
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Resource Allocation and Interference Management
for Heterogeneous Networks Governed by Massive
MIMO Macro Cell

?, 万明

https://doi.org/10.15017/1931936

出版情報：九州大学, 2017, 博士（工学）, 課程博士
バージョン：
権利関係：



.

Resource Allocation and Interference
Management for Heterogeneous

Networks Governed By Massive MIMO
Macro Cell

Wanming Hao

Graduate School of Information Science and Electrical Engineering
Kyushu University

This dissertation is submitted for the degree of
Doctor of Engineering

Kyushu University March 2018





Acknowledgements

I would like to express my special appreciation and thanks to my supervisor Assoc. Prof.
Muta Osamu for his support and guidance. I am very grateful for the pleasant research
environment and the tremendous opportunity to pursue a Ph.D. he gave me. His prudence
and perseverance for research became a model for me. He gave me many chance to attend
national and international conference to improve myself. Besides this, he gave me lots of
useful advice during our weekly meeting. He helped me improve my paper, presentation and
encourage me to exploit my full potential in academic studies. I will cherish the friendship
with him.

I would like to thank Prof. Furukawa Hiroshi. His expertise and wisdom in the research
area are significant value to me. His exceptional motivation, vision and integrity will always
be an inspiring role model for my future career. I also would like to thank Prof. Okamura
Koji and Assoc. Prof. Jitsumatsu Yutaka for their comments and advice for improving my
thesis. I also would like to thank Dr. Haris Gacanin for his help in modifying my paper, and
gave me many useful advice for writing and presentation.

I would like to thank my colleague in our laboratory, namely Dr. Togashi Hiroaki, Mr.
Kojima Yuki, Mr. Kageyama Tomoya, Mr. Matsuzaki Kouki and so on. I also would like to
thank my roommates, Mr. Kai Wen and, Mr. Xiaochen Yang. I also would like to thank my
friends, Miss Ting Cheng, Mr. Shiyan Feng, Mr. Liang Shang and so on. They gave me lots
of help in my life and research.

Last, my special gratitude goes to my family for their unconditional love and infinite
encouragement. Thank you all for supporting me in all my pursuits.

Wanming Hao
Fukuoka, Japan, March, 2018





Abstract

Given the 1000x capacity increase requirement for the next-generation cellular networks,
massive multiple input multiple output MIMO (mMIMO), small cells (SCs) and cognitive
radio (CR) have been proposed as important techniques. Therefore, the mMIMO coexists with
CR or SCs to form an mMIMO heterogeneous network (HetNet), i.e., mMIMO-CR HetNet
and mMIMO-SC HetNet, will be promising schemes. However, it brings more challenges
due to the combination, especially for pilot contamination and interference management. The
theme of this thesis is to propose advanced schemes for improving the achievable capacities
(including per-user transmission rate and system sum rate) in mMIMO-HetNet by reducing
the pilot contamination and coordinating the interference, which is divided to three parts.

For the first part (i.e., chapter 2), we study the pilot allocation problem in mMIMO homo-
geneous network for reducing the pilot contamination. To reduce the required complexity for
finding the optimum pilot allocation, we propose a low-complexity pilot allocation algorithm.
In addition, to improve users’ fairness, we formulate a fairness aware pilot allocation problem
and solve the formulated problem using a similar algorithm. Simulation results show that our
proposed pilot allocation scheme can improve per-user transmission rate by about 17% in
comparison with the conventional pilot allocation scheme.

For the second part (i.e., chapters 3 and 4), we study the pilot and power allocation
problems in mMIMO-CR HetNet. We first propose a price-based iterative pilot allocation
algorithm to obtain a win-win paradigm between primary network (PN) and cognitive
network (CN) in chapter 3. The results show that the PN and CN can obtain positive revenue,
which implies that pilot sharing concept between PN and CN is effective in improving the
performance of both PN and CN. Next, to avoid producing serious interference from the CN
to PN, we investigate the power allocation problem of the CN in mMIMO-CR HetNet with
pilot contamination in chapter 4. We propose an orthogonal pilot sharing scheme at pilot
transmission phase, where cognitive users are allowed to use pilots for channel estimation
only when there are temporarily unused orthogonal pilots. Following this, we formulate the
power allocation optimization problem of the CN to maximize the downlink sum rate of the
CN subject to the total transmit power and primary users’ signal to interference plus noise
ratio (SINR) constraints. Then, we propose an iterative algorithm to solve the formulated



vi

problem. The numerical results show that our proposed scheme can improve the sum rate of
the CN by about 10% in comparison with the conventional scheme.

For the third part (i.e., chapters 5 and 6), we investigate the pilot allocation and inter-
ference management problems in mMIMO-SC HetNet. We first propose a pilot allocation
scheme for maximizing ergodic downlink sum rate of the system in chapter 5, where the
uplink pilot overhead and inter-tier interference are jointly considered. Then, we propose
a low complexity one dimensional search algorithm to obtain the optimum pilot allocation.
In addition, we propose two suboptimal pilot allocation algorithms to simplify the compu-
tational process and improve users’ fairness, respectively. Simulation results show that our
proposed scheme can improve the sum rate of the system by about 12% in comparison with
the conventional scheme. Based on this, we investigate the dynamic SC clustering strategy
and their precoding design problem for interference coordination in mMIMO-SC HetNet in
chapter 6. An interference graph-based dynamic SC clustering scheme is proposed. Based on
this, we formulate an optimization problem to design precoding weights at macro base station
and clustered SCs for maximizing the downlink sum rate of SC users subject to the power
constraint of each SC base station. A non-cooperative game-based distributed algorithm is
proposed to solve the formulated problem. Simulation results show that our proposed scheme
can improve the sum rate of SC users by about 40% in comparison with the conventional
scheme.

In conclusion, through the above analysis and results, this thesis clarifies that the proposed
schemes (pilot allocation, power allocation, SC clustering, and precoding design) are effective
in increasing the achievable capacities in two types of NetNets (i.e., CR-type and SC-type)
governed by mMIMO macro cell.
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Chapter 1

Introduction

1.1 Background

Over the past a few decades, the wireless communications and networks have witnessed an
unprecedented growth and steady evolution from the first to the fourth generation wireless
networks. Meanwhile, some advanced techniques, like wideband code division multiple
access (WCDMA), orthogonal frequency division multiple access (OFDMA) etc., have
significantly contributed towards this gradual evolution. However, in recent years, the mobile
data traffic (e.g., mobile video conference, streaming video and online game, etc.) and the
advanced communication devices (e.g., smartphones, tablets and laptops, etc.) have been
increasing rapidly. Fig. 1.1 and Fig. 1.2 show the demand for mobile data traffic and devices
from 2016 to 2021, respectively [1]. The global mobile data traffic is expected to increase
to 49 exabytes per month by 2021, and the number of mobile devices and connections
are expected to grow to 11.3 billion by 2021. Although the increasing smartphones and
multimedia services satisfy users’ experiences and requirements, the recent mobile network
has not achieved enough capacity to provide such huge increase of the video traffic in
future [2]-[4]. As a result, how to satisfy the increasing traffic requirement has become
one of challenges in future mobile networks. Two promising techniques to solve this issue
are massive multiple input multiple output (mMIMO) and heterogeneous network (HetNet)
concepts.

1.1.1 Massive MIMO and Heterogeneous Network

mMIMO is an effective technique to improve the capacity, where the base station (BS)
is equipped with a large number of antennas to serve multiple users with the same time
frequency resource, i.e., the number of user terminals is much less than the number of BS
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antennas [5]. In this case, the huge throughput can be obtained because of the high degrees
of freedom for mMIMO BS. Meanwhile, it has been verified that the full advantage of the
mMIMO can be exploited by using simple linear-based approaches such as maximum ratio
transmission (MRT), maximum ratio-combining (MRC) or zero forcing (ZF) [6]. The effects
of fast fading, intra-cell interference and uncorrelated noise tend to disappear as the number
of BS antennas grows enough large.

On the other hand, the HetNet is also a promising scheme to improve capacity. Different
from the conventional homogeneous network which is governed by only one type of network,
HetNet is defined as the combination of different types of networks. We can categorize
HetNet into two types in a viewpoint of what system coexists, i.e., cognitive radio (CR) type
and small cell (SC) type. In the former case, the primary network (PN) and cognitive network
(CN) coexist to form a CR-type HetNet as shown in Fig. 1.3, where both networks have
different priorities. In the later case, the macro cell (MC) network and SC network coexist to
form a SC-type HetNet as shown in Fig. 1.4, where both networks have the same priority
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Fig. 1.3 The CR type HetNet model.

unlike the CR type. In this study, it is assumed that both types of HetNets are governed by
MC with mMIMO to improve the system capacity. In the following sections, these two types
of HetNets are explained, respectively.

1.1.2 Cognitive Radio Type Heterogeneous Network with Massive MIMO

The advantages of the CR-type HetNet can be summarized as follows: It is well known
that more spectrum can bring higher throughput, but it seems that the wireless spectrum has
crowded, and no more possible assignments for new users or services. However, the real
problem of the spectrum scarcity has been shown by Federal Communications Commission
(FCC) due to the fixed assignment of radio resource [7]. For example, Fig. 1.5 shows that
the spectrum are not used at all time, and there always exists spectrum idle. Therefore, how
to fully utilize those temporarily unused spectrum and improve the spectrum utilization is
critical. Based on this, the CR technology has been proposed [8], which is defined as an
intelligent wireless communication system that is aware of its surrounding environment
in real-time. The CR can scan the frequency band of interest to assess the presence of
active primary users (PUs) through a spectrum sensing process. For a given sensing result,
CR needs to implement an adequate protocol for using the spectrum, namely spectrum
access technique. There are three main spectrum access schemes: underlay, interweave
and overlay [9]. Under the underlay design, cognitive users (CUs) are allowed to share the
licensed spectrum with PUs as long as the interference to PUs is below a given threshold.
By contrast, under the interweave design, CUs are requested to use the licensed spectrum
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2

Research Background (1/3)
-- Cognitive Radio (CR) ---

Cognitive radio (CR) is an effective approach 
for improving the spectrum utilizationFig. 1.5 The wireless spectrum utilization.

only when the spectrum are not used by PUs. Similarly with the first design, under the
overlay design, CUs are allowed to share the licensed spectrum with PUs. However, CUs
are requested to cooperate with PUs’ communication by using some sophisticated signal
processing and coding technology, while obtaining the chance for their own communication.
From the above analysis, it is clear that the CR technology coexisted with primary MC is
treated as the HetNet, and different priority should be considered, namely the PUs have the
high priority to use the resource. In other words, transmission power and available resources
for the CN are strictly restricted unlike the PN.

We have analyzed the advantages of mMIMO and HetNet in improving the capacity in
previous section. Therefore, to future improve the performance of the CR-type HetNet, the
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primary BS (PBS) and cognitive BS (CBS) can be equipped with a large number of antennas
and form a CR-type HetNet with mMIMO. Hereafter, we denote it as mMIMO-CR HetNet
in this thesis.

1.1.3 Small Cell Type Heterogeneous Network with Massive MIMO
Macro Cell

For the SC-type HetNet, it is well known that the deployment of SCs can effectively improve
the throughput of the system. For example, in a multi-user network, users in the coverage
of a cell share the available bandwidth. Thus, reducing the cell size and deploying more
cells also reduce the coverage of per cell, and in turn increases the bandwidth available to
each user. Meanwhile, the deployment of SCs shortens the distance between terminals and
BSs, and thus 1) lowering the transmit power, 2) improving the signal to noise ratio and 3)
realizing the dense spectrum reuse, such as femtocells, picocells and microcells. In addition,
different from the CR-type HetNet, all users own the same priority to use resource.

Similar to the mMIMO-CR HetNet, all BSs can be also equipped with a large number
of antennas in the SC-type HetNet for improving the achievable capacity of the system.
However, we know that there are two classes of BSs. One is the macro BS (MBS) that has
the high transmit power and large coverage area. The other is the SC BS (SBS) that has the
low transmit power and small coverage area, and its physical size is also small. Therefore, it
is unnecessary and difficult to equip a large number of antennas at SBS. Based on the above
discussion, in this study, it is assumed that a large number of antennas is equipped on only
MBS coexisted with SCs to form a SC-type HetNet with mMIMO MC. Hereafter, we denote
it as mMIMO-SC HetNet in this thesis.

1.2 Technical Challenges for Heterogeneous Network with
Massive MIMO

1.2.1 Application of Massive MIMO to Heterogeneous Network

We have analyzed the advantages of the mMIMO-CR and mMIMO-SC HetNets in the
previous subsection. However, there also exist technical challenges for the application of
mMIMO techniques. In general, the precoding is used at mMIMO BS to cancel multi-user
interference. In this case, the channel state information (CSI) should be obtained by channel
estimation. Channel estimation is usually based on pilot, including uplink pilot (from users
to the BS) and downlink pilot (from the BS to users). For the downlink pilot, the demand
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of the orthogonal pilots (here, orthogonal pilots means that the different pilot codes are
orthogonal) is huge when there are a large number of BS antennas. This is because that
each antenna needs to be allocated one orthogonal pilot. As a result, the huge number of
orthogonal pilots is required due to the pilot overhead and thus it results in decreasing the
transmission efficiency. On the contrary, when the uplink pilot is used, namely each served
users transmits one orthogonal pilot. In this case, the number of orthogonal plots is equal
to the number of users. In general, the number of served users is much less than that of
the BS antennas. Therefore, the pilot overhead is small for the uplink pilot transmission,
which is usually used in mMIMO system [5]. According to this, the time division duplex
(TDD) is adopted because the estimated uplink CSI can be used for downlink. Here, in TDD
systems the pilot and data transmission occupy different time in each frame. Although the
orthogonal pilots can be used at each cell, they have to be reused in different cells due to the
limited coherence time. As a result, different users will use the same pilot, which causes
pilot interference (i.e., pilot contamination) [10]. Therefore, when the mMIMO is applied in
HetNet, the pilot contamination must be considered and solved.

We first analyze the basic pilot contamination problem in mMIMO homogeneous network.
We assume that a total of L cells share the same set of K pilot signals. In each cell, the BS
is equipped with a large number of antennas M to serve K user terminals. In this case, the
received signal of the jth BS can be written as

r j =
√

pu

L

∑
l=1

G jlxl +n j, (1.1)

where pu is the average transmit power of each terminal, G jl is the M×K channel matrix
between the K terminals in the lth cell and the BS antennas in the jth cell, where[G jl]mk =

gm jkl =
√

β jklhm jkl , xl denotes the transmit symbols from the lth cell, and n j is vector of
receiver noise. Let Ĝ j j denotes the estimate for the M×K propagation matrix between the
M base station antennas of the jth cell, and the K terminals in the jth cell, which can be
written as

Ĝ j j =
√

pt

L

∑
l=1

G jl +v j, (1.2)

where pt is the pilot transmit power, and v j denotes the received noise. The BS processes its
received signal by MRC and yields

r̂=ĜH
j jr j =

[
√

pt

L

∑
l=1

G jl +v j

]H [
√

pu

L

∑
l=1

G jlxl +n j

]
. (1.3)
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As M grows infinity the L2-norm of these vector grows proportional to M, while the
inner products of uncorrelated vectors grows at a lesser rate. For a large M, the products of
identical quantities remain significant and we have

1
M

GH
jl1G jl2 = D1/2

β̄ jl1

(
HH

jl1H jl2

M

)
D1/2

β̄ jl2
, (1.4)

where D
β̄ jl

is a K×K diagonal matrix and
[
β̄ jl
]

k = β jkl , H jl is a M×K fast fading coefficients

matrix and
[
H jl
]

mk = hm jkl . As M goes into infinity we have 1
M HH

jl1H jl2 → IKδl1l2 , where
IK is the K×K identity matrix. Then, we have

1
M
√

pt pu
r̂ j→

L

∑
l=1

D
β̄ jl

xl. (1.5)

The kth component of the processed signal becomes

1
M
√

pt pu
r̂k j→ β jk jxk j +∑

l ̸= j
β jklxkl. (1.6)

Therefore, the user’s rate can be written as

Rlk = log2

(
1+

β 2
lkl

∑l ̸= j β 2
jkl

)
. (1.7)

From (1.7), it is clear that the user’s rate is affected by pilot contamination from other
cells. Therefore, how to reduce the pilot contamination is a key problem when the mMIMO
technique is applied. In this thesis, we will first investigate the pilot contamination and
propose effective pilot allocation schemes in a homogeneous mMIMO network to reduce
pilot contamination, which will be the fundament for investigating the mMIMO-CR and
mMIMO-SC HetNets.

