.60× 10−3

3 Localization 1.91× 10−3

3 Anion transmembrane transporter activity 6.48× 10−3

3 Lactate transmembrane transporter activity 8.53× 10−3

3 Lactate transport 8.53× 10−3

3
N2-acetyl-L-ornithine:2-oxoglutarate

5-aminotransferase activity
8.53× 10−3

3 Steroid binding 8.53× 10−3

3 Methylcrotonoyl-CoA carboxylase activity 8.53× 10−3

3
Oxygen-dependent protoporphyrinogen oxidase

activity
8.53× 10−3

3 Phytochromobilin:ferredoxin oxidoreductase activity 8.53× 10−3

3 Tetrapyrrole metabolic process 0.0121

4 L-ascorbate peroxidase activity 7.53× 10−10

4
Oxidoreductase activity, acting on peroxide as

acceptor
2.01× 10−5

4 Antioxidant activity 5.38× 10−5

4 Response to oxidative stress 3.20× 10−4

4 Photosynthesis, light harvesting 7.60× 10−4

4 Photosynthesis 1.40× 10−3

4 Inorganic anion exchanger activity 2.12× 10−3
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Table 2.2: The list of significant gene ontology terms resulting from hypergeomet-

ric testing on the gene ontologies in each gene expression group shown in

Figure 2.5. The p-values were corrected for multiple testing using Bonfer-

roni’s correction method. These significant gene ontologies were selected to

represent the function and metabolism of their respective group.

2.3 Discussion

The genomes of F. solaris and P. tricornutum were confirmed to be very similar both in

sequence and expression, and it has been shown that some of the shared genes still

perform the same functions and are part of the same pathways [112] [113]. The com-

parison analysis showed that F. solaris has many duplicated genes and that they are

homologs to P. tricornutum genes at an individual level so that several F. solaris genes

can be homologs of one P. tricornutum gene. Gene duplication can act as a buffer for

genetic mutations and also facilitate the creation of new gene function by assisting in

adaptation and increase fitness so it may be an important feature for oil accumulation

in F. solaris [105] [106] [107]. The large numbers of even numbered F. solaris genes to

individual P. tricornutum genes indicate that most of the duplication events were dou-

bling events and that there were also a small number of higher duplications for which

the effect is still unknown. The duplicate genes should be investigated further in the

future.

The comparison of gene expression between F. solaris and P. tricornutum as they were

grown in low nutrient and control conditions found that the expression of homologous

genes are generally similar across species. However, it was observed that the gene ex-

pression of homologous F. solaris genes are more similar to the gene expression of P.

tricornutum genes than its own non-homologous genes. It indicates that some of the

non-homologous F. solaris genes may have originated from another diatom such as T.

pseudonana, and that they were most likely influenced by different regulatory mecha-

nisms than P. tricornutum genes. Some of those genes would have also included the

novel genes as previously identified in Figure 2.1. While those genes may hold a key

component responsible for the difference in phenotype, their functions would require

further experiments as there are a relatively large number of them.

After applying the threshold method to the data sets, I identified 194 F. solaris genes that

had varying degrees of fold change differences between F. solaris and P. tricornutum.

Since there were a relatively large number genes to investigate, I classified them based

on their fold change values in F. solaris and P. tricornutum. Each group could then show
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what the metabolic differences were and then interpretation can be concentrated on

the different responses to the low nitrogen environment that was represented by the

classifications.

The first group of genes that were of interest are in Group 2 where the genes were up

regulated in F. solaris and down regulated in P. tricornutum. Some of the gene ontolo-

gies of the genes in this group were related to cell regulation such as cAMP-dependent

protein kinase complex and protein phosphorylation. The other distinguishing gene

ontologies were related to hydrolase, isomerase and transferase activity through par-

ent terms like GTP cyclohydrolase I activity and phosphomannomutase activity. The

degree of difference between the control and treatment gene expression was important

to note as well. The genes in this group showed a large amount of down regulation in

P. tricornutum compared to negligible levels of up regulation in F. solaris. It indicates

that the difference in phenotype could be attributed to the down regulation of these

processes in P. tricornutum rather than the up regulation in F. solaris. There were five

F. solaris genes with the most pronounced difference in fold change between the two

diatoms. These were fso:g2859, fso:g2860, fso:g12378, fso:g9753 and fso:g9752, which

were homologous with the P. tricornutum gene estExt_Phatr1_ua_kg.C_chr_70081. Al-

though there were no gene ontology annotations, the P. tricornutum homolog is noted

for being up regulated in response to iron deficiency and is thought to be part of a

secretory pathway [99]. The gene, fso:g9752, also contains a domain found in the C.

reinhardtii gene, FEA1 where it seems to be required for growth in iron deficient condi-

tions and was up regulated in C. reinhardtii [117].

The genes in group 3 were in the largest group where the genes were down regu-

lated in F. solaris and up regulated in P. tricornutum. There were many gene ontolo-

gies representing this group and they can be broadly divided into stress response in

low nitrogen conditions, energy management, and intracellular transport and localiza-

tion. While the up regulation of these genes are expected in low nitrogen condition,

it is important to note that these genes were down regulated in F. solaris. The degree

of down regulation is comparatively small but it was the largest for F. solaris in all 4

groups. The difference between the two diatoms is distinct due to the treatment means

while the control means are quite similar. The large difference in gene expression be-

tween F. solaris and P. tricornutum can be separated into two patterns; the fold change

is large in P. tricornutum compared to F. solaris, or small in P. tricornutum compared

to F. solaris. Among the genes with large fold change differences, there were five F.

solaris genes with small fold changes compared to the homologous three P. tricornu-

tum genes. These were fso:g11687, fso:g15667, fso:g5409, fso:g17137 and fso:g20250 in
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F. solaris, and fgenesh1_pg.C_chr_21000194, estExt_fgenesh1_pg.C_chr_10568 and es-

tExt_fgenesh1_pg.C_chr_30465 in P. tricornutum. The P. tricornutum gene,

estExt_fgenesh1_pg.C_chr_30465, has been annotated with the calcium ion binding

gene ontology due to the presence of a calcium-binding domain but the homologous

F. solaris genes also contain a domain associated with 5’-Nucleotidase/apyrase. It is a

family of enzymes that catalyzes the hydrolysis of nucleotide molecules that is present

in many species and whose metabolic importance depends on its cellular location. For

the second pattern where there is a large fold change in F. solaris compared to P. tricornu-

tum, there were two F. solaris genes found that were homologous to one P. tricornutum

gene. These genes were fso:g9841 and fso:g6241, and the homologous P. tricornutum

gene was e_gw1.4.342.1. The P. tricornutum gene is described by two gene ontologies

related to photosynthesis; oxidoreductase activity and phytochromobilin biosynthe-

sis. Additionally, the P. tricornutum and F. solaris sequences contain domains associated

with ferredoxin-dependent bilin reductase that synthesize phytobilin from heme.

The last two groups of genes represent genes whose fold changes were in the same

direction but the degree of fold change is very different between F. solaris and P. tricor-

nutum. In both groups, the degree of fold change is small in F. solaris and the degree

of fold change is large in P. tricornutum. In Group 1 where the genes were up regu-

lated in both diatoms, these genes were associated with metabolizing amino acids to

keto acids. However the small size of this group may have affected the selection of

gene ontologies. The last group, Group 4, is of a better size and contains genes that

were down regulated in both diatoms. The gene ontologies for this group were mainly

associated with response to oxidative stress as well as photosynthesis. Although the

gene expression was down regulated in both organisms, the fold change in F. solaris

is much smaller than in P. tricornutum. In particular, the four genes with the largest

difference in fold change that was annotated was attributed the response to oxidative

stress gene ontology. The genes were fso:g10215, fso:g4650, fso:g7681 and fso:g19255,

and their homolog was estExt_fgenesh1_pg.C_chr_130213 in P. tricornutum. Interest-

ingly, the gene with the greatest difference in fold change in this group was fso:g18615

or estExt_fgenesh1_pg.C_chr_140189 in P. tricornutum [99]. They contain a ferritin-

related domain with similar descriptions to the domain in FEA1 in C. reinhardtii as

described for fso:g9752 in Group 2. Upon closer inspection, the F. solaris fold change

for fso:g18615 is so small, it is quite possible that it was misassigned from Group 2 due

to biological variation.

In addition to GO terms, I pursued the investigation further by checking the KEGG

pathway membership of the annotated genes in each group in an attempt to find un-
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derlying metabolic processes in the results. From the list of significant genes identified

in my analysis, 12 F. solaris genes had a KEGG annotation belonging in a metabolic

pathway. These genes matched five KEGG orthologs that are present in 8 pathways

however I excluded the highest level pathway called metabolic pathway. Importantly,

the remaining pathways were closely associated with lipid metabolism. There were

two F. solaris genes from group 3 that matched the PPOX KEGG ortholog in the por-

phyrin and chlorophyll metabolism pathway. This gene is involved in the biosynthesis

of cholorophyll and is present as two isoenzymes in plants [118]. Another KEGG or-

tholog, L-ascorbate peroxidase, was matched by four F. solaris genes in group 4. This

ortholog is active in antioxidant activities in glutathione metabolism, and ascorbate and

aldarate metabolism pathways. Specifically, it is in a reversible reaction that metabo-

lizes ascorbate into dehydroascorbate during glutathione metabolism and it undergoes

the opposite reaction in ascorbate and aldarate metabolism [119]. The next KEGG or-

tholog was matched by two F. solaris genes in group 2. This ortholog is the GCH1

gene which is closely involved in THF tetrahydrofolate synthesis that is needed in the

metabolism of amino acids and nucleic acids [120]. Similarly, the riboflavin metabolism

pathway was also represented by the ACP KEGG ortholog that was matched by two

F. solaris but these were in group 3. This gene takes part in a reaction that metabo-

lizes cardiolipin into a fatty acid [121]. The last pathway was glycerophospholipid

metabolism which was represented by the CLD1 KEGG ortholog that matched two F.

solaris genes in group 3. The CLD1 gene is part of a reaction that metabolizes FMN into

riboflavin [122]. Although it was unfortunate that there were only 12 annotated genes,

they turned out to contain a lot of relevant information.

Overall, F. solaris showed little change when it came to genes associated photosynthe-

sis and response to oxidative stress while P. tricornutum down-regulated those genes.

When observing the genes that were down-regulated in F. solaris and up-regulated in

P. tricornutum, the F. solaris genes didn’t exhibit as strong of a stress response as P. tri-

cornutum genes.
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Figure 2.3: A comparison of all expression data from F. solaris and P. tricornutum.

A) The expression of F. solaris and P. tricornutum separated by time. The

expression of P. tricornutum at 48 hours is most similar to the expression of

F. solaris at 60 hours. B) The expression of F. solaris at 60 hours next to P.

tricornutum at 48 hours, separated by homology. F. solaris homologs show

a more similar expression profile to P. tricornutum expression compared to

non-homologous F. solaris genes. An unweighted ANOVA indicated that

there was a significant interaction effect between species and homology (p-

value < 0.05). A pairwise comparison showed that there was no significant

difference between the homologous genes of both diatoms, and no signifi-

cant difference between homologous F. solaris genes and non-homologous

P. tricornutum genes (p-value < 0.05)
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Figure 2.4: The fold change of homologous F. solaris genes versus P. tricornutum

genes. The graph shows that the differences in fold change for most pairs

of F. solaris and P. tricornutum homologs are centered around 0. After ap-

plying the threshold, the genes that were identified are highlighted in red.

