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GWAS in Biobank Japan

(N = 158,284)
\ 6~ million variants p
134 variants selected 2~ million variants
(P<1.0x10%) (shared with GIANT)

2 2

Replication in Japanese
population based cohort

GWAS of Europeans

(N = 15,146) (N = 322,154)
Meta-a‘nalvsis Trans-ethnic‘meta-GWAS
(MANTRA)
Identification of Identification of
51 new loci 61 new loci
(P<5.0x10%) (log,,BF > 6)

Supplementary Fig. 1 Overview of the study
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c) Manhattan plot
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Supplementary Fig. 2

QQ plot, LD score plot and Manhattan plot of GWAS

a) QQ plot of GWAS (lambda GC = 1.44).

b) We generated LD score plot of GWAS. We plotted mean x? statistics for each LD score quantile. The
dashed line denotes the LD score regression line (intercept = 1.07, mean x? = 1.63, and the resulted h?
=0.17).

c) Manhattan plot of GWAS. We plotted loci newly reached genome-wide significance (lead variants +
1Mb) in pink. Previously reported loci were colored blue.

GWS; genome-wide significance.
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a) Manhattan plot of sex-stratified GWAS
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b) QQ plot for each sex
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c) Regional association plot
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Supplementary Fig. 3
Results of sex-stratified GWAS
a) Manhattan plot of the sex-stratified GWAS. Associations (-log,,P) were plotted positive y- and

negative y-axes for male and female, respectively. b) QQ plots of sex-stratified GWAS are colored
green for male and blue for female. c) Regional association plots of significant loci in men were shown.

Colors of plots indicate linkage disequilibrium measure r? with lead SNPs.
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Supplementary Fig. 4

Comparison of variants between male and female

Beta coefficients of significantly associated variants after stratified by sex. The variants which showed
nominal difference between sexes were plotted in yellow. Variants showed Bonferroni-corrected level
of significant difference (MAP3K12; a= 0.05/85) were plotted in red. Solid line denotes y = x.
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Supplementary Fig. 5

Regional association plots of secondary signals

a) — d) Regional association plots of conditional analysis. We plotted crude P value (colored gray), P
values of conditioned by top SNPs of each region (colored yellow) and conditioned by top and
secondary associated SNP (colored blue). Red diamonds indicate top SNPs in each region, and purple

diamonds denote second hits after conditioned by top hits.
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Supplementary Fig. 6

Distinct signals between Japanese and Europeans

a) — c) Regional association plots which showed different patterns
of association signals between current study and European
meta-GWAS conducted by GIANT consortium. We downloaded
GWAS summary statistics of European GWAS from their
download site. Chromosomal positions of SNPs were converted
from hg18 to hg19 using lift over tool implemented in UCSC
genome browser. Association results in GIANT GWAS were
plotted as diamonds. Association results in the current GWAS
were plotted as circles. Each plot were color coded according to
the pairwise LD (r?) with the lead variants of each study. In RIT2
region (c), we plotted the association results of female which was

reported as significant region in the original report.
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a) Manhattan plot of meta-GWAS without stratification by sex
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b) Manhattan plot of meta-GWASs with sex-stratification
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Supplementary Fig. 7

Manhattan plots of trans-ethnic meta-analysis

We plotted the result of trans-ethnic meta-analysis of the GWASs using current
Japanese and publicly available results of Europeans.

Manhattan plots of the GWAS wich was not stratified by sex (a) and sex-stratified were

shown. Y axis denotes log, Bayes’ s factor. Newly identified loci were colored red.
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Supplementary Fig. 8

Comparison of variants between European and Asian

We evaluated differences in effects of 163 loci which reached significant level in the trans-ethnic
meta-analysis between the current GWAS and European GWAS conducted by GIANT consortium
(Locke, A. E. et al. Nature 518, 197-206, 2015). Each plot were color coded according to P for

heterogeneity between studies. Solid line denotes y = x.
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a) Regional association plots for trans-ethinc meta-analysis in male.
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b) Regional association plots for trans-ethinc meta-analysis in female.
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c) Regional association plots for 16912 region in sex-stratified analysis.
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Regional association plots for sex-stratified trans-ethnic meta-analysis.