1.2.2 Challenges for Cognitive Radio Type Heterogeneous Network with
Massive MIMO

We have analyzed that pilot contamination should be considered in mMIMO. Since PBS
and SBS are all equipped with a large number antennas, it is necessary to investigate the
pilot allocation problem in mMIMO-CR HetNet. In addition, for CR HetNet, it is well
known that the PN has the high priority to use the resource. In other words, although the
CN is allowed to share the resource with PN, the serious interference produced by CN to
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PN should be avoided. Otherwise, the communication of the PN will be affected. Based on
this, when the CN shares the resource with PN, the CBS must control the transmit power
so that the produced interference to PN below to a tolerated level. Therefore, except for the
pilot allocation, power allocation to CUs must be considered, which is also a challenge in
mMIMO-CR HetNet.

1.2.3 Challenges for Small Cell Type Heterogeneous Network with Mas-
sive MIMO Macro Cell

Since the MBS is equipped with a large number of antennas, the pilot contamination should
be considered in mMIMO-SC HetNet. Different from the mMIMO-CR HetNet, the MUs
and SUs have the same priority to use the resource. In this case, the MUs’ and SUs’
interference should all be effectively coordinated. In fact, from the Fig. 1.4, it is clear that
the SU’s interference from the MBS is serious due to the high transmit power of the MBS.
In addition, when there are a lot of SCs covered with MC, the interference among SCs
has to be considered. As a result, how to reduce the interference from the MBS to SUs
and coordinate the interference among SCs are also critical and challenges in mMIMO-SC
HetNet. Based on this, for the interference from the MBS to SUs, effective precoding design
must be considered. For the interference coordination among SCs, SC clustering should be
one of the solutions.

1.3 Motivations and Contributions of This Thesis

1.3.1 Motivations of This Thesis

Based on the above analysis, it is clear that there exists a common challenge to apply
mMIMO technique to CR- and SC-HetNets, i.e., pilot contamination. Meanwhile, there are
also different challenges for these two types of HetNet. Concretely, in mMIMO-CR HetNet,
we need to consider how to control the transmit power of the CBS to avoid producing serious
interference to PUs. In mMIMO-SC HetNet, we need to consider how to coordinate the
interference among MUs and SUs, and the interference among SCs. Based on this, the
motivation of this paper is how to solve the above challenges in these two types of HetNets.
To this end, objective of this thesis is divided into the following three parts to investigate the
above challenges.
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• The first part is to study the pilot allocation problem in mMIMO homogeneous network
and clarify that the pilot allocation is effective to improve the capacity for a mMIMO
network (i.e., chapter 2).

• The second part is to study the pilot and power allocation problems in mMIMO-CR
HetNet where CN and PN have different priorities (i.e., chapters 3 and 4).

• The third part is to study the pilot allocation and interference management problems in
mMIMO-SC HetNet where SC and MC have the same priority (i.e., chapters 5 and 6).

1.3.2 Contributions of This Thesis

The key contributions of this thesis are summarized as follows:

•We propose a low complexity pilot allocation algorithm to maximize the uplink rate of
the mMIMO homogeneous network. Meanwhile, to improve the users’ fairness, we
formulate a fairness aware pilot allocation as maximization problem of sum of user’s
logarithmic and apply the similar algorithm to obtain the solution (i.e., chapter 2).

• We propose a price-based iterative pilot allocation algorithm to obtain a win-win
paradigm between PN and CN in mMIMO-CR HetNet (i.e., chapter 3). Next, we
propose an iterative power allocation algorithm to maximize the downlink sum rate of
the CN subject to the transmit power and the SINR constraints of the PUs in mMIMO-
CR HetNet (i.e., chapter 4).

•We propose an optimum pilot allocation scheme to maximize the downlink sum rate
of the mMIMO-SC HetNet. Meanwhile, two suboptimal algorithms are proposed to
simplify the optimization process and improve the SUs’ fairness, respectively (i.e.,
chapter 5). Next, to reduce the interference among SCs, an interference graph-based
dynamic SC clustering scheme is proposed. Then, a non-cooperative game-based
precoding design algorithm is proposed to maximize the downlink sum rate of the SUs
in mMIMO-SC HetNet (i.e., chapter 6).

1.4 Organization of This Thesis

This thesis is organized in seven chapters, which are summarized as follows:
Chapter 1 provides a broad introduction on target system and related techniques, i.e.,

mMIMO, mMIMO-CR HetNet and mMIMO-SC HetNet. Next, we study the basic problem
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in chapter 2, namely the pilot allocation problem in a mMIMO homogeneous network. Then,
we study the pilot and power allocation problem in mMIMO-CR HetNet. We divide two
chapters (i.e., chapters 3 and 4) to consider them. Specifically, in chapter 3, we study the
pilot allocation problem based on the infinite number antenna at BS. After that, the limited
number antenna and power allocation at BS is studied in chapter 4. To this end, we study
the pilot allocation and interference management problems in mMIMO-SC HetNet. We still
divide two chapters (i.e., chapters 5 and 6) to consider the above problem. Specifically, in
chapter 5, we only investigate the pilot allocation problem in mMIMO-SC HetNet. Based
on the chapter 5, we study the SC clustering and precoding design to solve the interference
problem in chapter 6. Chapter 7 summarizes this thesis and gives the future research direction.



Chapter 2

Pilot Allocation for Massive MIMO
Homogeneous Network

2.1 Introduction

In this chapter, we will investigate how to reduce pilot contamination by effective pilot
allocation so as to improve the performance of the mMIMO system. In fact, pilot contamina-
tion problem has been studied widely in the literature [11]-[15]. In [11], a pilot assignment
scheme is proposed to mitigate pilot contamination problem, where the allocation of pilot
sequences is optimized to maximize the signal-to-interference power ratio on the uplink.
The work in [12] proposes the users scheduling per cell in order to maximize the spectral
efficiency, but for the given number of users in each cell, the approach does not take into
consideration the pilot allocation strategy. In [13], a fractional pilot reuse scheme is proposed,
where users in different cells are allowed to reuse the same pilot sequence if they are close to
their BSs. Otherwise, if users are located far away from BS in different cells, the orthogonal
pilot sequences must be used. Thus, the pilot allocation is not considered for users located
closely to their BSs. In [14], a graph coloring based pilot allocation is proposed to reduce
the pilot contamination. The authors first construct an interference graph according to the
strength of potential pilot contamination between any two users in different cells with the
same pilot. Then, they allocate pilots among users in order to minimize potential pilot
contamination term in the graph. In [15], the authors assume that a subset of pilots is owned
by each cell and then, cells may cooperate to utilize pilots from other cells and support more
users. However, the pilot-to-user allocation is not considered. Although some pilot allocation
schemes in works [11]-[15] are proposed to improve the capacity of the system, they are all
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not global optimum pilot allocation schemes when considering the sum rate maximization of
the system.

In this chapter, we assume that an uplink communication is established in two phases: (i)
pilot and (ii) data signaling. Thus, by reducing the interference between utilized pilots from
adjacent cells, the (data) uplink user sum rate may be improved. The optimum pilot allocation
is decided by a central control unit (CCU) that acts as master BS. Then, we formulate the
pilot allocation optimization problem of maximizing the uplink sum rate of the mMIMO
systems. To decrease the complexity, we propose an iterative pilot allocation optimization
algorithm, where the original problem is transformed into a number of subproblems which
can be solved as one-to-one matching problem. The Hungarian algorithm [16] can be applied
to find the optimum pilot allocation problem in each subproblem. In addition, to improve the
users’ fairness, we formulate a users’ fairness aware pilot allocation as maximization problem
of sum of user’s logarithmic rate and use a similar algorithm to obtain the corresponding
pilot allocation.

2.2 System Model

We consider an uplink multi-cell system composed of L hexagonal cells as shown in Fig.
2.1. The radius of each cell is rc, and white area in each cell denotes the cell-hole (users are
not located within the center disk of radius rh). One of the BSs works as CCU, while each
BS is equipped with M antennas and serves K (M≫ K) single-antenna users. We assume
that there is time-frequency coherent block of S symbols in each frame. K orthogonal pilot
signals ΨΨΨ = [ψψψ1,ψψψ2, · · · ,ψψψK]

T ∈ C K×K(ψψψ i = [ψi1, · · · ,ψiK]
T ) are reused in adjacent cells

due to the limited coherence time, while different users in each cell use orthogonal pilots to
avoid severe interference, and we assume that ΨΨΨΨΨΨ

H = IK . Here, (·)T and (·)H denote the
transpose and Hermitian transpose, respectively.

During the training phase, the received signal at the BS of the l-th cell can be expressed
as:

Yl =
√

pp

L

∑
j=1

K

∑
k=1

hl jkψψψ
T
k +Zl, (2.1)

where pp denotes the pilot transmit power, Zl ∈ C M×K is an independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN) defined as C N (0, δ 2

z ) , hl jk ∈
C M×1 is the channel coefficient between BS in the l-th cell and the k-th user in the j-th cell.

hl jk=
√

βl jkgl jk, where βl jk and gl jk ∼ C N (0, IM) denote the large-scale fading coefficient
and small-scale fading vector, respectively.
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c
h

Fig. 2.1 Uplink interference model for the multi-cell mMIMO system.

The channel estimate of the k-th user in the l-th cell is obtained by correlating Yl with
ψψψ∗k as follows:

h̃llk = hllkψψψ
T
k ψψψ
∗
k +

L

∑
j ̸=l

K

∑
i=1

hl jiψψψ
T
i ψψψ
∗
k +

1
√pp

Zlψψψ
∗
k

= hllk +
L

∑
j ̸=l

K

∑
i=1

f [θ( j, i),θ(l,k)]hl ji +wlk,

(2.2)

where (·)∗ denotes the complex conjugate, wlk denotes the equivalent noise, ψψψθ( j,i) (θ( j, i)∈
{1, · · · ,K}) denotes that the θ( j, i)-th pilot is used by the i-th user in the j-th cell with
θ( j,k) ̸= θ( j,k′) when k ̸= k′. In the above expression, f [·] ∈ {0,1} represents the pilot
reuse index, f [θ( j, i),θ(l,k)] = 1 when θ( j, i) = θ(l,k), else f [θ( j, i),θ(l,k)] = 0.

During the data phase, the received signal at the BS of the l-th cell can be expressed as:

yl =
√

pt

L

∑
j=1

K

∑
k=1

hl jkx jk +nl, (2.3)
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where pt denotes the uplink data transmit power, x jk denotes the data transmitted by the k-th
user in the l-th cell with E[|xlk|2] = 1 and nl ∼ C N (0, σ2

l IM) denotes the noise, where E[·]
denotes the expectation operator.

Using the channel estimate of the k-th user in (2), the matched-filter (MF) detector is
applied to obtain the decision variables of the k-th user as:

x̃lk = h̃H
llkyl =

√
pthH

llkhllkxlk︸ ︷︷ ︸
Desired signal

+
√

pt

K

∑
n̸=k

hH
llkhllnxln︸ ︷︷ ︸

intra−cell interference

+
√

pt

L

∑
j ̸=l

K

∑
i=1

L

∑
m=1

K

∑
n=1

f [θ( j, i),θ(l,k)]hH
l jihlmnxmn︸ ︷︷ ︸

pilot contamination

(2.4)

+
√

pt

L

∑
m ̸=l

K

∑
n=1

hH
llkhlmnxmn︸ ︷︷ ︸

inter−cell interference

+ ωlk︸︷︷︸
uncorrelated noise

,

where ωlk=hH
llknl+∑

L
j̸=l ∑

K
i=1 f [θ( j, i),θ(l,k)]hH

l jinl+wlk
Hnl . In (2.4), the first term denotes

the desired signal component, the second term denotes the intra-cell interference, the third
term denotes the pilot contamination, the fourth term denotes the inter-cell interference, and
the last term denotes the uncorrelated noise after MF filtering. According to (2.4), the average
uplink rate of the user can be expressed as

rlk = E

{
log2

(
1+

∣∣hH
llkhllk

∣∣2
INlk + |ωlk|2/pt

)}
(2.5)

where INlk =
K
∑

n̸=k

∣∣hH
llkhlln

∣∣2+ L
∑

m̸=l

K
∑

n=1

∣∣hH
llkhlmn

∣∣2+ L
∑
j ̸=l

K
∑

i=1

L
∑

m=1

K
∑

n=1
f [θ( j, i),θ(l,k)]

∣∣∣hH
l jihlmn

∣∣∣2.

2.3 Problem Formulation and Solution

In this section, we first formulate a pilot allocation optimization problem to maximize uplink
sum rate of the system. Then, we propose a low-complexity algorithm to obtain the optimal
solution. Next, considering users’ rate fairness, we formulate a fairness aware pilot allocation
as maximization problem of sum of user’s logarithmic rate and use the similar method to
solve the formulated problem.
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2.3.1 Problem Formulation Based on Sum Rate Maximization

We formulate the pilot allocation optimization problem for maximizing uplink sum rate of
the system as follows:

max
θθθ

R(θθθ) =
L

∑
l=1

K

∑
k=1

(1−η)rlk

s.t θ(l,k) ∈ {1,2, · · · ,K},∀l,k, (2.6)

θ(l,k) ̸= θ(l,k′),k ̸= k′,

where θθθ = [θ(l,k)]LxK denotes the pilot allocation index for each user, η = K/S. Note that
accurate CSI is needed to estimate user’s rate rlk for solving the optimization problem (2.6).
However, based on the fact that CSI can not be obtained before determining pilot allocation,
it seems that it is not possible to solve the problem (2.6).

According to [17], when the number of BS antennas M goes to infinity, the uplink rate
can be approached using only large-scale fading coefficients as

rlk ≈ log2

(
1+

β 2
llk

∑
L
j ̸=l ∑

K
i=1 f [θ( j, i),θ(l,k)]β 2

l ji

)
. (2.7)

It can be observed from (2.7) that the uplink rate in the optimization problem can be
approximated with only the large-scale fading coefficients, which can be easily tracked by
the BSs. Here, we propose to use approximated rate in (2.7) for solving the problem (2.6).
The details of the proposed algorithm to solve (2.6) is mentioned in next subsection.

2.3.2 Proposed Sum Rate Maximization Scheme

Problem (2.6) is known as mixed integer programming (MIP) problem. The challenge of this
problem is the discrete nature of the pilot allocation index. Exhaustive search can be used
to find the optimum pilot allocation, but it requires high computational complexity given
as O((K!)L). Thus, exhaustive search is not feasible solution for a large number of users in
multi-cell mMIMO system.