The threshold has identified these genes that exhibit a larger difference in

fold change between the two data sets compared to the rest of the data. The

threshold method selected 194 F. solaris genes and 91 P. tricornutum genes

in connection to lipid accumulation.
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Figure 2.5: The expression data of the 194 significant F. solaris genes and 91 P. tri-

cornutum genes separated into four groups. Group 1 contains genes that

were up regulated in both diatoms and has 6 F. solaris genes and 3 P. tricor-

nutum genes. Group 2 contains genes that were up regulated in F. solaris

and down regulated in P. tricornutum and has 35 F. solaris genes and 16 P.

tricornutum genes. Group 3 contains genes that were down regulated in F.

solaris and up regulated in P. tricornutum and has 121 F. solaris genes and

57 P. tricornutum genes. Group 4 contains genes that were down regulated

in both diatoms and has 32 F. solaris genes and 15 P. tricornutum genes.
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Chapter 3

Activated Pathway Analysis for

Triacylglycerol Biosynthesis

A lot of collaborative work has culminated in the metabolic pathway information that

is available to researchers today. Through the work of many scientists, the elemental

pathways of common cellular processes have been deduced in a wide range of organ-

isms. As such, these model metabolic pathways contain the sequence of reactions that

occur within a cell that starts from one compound to another, e.g. glucose to TAG.

They give the framework of possible reactions and compounds available within a cell

so investigating the genes that make up the framework will aid in the understanding

of the compound synthesis of TAG.

There are several options for analyzing groups of genes and one of the most common

tools is gene set enrichment analysis (GSEA). GSEA is a suitable tool when the data

needs to be related to previous knowledge and works well for processes that involve

a modest number of genes such as metabolism. GSEA approaches the data analysis

by looking for associations between predefined groups of genes and a phenotype of

interest. It tests for over represented relationships in groups, for example, at the top

of a ranked list of genes. This type of method is more sensitive at detecting small

but coordinated differential gene expression compared to linear modeling. There are a

variety of GSEA tools available for analyzing high-throughput sequencing data [123].

They are available as online services like DAVID [124] [125], statistical packages for R

like EBSeq [126] and SPIA [127], or standalone scripts like PAGE [128].

For the purposes of studying oil accumulation, the existing GSEA tools are insufficient

for analyzing the time course data from F. solaris. For single time point experiments,

tools like FuncAssociate and GOEAST are able to handle data from non model organ-
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isms [129] [130]. ErmineJ and GAGE are even able to accommodate user specified

annotation schemes if there is only one data point per gene [131][132]. These tools

use either gene ranks or average gene expression across samples in their calculations.

These basic ideas behind those methods are employed in my method with some added

adjustments so that the methodology can preserve the differences in time series data

and avoids reducing the amount of data further.

This modified approach to GSEA is made for analyzing time series data and thereby

allows for the investigation of oil accumulation and growth metabolism in the F. so-

laris data set, a genome with a few annotated genes. It is also suitable for studies that

aim to research metabolic pathways where a fuller annotated genome will be more ad-

vantageous. To accommodate time series data, the time points are treated as variables

and GSEA is performed in high dimensions. To overcome some of the difficulties with

working with multivariate distributions, resampling is used to create empirical cumu-

lative distributions from which the p-value is calculated for enrichment. The results are

interpreted and visualized using pathway graphs originating from KEGG [40] [41] so

the algorithm uses KEGG ortholog annotations in the analysis. This approach allows

the results to be clearly displayed with the changes in gene expression. Although there

are existing pathway visualization tools [39] [40] [41] [133] [134], they were not suitable

for showing the expression of genes from a novel organism on the pathway enrichment

results in a way which focuses on the compounds instead of genes. The graphs from

this method are created specifically to cater to this approach so that a hypothesized

pathway of reactions can be calculated from one compound to another.

By first finding the metabolic pathways that is most regulated during oil accumulation,

this method can then effectively show which compounds and genes should be targeted

for further research. The application of this method on the F. solaris data will discover

more about oil accumulation and will focus on the reactions that turn an energy source,

glucose, into a biofuel lipid, TAG.

3.1 Methods

3.1.1 Expression Data

The F. solaris sequences were searched against the full KEGG database [40] [41] to

identify and match KEGG ortholog annotations to the F. solaris sequences. Sequences

with an accompanying KEGG annotation were used for the analysis. Some of these

sequences were assigned to the same identifier so their gene expression values were
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averaged using Equation 3.1.1. The F. solaris expression data was made from four sam-

pling points so that there were four expression values per sequence. These values were

put into a vector in order to retain as much data as possible for each sequence.

RPKMx =
Σ∀ivi

n
(3.1.1)

where RPKMx is a vector of logged expression values for ortholog x, vi is the ith vector

of logged expression values for ortholog x and n is the number of vectors with KEGG

ortholog x.

The fold change FCx of ortholog x was calculated using the control and treatment

RPKM vectors RPKMxcontrol RPKMxtreatment during the normalization procedure as de-

tailed in Equation 3.1.2.

FCx = RPKMxtreatment − RPKMxcontrol (3.1.2)

where FCx is the log fold change of ortholog x, RPKMxcontrol is the control logged ex-

pression vector of ortholog x and RPKMxtreatment is the treatment logged expression vec-

tor of ortholog x.

Consequently, from this point the data was then handled using the orthologs instead

of individual genes as vectors of log fold change.

3.1.2 Gene Set Enrichment Analysis

The gene sets to be used in the analysis were established by considering the study

objective. Generally, genes that share attributes of interest are grouped together to

create gene sets such as functional groups or cellular location groups.

The objective of the F. solaris data set was to observe gene expression relating to oil

accumulation so the categories of pathways in the KEGG database [40] [41] was used

to chose 15 pathways associated with carbohydrates, 8 pathways associated with en-

ergy and 17 pathways associated with lipid metabolism. This resulted in a total of 40

gene sets for the analysis. Most crucially, they included the glycolysis and glycerolipid

metabolism pathways which contains the two compounds central to oil accumulation,

glucose and TAG.
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Gene Set Enrichment Analysis Algorithm

Step 1: Subset a portion of fold change data that belong to gene set s. This is an

observed fold change matrix of dimension n x 4 where n is the number of fold change

vectors in the gene set and 4 is the number of time points in the F. solaris data.

Step 2: Calculate the mean fold change u, of gene set s. This observed value is a

vector that will be used to calculate the p-value.

Step 3: Resample fold change values from the full data set, n times. This is a sample

fold change matrix which has the same dimensions as the one in step 2.

Step 4: Calculate the mean fold change of the resampled data. This is a sample mean

from one resampling cycle. It has the same dimension as the observed value in step 3.

Step 5: Repeat steps 4 and 5 6000 times. The sample means from each iteration are

stored as rows resulting in a matrix of dimension 6000 x 4.

Step 6: Calculate the p-value by using the empirical cumulative distribution. The

empirical cumulative distribution is defined by the following function

F̂s(u) =
Σ∀iI(FCi[1] ≤ u1, FCi[2] ≤ u2, FCi[3] ≤ u3, FCi[4] ≤ u4)

n
(3.1.3)

where F̂s is the empirical cumulative distribution of gene set s, u is the observed vector

calculated in step 3, I is the indicator matrix, FCi is the fold change vector for ortholog

i in gene set s and n is the number of fold change vectors in gene set s.

Step 7: Calculate the p-value. It is the probability observing values as extreme as the

observed vector u.

The algorithm was implemented in R [102] and the empirical cumulative distribution

was calculated using the mecdf package [135].

3.1.3 Enriched Pathway Graphs

The significantly enriched pathways were identified from the GSEA results and plot-

ted to visualize the level of gene expression associated with the reactions of the com-

pounds within them. The generic pathway and enzyme KGML files were downloaded

from the KEGG database [40] [41] and read into R [102]. They were parsed using the

KEGGgraph package [136] using the default data structure which depicted nodes as

KEGG orthologs and edges as reactions. The default graph was restructured so that

the nodes represented compounds and the edges represented KEGG orthologs. The
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separate graphs of each pathway were then merged into one and converted into an

igraph object for plotting and access to network analyses such as get.all.shortest.paths

[137]. The merging reduced duplicate reactions and improved visualization by show-

ing all the reactions in one diagram. Unconnected compounds were removed to reduce

clutter in the final plot.

3.2 Results

3.2.1 Gene Expression

The F. solaris genome was aligned with sequences in the KEGG database. In order

to make use of KEGG pathways for this method, the F. solaris sequences were anno-

tated using KEGG ortholog matches. The sequence search returned matches to 2,873

orthologs from 20,470 F. solaris sequences.

The gene expression data was then filtered to remove non-ortholog sequences while

the remaining data was processed into fold change and turned into RPKM vectors of

size 4.

3.2.2 Gene Set Enrichment Analysis

Pathway Name P-value

Photosynthesis 0*

Photosynthesis - antenna proteins 0*

Pentose phosphate pathway 0*

Carbon fixation in photosynthetic organisms 0*

Fatty acid biosynthesis 0*

Amino sugar and nucleotide sugar metabolism 0.0195

Fatty acid metabolism 0.0195

Methane metabolism 00680 0.026

Glycolysis 0.026

Oxidative phosphorylation 0.0325

Biosynthesis of unsaturated fatty acids 0.0455

Table 3.1: The list of enriched pathways resulting from GSEA and their enriched

p-values. There were 11 pathways enriched out of 39 pathways tested.

*P-value <0.0001.
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The GSEA method was performed on the expression data and it identified 11 signif-

icantly enriched pathways whose differential expression was significantly different

between oil accumulation and non-accumulating conditions (Table 3.1). Importantly,

the most significant pathway included photosynthesis related pathways and fatty acid

pathways.

The photosynthesis and photosynthesis antenna protein pathways were two of the

most significantly enriched pathways with p-values <0.0001. There was a positive re-

lationship between log fold change and time, indicating that there is increased energy

synthesis via photosynthesis during oil accumulation. The median log fold change at

60 hours in the photosynthesis antenna proteins pathway is the highest of all path-

ways at 8.0. Further investigation reveals that this is due to the log fold change values

of light-harvesting complex I chlorophyll a/b binding proteins; LHCA1, LHCA2 and

LHCA4.

The other prominent pathways are related to cellular energy metabolism; glycolysis,

the pentose phosphate pathway and oxidative phosphorylation were significantly en-

riched. Both the average differential expression in glycolysis and the pentose phos-

phate pathway increased over time, particularly from 48 hours. In contrast, the differ-

ential expression in the oxidative phosphorylation pathway showed a small decrease

in the 24 and 48 hour period before returning to approximately the same expression

level it started at.

The other significant pathways are more closely related to synthesizing the materials

for TAG and growth; they are fatty acid biosynthesis, biosynthesis of unsaturated fatty

acids and amino sugar and nucleotide sugar metabolism. Interestingly, while genes

involved in fatty acid biosynthesis were generally up regulated, the gene expression in

biosynthesis of unsaturated fatty acids was not so consistent.

The next significantly enriched pathway, carbon fixation in photosynthetic organisms,

has several overlapping genes with pyruvate metabolism, glycolysis and the pentose

phosphate pathway. Noticeably, the pyruvate metabolism pathway was not signifi-

cantly enriched individually as a gene set even though they are closely related to pyru-

vate metabolism.