We plotted the associations of the significantly associated loci which were newly

found by the meta-analysis of sex-stratified GWAS in male (a) and female (b),

(QN/NP) B1eI UONEUIGIodSY

respectively. We additionally plotted chromosome 16g12 region to clarify positional

relationship among the distinct signals (c).
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Supplementary Fig. 10

Phenotypic variance explained by each chromosome

Plot shows explained variance explained by each chromosome estimated from GREML

analysis implemented by GCTA software. X axis is the chromosome length of each
chromosome in hg19.
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Supplementary Fig. 11

Phenotypic variance explained by subsets of variants based on P value

We estimated variance explained by subset of variants below P value thresholds for two Japanese
population cohort (JPHC and TMM). a) Estimates from P value based on current GWAS, b) Estimates
based on GIANT GWAS. Error bars indicate standard errors.
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© Nominal heterogeneity (P < 0.05)

0.15
|

® Bonferroni-corrected level of hetelfogeneity
(2} = E
L I E
o © |
O |
Y :
© 0 !
g 8- :
| @)

o ° | o ©  eKCNQT
Q Q e CDKN2B
() ® HHEX
T O ® DUSP9
B Q oo B
c O
o IGF2BP2
®© ® o !
: . 1
° 8 ® CDKAL1 ;
> i
= TCF7L2 l
g - :
£ i
8 o 5
g S |

S e

0 |

- |

© :

! [

\ \ I [
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Beta in individuals with T2D

Supplementary Fig. 12
Comparison of the variants between T2D and others

Comparison of beta coefficients for BMI between individuals with type 2 diabetes and individuals
who were not diagnosed as T2D. Loci which showed nominally significant difference were plotted

in yellow, Bonferroni-corrected level of differences were plotted in red.
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Supplementary Fig. 13

Forest plots of the effect sizes for BMI in T2D and in non-diabetics

Forest plot of the effect sizes for BMI at seven loci which showed significant differences between

individuals with type 2 diabetes (T2D) and individuals who were not developed T2D are shown.
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Supplementary Fig. 14
Comparison of T2D associated variants between GWAS and replication sets

We evaluated differences in effect sizes for BMI of 16 variants which reached genome-wide
significant level of association for type 2 diabetes (T2D) between GWAS and Japanese

population based cohorts (replication sets).
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Supplementary Note

1. Descriptions of the participating cohorts

The Biobank Japan (BBJ)

The BBJ Project (http://biobankjp.org) started at the Institute of Medical Science, the University
of Tokyo in 2003. To date, the BBJ Project has collected around 200,000 individuals with disease
cases consisting of 47 various diseases. These subjects were recruited from 12 medical
institutes in Japan including, Osaka Medical Center for Cancer and Cardiovascular Diseases, the
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Juntendo University,
Tokyo Metropolitan Geriatric Hospital, Nippon Medical School, Nihon University School of
Medicine, lwate Medical University, Tokushukai Hospitals, Shiga University of Medical Science,

Fukujuji Hospital, National Hospital Organization Osaka National Hospital, and lizuka Hospital.

Japan Public Health Center-based Prospective Study (JPHC)

The JPHC samples were derived from a cohort of 33,736 residents in 9 public health center
(PHC) areas who not only returned a self-administered questionnaire but also donated 10 mL of
venous blood at the baseline survey. For the first step of sample selection, we stratified the
cohort by sex, 5-year age categories, and 9 PHC areas, and then conducted a random sampling,
in which a similar proportion of subjects was selected from each stratum. Consequently, we
determined 9,296 subjects for the present GWAS. Before using the JPHC samples for genetic
research, we obtained an approval from the institutional review board of the National Cancer
Center (approval number: 2011-044), Tokyo, Japan, and provided all eligible subjects with the

opportunity to refuse participation in the research.
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The Tohoku Medical Megabank (TMM) Project

The TMM Project is a ten-year reconstruction project from the Great East Japan Earthquake,
2011, conducted by Tohoku University (http://www.megabank.tohoku.ac.jp/english/) and Iwate
Medical University (http://iwate-megabank.org/en/)'. The TMM Project conducts two prospective
cohort studies in Miyagi and lwate Prefectures, Japan; the TMM Community-Based Cohort
Study (TMM CommCohort Study) and the TMM Birth and Three-Generation Cohort Study (TMM
BirThree Cohort Study). The TMM CommCohort Study is a population-based adult cohort study
and has recruited approximately 84,000 participants aged 20 years or over during 2013—2016.
The TMM BirThree Cohort Study has recruited around 60,000 participants including fetuses and
their parents, siblings, grandparents, and extended family members as of July 2016, and will
recruit 70,000 or more participants by March 2017. All participants in the TMM Project consent
to genetic studies. Biospecimens (blood and urine) and medical data (questionnaires, blood and
urine tests, and physiological measurements) have been collected at baseline examination.
These samples and information are stored in the integrated biobank of the TMM Project.