To decrease the computational complexity, we decouple (2.6) into L subproblems, where
in each subproblem, we aim at optimizing the pilot allocation of K users in one particular
cell and fix pilot allocation in other L-1 cells. Based on the above description, we can get
one of subproblems as follows:



16 Pilot Allocation for Massive MIMO Homogeneous Network

Uplink sum rate 
Convergence
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at each iteration
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Fig. 2.2 Iteration diagram for pilot allocation in the proposed algorithm.

max
θθθ m

Rm(θθθ−m,θθθ m) (2.8)

s.t. θ(m,k) = {1,2, . . . ,K},∀k
θ(m,k) ̸= θ(m,k′),k ̸= k′

where Rm(θθθ−m,θθθ m)=
L
∑

l=1

K
∑

k=1
(1−η)log2

(
1+ β 2

llk
∑

L
j ̸=l ∑

K
i=1 f [θ( j,i),θ(l,k)]β 2

l ji

)
, θθθ−m denotes the pi-

lot allocation decision matrix except for the m-th cell, and θθθ m the pilot allocation matrix in
the m-th cell. For (2.8), since pilot allocation in other cells have been decided in advance
(at the beginning, we assume that the pilots are randomly allocated in these cells), we just
need to allocate pilots to users in the m-th cell for maximizing the sum rate of the system.
Exhaustive search is not feasible because the required complexity is given as (O(K!)) and
significantly increased with a large K.

To reduce the required complexity for finding the optimum solution, we propose a low-
complexity pilot allocation scheme. Since we have fixed pilot allocation in other L−1 cells,
the problem (2.8) is reduced to a one-to-one matching problem, namely K users select K
pilots. Next, we define the one-to-one matching problem as follows:

Definition: We assume that there are K users and K pilots, and we need to allocate the K
pilots to K users. The allocation rule is that every user is assigned one pilot and each pilot is
only assigned to one user. Each possible allocation between the i-th pilot and the k-th user is
associated a utility Uik (the Uik can be regarded as the revenue of the k-th user when it uses
the i-th pilot), which is given in Table 2.1.
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Table 2.1 The utility of pilot allocation

Pilot
User

1 2 3 · · · K

1 U11 U12 U13 · · · U1K
2 U21 U22 U23 · · · U2K
3 U32 U32 U33 · · · U3K
... · · · · · · · · · . . . ...
K UK1 UK2 UK3 · · · UKK

Then, the matching problem can be presented by the following optimization problem:

max
cnm

K
∑

n=1

K
∑

m=1
cnmUnm

s.t.
K
∑

n=1
cnm = 1, ∀n, (2.9)

K
∑

m=1
cnm = 1, ∀m,

cnm ∈ {0,1}, ∀n,m,

where cnm denotes the binary assignment variable, and cnm = 1 means that pilot n is allocated
to user m, and cnm = 0, otherwise. ∑

K
n=1 cnm = 1 denotes that each pilot is only allocated to

one user, ∑
K
m=1 cnm = 1 denotes that each user is only allocated one pilot.

As for the problem (2.9), the optimal matching problem can be solved by applying the
well-known Hungarian algorithm [18], which is a combinatorial optimization algorithm that
solves the assignment problem in polynomial time. Therefore, the subproblem (2.8) can be
solved by using the similar method. We rewrite the subproblem (2.8) as follows:
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max
θθθ m

K

∑
a=1

K

∑
p=1

capRap
m (θθθ−m,θθθ m)

s.t. Rap
m (θθθ−m,θθθ m) =

Rm(θθθ−m,θθθ m),

θ(m,a) = p,

K

∑
a=1

cap = 1, ∀a, (2.10)

K

∑
p=1

cap = 1, ∀p,

cap ∈ {0,1}, ∀a, p.

where a and b denote the pilots and users index in the m-th cell, respectively. We can find
that the subproblem (2.10) is also an one-to-one matching problem and the optimum pilot
allocation can be obtained by applying the Hungarian algorithm. Next, we move to the next
cell and use the same method to optimize pilot allocation for next subproblem. After multiple
iterations, the global optimum pilot allocation for problem (2.6) can be obtained according to
the Proposition 1. To describe our proposed algorithm more clearly, we present the iterative
diagram in Fig. 2.2. For example, at the first step, the m = 1 in problem (2.10), namely, we
only optimize the pilot allocation at the 1st cell while fixing pilot allocation in other cells.
After solving problem (2.10), we can obtain the uplink sum rate. Then, similar to the first
step, we optimize the pilot allocation at the 2nd cell as the second step of Fig. 2.2. This
process is continued until the uplink sum rate is converged. We also summarize the above
method in Algorithm 1.

Proposition 1: For given L and K, global optimum pilot allocation converges after a
finite number of iterations.

Proof: In solving each subproblem (iteration), the pilot allocation is obtained according
to the Hungarian method, and the sum rate of the system is maximized in this optimization
(iteration). Therefore, the objective of problem (2.6) increases over each iteration until
converges.

2.3.3 Problem Formulation Based on Users’ Fairness

When the pilot allocation is optimized for maximizing the sum rate of the system, the cell-
edge user’s rate (i.e., users’ fairness) is not taken into account. If the same pilot is allocated to
cell-edge users at different cells, the pilot contamination occurs and it intensively deteriorates
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Algorithm 1: Proposed SR-M Algorithm
1 Initialize cell index l, pilot allocation θθθ−l (assume l = 1), tolerance ε , iterative

index t = 1.
2 repeat
3 Obtain the optimum pilot allocation θθθ l at the lth cell according to the Hungarian

method.
4 Get the pilot allocation results θθθ

t .
5 Compute the uplink rum rate according to R(θθθ t).
6 Update t← t +1, l← l +1.
7 if l > L then
8 Update l← 1.
9 end if

10 until R(θθθ t+1)−R(θθθ t)< ε;
11 Obtain optimum pilot allocation θθθ

t .

the rates of these users. Thus, users’ fairness aware pilot allocation should be considered.
For this purpose, we formulate the pilot allocation optimization problem for maximizing the
sum of user’s logarithmic rate as follows:

max
θθθ

R(θθθ) =
L

∑
l=1

K

∑
k=1

log((1−η)rlk)

s.t θ(l,k) ∈ {1,2, · · · ,K},∀l,k, (2.11)

θ(l,k) ̸= θ(l,k′),k ̸= k′.

As for problem (2.11), we can use the similar algorithm to problem (2.6) to obtain the
corresponding pilot allocation. The algorithm consists of the following four steps:

1. Divide problem (2.11) into L subproblems.
2. Optimize pilot allocation for users in one cell while fixing pilot allocation in others cell.
3. Move to the next cell and do the same optimization as step 2.
4. Repeat steps 2 and 3 until sum logarithmic rate log((1−η)rlk) converges.
We call the above algorithm as user’s fairness aware (UF-A) algorithm. Since the similar

algorithm in (i.e., Algorithm 1) is applied, we omit the detailed explanations of the algorithm.
The related results will be presented in simulation section directly.
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Table 2.2 Simulation Parameters.

Parameters Value
Radius of cell rc 500 m

Radius of cell hole rh 100 m
Number of users K 2 ≤M ≤ 8

Number of BS antennas M 10 ≤M ≤ 500
Number of cells L 7

Transmit power of users 0dBm
Time-frequency coherent block size S 100 symbols

Bandwidth 20 MHz
Noise Power -174dBm/Hz

2.4 Numerical Results and Discussion

In this section, we evaluate the average uplink rate of the proposed pilot allocation schemes.
We consider an L = 7 typical hexagonal cellular network where each BS is equipped with
M antennas, and there are K users in each cell. Therefore, the proposed algorithm works to
maximize total sum rate of 7 cells as defined in problem (2.6). We assume that cell radius
is rc = 500 meters, and cell-hole radius rh = 100 meters. The large-scale fading coefficient
captures the path-loss effect as follows βl jk = 1/dα

l jk [19], where dl jk denotes the distance
between the l-th BS and the k-th user in the j-th cell, and α = 3.8 is the path-loss exponent.
Users are distributed randomly within each cell, and Monter-Carlo method is applied with
104 simulation for single user having random location in each trail. Note that (2.5) is used
to compute the uplink rate of each user, while the approximated user-rate in (2.7) is used to
solve the problems (2.6). The system parameters are summarized in Table 2.2.

In fact, similarly to [20], the inter-cluster interference should be also considered. Fig. 2.3
shows system model where there are multiple clusters (different colors stand for different
clusters). Since there is no any cooperation among clusters, the cluster cannot know necessary
information of adjacent clusters such as user’s location information and pilot allocation
formation. Thus, the average interference power from outer-cluster cells should be estimated
without the above information. For this purpose, we propose the following approximate
scheme. We only consider the interference from adjacent outer-cluster cells due to the very
slight interference for non-adjacent outer-cluster cells. When each cell estimates the average
interference from outer-cluster cells, the BS’location is assumed as the user’s location.

Fig. 2.4 plots the average uplink rate versus number of BS antennas with different
algorithms when the number of users in each cell is 4. It can be clearly found that the average
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Inter-cluster 
interference 

Fig. 2.3 The model of the inter-cluster interference and different colors denote the different
clusters.

uplink rate increases with M under all algorithms, and the average uplink rate under the
proposed SR-M algorithm is almost the same with that under the exhaustive search algorithm.
In exhaustive search scheme, the best pilot allocation to maximize the average uplink sum
rate is selected among all possible candidates. In random allocation scheme, pilot allocation
is randomly determined regardless of the achievable uplink sum rate. We can find that
the average uplink rate of the proposed UF-A algorithm is lower than that of the proposed
SR-M algorithm and is higher than that of the random allocation algorithm. The reason is
that the achievable sum rate has to be sacrificed for improving the users’ fairness with the
proposed UF-A algorithm. In addition, we can also find that per-user rate can be improved by
about 17% by using the proposed SR-M algorithm in comparison with the random allocation
algorithm.

Fig. 2.5 shows that the average uplink rate per user versus the number of users in each
cell with different algorithms. We can find that the average uplink rate decreases with K
increases. In fact, there are two reasons for this result. The first is that (1-η) decreases as K
increases, which reduces the uplink rate per user. The second is that the degree of freedom
(DoF) of the BS antennas decreases with the number of serviced users increases, which leads
to the decline of the average rate. It is also easy to understand that more number of BS
antennas leads to higher rate. Although the average uplink rate decreases with the number
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Fig. 2.4 The average uplink rate versus the number of BS antennas with different algorithms
(K = 4).
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of users, the uplink sum rate increases, and we can get it by the proposed low complexity
algorithms according to Fig. 2.5. On the other hand, we can get that the uplink sum rate of
the system will increase when it services more users, but the average uplink rate per each
user will decrease, which lowers each user’s experience. Therefore, in practice, the tradeoff
between number of serviced users and each user’s experience needs to be considered .

Fig. 2.7 shows the cumulative distribution function (CDF) curve of users’ uplink achiev-
able rate with K = 4 and M = 100. The graph coloring based pilot allocation (GC-PA) [14]
and classical random pilot allocation scheme [17] are compared with our proposed schemes.
We can find that that the uplink rate with our proposed SR-M algorithm is higher than that
with GC-PA algorithm. Meanwhile, it can be verified that the user’s rate is more concentrated
with UF-A algorithm than that with SR-M algorithm, which means that the UF-A improves
the users’ fairness. In addition, it is clear that the classical scheme has the worst performance
compared with other algorithms.

2.5 Conclusions

In this chapter, we have proposed an optimum pilot allocation scheme to improve uplink sum
rate in mMIMO systems. Firstly, we formulate the pilot allocation optimization problem
for maximizing uplink sum rate of the system. Since the high complexity for solving the
original problem, we transform the formulated problem into several subproblems. In each
subproblem, we obtain the optimum pilot allocation by applying Hungarian method. Through
multiple iterations, the optimum pilot allocation is found. For improving users’ fairness, we
formulate the maximization problem of sum of user’ logarithmic rate and use the similar
algorithm to obtain the corresponding pilot allocation. Simulation results show that per-user
rate can be improved by about 17% by using the proposed SR-M algorithm in comparison
with the conventional random allocation algorithm.



Chapter 3

Pilot Allocation for Cognitive Radio Type
Heterogeneous Network with Massive
MIMO

3.1 Introduction

Different from chapter 2, in this chapter, we will investigate the pilot allocation in mMIMO-
CR HetNet. Although there are some related works, most of them focus on traditional
MIMO-CR system with regular antennas. For example, [21] considers the achievable rate
and power efficiency for mMIMO in spectrum-sharing networks. For maximizing the quality
of channel estimation for the CN, a pilot decontamination algorithm is proposed [22]. In [23],
a reciprocity-based CR beamforming scheme is proposed to reduce the interference from
CUs to PUs. However, works in [21, 23] do not involve the pilot allocation problem between
PN and CN.

In TDD-based mMIMO system, it is well known that the uplink pilot symbol is a
significant and limited resource because the short channel coherence time limits the number
of orthogonal pilots. Although the orthogonal pilots are used for channel estimation in each
cell of the PN, the same pilots have to be reused in adjacent cells due to limited orthogonal
pilots, which results in pilot contamination. Similarly to the PN, the CN is required to
allocate the orthogonal pilots to CUs for their channel estimation. However, if CUs use
the same pilots or non-orthogonal pilots with PUs, it causes the serious pilot contamination
between PUs and CUs. Therefore, an effective pilot sharing scheme between the PN and CN
is necessary.
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Fig. 3.1 System model for spectrum-sharing mMIMO networks.

In this chapter, we study pilot allocation problem mMIMO-CR HetNet. In our approach,
PN and CN are regarded as the leaser and lessee, respectively. The CN is allowed to lease a
part of available orthogonal pilots from PN. Consequently, PN can obtain profits by leasing
pilots to CN. We assume that PN and CN are rational and selfish, and they aim at maximizing
their revenue when pilots are traded. To guarantee success of pilot trade, we propose a
three-side pilot trade platform, including price control side (PCS), PN side and CN side.
Specifically, for given pilot lease price, PN side will lease the optimum pilots to CN for
maximizing its revenue. Then, CN side allocates these pilots to some of CUs for maximizing
its revenue. To realize the above, we propose a price-based iterative optimum pilot allocation
algorithm to maximize the profits of PN and CN.

3.2 System Model and Proposed Scheme

3.2.1 System Model

We consider a communication system that consists of one L hexagonal primary-cells (PCs)
PN and one single hexagonal cognitive-cell (CC) CN, as shown in Fig. 3.1. We assume
that CC has the same coverage area with the central PC. For convenience, the central PC
and CC are denoted as the 1st PC and CC (target cell), respectively. Each PC consists of
a PBS equipped with M antennas and K (K = {1, . . . ,K}) single-antenna PUs (M≫ K).
We assume that the same K orthogonal pilots sequences ΨΨΨ = {ψψψ1, . . . ,ψψψK} ∈ CK×K are
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assigned to K PUs uniquely in each PC, where ΨΨΨΨΨΨ
H = IM, and no pilots are assigned to

CUs. ψψψθ(l,k)(θ(l,k) ∈ {1, . . . ,K}) denotes that the θ(l,k)-th pilot is used by the k-th PU in
the l-th PC, where θ(l,k) ̸= θ(l,k′) when k ̸= k′. Uplink rate of the k-th PU in the 1st PC
can be expressed as [5]

rp
1,k = log2(1+SINRp

1,k), (3.1)

where SINRp
1,k ≈

β
p
11k

2

∑
L
l ̸=1 ∑

K
i=1 f (θ(l,i),θ(1,k))β p

1li
2 when M→ ∞, β

p
1li denotes the large-scale fading

coefficient (LFC) between the PBS in the 1st PC and the i-th PU in the l-th PC. β
p
1li = 1/dp

1li
α ,

where dp
1li denotes the distance between PBS in the 1st PC and the i-th PU in the l-th PC ,

and α is path-loss exponent. ∑ j ̸=l ∑
K
i=1 f (θ( j, i),θ(1,k))β p

1 ji
2 denotes pilot contamination

caused by pilot reuse in adjacent cells, f (θ( j, i),θ(l,k)) = 1 when θ( j, i) = θ(l,k), else
f (θ( j, i),θ(l,k)) = 0.