The methane pathway was unexpectedly significantly enriched. Upon further investi-

gation, it was discovered that the expression data within the methane pathway were

also found within the other enriched pathways. For example, both glycolaldehyde

dehydrogenase (ALDA) and 6-phosphofructokinase 1 (pfkA) are in the pentose phos-

phate pathway while (2R)-3-sulfolactate dehydrogenase (comC) is also found in the

cystein and methionine metabolism where it takes part in reactions that make pyru-
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vate.

3.2.3 Enriched Pathway Plots

To better visualize the results from GSEA, the enriched pathways were plotted as net-

work graphs (Figure 3.1). The graph’s nodes were set up as compounds as the fo-

cus was on the reactions and compounds instead of the usual approach using genes.

Because the focus was shifted to compounds, the glycerolipid pathway needed to be

added so that the key compound, TAG, was included.

The graph consisted of 353 compounds and 661 reactions. Most compounds were

unique to their pathway but there were 18 compounds that were found in two path-

ways and 13 compounds that were found in three pathways. These included pyruvate,

oxaloacetate and ADP. Expectedly, they are found in glycolysis, pentose phosphate

metabolism and other related processes.

Once the graph was constructed, the shortest path of reactions from glucose to TAG

was calculated. As the graph was created from pathways that showed a significant re-

lationship with oil accumulation, it can be considered a hypothesized path of metabolic

reactions that starts from glucose and can potentially produce TAG. Two shortest paths

were found with a length of 11 compounds (Figures 3.2 and 3.3); the same path pre-

sented in KEGG contains 15 compounds.

The graph showed that the genes along the hypothesized paths were up regulated by

plotting the differential expression direction on the edges of the graph. When viewed

next to each other, the differential expression at each time point shows which reactions

change differential expression direction (Figure 3.4). The genes along the identified

shortest paths were identified and observed to be up regulated during the 60 hours of

the experiment.

3.3 Discussion

Predictably, most glycolysis genes were up regulated through the 60 hour duration, al-

though there were notable exceptions; phosphoglucomutase (PGM), phosphoglycerate

kinase (PGK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PGM trans-

fers a phosphate group to and from the 1’ position to the 6’ position in α-D-glucose

so its down regulation suggests that F. solaris is getting its source of α-D-glucose 6-

phosphate elsewhere. PGK and GAPDH are used in two reversible reactions to make

glycerate 3-phosphate which is a key molecule for TAG production [138]. However,
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this reaction can be done in one irreversible step by glyceraldehyde-3-phosphate dehy-

drogenase (NADP) which was up regulated in the data. The substrate for that reaction,

glyceraldehyde 3-phosphate, is used in the pentose phosphate shunt to make nucleic

and amino acids like deoxyribose, 2-Deoxy-D-ribose 1-phosphate and D-ribulose 5-

phosphate. The genes involved in those reactions were found to be up regulated in the

data; they were ribokinase (rbsK), phosphopentomutase (PGM2), 6-phosphogluconate

dehydrogenase (PGD) and 3-hexulose-6-phosphate synthase (hxlA). So it seems that F.

solaris relies on glucose to produce TAG, nucleic and amino acids to achieve accumu-

lation and growth at the same time while using a proton pump to power the reactions

under low nitrogen conditions.

Along with with the glycolysis pathway, the oxidative phosphorylation pathway was

also significantly enriched. Some of the proteins in that pathway form a membrane

protein, the V-type ATPase. It is a proton pump responsible for ATP turnover in mito-

chondria and was up regulated in the data. There is some evidence of a relationship

between increased C16-C18 length fatty acids, which are used in TAG production, and

increased hydrolytic activity of V-ATPase [139]. Along with a gradual down regula-

tion of NADH dehydrogenase, it would seem that F. solaris focuses on recycling ATP

instead of reducing NADP+ for its energy requirements during oil accumulation.

Two of the significantly enriched pathways that were found were the photosynthe-

sis and photosynthesis antenna protein pathways. They showed an increase in fold

change together with the increase in time, showing that F. solaris increases photosyn-

thesis during oil accumulation. The positive fold change was mainly attributed to the

light-harvesting complexes. Specifically, most of the log fold change of proteins in

light-harvesting complex II is lower than in light-harvesting complex I. The preference

of light-harvesting complex I may be due to the highly efficient nature of photosystem

I [140], although F. solaris is using both systems simultaneously in this case.

The positive fold change of photosynthesis related pathways related closely to the en-

riched pathways responsible for synthesizing the materials for TAG and growth. It

was observed in the fatty acid biosynthesis pathway, biosynthesis of unsaturated fatty

acids pathway and the amino sugar and nucleotide sugar metabolism pathway that the

up regulated genes were involved in fatty acid elongation while the down regulated

genes were involved in dehydrogenation. This is consistent with synthesis of fatty acyl

residues in TAG. Gene expression in amino sugar and nucleotide sugar metabolism

also had a positive trend through time. Their up regulation further suggests that sugars

are being metabolized for growth during oil accumulation. For example, two of the up

regulated genes are glucokinase (glk) and glucose-6-phosphate isomerase (GPI) which
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are involved in reversible reactions that convert glucose into fructose which leads to

the production of nucleotide sugars. As they are part of reversible reactions, it was

difficult to discern whether the forward or backward reaction was dominant without

further data but their up regulation means that there was a considerable amount of

converting occurring.

The analysis also identified the interesting genes in the carbon fixation in photosyn-

thetic organisms pathway as the genes that are associated with pyruvate. Here, malate

dehydrogenase (decarboxylating) was up regulating the reaction that turns malate into

pyruvate. In contrast malate dehydrogenase (oxaloacetate-decarboxylating) was down

regulated. It could be due to the reactant, NADP, being used in other reactions, such

as photosynthesis, that there seems to be a preference for the decarboxylating reaction.

Although pyruvate itself was not enriched, it shares seven reactions with the carbon

fixation in photosynthetic organisms pathway and is directly linked to 13 other path-

ways. Therefore, it can be said that oil accumulation affects the reactions in the carbon

fixation pathway as a whole, instead of pyruvate specifically.

The visualization step of this method effectively showed the change in fold change

through time. The increase in the number of green edges compared to red edges

quickly summarized the trend in the data. The shortest path diagrams also assisted

in visualization as the important reactions were isolated and made clearer. In addition

to the general up regulation trend, the diagrams also showed that the up regulation

occurred in sections along the path instead of being concerted. This suggests that gene

expression of a phenotype does not change for every gene along the reaction path at

a single time point. Instead, the change in gene expression occurs in sections which

eventually leads to the up regulation of the full path.

Finally, the method itself was successful in reaching its aim although several issues

did arise. The overlap of genes between gene sets can cause problems with detection,

especially if the genes in one pathway has a strong signal as seen by the significant

enrichment of methane. In this case, the genes in the pentose phosphate pathway have

strongly defined differential expression values that is nullifying the expression pattern

from the other genes. Although it is fairly reasonable for some genes to be present in

multiple pathways, it should be checked if the overlapping genes are making biased

contributions. The effect is further amplified in the data as the number of annotated

genes are few.

Additionally, the two shortest paths that were found were very similar to each other,

mainly differing between the use of glycerol or glycerone. Although a shorter path of

reactions is possible, it is unknown where the reactions take place in the cell. If the

40



proteins are located close to each other, the hypothesized path of reactions could very

well be how F. solaris produces TAG from glucose. Future experiments on metabolite

quantity of the compounds along the path would also provide adequate evidence for

the hypothesis.

41



���

������	 �
 ����
	 ��
���	 �����������
���
������������	 �������
�	
��
������
�	
����������
���
����������
�
����	 
��	 ���
����
�	 ���	
��������
�	
����
�	

Figure 3.1: The graph of the significantly enriched pathways found using my GSEA

method combined with the glycerolipid pathway. The full network con-

tains 353 compounds and 661 reactions but compounds without reaction

data were removed from the plot to reduce clutter. The graph is plotted

with compounds shown as nodes and reactions shown as edges. The com-

pounds are colored by their pathway membership; compounds belonging

to 2 or more pathways are a mixture of the pathway colors. There were 13

compounds belonging to three pathways, 18 compounds belonging to two

pathways and 159 compounds that were unique to their pathway. Many

of the shared compounds are concentrated in the center of the graph and

are closely related to glycolysis and pentose phosphate metabolism.
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Figure 3.2: The first shortest path found in Figure 3.1 between glucose and triacyl-

glycerol using breadth-first search. A. This is the detailed view of the

path showing the names of the compounds involved at each step. B. The

shortest path is highlighted in green on the full graph to show its loca-

tion. In contrast, the path presented in KEGG is highlighted in orange.

The shortest path contains 11 compounds while the KEGG path contains

15 compounds.
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Figure 3.3: The second shortest path found in Figure 3.1 between glucose and tri-

acylglycerol using breadth-first search. A. This is the detailed view of

the path showing the names of the compounds involved at each step. B.

The shortest path is highlighted in green on the full graph to show its lo-

cation. In contrast, the path presented in KEGG is highlighted in orange.

The shortest path contains 11 compounds while the KEGG path contains

15 compounds.
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Figure 3.4: These graphs show the differential expression direction at each time

point in response to oil accumulating conditions. The differential gene

expression direction is shown as edges connecting two compounds. Genes

that were up regulated during oil accumulation are highlighted in green

while red edges represent down regulation. Genes for which there was no

data were left as gray. The nodes highlighted in black are compounds in

the second shortest path found between glucose and triacylglycerol (Fig-

ure 3.3). The genes along the path switch from red to green at different

time points until the majority of genes along the path are green.
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Chapter 4

Investigation of Transcriptional

Regulation Mechanisms

Transcription factors are proteins that regulate gene transcription and thus affect the

quantity, timing and pattern of gene expression in a cell. They are one of the main key

components involved in gene regulation because they activate or suppress gene tran-

scription activity, typically by binding to a transcription factor binding site close to a

gene. This makes them an important part of understanding how organisms function.

When a transcription factor is activated, it can affect the expression of other genes in a

many-to-many relationship such as when an activated gene product acts as a catalyst

for a reaction that will in turn activate other genes, or if the gene is another transcrip-

tion factor that may regulate the expression of a separate process. Subsequently, the

action of a transcription factor can be coordinated between other genes and transcrip-

tion factors to affect many other gene expressions further downstream in many other

metabolic pathways. This type of relationship happens frequently in a cell and is ob-

served in many situations where there is a response to stimuli, such as metabolites,

ligands, or environmental queues, such as light [141] [142].

A network is a type of model that is useful for analyzing many-to-many interactions

such as the effects of transcription factors. As networks are analysis as well as visu-

alization tools, they are very useful for examining gene regulation systems where one

action affects many components. They are also more applicable for modeling complex

relationships than linear models. NGS is able to capture an extraordinary amount of

data and has the potential to probe living systems, particularly when done in time se-

ries experiments. Analysis of expression data from RNA-Seq take advantage of how

the methods measure all of the data as a whole. This is reflected in the varied methods

of detecting significant differences in gene expression or identifying genes associated
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with a trait for example. Although not directly measured, gene expression regulation

is present in the data as well and this method attempts to uncover it by using the full

data set as a background while focusing on gene expression regulation via transcription

factors.