DNA samples of the participants of the TMM CommCohort Study recruited in 2013 have
been analyzed by using the Illumina OmniExpressExome array (N=10,000). Information about
age and sex has been collected by using self-administered questionnaires and by reviewing
municipal basic resident register. Of the 10,000 persons with genotype data, height and weight
were measured for 9,202 persons in a standard manner. For persons without the measurement
of body height and weight (N=798), these variables were obtained from self-reported these
variables were obtained from self-reported questionnaires when available (N=703). Remaining
95 persons who had neither measured nor self-reported values are excluded from the analyses
of the present study. questionnaires when available (N=703). Remaining 95 persons who had

neither measured nor self-reported values are excluded from the analyses of the present study.
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2. Characteristics of samples analyzed in GWAS and population-based cohorts

Characteristics of participants

Study Study N (male / female) Age [year; mean  SD] BMI [kg/m2; mean t SD]
GWAS BBJ 158,284 (85,894 / 72,390) 62.6 +14.0 23.3+3.7
Cohorts JPHC 7,379 (2,475 / 4,904) 53.6+7.9 23.6+3.0

TMM 7,767 (2,623 / 5,144) 61.1+11.1 23.5+35
Total 173,430 (90,992 / 82,438)

Baseline characteristics of analyzed samples were summarized above.

BMI: body-mass index, SD: standard deviation.
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3. Evaluation of enhancer overlaps in each cell-type
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To evaluate the overlaps of enhancer in publicly available annotations, we downloaded two
chromatin state models (Core-15 state model (a), and Expanded 18-state model (b)) and
DNasel-accessible enhancer (c) information from Roadmap epigenomics project. We annotated
the variants included in the trans-ethnic meta-analysis (N = 2 mililon~) by each cell-type. From the
chromatin state information, we selected enhancers (state 7) in 15 state model, and Enhncer A1
(state 9) in 18 state model for the annotation, respectively.

We calculated the overlaps of the enhancer between the enhancer of cell-type A (EnhA)
and cell-type B (EnhB) as follows: Overlap = N(EnhA N EnhB) / N(EnhA U EnhB).

The figures (a - ¢) shows the overlaps amaong cell-types. We also plotted the density of the
overlaps in each pair of cell-types (d). Cell-types were coded according to the epigenome ID of the
Roadmap project. As a result, the mean overlaps were 10.3 % for 15-state model enhancer, 5.3
% for active enhancer of 18-state model, and 16.0 % in DNasel-accessible enhancer ,

respectively.
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4. GWASSs used for Cross-trait LD score regression analysis

a. Case-control study

1) Summary of the published GWAS used in cross-trait LD score regression analysis (n = 8)

Number of samples

Imputation

Rsq

Traits PMID
case control reference panel cut off
Adolescent idiopathic scoliosis® 2,109 11,140 1KGP EAS 0.9 26211971
Age-related macular degeneration®* 827 3,323 HapMap2 0.7 23455636
Atopic Dermatitis’ 1,472 7,966 1KGP EAS 0.7 26482879
Crohn's disease® 372 3,321 1KGP EAS 0.9 26511940
Inflammatory bowel disease® 743 3,321 1KGP EAS 0.9 26511940
opLL’ 1,130 7,135 1KGP EAS 0.9 25064007
Rheumatoid arthritis
4,873 17,642 1KGP EAS 0.5 24390342
(Asian samples onIy)8
Ulcerative colitis® 371 3,321 1KGP EAS 0.9 26511940

OPLL: Ossification of posterior longitudinal ligament of the spine.

Citation of these studies were shown in below reference section.

Nature Genetics: doi:10.1038/ng.3951
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2) Summary of the unpublished studies used in cross-trait LD score regression analysis (n = 25)

Number of samples Rsq Case
Diseases Covariates Controls
case ctrl cutoff recruitment