In CC, there are a M-antenna CBS and K single-antenna CUs. Similarly, uplink rate of
the k-th CU in the CC can be expressed as

rs
1,k = log2(1+SINRs

1,k), (3.2)

where SINRs
1,k ≈

β s
11k

2

∑
L
l ̸=1 ∑

K
i=1 f (θ(l,i),θ(1,k))β s

1li
2 when M→∞, β s

11i denotes the LFC between CBS

and the i-th CU in the CC, and β s
1li denotes the LFC between CBS in the 1st PC and the i-th

PU in the l-th PC.
CN can lease pilots from PN for channel estimation. PN can get some revenue from CN

(i.e., lease fee). We assume that PN and CN are rational and selfish. For given pilot lease
price, PN always leases the optimum pilots to CN for maximizing its revenue, while CN
always optimally allocates these pilots to CUs for maximizing its own revenue.

Since we assume that CC has the same coverage area with the 1st PC, CN leases pilots
from the 1st PC. Therefore, the revenue of PN can be given as follows:

max
ΨΨΨS,KP

m |ΨΨΨS|︸ ︷︷ ︸
Price of leased pilots

from PN to CN

−n ∑
i∈KP, ψθ(1,i)∈ΨΨΨS

rp
1,i︸ ︷︷ ︸

Lost utility(PUs′ rate)

,

(3.3a)

= max
ΨΨΨS,m

m |ΨΨΨS|− min
ΨΨΨS,KP

n ∑
i∈KP

ψθ(1,i)∈ΨΨΨS

rp
1,i, (3.3b)

where m is the lease price per pilot, n denotes the price per rate of PN which is determined
by PN. ΨΨΨS (ΨΨΨS ⊂ΨΨΨ) and |ΨΨΨS| denote the leased pilots set to CN and the number in set ΨΨΨS,
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respectively. KP(KP ⊂K ) denotes the pilots allocated to PUs in the 1st PC before leasing
pilots. In (3.3a), the first term denotes the obtained revenue because of leased pilots. The
second term denotes the lost utility because those PUs will not connect the PBS. From (3.3b),
we can find that the first term is a increasing linear function with |ΨΨΨS| for given m, and the
second term is a function of growing faster with |ΨΨΨS|. Therefore, for given pilot lease price,
the 1st PC can find the optimum pilots to the CN for maximizing its revenue. Since there
is no relationship between the secondary term and m, (3.3b) is a monotone non-decreasing
function with m. This analysis assumes that users are randomly distributed in each cell.

At the CN side, for given pilot price m and pilots ΨΨΨS, the total revenue can be expressed
as:

max
KS

c ∑
i∈KS

ψθ(1,i)∈ΨΨΨS

rs
1,i

︸ ︷︷ ︸
Obtained utility(CUs′ rate)

− m |ΨΨΨS|︸ ︷︷ ︸
Fee for leased pilots

from PN to CN

, (3.4a)

∆
= max

KS
c ∑

i∈KS
ψθ(1,i)∈ΨΨΨS

β s
11i

2

∑
j ̸=1

K
∑

m=1
f (θ( j,m),θ(1, i))β s

1 jm
2
, (3.4b)

where c denotes the price per rate of CN which is determined by CN, and KS(KS ⊂K )

is a set of CUs allocated pilots. In (3.4a), the first term denotes obtained utility because of
leased pilots from the 1st PC. To obtain more revenue, CN will optimally allocate these pilots
to some of CUs. Since the second term in (3.4a) is given constant, we only need to maximize
(3.4b). (3.4b) is an optimal matching problem, and matching rule is that one pilot is assigned
to one CU, but different users are not assigned the same pilot. To maximize CUs’ total SINR,
(3.4b) can be solved by applying the well-known Hungarian algorithm, as our description in
Chapter 3.

To guarantee the 1st PC’s service quality, number of available pilots in CN must be
limited. We define provided primary user ratio (PUR) as the number of PUs under service
normalized by the number of all PUs in the 1st PC. We also define the required minimum
PUR as p, which is expressed as:

|ΨΨΨS| ≤ (1− p)K. (3.5)

where (1− p)K denotes the number of maximum orthogonal pilots leased to the CN.
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Fig. 3.2 Proposed pilot allocation algorithm flow diagram.

3.2.2 Proposed Scheme

To ensure the success of pilot trade, we propose a three-side pilot trade platform, including
PCS, PN side and CN side, where PCS is in charge of the pilot trade between PN and CN,
while PN selects the set ΨΨΨS only according to m given by PCS. The mechanism to encourage
the pilot trade is explained below. According to (3.3) and (3.4), if m is decreased, CN’s
revenue tends to be decreased, while CN’s revenue tends to be increased. Consequently, the
pilot trade from PN to CN is encouraged by decreasing m. PN and CN are able to know their
own users’ LFC, respectively. Here, the revenue of CN can not be negative, and the pilot
trade will be finished when one of the following conditions is satisfied: i) (3.5) becomes
tight constraint, ii) revenue of CN becomes 0. Based on the above analysis, a price-based
iteration optimal pilot allocation algorithm for maximizing the profits of the PN and SN can
be described as follows:

1) PCS provides a pilot lease price m and users’ CSI information for PN, then PN
computes optimal pilot set ΨΨΨS according to (3.3b) and sends ΨΨΨS and KS back to PCS.

2) If PCS finds that the SUR, namely, (3.5) is not satisfied, it will decrease the pilot lease
price and repeat 1) until the SUR is satisfied. Then PCS provides the pilot lease price, ΨΨΨS

and users’ CSI information for CN, and CN computes optimal pilot allocation according to
(3.3b).
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Fig. 3.3 The relation among PCS, PN and CN.

3) If CN finds that its revenue is negative, CN does not rent these pilots and feedback this
information to PCS. Then PCS will decrease price and repeat 1) and 2) until CN’s revenue
nonnegative. If CN finds that its profits is 0, pilot trade is finished. Else, CN will send the
pilot allocation results to PCS.

4) When PCS finds that the constraint (3.5) is slack, it will increase price and repeat
1)∼4) until pilot lease price converges.

The flow of the proposed algorithm is illustrated in Fig. 3.2, and the relation among PCS,
CN and CN is shown in Fig. 3.3

3.3 Simulation Results and Discussions

We consider a typical hexagonal cellular network with 7 PCs and 1 CC (as shown in Fig.3.1),
and each BS is equipped with M antennas (M goes infinite) [22]. We assume there are 100
PUs in each PC and 100 CUs in CC, and all users are randomly distributed in each cell. The
number of orthogonal pilots is 100. The cell radius is rc = 500 meters, and the cell-hole
radius is rh = 100 meters (the terminals do not figure in this scenario). n = 1, c = 1 and
α=3.8 are assumed. m, n, c and revenue are regarded as the actual currency.

Fig. 3.4 shows the revenue of PN and CN. We can find that PN’s revenue increases
with (1-p) and gets maximum at higher (1-p) region. On the other hand, CN’s revenue
first increases and then decreases with (1-p). This is because the first term in (3.4a) is a
logarithmic function with respect to (w.r.t.) (1-p), and the second term in (3.4a) is a linear



3.3 Simulation Results and Discussions 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

1−

R
e
v

e
n

u
e

PN Revenue 

CN Revenue

p

Fig. 3.4 Revenue versus (1-p).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−

N
IP

NIP_PU

NIP_CU

NIP

p

Fig. 3.5 NIP versus (1-p).



32Pilot Allocation for Cognitive Radio Type Heterogeneous Network with Massive MIMO

1 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration step

m
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function w.r.t. (1-p). Therefore, as (1-p) increases, according to the basic math theory, CN’s
revenue first increases and then decreases. In Fig.. 3.5, we define the normalized interference
power (NIP) as Iafter/Ibefore:

NIP =
Iafter

Ibefore
=

Iafter,PU + Iafter,CU

Ibefore
=

Iafter,PU

Ibefore︸ ︷︷ ︸
NIP_PU

+
Iafter,CU

Ibefore︸ ︷︷ ︸
NIP_CU

(3.6)

where Iafter and Ibefore denote the total interference power from both PUs and CUs to adja-
cent PBSs after pilot leasing and before leasing, respectively. Iafter,PU and Iafter,CU denote
interference power to adjacent PBSs from PUs and interference power to adjacent PBSs from
CUs, respectively. As the number of leased pilots to CN increases, NIP_PU decreases while
NIP_CU increases. Thus, NIP first decreases and then increases, and an optimum value
of NIP can be observed for a given (1− p) = 0.5. As (1-p) increases, more pilots will be
leased to CN and less PUs can connect to PBS, which results in the decrease of NIP_PU.
On the contrary, as (1-p) increases, more CUs will be allocated pilots and connected to
CBS, which leads to the increase of NIP_CU. Note that, NIP_PU, NIP_CU and NIP are
kept constant when (1− p)> 0.8. This is because there is no pilot trade for (1− p)> 0.8.
In addition, the total interference from central cell to adjacent cells is lower compared after
pilots leasing. This is because PN will lease those pilots having serious pilot interference to
CN, and CN will allocate those pilots to CUs having the smallest pilot interference, which
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results in the decrease of total interference after pilot trade. Fig. 3.6 presents the pilot lease
price convergence behavior at each iteration when p=0.8.

3.4 Conclusions

In this chapter, we have studied the pilot allocation problem in mMIMO-CR HetNet. The CN
is allowed to rent the orthogonal pilots from the PN for their channel estimation, while the
number of available pilots in the PN is reduced. The proposed system model and algorithm
achieve a win-win paradigm between PN and CN, The results show that the PN and CN
can obtain positive revenue, which implies that pilot sharing concept between PN and CN is
effective in improving the performance of both PN and CN. In other words, although the PN
must sacrifice some pilots, it can get more profit in addition to decrease the total interference
to adjacent cells, while the CUs are allowed to share the orthogonal pilots with PUs.





Chapter 4

Power Allocation for Cognitive Radio
Type Heterogeneous Network with
Massive MIMO

4.1 Introduction

In chapter 3, we have proposed a pilot allocation scheme for the mMIMO-CR HetNet, but
the infinite number antennas at BS is assumed and the power allocation is also not considered
for simplicity. Therefore, in this chapter, we will consider the limited number antennas
at BS and power allocation problem. For traditional MIMO-CR networks [24]-[27], PUs’
interference is caused by CUs’ data transmission. However, for mMIMO-CR networks,
PUs’ interference is also impacted by pilot transmission. The authors in [28] guarantee
PUs’ QoSs in mMIMO-CR networks by setting the peak interference level and study the
impact of large-scale PBS antennas on mMIMO CN. However, the pilot contamination is not
considered. A pilot allocation scheme for mMIMO-CR networks in [29] has been proposed
to maximize the channel estimation quality of CUs while minimizing a negative impact on
PN’s channel estimation. In [30], a reciprocity-based mMIMO-CR beamforming scheme has
been proposed to reduce the interference from CUs to PUs. To reduce pilot contamination
and training overhead, a full-space spatial spectrum-sharing for mMIMO-CR networks with
reduced training overhead is proposed in [31] with an efficient 2-dimensional-discrete Fourier
transform aided direction of arrival and angular spread estimation. However, in [29]-[31],
the power allocation of the CN is not considered. Efficient power allocation scheme may
eliminate (or significantly reduce) harmful interference to the PN while maximizing the
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performance of the CN. In [19], the authors investigate the pilot and power allocation problem
to maximize EE of multi-cell mMIMO networks. However, the CR network is not considered.

In this chapter, we study the power allocation problem in mMIMO-CR HetNet with
pilot contamination. Unlike the conventional approach, where PUs’ tolerated interference
levels are imposed to guarantee their QoSs, we introduce the required signal-to-interference-
plus-noise-ratio (SINR) for PUs further improving the performance of the CN. The main
contributions are summarized as follows:

•We propose an orthogonal pilot sharing scheme in TDD-based mMIMO-CR HetNet,
where CUs always share the overall spectrum with PUs if they are allowed to access
the primary spectrum. Since the orthogonal pilots are preferentially allocated to PUs,
CUs are only allowed to access the primary spectrum when there are temporarily
unused orthogonal pilots. Then, these CUs use obtained orthogonal pilots for channel
estimation in pilot transmission phase.

• We derive the CU’s ergodic downlink rate and formulate the power allocation opti-
mization problem to maximize the downlink sum rate of the CN subject to the total
transmit power constraint. To guarantee PUs’ QoSs, the required SINR for each PU is
considered. Since the formulated problem is nonconvex, we transform it into a convex
one by using convex approximation techniques. Then, an iterative algorithm is proposed
to obtain the solution. Meanwhile, we prove that the obtained solution satisfies the
necessary Karush-Kuhn-Tucker (KKT) conditions of the original problem.

• We theoretically analyze and discuss the impact of the number of CBS and PBS
antennas on the downlink rate of the PN and CN. Our findings illustrate that: i) for
the fixed number of CBS antennas the downlink rate of each CU is close to zero when
the number of PBS antennas approaches to infinity; ii) for the fixed number of PBS
antennas the downlink rate of some PUs is close to zero when the number of CBS
antennas approaches to infinity; iii) when the number of PBS and CBS antennas grows
simultaneously the downlink rate of PUs or CUs is affected by the transmit power and
pilot contamination from adjacent cells.

4.2 System Model

We consider a downlink communication system that consists of a multi-cell multi-user
mMIMO-PN and a single cell multi-user mMIMO-CN as shown in Fig. 4.1. We assume that
there are L cells in PN, where each cell consists of a MP antennas PBS and KP single-antenna
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Fig. 4.1 System model for mMIMO-CR networks.

PUs. In CN, there are a MS antennas CBS and KS single-antenna CUs. All PBSs or CBS
serves their own users with the same time-frequency resource. The CUs located in the
coverage region of the central PC share resource (i.e., pilots and spectrum) with PUs. It
means that, theoretically, the single cell CN can have similar coverage area with that of
the central PC (i.e., the CBS has the similar location with the central PBS). The central
cell in PN is labeled as the 1-st cell. To avoid serious pilot interference, all PUs in each
cell use orthogonal pilots ΨΨΨ = [ψψψ1,ψψψ2, · · · ,ψψψKP

]T ∈ C KP×KP , where ψψψ
†
i ψψψ i = ρ and ρ is the

pilot signal power. The i-th pilot is allocated to the i-th PU for channel estimation in each
cell. The same orthogonal pilot sequences are reused in adjacent cells. When there are KT

(KS ≥ KT) inactive PUs in the 1-st cell, the pilots {1, · · · ,KP−KT} are used by PUs in the
1-st cell and the pilots {KP−KT +1,KP−KT +2, · · · ,KP} can be used by CUs. Similarly,
we assume that the (KP−KT +n)-th pilot in the 1-st cell is allocated to the (KP−KT +n)-th
CU (n = {1,2, · · · ,KT}).