This analysis method uses gene expression patterns to construct a network that models

the interaction of transcription factors within a cellular system. By converting expres-

sion values into discrete units, called expression patterns, this method is able to infer

a transcription factor network on temporal, small sample RNA-Seq data, extracting

information about interactions occurring within the organism. It is an extension of

the phylogenetic profile clustering method used for assigning protein functions [143],

altered so that it can work on limited samples to produce a clear summary of the re-

lationships between expression patterns. This method is first applied to expression

data from F. solaris during 60 hours of its lipid accumulation phase in order to under-

stand the process of lipid accumulation as it is an outstanding candidate for biofuel

production. The method is then applied to expression data from A. thaliana during flo-

ral transition to show that the method corroborates the activity of known transcription

factors as well as identifies other transcription factors that also provides assistance to

expression regulation.

For applications to novel organisms such as F. solaris, this method is able to identify

transcription factors that can be studied for increasing yield. It signifies decisive genes

to research for better understanding that may be useful in biotechnology. The network

uses only expression data when lipid accumulation is taking place and identifies gene

regulation elements important in lipid accumulation, showing which genes were reg-

ulated first and which genes are affected by their regulation.

The application of this method on A. thaliana will create a model that shows the expres-

sion of transcription factors and its associations with floral transition [101]. The apical

meristem growth expression data covers the transition from vegetative development to

flowering is controlled by transcription factors responding to genetic and environmen-

tal stimuli such as hormones and light [144]. Several major transcription factors were

outlined with the A. thaliana data [101]. Some of them positively regulate transition-

ing and flowering like SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) [145]

[146] and FLOWERING LOCUS D (FD) [147] [148]. Some of them negatively regulate

flowering like FLOWERING LOCUS C (FC) [149] and SHORT VEGETATIVE PHASE

(SVP) [150]. Other transcription factors initiate different stages during the transitioning

period such as initiating flowering or controlling floral organ identity. These include

LEAFY (LFY) [151] [152], CAULIFLOWER (CAL) [153] [154], PISTILLATA (PI) [155],
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AGAMOUS and various SQUAMOSA PROMOTER BINDING PROTEIN-LIKE family

(SPL) [156] [157] [158] [159] that go on to regulate APETALA1 (AP1) [160] [161]. The in-

ferred network will show how the floral transition transcription factors are associated

with each other and will confirm the identification of additional transcription factors

that affect or are affected by known regulators. Additionally, the direction and weight

of the network edges quantify the relationships between groups of transcription fac-

tors to highlight important regulation events at each time. Lastly, the transition process

will be broadly described by the network using an enrichment analysis on the groups

of transcription factors.

4.1 Method

4.1.1 Identifying Transcription Factors

For the application of this method, the aim was to model only transcription factor as-

sociations so the initial selection of transcription factor sequences was performed first

with rigorous criteria.

For the novel organism, F. solaris, transcription factor candidates were determined by

taking the intersection from the results of two methods to decrease false positive selec-

tion as much as possible (Figure 4.1). The first list of transcription factor candidates was

generated by searching sequences for PFAM [162] and Superfam [163] domains and

then cross-checking the domains in the DBD: Transcription Factor Prediction database

[164]. The PFAM and Superfam search results were filtered by using an E-value cut off

of 0.05 or if the sequences were known enzymes instead of transcription factors. The

resulting sequences that qualified were marked as potential transcription factor candi-

dates. The second list of transcription factor candidates was created by comparison to

lists of transcription factors previously identified in the two related diatoms, P. tricornu-

tum and T. pseudonana [165]. The F. solaris sequences annotated with the P. tricornutum

and T. pseudonana transcription factors were marked as potential transcription candi-

dates for this second list. The final list of transcription factor candidates was produced

by taking the union of F. solaris sequences in both lists that also had expression data.

The process of identifying transcription factors in model organisms can be performed

by accessing their annotations in online databases. With regards to the A. thaliana data

set, the transcription factors were identified using the listings in the Plant Transcrip-

tion Factor Database [166] which in turn utilized data from the TAIR database, release

version 8.0 [167].
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4.1.2 Expression Pattern Creation

The purpose of the expression patterns was to convey the change in time in gene ex-

pression for each gene so the raw expression data needed to be processed.

The F. solaris data was measured in control and treatment conditions at 0, 24, 48 and 60

hours. The processed data conveyed the change in gene expression by computing the

log fold change between the control and treatment conditions which was calculated by

Equation 4.1.1.

Ft(x) = Tt(x)− Ct(x) (4.1.1)

where Ft(x) is the log fold change of sequence x at time t, Tt(x) is the treatment log

RPKM of sequence x at time t and Ct(x) is the control log RPKM of sequence x at time

t.

The A. thaliana data set [101] was already normalized across time points so the differ-

ence in expression between adjacent time points was calculated directly by taking the

difference of gene expression for adjacent time points. The time intervals that were

used were M4-M5, M5-M6, M6-M7, M7-M8, M8-M9, M9-M10. Each time point was

one day apart starting from 10 days after germination at time point M4 to 16 days after

germination at time point M10.

The expression values for each time interval were binned into -1, 0 and 1 values, where

-1 indicated decreasing expression, 0 indicated no change in expression and 1 indicated

an increase in expression. To compensate for the experimental and biological variation

in expression values, a threshold was used to determine whether a non-zero expres-

sion was large enough to be considered -1 or 1. As most genes are not related to the

processes of interest, they do not generally exhibit as varied gene expression changes

so their gene expression was used as a guide for the baseline change in expression.

For each gene, the standard deviation in gene expression was calculated across all time

intervals and then the median of all the standard deviations was calculated, and the

positive and negative value of that was used as the threshold boundary for the 0 bin.

The threshold found for the F. solaris data set was 0.9152. The threshold found for the

A. thaliana data set was 90.29. Succinctly, this put all gene expression between 0.9152

and -0.9152 into the 0 bin in F. solaris and -90.29 and 90.29 in A. thaliana. Values outside

of those intervals were binned into 1 or -1 if they were above or below the interval

respectively (Figure 4.2 and Figure 4.3).

Consequently, a vector was assembled for each gene using the binned values, thereby
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creating the expression patterns that were entirely comprised of the 3 values, 0, 1 and -1.

The elements of each vector were ordered in chronological order so that the first value

was the 0 hour value for the F. solaris data and the M4-M5 value for the A. thaliana data.

4.1.3 Network Construction

Graph Structure

A network was constructed by using the expression patterns as nodes. Edges in the

network were added to signify a relationship between the two patterns while the edge

weights quantified the relationship.

A pair of expression patterns, nodes u and v, are denoted as ~u and ~v and are made up

of values ui and vi at each position i within each pattern. All ui and vi have possible

values of -1, 0 and 1. When ~u contains at least two different values, the first position

where ui is different from u1 is named a. As u1 6= ua, it stands to reason that a 6= 1.

For example, in (0, 0, 1, 0, 0, 0), u[1] = 0 and u[a] = 1 so a = 3. An edge connecting ~u

to ~v is made if there is only one ui and vi that is not equal to each other. The position

where this difference is located is named b. For example, in ~u = (1, 0, 0, 1, 0, 0) and

~v = (1, 0, 0, 0, 0, 0) the difference is at u4 and v4, so therefore b = 4.

Edge Properties

The edge direction was decided by considering the expression of transcription factors

at early time points affecting the expression of transcription factors at later time points.

The following algorithm was developed to decide whether an edge started from u and

ended at v.

Step 1: Remove the edge from u to v if either of the vectors are made up of only

one value. These are the patterns consisting of only 0s or only 1s or only -1s and so is

unrelated to time.

Step 2: Compare ~u[1:a] and ~v[1:a]. If they are the same, then the edge direction from u to

v is false because it means that the difference in expression pattern is after a. If they are

different, continue to step 3.

Step 3: For u and v where a = b, check if v1 = 0 and va = 0. If v1 = 0 and va = 0, then

the edge direction from u to v is true as the pattern in u[1:a] contains 1 or -1 while v[1:a]

is 0. If they are both not equal to 0, then the edge direction is false.

Step 4: For patterns where a is different from b, check if ub 6= 0 and vb = 0. If ub 6= 0
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and vb = 0, then the edge direction from u to v is true as the expression pattern 1 or -1

happens in u before v. If ub = 0 and vb 6= 0, then the edge direction is false.

The edge direction algorithm has been summarized in Figure 4.4 as a decision tree with

examples to show how each step is intended to help classify the orientation of an edge.

Figure 4.4: A detailed flow chart showing the application of the edge direction al-

gorithm at each step in Section 4.1.3 with examples. The flow chart starts

from the top to the bottom. The blue boxes show a step in the algorithm

and the orange boxes show an example of a node pair applicable at that

stage in the algorithm. The example uses the shortest vector for which this

algorithm is applicable but can also be used for longer vectors such as a

vector of size 4 for F. solaris and a vector of size 6 for A. thaliana.

After establishing edge directions, the edge weights were calculated using Equation

4.1.2. The weights are a measure of the expression between genes at nodes u and v,

particularly at position ua and va. As there are usually many genes per expression

patterns, the median was chosen to represent the average expression value to avoid

biases from outliers as much as possible.

W(u, v) =
Mu(Fd(x))
Mv(Fd(x))

Mv(F∀t(x))
Mu(F∀t(x))

(4.1.2)

where W(u, v) is the weight of the edge from node u to v, d is the time at which the
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expression pattern differs between u and v, and Mu(Fd(x)) is the median expression of

genes with pattern u at time d. Similarly, Mv(Fd(x)) is the median expression of genes

with pattern v at time d. The following Mu(F∀t(x)) and Mv(F∀t(x)) is the median of

expression at all time points of genes with pattern u and v respectively. In the case that

a median is 0, a small number is added to all medians such as 1x10−10.

Undirected edges and unconnected nodes were then removed from the full network,

leaving a subnetwork or several subnetworks of connected nodes and directed edges.

4.1.4 Network Visualization

The networks were created and drawn in R using the igraph package [102] [137].

4.1.5 Enrichment Analysis

This step was performed on the A. thaliana results only due to the availability of an-

notated transcription factors. The gene list of each subnetwork was used in an enrich-

ment analysis at The Plant GSEA [168]. The gene sets used were the three Gene Ontol-

ogy (GO) components (biological process, cellular component and molecular function)

with the species set to A. thaliana.

The list of gene ontologies were then summarized using REViGO [169] to collapse re-

dundant terms. This was done using the small setting with the FDR corrected p-values

from the enrichment analysis. The A. thaliana GO term database was used with the

SimRel semantic similarity measure.

4.2 Results

4.2.1 Transcription Factor Selection

The transcription factor candidates for F. solaris were selected from 20,470 coding se-

quences by using the union of two methods (Figure 4.1). The first method relied on

known transcription factor domains in PFAM [162], Superfam [163], and DBD: Tran-

scription factor prediction database [164]. There were 6,278 F. solaris sequences iden-

tified which contained transcription factor domains using the three databases. The

second method relied on transcription factors found in the relatives of F. solaris; P. tri-

cornutum and T. pseudonana [165]. There were 360 F. solaris sequences identified which

had closest sequence matches to the 208 P. tricornutum and 250 T. pseudonana transcrip-

tion factors. The number of false positives were minimized by only selecting the F.
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solaris sequences identified by both methods. By using a combination of searches, the

transcription factor selection processes lead to the selection of 187 F. solaris sequences

chosen as transcription factor candidates for the remainder of the analysis. Among the

187 sequences were 34 transcription factor domains (Table 4.1).