Arterial fibrillation 8,180 28,612 0.9 top 2 PCs BBJ Cohort
Asthma 7,570 28,870 0.7 age, sex, top 10 PCs BBJ Cohort
Basedow disease 1,961 7,968 0.7 none BBJ case-mix
Bipolar disorder 2,964 61,887 0.9 top 2 PCs Collaborators case-mix
Breast cancer 5,272 16,496 0.7 top 2 PCs BBJ Cohort (female only)
Cerebral Aneurysm 2,597 28,870 0.7 age, sex, top 10 PCs BBJ Cohort
Chronic hepatitis B 1,092 28,870 0.7 top 10 PCs BBJ Cohort
Chronic hepatitis C 4,988 28,870 0.7 top 10 PCs BBJ Cohort
Hepatocellular carcinoma 1,001 1,968 0.7 top 2 PCs BBJ Individuals with HCV+
in individuals with HCV but not developed HCC.
Endometrial cancer 1,931 17,492 0.7 top 2 PCs BBJ Cohort (female only)
Endometriosis 705 17,492 0.7 top 2 PCs BBJ Cohort (female only)
Esophageal cancer 1,225 27,178 0.7 top 2 PCs BBJ Cohort (female only)
Gastric cancer 6,171 27,178 0.7 top 2 PCs BBJ Cohort
Glaucoma 3,980 18,815 0.7 top 10 PCs BBJ Cohort
Ischemic stroke 16,256 27,294 0.7 age, sex, top 10 PCs BBJ Cohort
Lung cancer 3,874 27,178 0.7 top 2 PCs BBJ Cohort
Myocardial infarction 12,494 28,870 0.7 age, sex, top 20 PCs BBJ Cohort
Osteoporosis 7,099 28,870 0.7 age, sex, top 10 PCs BBJ Cohort
Ovarian cancer 681 17,492 0.7 top 2 PCs BB)J Cohort (female only)
Peripheral artery disease 3,382 28,870 0.7 age, sex, top 5 PCs BBJ Cohort
Prostate cancer 5,088 10,682 0.7 top 2 PCs BBJ Cohort (male only)
Colorectal cancer 6,692 27,178 0.7 top 2 PCs BBJ Cohort
Schizophrenia 1,987 9,788 0.7 Top 2 PCs Collaborators case-mix
Type 2 diabetes 36,832 28,870 0.7 age, sex, top 20 PCs BBJ Cohort
Uterine Fibroid 5,720 17,492 0.7 top 10 PCs BB)J Cohort (female only)

HCV: hepatitis C virus.

27

Nature Genetics: doi:10.1038/ng.3951



b. GWAS for hematological traits

Traits used in cross-trait LD score regression analysis (N = 8)

Covariates

Traits N Phenotype standardization
RBC 111,268 Z-scoret
WBC 110,397 Z-scoret
Platelet 110,659 Z-scoret

Lymphocytes 63,197  Rank-based normal transformation

Neutrophil 63,197 Rank-based normal transformation
Basophil 63,197 Rank-based normal transformation
Eosinophil 63,197 Rank-based normal transformation
Monocytes 63,197 Rank-based normal transformation

Age, Sex, Smoking (ever or never), top 10 PCs, affected disease
Age, Sex, Smoking (ever or never), top 10 PCs, affected disease
Age, Sex, Smoking (ever or never), top 10 PCs, affected disease
Age, Sex, Smoking (ever or never), top 10 PCs, affected disease
Age, Sex, Smoking (ever or never), top 10 PCs, affected disease
Age, Sex, Smoking (ever or never), top 10 PCs, affected disease
Age, Sex, Smoking (ever or never), top 10 PCs, affected disease

Age, Sex, Smoking (ever or never), top 10 PCs, affected disease

RBC: red blood cells, WBC: white blood cells.

1: Individuals who were out of normalized value + 4SD were excluded.

In all unpublished studies, we obtained GWAS summary statistics which imputed by minimac

using EAS samples of 1TKGP as reference after standard quality controls. Diagnoses of diseases

were based on medical records in collaborative hospitals. Most of cases were recruited by BBJ

project with seven exceptions (Bipolar disorder and schizophrenia were collected by M.1. and N.I.

and the advanced Collaborative Study of Mood Disorder (COSMO) team; the summary statistics

of GWAS for rheumatoid arthritis in Asian was obtained from Y.O.; age-related macular

degeneration, inflammatory bowel disease including ulcerative colitis and Crohn’ s disease,

adolescent idiopathic scoliosis and OPLL were collected by collaborating hospitals). As controls,

genotype data obtained by population-based cohort studies were used with ten exceptions

(Basedow disease, bipolar disorder, schizophrenia, age-related macular degeneration,

inflammatory bowel disease including ulcerative colitis and Crohn’ s disease, adolescent

idiopathic scoliosis, OPLL and hepatocellular carcinoma: case-mix controls were used).
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