The following assumptions are adopted in our study:
• A high speed backhaul link is available between PBS and CBS for feedback of the

channel state information and users’ locations information [32]-[34].
• Ideal synchronization between PN and CN is realized by a backhaul link [32]-[34].
• The PBS periodically shares the available primary pilot information with the CBS by

Operation, Administration and Management system via backhaul link [32]-[34].
• The deployment of CBSs is sparser in comparison with PBSs. Thus, the interference

between CBSs can be neglected.
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4.2.1 Uplink Training Transmission

During the uplink training phase, the CBS receives the signal matrix YS
1 ∈ C MS×KP , which is

expressed as

YS
1 =

L

∑
j=2

KP

∑
k=1

√
β PS

1 jkhPS
1 jkψψψ

T
k +

KP−KT

∑
m=1

√
β PS

11mhPS
11mψψψ

T
m+

KP

∑
n=KP−KT+1

√
β SS

11nhSS
11nψψψ

T
n +V1. (4.1)

In the above expression, β PS
1 jk and hPS

1 jk denote the large-scale fading coefficient and the
MS×1 small-scale fading vector for the channel between the CBS in the 1-st cell and the k-th
PU in the j-th cell, respectively. β SS

11k and hSS
11k, respectively, denote the large-scale channel

coefficient and the MS×1 small-scale fading vector for the channel between the CBS and
the k-th CU in the 1-st cell. V1 ∈ C MS×KP is AWGN at CBS whose elements are distributed
according to C N (0,σ2). We assume each fading vector h⋆

i jk ∼ C N (0, IMS) [19] where
⋆ ∈ {SS,PS}. The large-scale fading coefficient is assumed capturing the path-loss effect as
β ⋆

1 jk = 1/dα
1 jk [19]: d1 jk denotes the distance between CBS and the k-th PU (CU) in the j-th

cell and α is the path-loss exponent.
The minimum mean-squared error (MMSE) estimate of the channel hSS

11n can be expressed
as [35]

ĥSS
11n =

√
β SS

11nQ1nYS
1ψψψn, (4.2)

where Q1n =

(
σ2IMS +ρIMS

(
L
∑
j=2

β PS
1 jn +β SS

11n

))−1

. The estimated channel can be written

as

ĥSS
11n = hSS

11n− h̃SS
11n, (4.3)

where h̃SS
11n is the error term. From (2), we easily observe that ĥSS

11n is C N (0,ΘΘΘ11n). Since
h̃SS

11n is independent of ĥSS
11n, h̃SS

11n is also C N (0, IMS−ΘΘΘ11n) with

ΘΘΘ11n = ρβ
SS
11nQ1n =

ρβ SS
11n(

σ2IMS +ρIMS

(
L
∑
j=2

β PS
1 jn +β SS

11n

)) .
(4.4)
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4.2.2 Downlink Data Transmission

During the downlink data transmission phase, the received signal at the n-th CU in the 1-st
cell can be written as

yS
1n =

KP

∑
i=KP−KT+1

√
β SS

11nP1ihSS†
11n wSS

11ix
′
1i +

KP−KT

∑
m=1

√
β SP

11n pthSP†
11n wPP

11mx1m

+
L

∑
j=2

KP

∑
k=1

√
β SP

j1n pthSP†
j1n wPP

j jkx jk+v1n,

(4.5)

where β SP
j1i and hSP

j1i, respectively, denote the large-scale fading coefficient and the MP×1
small-scale fading vector for the channel between the PBS in the j-th cell and the i-th CU
in the 1-st cell. wSS

11i and wSS
11m, respectively, represent the precoding for the CU and PU.

Each PU’s transmit power is assumed the same and denoted by pt, where P1i is the transmit
power of the i-th CU in the 1-st cell. x jk and x′1i denote the data symbols of the PU and CU,
respectively, with unit average power, i.e., E{|x jk|2}= 1 and E{|x′1i|2}= 1. v1i is AWGN
received by the i-th CU in the 1-st cell.

When the number of BS antennas approaches to infinity, the performance of MF or ZF
detector optimally converges. Due to the high complexity of ZF detector (high dimension
channel matrix inversion [36]) and mathematical trackability of MF detector, we only consider
MF detector. Following this, we have wSS

11i = ĥSS
11i/∥ĥSS

11i∥ and wPP
j jk = ĥPP

j jk/∥ĥPP
j jk∥, where

ĥPP
j jk is the MMSE estimate of hPP

j jk.
We rewrite (4.5) as follows

yS
1n=

√
β SS

11nP1nhSS†
11n wSS

11nx′1n︸ ︷︷ ︸
Desired signal

+
KP

∑
i=KP−KT+1

i̸=n

√
β SS

11nP1ihSS†
11n wSS

11ix
′
1i

︸ ︷︷ ︸
Intra−cell interference from CN

+
KP−KT

∑
m=1

√
β SP

11n pthSP†
11n wPP

11mx1m︸ ︷︷ ︸
Intra−cell interference from PN

+
L

∑
j=2

KP

∑
k=1

√
β SP

j1n pthSP†
j1n wPP

j jkx jk︸ ︷︷ ︸
Inter−cell interference

+ v1n︸︷︷︸
Noise

. (4.6)

From (4.6), we find that the interference of the CU includes three components: i) the first
component is the interference among CUs, ii) the second component comes from PBS of the
same cell with CBS and iii) the third component comes from PBSs of adjacent cells.



40
Power Allocation for Cognitive Radio Type Heterogeneous Network with Massive

MIMO

The ergodic downlink rate of the n-th CU in the 1-st cell is obtained as follows:

R1n = log2

1+
P1nβ SS

11n

∣∣∣E{hSS†
11n wSS

11n

}∣∣∣2
IN

 (4.7)

with the interference term IN given by

IN =P1nβ
SS
11nvar

{
hSS†

11n wSS
11n

}
+

L

∑
j=2

KP

∑
k=1

β
SP
j1n ptE

{∣∣∣hSP†
j1n wPP

j jk

∣∣∣2}

+
KP−KT

∑
m=1

β
SP
11n ptE

{∣∣∣hSP†
11n wPP

11m

∣∣∣2}+
KP

∑
i=KP−KT+1

i ̸=n

β
SS
11nP1iE

{∣∣∣hSS†
11n wSS

11i

∣∣∣2}+σ
2.

For the given P =
[
P1{KP−KT+1}, · · · ,P1KP

]
, the rate can be represented by

R1n(P) = log2

(
1+

(1/τS
1n)P1nβ SS

11n
2E2{ϑ}

I1 + I2 + I3 + I4 +σ2

)
, (4.8)

where 

I1 = P1nβ SS
11n

(
β SS

11n
τS

1n
var{ϑ}+1− β SS

11n
τS

1n

)
+

KP
∑

i=KP−KT+1
i ̸=n

β SS
11nP1i,

I2 =
L
∑
j=2

β SP
j1n pt

(
β SP

j1n

τP
jn
E{ε2}+1− β SP

j1n

τP
jn

)
,

I3 =
L
∑
j=2

KP
∑

k ̸=n
β SP

j1n pt,

I4 =
KP−KT

∑
m=1

β SP
11n pt.

(4.9)

In the above expressions, ϑ =
√

∑
MS
m=1 |um|2 and ε =

√
∑

MP
m=1 |um|2, {um} is i.i.d. C N (0,1).

τS
1n, τP

jn, and the detailed proof can be found in Appendix A.

4.3 Problem Formulation

In CR networks, the CN must control its transmit power to avoid harmful interference to PUs.
Therefore, we usually impose restriction to interference power of the CN and guarantee PUs’
QoSs (e.g., an average interference power constraint [37]-[38] and a peak interference power
constraint [39]-[40]). In this chapter, we consider the minimum required SINR of each PU as
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the constraint as SINR jk ≥ η jk, where η jk denotes the minimum required SINR of the k-th
PU in the j-th cell. Therefore, the power optimization problem is formulated as

max
P

R(P) =
KP

∑
n=KP−KT+1

R1n(P) (4.10a)

s.t.
KP

∑
n=KP−KT+1

P1n ≤ Pmax, (4.10b)

SINR jk≥η jk

 j ∈ {1}, k ∈ {1, · · · ,KP−KT},

j ∈ {2, · · · ,L},k ∈ {1, · · · ,KP},
(4.10c)

P1n ≥ 0 n ∈ {KP−KT+1, · · · ,KP}, (4.10d)

where(4.10b) is the total power constraint of the CBS, and (4.10c) is used to guarantee the
each PU’s QoS. In fact, (4.10c) is function of P and thus problem (4.10) can be rewritten as

max
P

R(P) =
KP

∑
n=KP−KT+1

R1n(P) (4.11a)

s.t.
KP

∑
n=KP−KT+1

P1n ≤min{IP,Pmax}, (4.11b)

KP

∑
n=KP−KT+1

n̸=k

P1n+ξ1kP1k ≤I jk

k∈{KP−KT+1,· · ·,KP},

j ∈ {2, · · · ,L},
(4.11c)

P1n ≥ 0 n ∈ {KP−KT +1, · · · ,KP}, (4.11d)

with 
IP = min

{
[I jk]L×(KP−KT)

}
,

I jk =
1

β PS
1 jk

(
(1/τP

jk)ptβ
PP
j jk

2E2{ε}
η jk

− I′1− I′2− I′3

)
,

ξ1k =

(
β PS

1 jk

τS
1k
E{ϑ 2}+1−

β PS
1 jk

τS
1k

)
.

I′1, I
′
2, I
′
3 and detailed proof can be found in Appendix B.

From the proof in Appendix B, we observe that the PUs’ SINR increases with the number
of PBS antennas and decreases with the transmit power for CUs. Therefore, there is an
advantage to use (4.10c) as constraint. For example, when the number of PBS antennas
increases, the CBS can transmit a higher power, which improves the downlink sum rate of the
CN. However, this constraint brings more difficulties to design the power allocation strategy.
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Since the power, P, appears in the denominator of each CU’s SINR, the objective function
(4.11a) is not concave and (4.11) is a non-convex optimization problem, which is difficult to
directly solve. Next, we propose an iterative algorithm to address the above problem.

4.4 The Solution of The Optimization Problem

In this section, we first transform the original non-convex optimization problem into a convex
one by approximation. Then, we iteratively solve the approximated convex optimization
problem. Finally, we prove that the obtained solution satisfies the necessary KKT conditions
of the original problem (4.11).

4.4.1 Problem Transformation

First, we present the following lower bound [41]

a lnx+b≤ ln(1+ x), (4.12)

that is tight at a given x = x0. The coefficients a and b are selected as

a =
x0

1+ x0
, b = ln(1+ x0)−

x0

1+ x0
lnx0. (4.13)

After some manipulations by using (4.12) and (4.13), we define the lower bound on the
achievable downlink rate for the n-th CU as

R̃1n(P,a1n,b1n)

=

(
a1n ln

(
(1/τS

1n)P1nβ SS
11n

2E2{ϑ}
I1 + I2 + I3 + I4 +σ2

)
+b1n

)
log2 e,

(4.14)

where a1n and b1n denote the coefficients given in (4.13). The coefficients are updated by
replacing x0 with P1n in each iteration. Since (4.14) is still non-concave, we define P1n , eP̃1n

and the lower bound of achievable ergodic downlink rate (4.14) can be transformed into
(4.15). According to [41], ln-sum-e is convex and (4.15) is concave function of P̃.
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R̃1n(eP̃,a1n,b1n)=

a1n

ln
(

C1neP̃1n
)
−ln

D1neP̃1nβ
SS
11n+

KP

∑
i=KP−KT+1

i ̸=n

β
SS
11neP̃1i+N0


+b1n

 log2 e

=

a1n

ln(C1n)+P̃1n−ln

D1neP̃1nβ
SS
11n+

KP

∑
i=KP−KT+1

i ̸=n

β
SS
11neP̃1i+N0


+b1n

 log2 e.

(4.15)

C1n =
β SS

11n
2E2{ϑ}
τS

1n
,D1n =

(
β SS

11n

τS
1n

var{ϑ}+1−
β SS

11n

τS
1n

)
,N0 = I2 + I3 + I4.

Next, we transform the original problem into the convex optimization problem as follows:

max
P̃

R̃(eP̃,a,b) =
KP

∑
n=KP−KT+1

R̃1n(eP̃,a1n,b1n) (4.15a)

s.t.
KP

∑
n=KP−KT+1

eP̃1n ≤min{IP,Pmax}, (4.15b)

KP

∑
n=KP−KT+1

n ̸=k

eP̃1n+ξ1keP̃1k ≤I jk

k∈{KP−KT+1,· · ·,KP},

j ∈ {2, · · · ,L},
(4.15c)

eP̃1n ≥ 0 n ∈ {KP−KT +1, · · · ,KP}, (4.15d)

where a=[a1{KP−KT+1}, · · · ,a1KP ] and b=[b1{KP−KT+1}, · · · ,b1KP ].
Since (4.15) is a convex optimization problem, the duality gap is zero and solving its

dual problem is equivalent to solve the original problem [42]. Therefore, we address its
dual problem to obtain the solution of (4.15). Then the obtained power is transformed to
the P-space by P1n , eP̃1n . We note here that the optimal solution of the above problem is a
lower bound of the original problem given by (4.11). Based on the following theorem, the
efficient solution of problem (4.11) can be obtained by iteratively solving the above defined
problem in (4.15).

Theorem 4.4.1 The value of the objective function given by (4.11) will be either improved
at the (t+1)-th iteration, or remained at the same value as the previous iteration, namely
R
(

P(t)
)
≤R

(
P(t+1)

)
.
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Proof We assume that P(t) is optimal solution of problem (4.15) at the t-th iteration. Then,
we have

R̃
(

eP̃(t)
, a(t),b(t)

) (a)
≤R

(
P(t)
)

(b)
= R̃

(
eP̃(t)

, (a)(t+1),b(t+1)
)

(c)
≤R̃

(
eP̃(t+1)

, (a)(t+1),b(t+1)
)

(d)
≤R

(
P(t+1)

)
.

(4.16)

From (4.16), we observe that the optimal value of the objective function in (4.11) at
the (t +1)-th iteration is larger than that at the t-th iteration. In fact, inequality (a) follows
from (4.12); equality (b) holds because of the tight approximation at the current power
{eP̃(t)

, a(t+1),b(t+1)}; inequality (c) holds because eP̃(t+1)
and eP̃(t)

, respectively, are the
optimal and feasible solution for problem (4.15) at the (t +1)-th iteration; the last inequality
directly comes from (4.12).

4.4.2 Problem Solution

Next, we focus on solving the dual problem of (4.15). First, we define the following Lagrange
dual function

g(λ ,µµµ) = max
P̃∈ΩΩΩ

L(P̃,λ ,µµµ), (4.17)

where

L(P̃,λ ,µµµ)=
KP

∑
n=KP−KT+1

a1n

ln(C1n)+P̃1n−ln

D1neP̃1nβ
SS
11n+

KP

∑
i=KP−KT+1

i ̸=n

β
SS
11neP̃1i+N0


+b1n

 log2 e

+λ

(
min{IP,Pmax}−

KP

∑
n=KP−KT+1

eP̃1n

)
+

L

∑
j=2

KP

∑
k=KP−KT+1

µ jk

I jk−

 KP

∑
n=KP−KT+1

n ̸=k

eP̃1n+ξ1keP̃1k


 .