Domain Number

Winged helix DNA-binding domain 120

HSF-type DNA-binding 113

bZIP transcription factor 42

Basic region leucine zipper 11

HLH, helix-loop-helix DNA-binding domain 11

C2H2 and C2HC zinc fingers 6

DNA-binding domain 6

Helix-loop-helix DNA-binding domain 6

Zn2/Cys6 DNA-binding domain 6

Cold-shock DNA-binding domain 5

E2F/DP family winged-helix DNA-binding domain 5

TAZ zinc finger 5

CCAAT-binding transcription factor (CBF-B/NF-YA) subunit B 4

Transcriptional factor tubby, C-terminal domain 4

Tub family 4

A DNA-binding domain in eukaryotic transcription factors 2

AP2 domain 2

Bacterial regulatory proteins, luxR family 2

Conserved core of transcriptional regulatory protein vp16 2

DDT domain 2

Homeodomain-like 2

MIZ zinc finger 2

SART-1 family 2

SGT1 protein 2

SRF-like 2

ssDNA-binding transcriptional regulator domain 2

STAT 2

Sugar fermentation stimulation protein 2

YL1 nuclear protein 2

Zinc finger, C2H2 type 2

CCR4-Not complex component, Not1 1
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DNA-binding protein Tfx 1

Helix-turn-helix 1

SAND domain-like 1

Table 4.1: A list of transcription factor domains found in 187 F. solaris transcription

factor candidates and their frequencies. Some domains may be present in

a sequence multiple times and some sequences may have multiple domains

so that the frequencies do not have to sum to the number of sequences.

For the A. thaliana data set, the database of transcription factors contained 2,193 tran-

scription factor entries, excluding splicing variants, of which 1,402 was present in the

data set.

4.2.2 Gene Expression Patterns

The gene expressions of the transcription factor candidates were processed and orga-

nized into vectors so that the difference in gene expression over the duration of the

experiments could be organized together. The vectors were named expression patterns

because the values in the vector came in permutations of 3 values which represented

the chronological changes in gene expression of a transcription factor. The permutation

values indicated the direction of change while the location within the vector indicated

when the change took place.

The application of a threshold on both data sets successfully increased the number of 0

binned values in contrast to 1 and -1 values (Figure 4.2 and Figure 4.3). The number of 1

values increased with time with a decrease in 0 values in the F. solaris data as expected,

reflecting positive regulation in relation to the increase in TAG related transcripts and

the increase in TAG production. There were more 1 and -1 values in the gene expression

difference between time points in the initial time intervals in the A. thaliana data as gene

expression increased to the crucial time period for floral transition, 12 to 13 hours after

germination. These differences were decreased in later time points and stayed at a

stable level until the end of the experiment.

Since the data from F. solaris had four time points, the expression patterns had 4 permu-

tations of 3 values which allowed for a possible 81 combinations of expression patterns

however only 28 patterns were observed (Table 4.2). The most common pattern was (0,

0, 0, 0) and was observed in 19% of the transcription factor candidates. The remaining

commonly observed patterns contained many zero values such as (0, 0, 0, 1) and (0, 1,

0, 0). In contrast, the uncommon patterns contained a combination of all three values
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or had many non-zero values such as (0, 1, -1, 0) or (1, -1, 1, 1). Notably, there were very

few observed patterns beginning with a 1 or -1.

Pattern Membership

(0,0,0,0) 36

(0,0,0,1) 35

(0,1,0,1) 22

(0,0,1,1) 17

(0,0,-1,0) 14

(0,1,0,0) 11

(0,1,1,1) 10

(0,-1,1,1) 6

(0,0,-1,1) 4

(0,-1,0,0) 4

(0,-1,0,1) 4

(0,-1,-1,0) 3

(0,0,1,0) 3

(0,-1,-1,-1) 3

(0,1,-1,1) 2

(0,1,-1,0) 2

(0,1,0,-1) 2

(0,0,0,-1) 1

(0,0,-1,-1) 1

(0,-1,1,0) 1

(1,0,0,0) 1

(1,0,0,1) 1

(1,0,-1,0) 1

(1,1,0,1) 1

(1,-1,1,1) 1

(1,-1,-1,-1) 1

(-1,1,0,0) 1

(-1,-1,-1,0) 1

Table 4.2: Transcription factor expression patterns in F. solaris and the number of

transcription factors that had those patterns in descending order. The top

patterns mostly begin with 0 and contain two or more 0s within the pattern

while the bottom patterns mostly begin with 1 or -1.
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Similarly, the data from A. thaliana had six time points, meaning that the expression pat-

terns had 6 permutations of 3 values. This combination allowed a possible 729 expres-

sion patterns, however only 242 patterns were observed. The top three most common

patterns were (0, 0, 0, 0, 0, 0) seen in 40% of the transcription factors, (-1, 1, 0, 0, 0, 0)

seen in 2.3% of transcription factors and (-1, 0, 0, 0, 0, 0) seen in 2.1% of the transcription

factors. In contrast, there were 111 patterns seen in one gene each (46%) and 51 patterns

represented by two genes each (21%). The common patterns had more 0s on average

compared to uncommon patterns, however they seemed to contain approximately the

same frequency of 1s (Table 4.3).

Prevalence of pattern -1 0 1

10+ genes 2.1 3.6 2

1 or 2 genes 1.8 2.1 1.9

Table 4.3: Summary of binned value representation in transcription factor expres-

sion patterns of A. thaliana. This shows the average number of each per-

mutation value in two types of expression patterns. The prevalence of pat-

tern represents the number of genes that had the expression pattern. Com-

monly observed patterns were seen in 10 or more genes while uncommonly

observed patterns were seen in only 1 or 2 genes. The number of times 1

and -1 values are observed in expression patterns is similar in both com-

mon and uncommon patterns but there is a higher frequency of 0 values in

common expression patterns compared to uncommon expression patterns.

Particularly, the floral transition transcription factors from A. thaliana were only repre-

sented by 15 expression patterns. The prevalence of each binned value in the patterns

revealed that the most important time interval for these transcription factors was M6-

M7. This time interval was where eight patterns had a 1 value, followed by six patterns

with a 0 value and only one pattern with -1. When compared to the frequency counts

for the other time periods, it has the highest frequency of the 1 value and the lowest

frequency of the -1 value. The other time intervals had a mixture of 7, 6 and 2 or 6, 5

and 4 frequencies for each binned value.

4.2.3 Transcription Factor Network

The transcription factor expression patterns were used to create a network model of

the expression relationships between expression patterns. The difference in the size

and number of the expression patterns between F. solaris and A. thaliana resulted in

different network structures.
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The shorter patterns from the F. solaris data set created a smaller, fully connected net-

work with 27 vertices connected by 51 edges (Figure 4.5.A). Since the connecting edges

were between two expression patterns that differed by only one value, the connections

were more likely with shorter patterns. The most connected vertices were observed in

(0, 0, 0, 0), (0, 0, 0, 1) and (0, 1, 0, 1) with degrees of 7. There were four vertices with

a degree of 1 and the most common degrees were 3 and 4 which were observed in 6

vertices each. All the vertices with a degree of 1 or 2 began with a 1 or -1 value. The

edge direction algorithm was performed and successfully determined the direction of

20 edges connecting 24 vertices (Figure 4.5.B). That is, approximately 88% of the edges

had their direction determined.

The expression patterns from the A. thaliana data set were longer and more numerous.

Consequently, the initial undirected network was larger and not fully connected (Fig-

ure 4.6.A.). The inferred network was made up of 242 vertices connected by 680 edges.

The most connected vertex was (1, -1, 0, 1, -1, 0) and had a degree of 12, and it was

closely followed by (0, 0, 0, 0, 0, 0) which had a degree of 11. There were twelve ver-

tices with a degree of 2, eight vertices with a degree of 1 and one unconnected vertex,

(-1, -1, 1, 1, 0, 1). Unlike the F. solaris network, the expression patterns for uncommon

vertices did not all begin with a 1 or -1. There were seven patterns that started with a 0

with a vertex degree of 2 and three patterns that started with a 0 with a vertex degree

of 1. The most common degree was 5 which was observed in 49 vertices. This was fol-

lowed by 4 degrees which was observed in 39 vertices and 6 which was observed in 38

vertices. Despite the larger number of edges, the edge direction algorithm performed

quickly and successfully in determining the direction of 123 edges which connected 136

vertices (Figure 4.6.B.). This only represented 18% of the original undirected network

which was lower than the result from the F. solaris network.

The networks were then separated into subnetworks by removing undirected edges

and any unconnected nodes resulting from that so that the informative sections of the

network were isolated. The direction was determined by the temporal effect of gene

regulation, while the weights were ratios signifying the impact of gene expression at

the time where the expression patterns differed.

The paring down of the F. solaris network yielded five subnetworks of varying sizes

(Figure 4.7). The number of nodes in each subnetwork, in descending order, were 11

nodes, 5 nodes, 4 nodes, 2 nodes and 2 nodes. Due to the way the edge directions were

determined, most subnetworks contained a central sink vertex where all the connecting

edges were incoming edges. The sink vertex patterns tended to have many zero values

such as (0,0,0,1) and were represented by many transcription factors compared to the
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leaf vertex patterns that were not so well represented.

In the largest network, subnetwork 1, there were 3 paths longer than 1 edge leading to

the sink vertex where the edge weight decreased as the path was closer to the sink ver-

tex (Figure 4.11). In contrast, there were two paths where the edge weights increased

as the path was closer to the sink vertex. However, both paths originated from the

same node (1, 1, 0, 1). This node represented one transcription factor with motifs HSF-

type DNA-binding and Winged helix DNA-binding domain. The other nodes were

(1, -1, 1, 1) which represent one transcription factor with the Basic region leucine zip-

per motif, (0, 1, -1, 1) which represent two transcription factor with the same motifs

as (1, 1, 0, 1) and also Helix-loop-helix DNA-binding domain, and (0, 1, 1, 1) which

represented 10 transcription factors that included the same motifs as (1, 1, 0, 1) and

also CCAAT-binding transcription factor (CBF-B/NF-YA) subunit B, bZIP transcrip-

tion factor, Helix-loop-helix DNA-binding domain and E2F/DP family winged-helix

DNA-binding domain. The remaining subnetworks were too small for comparisons

between long paths as there was only 1 path longer than 1 edge in each network.

The largest edge weight was found in subnetwork 3 from (0, -1, -1, 0) to (0, 0, -1, 0)

where the change in expression at 24 hours was exceedingly up regulated compared

to the other time points as the weight was 325.0844. This was due to a large negative

fold change in g13229 relative to the other two genes it shared with the pattern (0, -1,

-1, 0). The transcription factor motifs found in that gene were HSF-type DNA-binding

and Winged helix DNA-binding domain.

The network inference method applied to the A. thaliana network produced 17 separate

subnetworks that contained 136 vertices and 123 edges within them (Figure 4.9). There

were 6 subnetworks that were made up of only two vertices and an edge, while the

largest subnetwork was made up of 36 vertices and 36 edges. Like the F. solaris subnet-

works, the sink vertices in the A. thaliana subnetworks also contained many 0 values

such as (0, 0, 0, 0, 0, 1) and were represented by many transcription factors compared to

the leaf vertices. While the smaller subnetworks with five or less vertices were mainly

linear, the large subnetworks were mainly star-like with fairy separate branches joined

to a central spine. A rectangular structure was visible in three of the large subnetworks

consisting of four vertices and four edges.

Most of the edge weights were quite small with a median of 1.76 and a mean of -1.40.

There were eight large weights with values over 100 and these were found in the two

largest subnetworks. There were two paths of large edge weights with three vertices

where the largest weights were between the last two vertex of each path. These were

(1, -1, 0, 0, 1, 1)→ (0, -1, 0, 0, 1, 1)→ (0, 0, 0, 0, 1, 1) and (-1, 1, 0, 0, 1, 1)→ (0, 1, 0, 0, 1, 1)
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→ (0, 0, 0, 0, 1, 1). The second path indicates that a regulation step at M5-M6 is related

to transcription factor activity at later time points and that the relation is stronger at

M4-M5 than at M5-M6.

Specifically, when checking for the known floral transcription factors, it was observed

that there were 17 floral transition transcription factors and nine of them were found

in three of the subnetworks; 1, 4 and 7. Subnetwork 1 was the largest among them and

contained seven transcription factors (Figure 4.10). The pathway begins with SPL4 and

LFY in patterns (1, -1, 1, 1, 1, 1) and (-1, 0, 1, 1, 1, 1), and then flows on to AP1, AP3, PI

and SPL3, with patterns (0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 1, 1) and (0, 0, 0, 0, 0, 1). Of the two

initial transcription factors, the edge from LFY had a larger edge weight than SPL4.

The other transcription factors identified in the subnetworks were CAL in subnetwork

4 and FLC in subnetwork 7. The remaining unconnected transcription factors were

SVP, CO1, FD, SPL9, SPL5, SPL15, MYB3R1 and MYB3R4.

4.2.4 Enrichment Analysis

The genes of the A. thaliana subnetworks were put through a GO enrichment analysis

since they were better summarized by function in contrast to transcription factor mo-

tifs. The four largest subnetworks had 199, 170, 119 and 74 enriched terms respectively.

They shared 54 common terms which made up a 73% majority for the fourth largest

subnetwork. The enrichment analysis was successful for all subnetworks except for

subnetwork 14 which did not contain enough annotated genes.

The resulting lists of enriched gene ontologies were summarized so that they could

be compared. Many of the summaries included general terms such as biological reg-

ulation or metabolic processes, however there were several unique and indispensible

ontologies that were observed.

Subnetwork 1 was defined by transcription factors annotated with rhythmic process,

circadian rhythm, response to light stimulus, protein acetylation, regulation of multi-

cellular organismal process, reproduction and reproductive structure development.

Subnetwork 2 was a lot smaller and was summarized the two terms, long-chain fatty

acid metabolic process and defense response to insects.

Subnetwork 3 was the largest network and was distinguished by the terms, immune

system process, response to endogenous stimulus, glucuronoxylan metabolic process,

bract development, reproductive process, positive regulation of biological process and

multiple organism process.

Subnetwork 4 contained moderate number of genes but was only defined with DNA-
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templated regulation of transcription and response to gibberellin.

Subnetwork 5 was smaller and was represented by nitrogen compound metabolic pro-

cess and positive regulation of biological process.

Subnetwork 6 was roughly the same size as subnetwork 5 and was described by re-

sponse to salicyclic acid, respiratory burst and positive regulation of biological process.

Subnetwork 7 was summarized by the terms that were more specific like, nitrogen

compound metabolic process, chloroplast relocation and negative regulation of flower

development.

Subnetwork 8 had only two vertices and its summarizing terms were DNA-templated

regulation of transcription, response to gibberellin and embryo development ending in

seed dormancy.

Similarly subnetwork 9 was the same size and had several unique terms in its summary

of response to auxin, multicellular organismal process, developmental process, DNA-

templated positive regulation of transcription and gynoecium development.

Subnetwork 10 and 11 were also two vertex networks where subnetwork 10 was de-

scribed by reproduction, response to abscisic acid, seed germination, peptidyl-histidine

modification and reproductive process while subnetwork 11 was described by general

transcription factor terms like nucleic acid binding, sequence specific DNA binding

transcription factor activity and transcription regulator activity.

Subnetwork 12 was a more moderately sized network distinguished by the terms im-

mune effector process, post embryonic morphogenesis, RNA metabolic process and

multicellular organismal process.

Subnetwork 13 is only defined by two terms, regulation of metabolic process and

cotyledon morphogenesis.

Subnetwork 15, 16 and 17 are very small structures where subnetwork 15 is involved

in demethylation, subnetwork 16 in transcription regulator activity and subnetwork 17

in cellular response to glucose stimulus.

4.3 Discussion

Gene expression is a chronologically dependent process where a change in expression

in gene A at one time point is related to the change in expression in gene B at a later

time point. This method was developed from that position which led to the creation of

expression patterns and the edge building algorithm.
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4.3.1 F. solaris

A preliminary search for transcription factors in F. solaris yielded 160 transcription fac-

tors [113] however, my method of using three databases and two evolutionary close

genomes produced 187 transcription factors. A PFAM search [162] was also performed

alone and yielded 190 transcription factors. Expectedly, different search methods and

parameters return different numbers of matches so selecting transcription factors is an

indefinite process. Since transcription factors of higher plants has shown a marked di-

vergence from that of microalgae, using databases primarily built up from those organ-

isms and other higher organisms can skew results [170]. While no microalgae specific

transcription factors have been discovered, those shared transcription factors may be

harder to detect. Ultimately caution must be taken and cut off thresholds decided in or-

der to proceed with the analysis. The inclusion of false positives would most likely alter

the results so I decided that only sequences with known transcription factor domains

and those matching transcription factors in P. tricornutum and T. pseudonana would suf-

fice. Although this process may have excluded several transcription factors, I felt that

my finished list was most appropriate for the analysis. Indeed, some key transcription

factor domains were present in the group of genes that were selected including the

AP2 DNA-binding domain which is an important regulator of oil accumulation in A.

thaliana seeds [171] [172] [173].

One of the most common transcription factor domains found in F. solaris was the HSF-

type DNA-binding domain (PF00447) from PFAM (Table 4.1). The heat-shock factor

(HSF) family of transcription factor domains are very diverse in plants where it is en-

coded by 21 genes in A. thaliana [174] and 52 loci in soybean [175]. Plant HSFs show con-

siderable functional diversification, indicated by the difference in regulation and have

shown themselves to be principal regulators in responding to abiotic stresses [176].

Although F. solaris is a microalgae, the HSF-type DNA-binding domain was found in

more than 50% of the selected transcription factor sequences. This large ratio of HSF

domains present in the population of transcription factors indicate that F. solaris HSFs

are likely to be involved in abiotic stress response also. Additionally, 87% of them are

homologs to HSFs found in P. tricornutum and T. pseudonana where two F. solaris tran-

scription factors were homologous to one P. tricornutum or T. pseudonana transcription

factor. For example, the two F. solaris genes, g13791 and g14253, are homologs of one P.

tricornutum gene, PHATRDRAFT_47952. The significance of this means that a majority

of F. solaris HSFs are present twice in the genome while only the homolog is present

once in P. tricornutum or T. pseudonana genomes. This feature of transcription factor

presence is likely to play a large part in the difference in lipid accumulation between
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the diatoms.

The expression patterns of F. solaris transcription factors had distinct characteristics

that summarized a circumstance when a small number of transcription factors were

expressed or repressed early in the experiment and a large number of transcription

factors were only expressed or repressed later in the experiment. This has been ob-

served in different situations of cell differentiation and embryonic development [177]

as well as in the Nannocloropsis microalgae [170]. Interestingly, when compared with

the patterns of preliminary TAG related genes, the frequency and types of patterns ap-

pear to be reversed with TAG genes possessing more patterns beginning with 1 or -1

and very little patterns containing any 0 value. This could be due to the strong fold

change exhibited by TAG genes as expected while it was under induction during the

experiment. However, similar to the transcription factor patterns, most of the common

patterns held many duplicate values such as (-1, 1, 1, 1). It is likely that genes that are

steadily regulated are more influential to TAG production as they were observed to be

more numerous than genes with fluctuating expression patterns.

The inferred transcription factor subnetworks were relatively small and limited due to

the small number of transcription factors included in the analysis (Figure 4.7). How-

ever, the largest subnetwork, subnetwork 1, identified a small group of genes which

showed early activity and were related to a larger group of transcription factors that

were activated later. The edge weights of those genes indicates that the strength of

the positive regulation processes is quite strong at the beginning and subsided at later

time points. These thirteen genes make suitable candidates for investigations into the

initiation of oil accumulation metabolism (g11326, g2962, g13476, g14216, g766, g4004,

g5628, g5748, g9763, g6962, g9546, g5631, g14217).

The other candidate transcription factors which show potential for further research

were determined by using the edge weights. Unusually large edge weights indicate a

strong change in expression between two patterns. The two largest weights shared a

sink vertex (0, 0, -1, 0), signifying a strong relationship between the transcription factors

with those expression patterns. The genes largely responsible for the size of the edge

weights were g13229 and g2870.

A final network was created to illustrate the connectivity between the subnetworks

by collapsing the subnetworks into vertices 4.12. The reduced network clearly shows

a connection between the three largest subnetworks, 1, 2 and 3. This connection is

formed a triangular base in the reduced network. The smaller subnetworks are linked

on two sides off the triangular base, with subnetwork 5 being linked to subnetwork

1 and 2, and subnetwork 4 being linked to subnetwork 1 and 3. The sequences in
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each subnetwork do not have any KEGG pathway or ortholog annotations however

the transciption factor domains show a commonality between them such as the bZIP

transcription factor domain, as well as unique domains per subnetwork such as the

Cold-shock DNA-binding domain in subnetwork 1, the CCAAT-binding transcription

factor (CBF-B/NF-YA) subunit B domain in subnetwork 2, the Zn2/Cys6 DNA-binding

domain in subnetwork 3 and the C2H2 and C2HC zinc finger domain in subnetwork 5.

4.3.2 A. thaliana

The initial creation of the gene expression patterns for F. solaris was done by observing

the gene expression for all genes in a chronological manner. The variance of gene ex-

pression was found to be increased as time increased and that this variation followed a

gamma distribution. The threshold was determined and it worked well, however it did

not fit as well when this method was applied to A. thaliana. This is mainly due to the

type of data that was used. The F. solaris data was a fold change value between control

and treatment while the A. thaliana data was a difference in expression value between

two adjacent time points. Thus, they followed different distributions. The method was

then adjusted to what is presented here so that it would be applicable for various types

of data.

Although the A. thaliana genome has more annotations than F. solaris, not all the tran-

scription factors in the database were found in the expression data set. Normally, tran-

scription factors are only present at very low copy numbers per cell because, as regu-

latory elements, they do not need necessarily have to be expressed at high levels [178].

Since RNA-Seq is a competitive sequencing method, they may not have been detected.

This could account for some of the absent transcripts as well as exclusion during the

sequence quality control step or possible count errors due to alternate splicing [179].

Because RNA-Seq does not sequence a full transcript in a continuous pass, the raw

data is made up of many fragments of sequences between 30-400 base pairs in length

depending on the sequencing platform. Although many algorithms has the ability to

adjust for this [22], some fragments may not be used in an alignment or may be aligned

incorrectly, particularly with the possibility of alternate splicing. Most platforms also

have a quality control procedure built in that will disregard low quality reads.