(4.18)

ΩΩΩ denotes the feasible domain defined by (4.15b)–(4.15d), λ and µµµ = {µ jk}( j∈{2,. . .,L},k∈
{KP−KT+1,. . .,KP}) denote the value and vector of the dual variables associated with con-
straint conditions (4.15b) and (4.15c), respectively. Based on this, the dual optimization
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problem is given as

min
λ ,µµµ

g(λ ,µµµ)

s.t. λ ,µµµ ≥ 0.
(4.19)

Since a dual function is always convex [43], we minimize g(λ ,µµµ) through subgradient
method. The dual variables can be updated as follows:

λ
(s+1) =

[
λ
(s)+ ς

(s)

(
KP

∑
n=KP−KT+1

P1n−min{IP,Pmax}

)]+
,

µ
(s+1)
jk =

µ
(s)
jk + ς

(s)
jk

 KP

∑
n=KP−KT+1

n ̸=k

P1n+ξ1kP1k−I jk



+

,

(4.20)

where s represents iteration index. ς (s) and ς
(s)
jk , respectively, represent the step sizes in the

s-th iteration. The step size of dual variables is chosen based on the diminishing step size
rule to guarantee convergence. Note that in (4.20), we have backed to the P-space.

However, solving the dual problem in (4.19) involves the optimal P̃ for given dual
variables λ and µµµ . We apply the KKT condition [43] and obtain the power as

P1n =

√
(P1n+N0)2 +

4D1nβ SS
11na1n(P1n+N0) log2 e

λ+U1n
−P1n−N0

2D1nβ SS
11n

, (4.21)

where P1n=
KP
∑

i=KP−KT+1
i̸=n

β SS
11nP1i, U1n=∑

L
j=2 µ jnξ1n+∑

L
j=2

KP
∑

k=KP−KT+1
k ̸=n

µ jk.

Here, we find that (4.21) is a fixed point equation, namely P also appears in the right side
of equation (4.21). According to [41], we can obtain the value of P1n based on the fixed-point
power update. Summarily, to solve our formulated original problem (4.11), we first initialize
the parameters a and b. Then, (4.11) can be transformed into a convex optimization problem
(4.15) by approximation, which can be solved by classical Lagrange dual and subgradient
methods. Next, we update a and b with obtained power according to (4.13) and resolve
problem (4.15). The above process is repeated until the sum rate converges. We summarize
the above method as Algorithm 2.

Next, we have the following theorem.

Theorem 4.4.2 The solution obtained by iteratively solving the approximated problem in
(4.15) satisfies the necessary KKT conditions of the original problem given by (4.11).
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Algorithm 2: Proposed Power Allocation Algorithm

1 Initialize a(t) = 1,b(t) = 0, the maximum tolerate ε , iteration index t = 0.
2 repeat
3 Initialize dual variables λ and µµµ .
4 repeat
5 Obtain the power allocation P1n via (4.21) and fixed-point power update [41].
6 Update dual variables λ and µµµ via (4.20).
7 until Dual variables converge;
8 Compute the sum rate R̃(P,a(t),b(t)).
9 Update t = t +1.

10 Update a(t) and b(t) via (4.13).
11 until |R̃(P,a(t+1),b(t+1))− R̃(P,a(t),b(t))| ≤ ε;

Proof First, we consider the following optimization problem:

max
X

f0(X) (4.22a)

s.t. fi(X)≤ 0, i = 1,2, · · · ,M, (4.22b)

where the objective function f0(X) and constraints fi(X) are assumed as nonconvex. Next,
we select a convex function fi(X) so that f̃i(X)≈ fi(X) (i=0,1,2, · · · ,M). The approximate
problem is a convex optimization problem, which can be solved by standard convex method.
According to [44], the solution of approximate problem can converge to a point that satisfies
the KKT conditions of the original problem, if the approximations satisfy the following
conditions:

(1) f̃i(X)≤ fi(X) for any i.
(2) f̃i(X0) = fi(X0), where X0 is the optimal solution of the approximate problem in the

previous iteration.
(3) ∇ f̃i(X0) = ∇ fi(X0) for any i, where ∇ means the derivation operation.
According to the defined parameters a and b in (4.12), (4.13) and (4.14), it is easy to

verify that our proposed convex approximation satisfies (1)− (3) simultaneously. Therefore,
the proposed iterative algorithm would converge to the solution that satisfies the KKT
conditions of the original problem. We finish the proof. Accordingly, the obtained solution at
least reaches a local optimum of the original problem, which indicates that it has the potential
to reach the global optimality.
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4.5 Performance Analysis of the PN and CN with mMIMO

In this section, we assume that the PBS or CBS is equipped with very large-scale antenna
arrays and then, we analyze the downlink rate of the PN and CN.

4.5.1 MP→ ∞ and MS is fixed

The downlink rate of the CN

We find that all other terms in (4.8) are limited constants except for the interference term I2.
I2 can be expressed as follows

I2 =
L

∑
j=2

β
SP
j1n pt

(
β SP

j1n

τP
jn
E{ε2}+1−

β SP
j1n

τP
jn

)

=
L

∑
j=2

β
SP
j1n pt

(
β SP

j1n

τP
jn

MP +1−
β SP

j1n

τP
jn

)
.

(4.23)

From (4.23), it can be observed that the interference term I2 increases with MP, and
I2→ ∞ when MP→ ∞. Therefore, according to (4.8), the downlink rate of each CU will be
close to zero when MP→ ∞.

The downlink rate of the PN

From Appendix B, we can get the SINR of the k-th PU in the j-th cell as follows

SINR jk =
(1/τP

jk)ptβ
PP
j jk

2E2{ε}
I′1 + I′2 + I′3 + I′4 +σ2 . (4.24)

Before analyzing, two formulas are brought: duplication and Stirling’s formulas.

Γ(m)Γ(m+
1
2
) = 2(1−2m)

√
πΓ(2m),

lim
n→∞

n!√
2πnnne(−n)

= 1.
(4.25)
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According to (4.25), we have

lim
MP→∞

1√
MP

Γ(MP +
1
2)

Γ(MP)
= lim

MP→∞

√
π

MP
2(1−2MP)

(2MP−1)!
(MP−1)!(MP−1)!

= lim
MP→∞

√
π

MP
2(1−2MP)

√
2π(2MP−1)(2MP−1)((2MP−1))

2π(MP−1)(MP−1)2(MP−1)e
.

= lim
MP→∞

√
2MP−1

2MP

(
1+

1
2(MP−1)

)2MP−1

e−1

= ee−1=1.

(4.26)

Thus, lim
MP→∞

E2{ε}
MP

= 1 and lim
MP→∞

var{ε}
MP

= 0.

When k ≤ KP−KT, (4.24) can be approximated as follows

lim
MP→∞

SINR jk = lim
MP→∞

(1/τP
jk)ptβ

PP
j jk

2E2{ε}
I′1 + I′2 + I′3 + I′4 +σ2

= lim
MP→∞

(1/τP
jk)ptβ

PP
j jk

2

I′1+I′2+I′3+I′4+σ2

MP

=
β PP

j jk
2

L
∑

l ̸= j
β PP

l jk
2
.

(4.27)

Accordingly, the downlink rate of each PU is only affected by pilot contamination from
adjacent cells.

When KP−KT +1≤ k ≤ KP, (4.24) can be approximated as follows

lim
MP→∞

SINR jk =
β PP

j jk
2

L
∑
l ̸= j
l ̸=1

β PP
l jk

2
. (4.28)

In fact, (4.28) is similar to (4.27), and only difference is that the 1-st cell does not produce
interference to PUs located in other cells .
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4.5.2 MS→ ∞ and MP is fixed

The downlink rate of the CN

We rewrite the SINR of the n-th CU as follows

SINR1n =
(1/τS

1n)P1nβ SS
11n

2E2{ϑ}
I1 + I2 + I3 + I4 +σ2 . (4.29)

From (4.29), we find that the denominator is a limited constant when MP is fixed, so
lim

MS→∞

I1+I2+I3+I4+σ2

MS
= 0. According to (4.25) and (4.26), we have lim

MS→∞

E2{ϑ}
MS

= 1. Therefore,

the downlink rate of each CU goes to infinite when MS→ ∞.

The downlink rate of the PN

When k ≤ KP−KT, we rewrite the SINR of the k-th PU in the j-th cell as follows

SINR jk =
(1/τP

jk)ptβ
PP
j jk

2E2{ε}
I′1 + I′2 + I′3 + I′4 +σ2 . (4.30)

From Appendix B, we find that there is no relationship between (4.30) and MS. Thus, the
SINR of the PU is affected by MP, transmit power for PUs and CUs, and pilot contamination.
When KP−KT +1 ≤ k ≤ KP, it is clear that all other terms in (4.24) are limited constants
except for the interference I′4 that is represented as

I′4 =
KP

∑
n=KP−KT+1

n ̸=k

β
PS
1 jkP1n+β

PS
1 jkP1k

(
β PS

1 jk

τS
1k

E{ϑ 2}+1−
β PS

1 jk

τS
1k

)

=
KP

∑
n=KP−KT+1

n ̸=k

β
PS
1 jkP1n+β

PS
1 jkP1k

(
β PS

1 jk

τS
1k

MS+1−
β PS

1 jk

τS
1k

)
. (4.31)

It can be observed from (4.31) that the interference term I′4 increases with MS, and I′4→∞

when MS→ ∞. Therefore, the downlink rate of each PU will be close to zero when MS→ ∞.
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4.5.3 MS→ ∞ and MP→ ∞

The downlink rate of the CN

According to (4.8), we have

lim
MS→∞

MP→∞

SINR1n = lim
MS→∞

MP→∞

(1/τS
1n)P1nβ SS

11n
2E2{ϑ}
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11n
2

I1+I2+I3+I4+σ2

MP

=
P1nβ SS

11n
2

pt
L
∑
j=2

β PS
j1n

2
.

(4.32)

It is observed in (4.32) that the downlink rate of each CU is affected by two factors:
transmit power for PUs and CUs, and pilot contamination.

The downlink rate of the PN

When k ≤ KP−KT, we have

lim
MP→∞

MS→∞

SINR jk = lim
MP→∞

MS→∞

(1/τP
jk)ptβ

PP
j jk

2E2{ε}
I′1 + I′2 + I′3 + I′4 +σ2

= lim
MP→∞
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(1/τP
jk)ptβ

PP
j jk

2

I′1+I′2+I′3+I′4+σ2

MP

=
β PP

j jk
2

L
∑

l ̸= j
β PP

l jk
2
.

(4.33)

It can be found that (4.33) is the same with (4.24), and there is no interference from
the CN.

When KP−KT +1≤ k ≤ KP,

lim
MP→∞

MS→∞

SINR jk =
ptβ

PP
j jk

2

pt
L
∑
l ̸= j
l ̸=1

β PP
l jk

2
+P1kβ PS

1 jk
2
. (4.34)

It is clear that the downlink rate of the PU is affected by two factors: transmit power for
PUs and CUs, and pilot contamination.

According to the above analysis, for a given transmit power for PUs and CUs, we observe
that:
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1) The downlink rate of all CUs will be affected seriously when the number of PBS
antennas approaches to infinity.

2) The downlink rate of some PUs (PUs located in adjacent cells use the same pilots with
CUs in the 1-st cell) is seriously affected when the number of CBS antennas approaches
to infinity.

3) When the number of CBS and PBS antennas approaches to infinity simultaneously,
the downlink rate of CUs and PUs will be affected by transmit power and pilot contami-
nation.

Thus, for fixed transmit power, the number of CBS antennas should not be great larger
than that of PBS antennas. Otherwise, some PUs’ QoSs may not be guaranteed according to
(4.31). On the other hand, when the number of antennas at PBS is larger than that of CBS,
the CN should not be allowed to access spectrum because the downlink rate of CUs will
be very low according to (4.23). Therefore, for the PN and CN, to fully utilize the limited
time-frequency resource, the number of PBS and CBS antennas should be close each other.

Note that the power control of the CN is not considered in above analysis. For a given
transmit power of the PN and the number of PBS antennas, the CN has to decrease its
transmit power to guarantee PUs’ QoSs as the number of CBS antennas increases. Therefore,
the increase of CBS antennas may not result in higher rate of the CN. On the other hand, for
a given number of CBS antennas, the increase of PBS antennas degrades the rate of the CN,
but this allows the CN to transmit higher power for CUs so that the rate of the CN may not
decrease. The above discussion are presented in following section.

4.6 Numerical Results and Discussions

We consider a mMIMO-CR HetNet that consists of a PN (L = 3 PCs) and a CN (single
CC). There are KP = 4 PUs in each PN cell and KS = 4 CUs in the SC. The total number
of orthogonal pilots is 4 and PUs located in the same PN cell use orthogonal pilots and
different PN cells reuse the same pilots. The same transmit power pt=10 dB is assumed for
all PUs. The cell radius (from center to vertex) is rc = 1000 meters and the cell-hole radius
is rh = 100 meters (the users are not located in this area). We assume that one of the PBSs
has the same geographic location with the CBS. The noise power is -174 dBm/Hz and the
total bandwidth is 10 MHz. The pilot SNR is 5 dB. We assume that there are 2 inactive PUs
in the PN cell which has the same geographic region with the CN cell and all PUs in other
PN cells are active. The path-loss exponent is α = 3.8.

Fig. 4.2(a) plots the downlink sum rate of the CN versus the maximum transmit power
Pmax for different number of antennas at PBS and CBS when η = 8 dB for all PUs. It can be
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Fig. 4.2 Downlink sum rate of the CN versus Pmax with η=8 dB.
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Fig. 4.3 Downlink sum rate and corresponding transmit power of the CN versus MS with
η=8 dB, Pmax = 10 dB.
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observed that the downlink sum rate of the CN first increases and then stabilizes with Pmax.
This is because the CN is not allowed to transmit higher power due to the constraint of η .
Before reaching stabilization, for the same MS, the downlink sum rate of the CN is slightly
higher when the PBS is equipped with less number of antennas. The reason is that all power
is efficient utilized by the CN. On the contrary, after reaching stable state, for given MS, the
downlink sum rate of the CN is slightly lower when PBS is equipped with less number of
antennas. This is because the PU’s SINR increases with MP, so more power is consumed
by the CN for a given η , resulting in a higher downlink sum rate. We can also find that the
downlink sum rate of the CN is higher when MS = 100 in comparison with MS = 50. It is
clear that more antennas at CBS result in a higher rate.

We compare the downlink sum rate of the CN under different constraint conditions, i.e.,
we used SINR constraint and traditional peak interference power constraint [39]-[40]. We con-
sider the following equivalent preprocessing: According to SINR jk ≥ η jk, we obtain the inter-
ference term caused by the CN as I′4≤

1
η
(1/τP

jk)ptβ
PP
j jk

2E2{ε}−(I′1 + I′2 + I′3 +σ2). Then, we

set MP = 50 and define the interference power constraint as Ith = 1
η
(1/τP

jk)ptβ
PP
j jk

2E2{ε}−
(I′1 + I′2 + I′3 +σ2) when MP = 50, namely using I′4 ≤ Ith replaces the constraint condition
(4.11c). We plot the downlink sum rate of the CN versus the maximum transmit power
Pmax for different number of antennas at PBS and CBS when η = 8 dB for all PUs in Fig.
4.2(b). We find that the downlink sum rate of the CN is the same under these two schemes
when Pmax ≤ 14. However, the downlink sum rate of the CN with the SINR constraint is
higher than that with traditional peak interference power constraint when Pmax ≥ 14. In fact,
for traditional peak interference power constraint, the number of PBS antennas does not
influence the transmit power of the CN. On the contrary, the PU’s SINR is related to the
number of PBS antennas and more PBS antennas will lead to higher SINR. Thus, for a given
η , the CN will be allowed to transmit higher power for a large number of PBS antennas,
which improves the CU’s rate. Thus, by using the SINR constraint, a higher rate of the CN
is achieved for a high Pmax, which can be improved by about 10% in comparison with the
conventional peak interference power constraint.

Fig. 4.3 shows the downlink sum rate and the corresponding total transmit power of the
CN versus MS, respectively. We set η = 8 dB for all PUs and Pmax = 10 dB. From Fig. 4.3(a),
we observe that the downlink sum rate of the CN first increases until the stabilization is
reached. The similar reasons have been explained in Fig. 4.2(b). On one hand, more antennas
at CBS lead to higher downlink rate. On the contrary, more antennas at CBS will cause more
interference to the PN. To guarantee PUs’ QoSs, the CN has to decrease the transmit power
as shown in Fig. 4.3(a). Therefore, the total transmit power of the CN decreases with MS, but
the downlink sum rate of the CN does not decease thanks to the increase of CBS antennas.
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number of active CUs.
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Fig. 4.8 Downlink sum rate of the CN versus iteration number.

Fig. 4.4 shows the downlink sum rate of the CN versus MP for different MS with η=8 dB
for all PUs. For a given MS, we find that the downlink sum rate of the CN decreases with MP.
The impact of η on the downlink sum rate of the CN under different MP when MS=100 is
shown in Fig. 4.5. For a larger MP (e.g., MP=200), the PU’s SINR is higher and (4.11c) is a
loose constraint for given η (7 dB ∼ 10 dB) when Pmax=13 dB, 14 dB and 15 dB. Therefore,
the downlink sum rate of the CN is a constant for given total transmit power. However, for a
smaller MP (e.g. MP=100), the PU’s SINR is lower. To guarantee PUs’ QoSs, the CN is not
allowed to transmit higher power for a larger η . Therefore, the downlink sum rate of the CN
will decrease.

In Figs. 4.6 and 4.7, we assume 8 PUs in each PC and different number of active CUs
in SC. Fig. 4.6 shows that the downlink sum rate of the CN versus MS when MP = 300.
The legend “3 CUs" denotes that 3 CUs share the primary pilots. Similarly to Fig. 4.3(a),
the sum rate first increases and then stabilizes with MS. Meanwhile, we find that the sum
rate increases when more CUs are allowed to share the primary pilots, but the increased
ratio decreases due to the fixed total transmit power. In Fig. 4.7, MS = 200 and the SINR
constraint is considered. Similarly to Fig. 4.4, the sum rate decreases with MP and increases
with the number of active CUs.

Fig. 4.8 shows the downlink sum rate of the CN versus iteration number. We set MS =

100,MP = 50,η = 8 dB. Here, we compare the convergence speed under different transmit
power Pmax. For a low Pmax, we find that the sum rate speedily converges. For example,



58
Power Allocation for Cognitive Radio Type Heterogeneous Network with Massive

MIMO

4 iterations are needed to guarantee convergence for Pmax = 5 dB. As Pmax increases, the
convergence becomes slower. For example, about 15 iterations are needed when Pmax = 15
dB. Thus, Pmax affects the performance of the convergence.

4.7 Conclusions

In this chapter, we have studied the power allocation problem for the mMIMO-CR HetNet
with pilot contamination. Following this, we formulated the power allocation optimization
problem to maximize the downlink sum rate of the CN. To effectively protect PUs from
harmful interference, we adopted PUs’ SINR constraint or not traditional interference power
constraint. Then, a convex approximation-based iterative method was proposed to solve the
formulated problem, where the obtained solution can be guaranteed to satisfy KKT points of
the original problem. We analyzed the performance of the PN and CN when the number of
PBS or CBS antennas was assumed huge. The results show that the sum rate of the CN can
be improved by about 10% by using the proposed SINR constraint in comparison with the
conventional peak interference power constraint.



Chapter 5

Pilot Allocation for Small Cell Type
Heterogeneous Network with Massive
MIMO Marco Cell

5.1 Introduction

In chapters 3 and 4, we consider that the mMIMO and CR coexist to form a mMIMO-
CR HetNet, including PN and CN. In this chapter, we will consider the pilot allocation
problem in mMIMO-SC HetNet. It is well known that TDD is considered in mMIMO-
SC HetNet [17] [45, 46]. However, due to short coherence time, the number of available
orthogonal pilots for channel estimation is limited. In the case that orthogonal pilots are
provided for all SUs and MUs, an excessive pilot overhead is generated and data transmission
efficiency degrades. When the coverage regions of any two SCs are non-overlapping and their
distance is relatively large the same pilot may be reused by users in adjacent SCs [46], [17].
However, even in such cases, the inter-tier interference from MBS to SUs in downlink still
occurs and seriously affects the achievable rate in SCs. Thus, to mitigate the inter-tier
interference, it is necessary to estimate the CSI of the links between MBS and SUs while
minimizing the uplink pilot overhead.

In this chapter, we propose a new pilot allocation scheme for the two-tier TDD mMIMO-
SC HetNet, where a part of SCs is allowed to use the orthogonal pilots. We consider the
uplink pilot overhead and inter-tier interference coordination while maximizing the ergodic
downlink sum rate of MUs and SUs. Unlike the previous works in [17] and [46], the proposed
scheme enables the MBS to estimate not only CSIs of MBS-MUs links but also those of
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MU

MBS

SU

SBS

Desired signal Inter-tier interference

Fig. 5.1 The mMIMO-SC HetNet model.

MBS-SUs links. Consequently, the inter-tier interference from MBS to SUs can be mitigated
by a downlink beam-forming such as ZF technique.

5.2 System Model

We consider a downlink two-tier mMIMO-SC HetNet system as shown in Fig. 5.1, where K
SCs share the same time-frequency resource with an MC. In each SC, SBS equipped with
NS antenna serves one single-antenna SU one time. As for MC, there is a NM-antenna MBS
and M(NM≫M) single-antenna MUs are served by the MBS simultaneously. We assume
that the two-tier mMIMO-SC HetNet system operates in TDD mode, and the uplink pilot
and downlink data transmission are completely synchronous in both tiers. For simplicity, we
denote the SU in SC k by the SU k.

The received signal of the MU m can be expressed as:
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yM
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∑
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(5.1)

where PM and wi denote the transmit power and NM×1 precoding vector for MU i at the
MBS, respectively. We assume the same transmit power for each MU. PS and vk, respectively,
represent the transmit power and NS×1 precoding vector at SBS k and PS is assumed the same
for each SBS. The xi and si are the transmit data for MU i and SU i, respectively, while nM

m

denotes the i.i.d. AWGN defined as CN(0,δ 2). β
A,B
a,b and hA,B

a,b (a,b ∈ {0,1,. . . ,max{M,K}},
A, B ∈ {M,S}) are the large-scale fading coefficient and small-scale fading vector between
MBS (a = 0,A = M) or SBS a (a ̸= 0,A = S) and MU b (B=M) or SU b (B=S), where
hM,B

0,b ∈C1×NM , hS,B
a,b ∈C1×NS , and hM,B

0,b ∼CN(0NM, INM), hS,B
a,b ∼CN(0NS , INS).

Similarly, the received signal at SU k can be written as:
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(5.2)

where nS
k denotes the AWGN.
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5.3 Problem Formulation and Solution

In this section, we first derive the lower bound on ergodic downlink rate of the MU and SU.
Then, we formulate the pilot allocation problem for maximizing the ergodic downlink sum
rate. Finally, pilot allocation algorithms are proposed.

5.3.1 Ergodic Downlink Rate of The MU and SU

Firstly, we assume that the coverage regions of any two SCs are non-overlapping and the
distance between different SCs is large enough (to neglect their pilot interference), so that
the same pilot is reused in all SCs. At the same time, the MC uses another set of pilots that
are mutually orthogonal to SC pilot. Then, we can obtain the ergodic downlink rate of MU m
and SU k as follows:

RM
m =

(
1− 1+M

S

)
E
{

log2(1+SINRM
m )
}
, (5.3)

RS
k =

(
1− 1+M

S

)
E
{

log2(1+SINRS
k )
}
, (5.4)

where “1" and M denote that one orthogonal pilot symbol is shared by all SCs and M
orthogonal pilots symbols are uniquely allocated to M MUs, respectively. S denotes the total
transmission symbols per frame with symbol duration T and time duration per frame ST .
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For MUs, we apply ZF precoding scheme at MBS. Firstly, we define H= [(hM,M
0,1 )T ,(hM,M

0,2 )T ,

. . . ,(hM,M
0,M )T ]T , and then we have:

W = HH (HHH)−1
. (5.7)

Therefore, the precoding vector wm can be defined as wm = wm/∥wm∥, where wm is the
m-th column vector of W. For SUs, since only one SU is served one time in each SC, we
apply MF precoding scheme at SBS as follows: vk = hS,S

k,k
H
/∥hS,S

k,k
H
∥.
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Then, we have the following proposition:

Proposition 5.3.1 With perfect CSI, the downlink achievable rate for MU m and SU k can
be lower bounded as follows:
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log2
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PMβ
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 . (5.8)
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PSβ

S,S
i,k +δ 2

 . (5.9)

The detailed proof can be found in Appendix C.
Based on the above analysis, it is clear that SUs seriously suffer from inter-tier interference

from MBS. To suppress inter-tier interference from MBS to SUs in downlink, MBS needs to
know CSIs of MBS-SUs links as well as CSIs with respect to MUs in own cell. However, it
is not practical solution to allocate orthogonal pilots to all MU and all SUs. To obtain the
optimal performance of the system, we propose a new pilot allocation scheme that allows a
part of SUs to use orthogonal pilots. The detailed description is presented below.

5.3.2 Problem Formulation

We assume that there are KO SUs using the orthogonal pilots, where KO is a parameter needed
to be optimized (0≤ KO ≤ K) for maximizing the ergodic downlink sum rate. We denote
K SUs as K = {1,2, · · · ,K}, KO SUs as KO = {θ1,θ2, · · · ,θKO} and other K−KO SUs as
KS = {ϑ1,ϑ2, · · · ,ϑKS}, where KO

⋃
KS =K , KO

⋂
KS = , KO = for KO = 0 and KS =

for KS = 0. Then, the MBS can obtain KO SUs’ CSIs, and the ZF precoding can be used at
MBS to cancel the interference from MBS to these KO SUs as follows:

WIC = H̃H
(

H̃H̃H
)−1

, (5.10)

where H̃ =
[
(hM,M

0,1 )T , . . . ,(hM,M
0,M )T ,(hM,S

0,θ1
)T , . . . ,(hM,S

0,θKO
)T
]T

, and hM,S
0,θk

denotes the small-
scale fading vector between SU θk and MBS.
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Proposition 5.3.2 Ergodic downlink rate of MU m and SU θk can be obtained as follows:

R̂M
m =

(
1−KO+M+ξ

S

)
log2

1+
PMβ

M,M
0,m (NM−M−KO)

K
∑

k=1
PSβ

S,M
k,m +δ 2

 , (5.11)

RS
θk
=

(
1−KO+M+ξ

S

)
log2

1+
PSβ

S,S
θk,θk

(NS−1)
K
∑

i=1,i ̸=θk

PSβ
S,S
i,θk

+δ 2

 , (5.12)

where ξ = sgn(K−KO) and sgn(x) = 1 for x > 0 and sgn(x) = 0 for x = 0. Similary, the
ergodic downlink rate of SU ϑk can be expressed by

RS
ϑk
=

(
1−KO+M+ξ

S

)
log2

1+
PSβ

S,S
ϑk,ϑk

(NS−1)
M
∑

m=1
PMβ

M,S
0,ϑk

+
K
∑

i=1
i ̸=ϑk

PSβ
S,S
i,ϑk

+δ 2

 . (5.13)

The proof of (5.11)-(5.13) is similar to the proof for (5.8) and (5.9) (see Appendix C)
and it is omitted. Then, we formulate the following optimization pilot allocation (i.e., KO)
problem

max
KO

M

∑
m=1

R̂M
m + ∑

θk∈KO

RS
θk
+ ∑

ϑk∈KS

RS
ϑk

s.t. KO ≤ K,

KO∪KS = K ,

KO∩KS = O.

(5.14)

Here, we assume K +M ≤ NM, and we need to find the optimal KO for maximizing
ergodic downlink sum rate. The exhaustive search can be used to find the optimal KO, but
the computational complexity is high as ∑

K
i=0Ci

K = ∑
K
i=0

K!
i!(K−i)! and for a large number of

SUs it becomes practically infeasible.
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Algorithm 3: Optimal SR-M algorithm
1 Initialize R1 =

{
r1

1,r
1
2, · · · ,r1

K
}

, R2 =
{

r2
1,r

2
2, · · · ,r2

K
}

according to (5.12) and
(5.13),∆R =

{
∆rγ1,∆rγ2, · · · ,∆rγK

}
2 for KO = 0 : K do
3 KO(KO) = {γ0,γ1,γ2, · · · ,γKO}, where γ0 = { /0}
4 Computing ergodic downlink sum rate F(KO) according to (5.16)
5 end for
6 K∗O = argmax F(KO)

7 K optimal
O (K∗O) = {γ0,γ1,γ2, · · · ,γK∗O}

5.3.3 Problem Solution

Optimal Sum-Rate Maximization (SR-M) Algorithm

To reduce the computational complexity, we first transform the original problem as:

F(KO) , max
KO

M

∑
m=1

R̂M
m + ∑

θk∈KO

RS
θk
+ ∑

ϑk∈KS

RS
ϑk

(5.15)

=

(
1−KO+M+ξ

S

)( M

∑
m=1

r̂M
m+max

KO

(
∑

θk∈KO

rS
θk
+ ∑

ϑk∈KS

rS
ϑk

))
,

where 

r̂M
m = log2

1+
PMβ

M,M
0,m (NM−M−KO)

K
∑

k=1
PSβ

S,M
k,m +δ 2

 ,

rS
θk
= log2

1+
PSβ

S,S
θk ,θk

(NS−1)
K
∑

i=1,i ̸=θk
PSβ

S,S
i,θk

+δ 2

 ,

rS
ϑk
= log2

1+
PSβ

S,S
ϑk ,ϑk

(NS−1)
M
∑

m=1
PMβ

M,S
0,ϑk

+
K
∑

i=1,i̸=ϑk
PSβ

S,S
i,ϑk

+δ 2

 .

For any SU k, we use (5.12) and (5.13) to obtain rS
θk

and rS
ϑk

, and denote as r1
k and

r2
k , respectively. Then, r̂M

m can be obtained using (5.11). We define R1 =
{

r1
1,r

1
2, · · · ,r1

K
}

,
R2 =

{
r2

1,r
2
2, · · · ,r2

K
}

and ∆R =
{

∆rγ1 ,∆rγ2, · · · ,∆rγK

}
, where ∆rγi ≥ ∆rγ j when γi≤ γ j, and
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Algorithm 4: Sub-optimal SR-M algorithm
1 Initialize R1 =

{
r1

1,r
1
2, · · · ,r1

K
}

, R2 =
{

r2
1,r

2
2, · · · ,r2

K
}

according to (5.18) and
(5.19),∆R =

{
∆rγ1,∆rγ2, · · · ,∆rγK

}
2 for KO = 0 : K do
3 KO(KO) = {γ0,γ1,γ2, · · · ,γKO}, where γ0 = { /0}
4 Computing ergodic downlink sum rate F(KO) according to (5.16)
5 end for
6 K∗O = argmax F(KO)

7 K optimal
O (K∗O) = {γ0,γ1,γ2, · · · ,γK∗O}

∆rγk = r1
γk
− r2

γk
(γk ∈K ). According to (5.15), we have:

F(KO) , max
KO

∑
θk∈KO

RS
θk
+ ∑

ϑk∈KS

RS
ϑk
+

M

∑
m=1

R̂M
m (5.16)

=

(
1−KO+M+ξ

S

)( M

∑
m=1

r̂M
m+

K

∑
k=1

r1
k +max

KO
∑

k∈KO

∆rγk

)

=

(
1−KO+M+ξ

S

)( M

∑
m=1

r̂M
m+

K

∑
k=1

r1
k +

KO

∑
i=1

∆rγi

)
,

where ∑
KO
i=1 ∆rγi = 0 when KO = 0. According to (5.16), since KO ∈ [0, K], we obtain the

optimal KO and KO using one-dimension search and summarize the above description in
Algorithm 3 (Optimal SR-M algorithm).