When the inferred network was applied to floral transition data, it successfully iden-

tified established connections between floral transition transcription factors, such as

the positive regulation of AP1 by LFY [152]. The general arrangement of each subnet-

work, where outlying leaf patterns were represented by fewer genes than the central

patterns, verified the cascading effect initiated by a few genes that affect many down-
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stream genes [170] [177].

The expression patterns were able to make examining important expression patterns

much clearer and their use was able to help identify additional, related genes. Expres-

sion pattern importance can be determined through the experiment design or previous

research, such as the function of LFY in the floral transition data. The expression pat-

tern for LFY was (-1, 0, 1, 1, 1, 1) which was shared by two other transcription factors,

ATREM1 and BETA HLH PROTEIN 93 (BHLH093). ATREM1 has been observed from

the vegetative apical meristem to the inflorescence meristem and binds to AP1, AP3,

PI and SVP [180] [181]. This is confirmed in the network where AP1, AP3 and PI are

downstream from ATREM1. BHLH093 has been observed in several different devel-

opment stages such as the final stage of leaf development, expanded cotyledon stage,

and flowering [182] [183]. It is possible that BHLH093 is expressed as a regulator of a

concurrent process with floral transitioning but is not directly part of the process.

Similarly, connections to identified expression patterns also helped to other genes that

are part of related functions. In the network, LFY is connected to AP1 by an additional

pattern, (0, 0, 1, 1, 1, 1), which represents the two transcription factors, SQUAMOSA

PROMOTER BINDING PROTEIN-LIKE 8 (SPL8) and FOREVER YOUNG FLOWER

(FYF). SPL8 has been seen to act as a developmental regulator with gibberellins and

flowering time [184] [185] while FYF is a repressor of floral organ senescence [186]

[187].

The final network summarized the data into 17 subnetworks, each distinguishable by

enriched GO terms. To illustrate the connectivity between the subnetworks, they were

collapsed into vertices (Figure 4.12). The reduced network clearly shows a connec-

tion between the two largest subnetworks, 1 and 3. This connection is formed by two

connecting patterns, indicating a relatively weak link. In contrast, there are 8 and 7

links between subnetwork 1 and 4, and 3 and 4 respectively. This suggests that gene

regulation of rhythmic processes, response to light and other processes found in sub-

network 1 is related to immune responses, response to endogenous stimulus and other

processes found in subnetwork 3 primarily through transcription factors related to the

plant hormone, gibberellin.

Although the inferred network included many floral transition transcription factors,

there were several patterns of important transcription factors that remained uncon-

nected such as SOC1 [145]. The edge determination for the network is heavily influ-

enced by the number of time points so that the increase in the number of time points

will result in a less connected network due to the higher number of patterns needed to

make connections. This effect can be decreased by focusing on a narrower range of time
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points, as done by excluding earlier time periods prior to floral transition. Although it

will not always be sufficient, it remains that the remaining transcription factors were

able to be connected into the network with undirected edges.
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Figure 4.1: An overview of the process to create a list of transcription factor candi-

dates for F. solaris. The number of sequences at each step are highlighted

in blue boxes and the actions taken to filter the sequences are highlighted

in yellow boxes. The two methods start from the top of the diagram and

join up in the middle to signify when the transcription factors were cho-

sen by taking the union of two lists in order to reduce the number of false

positives.
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Figure 4.2: The effect of threshold application to the binning processes as part of

the method application for F. solaris data. The number of genes with a

positive fold change increases with time and this pattern is preserved even

with the application of the threshold. The number of genes with a neutral

fold change decreases with time as more genes undergo differential gene

expression during the experiment.
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Figure 4.3: The effect of threshold application to the binning processes as part of

the method application for A. thaliana data. There was no noticeable

difference between each time point before threshold application however,

a subtle difference is uncovered after threshold application. There is an

observable increase in the number of genes with a neutral difference in

gene expression at M6-M7. This change is kept for the remaining time

points.
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A. B.
Figure 4.5: The inferred network during construction in the first two stages for the F.

solaris data set. A. The vertices are joined together to create an undirected

network. The vertices are in light blue and are connected by gray edges. B.

The edge directions are established and highlighted in dark blue. Vertices

with at least one directed edge are in yellow. The final network includes

the yellow vertices and dark blue edges only.

A. B.
Figure 4.6: The inferred network during construction in the first two stages for the

A. thaliana data set. A. The vertices are joined together to create an undi-

rected network. The vertices are in light blue and are connected by gray

edges. B. The edge directions are established and highlighted in dark blue.

Vertices with at least one directed edge are in yellow. The final network

includes the yellow vertices and dark blue edges only.
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1.
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5. 4.

Figure 4.7: The final network with undirected edges removed from Figure 4.5 B.

There are 5 unconnected subnetworks labeled 1-5 of varying sizes. In de-

scending order, they are 1 (11 vertices), 2 (5 vertices), 3 (4 vertices), 4 (2

vertices) and 5 (2 vertices).
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Figure 4.8: The weights and vertex patterns of subnetwork 1. The weights are writ-

ten in black next to the applicable edge and the patterns are written in dark

blue next to the applicable vertex.

70



3.

1.

8.

7.

17.

15.
5.

2.

9.

10.

11.

14.

12.

6.

4.

16.

13.

Figure 4.9: The final network with undirected edges removed from Figure 4.6 B.

There are 17 unconnected subnetworks labeled 1-17 of varying sizes. In

descending order, they are 3 (36 vertices), 1 (31 vertices), 12 (12 vertices),

4 (10 vertices), 2 (9 vertices), 7 (6 vertices), 5 (5 vertices), 13 (5 vertices), 6

(4 vertices), 16 (3 vertices), 17 (3 vertices), 8 (2 vertices), 9 (2 vertices), 10

(2 vertices), 11 (2 vertices), 14 (2 vertices) and 15 (2 vertices). The floral

transition transcription factors are in subnetworks 1, 4, and 7.
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Figure 4.10: The weights and vertex patterns of subnetwork 1. The weights are writ-

ten in black next to the applicable edge and the patterns are written in

dark blue next to the applicable vertex. This major subnetwork contains 9

of the 17 floral transition transcription factors. Their expression patterns

are highlighted by yellow vertices.
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Figure 4.11: A simplified view of the F. solaris subnetworks when connected by the

minimum number of undirected edges. Each subnetwork vertex and

edge connection is merged into one vertex, keeping the edges that lie

along the shortest path between subnetworks. The subnetworks are col-

ored as they were in Figure 4.7. Joining vertices that were not part of

a subnetwork are marked in light blue and labeled with the expression

pattern.

73



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

-1,1,0,-1,-1,1

0,1,-1,0,0,1

-1,0,1,0,0,-1

Figure 4.12: A simplified view of the A. thaliana subnetworks when connected by

the minimum number of undirected edges. Each subnetwork vertex

and edge connection is merged into one vertex, keeping the edges that

lie along the shortest path between subnetworks. The subnetworks are

colored as they were in Figure 4.9. Joining vertices that were not part of

a subnetwork are marked in light blue and labeled with the expression

pattern.
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Chapter 5

Discussion

RNA-Seq is an accessible experimental NGS methodology that has given researchers

the opportunity to study changes in gene expression over multiple continuous time

points. It has the potential to discover gene expression regulation systems and explain

the gene regulation processes but is restrained by the lack of data analysis methods.

Although there are a small number of choices available for identifying differentially

expressed genes [59] [60], there is a noticeable absence of downstream analyses that

enables interpretation of the results in a biological framework [188].

Essentially, biologists would find it helpful to have more analyses available that can

contextualize the essence of what the data recorded and also allow them to visualize

the results. Methodologies that can assist biologists in this way will aid in discovering

more insight to the effects that were present in the experiment since better perception

will improve result interpretation and also give better direction for future experiments.

I have presented three methods that utilize a different aspect of an organisms biology

that each allows for a different biological interpretation of the same data set. They can

be used separately if the organism or experiment is not suitable for that particular anal-

ysis, for example, if the organism is entirely novel with no close relative for homolog

comparisons or the research is exploratory with no particular focus on a particular

metabolic pathway. They can also be used concurrently to draw more comprehensive

conclusions from all the results, as shown in the case of the F. solaris expression data.

Firstly, working with novel organisms can be a challenge because of the absence of past

research to rely on and any corresponding annotations that arise from them. Also, their

studies are usually limited by time and funding during which a lot of effort is focused

on discovering favorable and advantageous traits that can contribute to current knowl-

edge. Consequently, the most suitable type of research are comparative studies because

they can quickly provide potential starting points for follow up studies. Since genome
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sequencing has become required for genomic studies of any organism, there are more

genomes being sequenced and being made publically available. I chose to make use

of comparative studies by looking specifically at homology because the current land-

scape of biology makes it a reasonably advantageous tool to use for studying novel

organisms, such as F. solaris, where it is more likely that there is a suitable genome to

compare to than in the past before NGS [170].

Homologous genes are often used in phylogenetics and structural proteomics as a tool

to measure relatedness where the sequence similarity is used to give information about

the evolutionary history of the gene. Because they normally share similar structures

and often have similar functions, they are one of the first genes to be annotated in

a novel organisms genome [189]. Comparisons and inferences can be made using

homologous genes between closely related species because they usually do not have

many genetic changes so the functions and regulation elements are the same or very

similar. Although genetic recombination can complicate the way in which homolo-

gous genes are identified, I showed that the genome of F. solaris was comparable with

the model diatom P. tricornutum when I compared the gene expression of the homol-

ogous genes and non-homologous genes between the two organisms, and found that

the homologous genes were expressed more similarly across species than within each

of the respective organisms. This strongly indicated that the homologous genes has

kept the same function and regulatory elements which is something that is commonly

observed in development genes since they regulate such vital functions [190]. Since oil

accumulation is a natural process of environmental stress response for diatoms, the ho-

mologous genes activated during biofuel production is probably a strongly conserved

function between diatom species that has been preserved into an essential part of their

metabolism.

Aside from providing a general examination with data exploration, I also used gene ho-

mology to target genes exhibiting changes in expression that could be related to a target

metabolic process which was oil accumulation in F. solaris. Even though the difference

in gene expression of homologous genes in F. solaris were smaller than non-homologous

genes, the homologous gene expression also showed some distinct differences between

the two diatoms. My analysis method targeted those differences when it categorized

them by the differences in fold change instead of trying to analyze them individually.

I chose to separate the homologous genes by their difference in fold change so that the

different types of regulation mechanisms would be more apparent. Genes that were

up regulated in one diatom and down regulated in another diatom show a different

regulation system compared to genes that were up regulated in both at significantly
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different expression levels. Through this type of comparison, I was able to show that

F. solaris was better able to adjust to low nitrogen conditions through the expression of

key genes that were down regulated when compared to the expression regulation that

occurred in P. tricornutum. Even though the stress response in algae has been shown to

be a distinct and conserved trait between some species, this F. solaris expression data

has shown that it has small but significant differences [111]. This difference is possibly

part of what gives F. solaris its unique oil accumulation traits.

This method of analysis has the advantage of being fast and simple to perform. Pro-

vided that there is a suitable genome to compare to, most of the computer processing

was used during the sequence alignment process that found and identified the ho-

mologs in each genome. Calculating the differences in fold change and finding the

significantly expressed genes run in linear time which is possible for any modern com-

puter. The gene ontology and KEGG pathway information are freely available online

and therefore accessible to researchers. Downloading the information for local analy-

ses from KEGG may present a problem, however, as access to the KEGG FTP by non-

academic researchers requires a license. Otherwise, this method is easy to implement

and does not require any particular processing system. The use of absolute cutoffs

for categorizing could be improved upon by excluding or reassigning genes that were

very close to the threshold. The interpretation of some of the groups was also difficult

with the presence of unannotated genes or differences in annotations between F. solaris

genes and the homologous P. tricornutum genes. However, the characterization of each

group can still be used to select genes of interest for future study and annotation as

shown here.

Another way of handling large data sets like NGS data is to focus on particular ele-

ments of interest, for example, TAG synthesis. RNA-Seq records data for all transcripts

at a given time so that it includes information on all processes that were transpiring.

Many of the processes involve regular cellular function such as those including house-

keeping genes, and are therefore unrelated to TAG synthesis so including them would

decrease the power of the analysis. Selecting a smaller subset of data to analyze em-

phasizes focus so that it creates results that are easier to understand and interpret in

the context of the experiment and current knowledge. I chose to investigate metabolic

pathways first as it was suitable within the context of compound synthesis for the F.

solaris data. My method made use of the compounds and genes already identified

from previous investigations to select a subset of the data known to represent TAG

metabolism such as carbohydrate metabolism pathways and energy metabolism path-

ways [113] [191]. I chose to use GSEA to perform the selection as it operates well when
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used to enrich genes by their annotations, gene ontologies or metabolic membership.

Since existing GSEA methods are built for single time experiments, I created my GSEA

method to perform an enrichment analysis in situations where the difference in gene

expression is strongly related to time. Thus, I was able to identify metabolic pathways

that I could use to subset the expression data in order to focus the rest of the analysis

on important TAG genes and reactions.

After dividing the data into more manageable pieces, my method focused on the visu-

alization of the TAG expression pathway because it helps for better understanding than

individual compound and gene names and yields testable hypotheses for future anal-

yses. Since there were a smaller number of genes to present at once, the visualization

was clearer. Metabolic network and pathway reconstruction and visualization is an

idea used by a number of tools that are available online [39] [40] [41] [192] because they

can help understand and predict metabolic processes and pathways [193]. However

my aim was to focus on the reactions between compounds, and account for reactions

that were present in multiple pathways. When I decided to rearranging the graph dif-

ferently than conventional pathway diagrams, it improved visual pattern finding and

I noticed that it showed the change in fold change through time clearer because de-

picting them as lines drew more attention to them compared to circles. By presenting

the time component in the data in this way, it brought more impact to the visualization

which was demonstrated when my method clearly showed a concerted up regulation

in genes that were implicated in TAG metabolism. The inferred network graph was

also able to show the reactions which were not part of the up regulation event with

contrasting red lines that stood out considerably from the rest of the network.

Once the inferred network was created, it was possible to apply existing network anal-

yses on it which was my other reason for choosing networking. For example finding

bottleneck areas which consists of compounds and reactions that are needed to access

compounds from different areas of the network. I chose to search for the shortest path

between two compounds important to TAG; glucose and TAG. Although there could

be other factors that would restrict such reaction chains from taking place, such as the

location of each component within the cell, it was useful in generating a hypothesis for

the metabolic pathway of TAG synthesis.

While GSEA can be computationally intensive, this was offset in my method by choos-

ing to only perform it on selected groups and consequently reducing the number of en-

richment calculations that needed to be performed. Certainly, the F. solaris data set only

had four time points for which the inferred probability distribution was relatively sim-

ple to fit. There was a considerable increase in run time when the time points exceeded
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six points and I was not able to complete the analysis on a randomly generated data set

of 10 time points. The run time could be improved by using a standard multi dimen-

sional distribution instead of approximating a unique distribution for each data set.

The choice in distribution is limited by the irregular shape of the distribution of RNA-

Seq data as different types of experiments would have different shapes. For example,

a fold change data set comparing a set of conditions would have most values around

0 but a single condition experiment looking at growth or development would contain

more differences. Because I used pathway membership as the gene sets, there was an

issue with some genes overlapping several gene sets so that their data was analyzed

multiple times. It didn’t pose a concern for the calculation and most of the overlaps

were small. Rather, some of the choices of gene sets or pathways had a high overlap

such as glycolysis, pyruvate metabolism and the citrate cycle (TCA cycle) which also

limited interpretation of the data as the vast majority of pathway memberships in F.

solaris genes is unknown, even with the advantage of a smaller portion data to handle.

The visualization of the inferred network was subsequently crucial to the analysis and

was successful at presenting the large amount of expression data even after data di-

vision. As humans, we are better at understanding information when it is given in

a visual manner so the graphs performed well and presented viewers know the key

points of information quickly without needing to remember what the expression was

like at each time point. Although there are other existing metabolic pathway visual-

ization tools, the main reason I continued to use R for visualization was to keep the

analysis pipeline within the same analysis tool to keep the process simple. One of the

challenges with using different tools is exporting the data from the previous tool and

importing them into the next tool in the correct format. As the enrichment section of

the analysis was carried out in R, there were no data conversion issues to continue to

the visualization section. Overall, this method has a straightforward idea behind it so

it is easily programmed although it has a reliance of certain R packages which would

mean that it would not age well if the packages are not updated.

In addition to data division by metabolic pathways, the data can be subset by gene

function as well. In the context of gene regulation, I chose to focus on genes that were

transcription factors. These genes are a part of a cells gene expression regulatory sys-

tem, controlling when transcripts are produced and how much to produce, and since

transcription factors affect the regulation of other transcription factors in a chronolog-

ical manner, it followed that the most suitable method of analysis was to model their

activity with a network. For example, if the activation of transcription factor A creates

a product that initiates the activity of transcription factor B, gene expression of time
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series data will show that with a delay in transcript abundance changes. Simply, the

relationships my method can model need not be direct effects but can be indirect effects

separated by several time points if it was the case. This is beneficial as many gene reg-

ulatory systems are not yet known however, my method can still detect them because

it looks for the effect of their actions. Because this type of inference relies on a time

delay, it can only be performed with time series data and consequently justifies how

advantageous these types of experiments can be.

My method created a way to infer a network that could enable the presentation of tem-

poral changes in gene expression in an effective summary. The process of inferring a

network established which genes and expression patterns were important in initiating

many of the gene expression changes observed in the data. The main methodology that

was crucial to this was the use of a combination of binning and patterns to turn quanti-

tative data into qualitative data in order to make network nodes into discrete variables.

Additionally, the resulting network was able to represent two features of transcription

factors concurrently; up regulated versus down regulated expression responses, and

early versus late expression responses to lipid induction. My method also managed

to preserve the qualitative values in the forms of edge weight as the information they

represented were crucial to showing the size of the effects from the initiating patterns

to the downstream patterns. The weights were effective in showing which stage of the

regulation had the biggest change and therefore, had the biggest impact on expression

levels. This allowed for the identification of important regulation time points as shown

by the A. thaliana data.

The results from applying the method to two data sets showed the advantages it has on

different types of experiments. When applied on F. solaris, it successfully created an in-

ferred transcription factor network on genes containing transcription factor motifs and

were very likely to be transcription factors. Using the network, a suitable number of

transcription factors were identified for further research as the network marked them

based on their influential gene expression on downstream genes. The smaller number

of genes can help experimenters construct more focused tests in contrast to pursuing

a larger group of genes. The method was also applied to floral transition data from A.

thaliana and identified the relationships of transcription factors, LFY, AP1, AP3, AG-

AMOUS, PI and SPL. These were confirmed to play pivotal roles in floral transition

and my method correctly placed them in the inferred transcription factor network. By

investigating shared and connected patterns, I was able to identify other transcription

factors that showed a strong association with the previously mentioned transcription

factors that regulate floral transition. The identified transcription factors assisted in

80



the detection of an association between rhythmic process regulation and immune re-

sponse regulation via regulation of gibberellins through the use of GO enrichment on

the inferred network.

From the success of using visualization from the pathway method, I chose to do the

same with the results of this method. By representing the relationships between pat-

terns on a graph, it was clearer and quicker to see which patterns initiated changes and

which associations had the most effect.

The concept behind the analysis was quite simple and could be easily implemented

in any statistics environment. The only additional data it relied on was transcription

factor identification. When applying this method to F. solaris, I looked for transcription

factor motifs which affected the interpretation of the results. Despite how I applied

very stringent criteria when choosing transcription factor candidates, the quality of in-

terpretation was hindered by the limited annotation that was available. In contrast,

the application of this method on to A. thaliana data showed that this method worked

well when the transcription factors were readily identifiable. The network inference is

sensitive to the initial gene list so including non transcription factor gene expressions

would interfere with the network inference and edge weight calculations. This could

also be why the inference produced better results for the A. thaliana data compared to

the F. solaris data. Although the use of discrete expression patterns made network infer-

ence possible, it also hindered the scalability of this method. The way the patterns were

networked together made it difficult for any connections to be made as the patterns got

longer with more time points, resulting in sparser, disconnected graphs. It was for this

reason that I chose to perform this analysis on a limited time frame for the A. thaliana

expression data. This effect could have been diminished with some adjustments made

to the edge making decision that would take into consideration the variability of pat-

terns in the time point locations on either side of the main connecting time point. The

resulting pathway was still successful in identifying transcription factor relationships

and determining which transcription factors would be good candidates for future re-

search in gene regulation.

Although TAG biosynthesis is the leading process for oil accumulation in F. solaris, my

analyses have also identified other processes that can influence the rate of accumula-

tion. These can include abiotic stress response genes, photosynthesis genes, carbon

fixation genes and cell cycle regulators. The effect of other processes has also been ob-

served in brown alga Ectocarpus siliculosus [194] and also in other microalgae, Chlorerlla

[195] and C. reinhardtii [111] [196]. However, my analyses only showed little change in

photosynthesis related metabolism in F. solaris compared to a more noticeable decrease
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in other diatoms, indicating that the observation of chloroplast breakdown observed

in C. reinhardtii which halted cell growth, does not occur or is very limited [197] [198].

My analyses also discovered notable increases in oxidative stress activity which concur

with a similar decrease in O2 evolution activity and acetate utilization in C. reinhardtii

[199], indicating that F. solaris is better at coping with the oil induction environment

than currently known diatoms. Lastly, by using my method, I was able to show suc-

cess with identifying transcription factors of microalgae using comparative analysis

[170], and identifying potential transcription factors for further study based on their

gene expression data and implicated the importance of the HSF transcription factor

domain in regulating abiotic stress response [176]. Since there has been some success

with manipulating transcription factors to increase oil accumulation, the transcription

factors unveiled by my method could be used as targets for similar metabolic engineer-

ing approaches in F. solaris [200].

The combination of analysis methods used on the F. solaris data here shows how data

analysis can be performed on a novel organism with limited available data and NGS

gene expression data taken in time series. The type of research involving F. solaris par-

ticularly focuses on the change in expression over time which is what all my methods

used to their advantage. This analysis approach can be applicable to other research

topics such as gene expression response to the introduction of a drug, the change in

gene expression during development or the impact of diseases on gene expression as

it develops. As more ambitious NGS projects are undertaken, there will be more of a

need for methods that help biologists investigate and interpret genes and expression in

the context of a dynamic living system and accordingly, make new hypothesis based

on what was observed in these types of preliminary findings.
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