Sub-optimal SR-M Algorithm

To simplify the Algorithm 3, we propose a suboptimal algorithm that approximates the SU’s
location with the SBS’s location. Specifically, since coverage of each SC is small compared
with to MC with short distance between a SU and its associated SBS, the SU’s location can be
approximated as SBS’s location. Let us assume two SCs located in the two-tier mMIMO-SC
HetNet system as shown in Fig. 5.2. In this figure, the large-scale fading coefficient can be
approximated as

β
M,S
0, j ≈ β̂

M,S
0, j and β

M,S
0,j ≈ β̂

M,S
0,j . (5.17)

Therefore, the interference terms ∑
K
i̸=θk

PSβ
S,S
i,θk

+δ 2 and ∑
M
m=1 PMβ

M,S
0,ϑk

+∑
K
i ̸=ϑk

PSβ
S,S
i,ϑk

+δ 2

in (5.12) and (5.13) can be approximated as ∑
K
i ̸=θk

PSβ̂
S,S
i,θk

+δ 2 and ∑
M
m=1 PMβ̂

M,S
0,ϑk

+∑
K
i ̸=ϑk

PSβ̂
S,S
i,ϑk

+δ 2, respectively. Hence, these two terms can be regarded as constants even when
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Fig. 5.2 Illustration of approximation in Algorithm 4.

SU’s location changes. We can see that the MBS does not need to update ∑
K
i ̸=θk

PSβ
S,S
i,θk

+δ 2

and ∑
M
m=1 PMβ

M,S
0,ϑk

+∑
K
i ̸=ϑk

PSβ
S,S
i,ϑk

+δ 2 regularly, which can simplify the pilot allocation
algorithm. According to the above approximation, we have:

RS
θk
≈
(

1−KO+M+ξ

S

)
log2

1+
PSβ

S,S
θk,θk

(NS−1)
K
∑

i=1,i̸=θk

PSβ̂
S,S
i,θk

+δ 2

 , (5.18)

RS
ϑk
≈
(

1−KO+M+ξ

S

)
log2

1+
PSβ

S,S
ϑk,ϑk

(NS−1)
M
∑

m=1
PMβ̂

M,S
0,ϑk

+
K
∑

i=1
i ̸=ϑk

PSβ̂
S,S
i,ϑk

+δ 2

 . (5.19)

Then, we can get R1, R2 and ∆R, which have the similar computing process with Algo-
rithm 4. We call this suboptimal algorithm as Algorithm 4 (Sub-optimal SR-M algorithm).

SUs’ Fairness-Aware Algorithm

To consider SUs’ fairness, based on the original problem (5.14) we propose a SUs’ fairness-
aware algorithm. Here, the orthogonal pilots are preferentially allocated to relatively low-
rate SUs and then to maximize the ergodic downlink sum rate. According to the above
analysis, we sort R1 with ascending order and denote as R∗1 =

{
r1

λ1
,r1

λ2
, · · · ,r1

λK

}
(λk ∈
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Algorithm 5: SUs’ fairness-aware algorithm

1 Initialize R∗1 =
{

r1
λ1
,r1

λ2
, · · · ,r1

λK

}
, R∗2 =

{
r2

λ1
,r2

λ2
, · · · ,r2

λK

}
according to (5.12)

and (5.13), ∆R∗ =
{

∆rλ1,∆rλ2,· · ·,∆rλK

}
2 for KO = 0 : K do
3 KO(KO) = {λ0,λ1,λ2, · · · ,λKO}, where λ0 = { /0}
4 Computing ergodic downlink sum rate F(KO) according to (5.20)
5 end for
6 K∗O = argmax F(KO)

7 K optimal
O (K∗O) = {λ0,λ1,λ2, · · · ,λK∗O}

Table 5.1 Simulation parameters.

Parameters Value
Radius of macro cell 1000 m
Radius of micro cell 30 m

Number of MUs 50
Number of SBS antennas 4
Transmit power of MBS 46dBm
Transmit power of SBS 23dBm

Frame duration 200T
Pathloss between MBS and MU or SU 27.3+39.1log10(d)
Pathloss between SBS and MU or SU 36.8+36.7log10(d)

Downlink Bandwidth 10 MHz
Noise Power -174dBm/Hz

K ), where r1
λi
≤ r1

λ j
when λ j ≥ λi, then we can get R∗2 =

{
r2

λ1
,r2

λ2
, · · · ,r2

λK

}
and ∆R∗ ={

∆rλ1,∆rλ2, · · · ,∆rλK

}
(∆rλk

= r1
λk
− r2

λk
). Therefore, the F(KO) can be written as follows:

F(KO)=

(
1−KO+M+ξ

S

)( M

∑
m=1

r̂M
m+

K

∑
k=1

r1
k +

KO

∑
i=1

∆rλi

)
. (5.20)

We summarize the above algorithm as Algorithm 5 (SUs’ fairness-aware algorithm).

5.4 Simulation Results and Discussions

The ergodic downlink sum rate of MUs and SUs for the proposed algorithms is compared
in this section. We consider a single MC with a radius of 1000 meters, where the MBS is
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Fig. 5.3 The ergodic downlink rate versus NM with K = 50 and KO = 20.

located at the center of the MC and MUs are uniformly distributed in the MC. We assume the
MC-hole radius is 100 meters (all MUs or SUs do not figure in this scenario), and the radius
of each SC is 30 meters. All SCs are randomly located within the MC, and SUs are randomly
located in each SC. As a typical example, we assume that the minimum distance between
the SU and SBS is 5 meters, and then the distance between any two SBSs is longer than 120
meters. The results are averaged over 103 trials. Other related simulation parameters are
listed in Table 5.1.

Fig. 5.3 plots the ergodic downlink sum rate of MUs and SUs versus NM with K = 50,
respectively. In this figure, the lower bound of ergodic downlink rate is compared with the
simulation results, where KO = 20 is used in the Algorithm 3. From Fig. 5.3, we can find
that the gap between lower bound of ergodic downlink rate and the simulation results is
small enough. Although the downlink sum rate of MUs increases with the number of MBS
antennas NM, the downlink sum rate of SUs is kept constant, because SUs’ rate is given
regardless of NM. In the following simulation, we just consider the lower bound of ergodic
downlink sum rate of MUs and SUs.

Fig. 5.4 plots the ergodic downlink sum rate versus KO with NM = 500 and K = 50. We
find that the ergodic downlink sum rate is a convex function of KO. The performance gap
of the Algorithms 3 and 4 is very small, and the maximum ergodic downlink sum rate is
nearly the same. Since Algorithm 3 considers the SUs’ fairness (i.e., orthogonal pilots are
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Fig. 5.5 The ergodic downlink sum rate versus NM with K=50.
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Fig. 5.6 The ergodic downlink sum rate versus K with NM = 500.

preferentially allocated to relatively low-rate SUs to improve their achievable rate), the sum
rate is lower than those of Algorithms 3 and 4.

Fig. 5.5 shows that the ergodic downlink sum rate versus NM with K = 50. To compare
with the performance of our proposed algorithms, we also plot the ergodic downlink sum rate
of traditional pilot allocation schemes. For example, reference 1 considers the worst-case
interference between MBS and SUs, where all SCs use the same pilot [47], and reference 2
considers no interference between MBS and SUs, where all SCs use orthogonal pilots [48].
Obviously, our proposed algorithms effectively improve the sum rate of the system (about
12%) in comparison with the references 1 and 2. In addition, we also find that the performance
of reference 2 is the worst. Although the inter-tier interference from MBS to SUs can be
canceled, the large number of pilots results in decreasing data transmission in one coherent
time block. Fig. 5.5 also shows that ergodic downlink sum rate in all schemes is improved as
the number of antennas NM increases, because of increased antenna gain. Similarly to the
results in Fig. 5.4, the sum rates of Algorithms 3 and 4 are nearly the same. To preferentially
improve achievable rate of lower-rate SUs, Algorithm 5 will lose some overall performance
gains, and this point is also shown in Fig. 5.5.

Fig. 5.6 plots the ergodic downlink sum rate versus K with NM = 500, we can get
that the ergodic downlink sum rate increases with K, and the performance of the first two
algorithms are still better than that of the third algorithm. In addition, it can be found that
the performance of our proposed algorithms is always better than that of references 1 and 2.
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Fig. 5.7 The CDF of SU’s ergodic downlink rate with NM = 500 and K = 50.

Meanwhile, we find that the sum rate of reference 2 decreases with the number of SCs. The
reason is that more SCs lead to more orthogonal pilots, which results in less time for data
transmission.

Fig. 5.7 shows that the cumulative distribution function (CDF) curve of the SU’s ergodic
downlink rate with NM = 500 and K = 50. Compared with the first two algorithms, we
find that there is lower proportion of SUs with the smaller downlink rate in Algorithm 5.
Meanwhile, for the higher downlink rate, the proportion of SUs is higher for the first two
algorithms. The result suggests that Algorithm 5 preferentially improves achievable rate of
relatively low-rate SUs by sacrificing the sum-rate performance of the system.

5.5 Conclusions

In this chapter, we have investigated the uplink pilot allocation problem for the two-tier TDD
mMIMO-SC HetNet. An optimal pilot allocation algorithm has been proposed to maximize
the ergodic downlink sum rate of MUs and SUs. In addition, a suboptimal algorithm has
been proposed, in which the SU’s location is approximated as SBS’s location based on the
assumption that the coverage area of SCs is small enough. Then, for guaranteeing the SUs’
fairness, we have presented another algorithm to preferentially improve achievable rate of
relatively low-rate SUs. Simulation results have demonstrated that our proposed scheme
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can improve the sum rate of the system by about 12% in comparison with the conventional
schemes.





Chapter 6

Small Cell Clustering and Precoding
Design for Small Cell Type
Heterogeneous Network with Massive
MIMO Marco Cell

6.1 Introduction

In previous chapters, we have proposed some pilot and power allocation schemes to reduce
the pilot contamination and signal interference. In this chapter, we will consider how to
coordinate the interference by SC clustering and precoding design in a mMIMO-SC HetNet.
In literature [49]-[52], there have been some studies about SC clustering for interference
coordination. Zhou et al. in [49] propose a graph-based approach combining SC clustering
and user clustering for mitigating interference among SCs. According to the downlink SINR
user receives, SCs are grouped into multiple clusters. A rate loss-based low-complexity
algorithm for SC clustering is proposed by Seno et al. in [50]. Each SBS’s transmit power
must be decided in advance for the above clustering schemes, which are inapplicable in our
study. Hong et al. in [51] investigate the BSs clustering and precoding design for partially
coordinated transmission to maximize the utility of the system. Since one user can be served
by different BS clusters in their scheme, the intra-cluster interference can not be cancelled
completely. A dynamic greedy algorithm for cooperative BSs clustering is proposed in [52],
but the number of BSs in each cluster must be known in advance. Fan et al. in [53] propose
a distance-based SBS clustering scheme. Although the proposed algorithm is simple, it is not
appropriate for time-varying environment. In fact, [49]-[52] consider the clustering at user
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level, namely the cluster is formed by considering the real-time interference between users
and BS, which is superior than clustering at SC level (e.g., [53]).

Several precoding schemes for interference coordination in MIMO system have also
been investigated in literature [54]-[57]. For example, Zhang et al. in [54] study the
precoding design optimization problem for maximizing the weighted sum rate of all users
in multi-cell system. Since the multi-user interference can be eliminated by using the
proposed block diagonalization (BD) precoding technique, the original problem can be
transformed into convex optimization problem. Similarly, in [55] and [56], the authors design
effective precoder to eliminate the multi-user interference so that the original problem can be
transformed into convex optimization problem. Then, the optimal precoder can be obtained
by using interior-point method or convex optimization toolbox directly. Niu et al. in [57]
propose a joint interference alignment and power allocation problem for reducing the intra-
and inter-tier interference, which is solved by some simply linear algorithms. Although the
linear algorithm has low complexity, it cannot be used in non-convex problems such as ours
due to per-SBS power constraint and interference among clusters.

Unlike previous works, in this chapter we investigate a new SC clustering strategy and
their precoding designs for maximizing downlink sum rate of SUs in two-tier mMIMO-SC
HetNet. The main contributions are summarized as follows:

• To reduce the interference among SCs, an interference graph-based dynamic SC cluster-
ing scheme is proposed, where SCs are grouped into multiple SC clusters according to
their interference channel strength. On this basis, the SUs’ signals are jointly designed
in each cluster.

• To achieve joint interference coordination mentioned above, we formulate an optimiza-
tion problem to design precoding weights at MBS and clustered SCs for maximizing
the downlink sum rate of SUs subject to per-SBS power constraint. Precoding weights
at MBS are designed to eliminate the multi-MU and inter-tier interference, while pre-
coding weights at clustered SCs are designed to cancel the intra-cluster interference
and mitigate inter-cluster interference.

• To eliminate multi-MU and inter-tier interference simultaneously, we propose a clus-
tered SC BD (CSBD) precoding scheme for MBS. Specifically, we use the singular
value decomposition (SVD) to find the null space of the inter-tier interference channels.
Following this, the ZF downlink precoding weight matrix for MUs is projected onto the
above null space to simultaneously cancel the multi-MU and inter-tier interference.

• To cancel the intra-cluster interference and coordinate inter-cluster interference, the
precoding vector of each SU at clustered SCs is designed as the product of the following
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Fig. 6.1 System model for small cluster-based two-tier downlink mMIMO-SC HetNet.

two parts. The first part is designed with SVD to remove the intra-cluster interference.
The second part is designed to coordinate the inter-cluster interference for maximizing
the downlink sum rate of SUs. This is a non-convex optimization problem that is difficult
to directly solve. We propose a cluster-based non-cooperative game and develop a
distribute algorithm to obtain a suboptimal solution. Finally, we prove the existence
and uniqueness of the Nash equilibria (NE) for the formed game.

6.2 System Model and Problem Formulation

6.2.1 System Model

A two-tier downlink mMIMO-SC HetNet system is considered as shown in Fig. 6.1, which
is composed of a MC and J overlaid SCs (J = {1,2, . . . ,J}). We assume that KM single-
antenna MUs are served by the central MBS equipped with M antennas (M≫KM) , and each
SBS associated with N antennas serves KS single-antenna SUs (N≥KS) . The MC and all
SCs share the overall spectrum while users (MUs and SUs) are served with the same time-
frequency resource. In this case, there exist interference among SCs. Cooperative downlink
transmission among SCs eliminates the inter-SC interference. However, transmission data
must be exchanged and shared among SBSs, which needs huge backhaul overhead. SC
clustering approach is effective in decreasing the required overhead, where the transmission
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data are only shared within each cluster. To harvest the benefits of the mMIMO antennas, we
assume that TDD protocol is applied with perfect CSI at MBS and SBSs [45], [46].

We assume that all SCs are grouped into C clusters, where each SU is served by all
SBSs belonging to the same cluster. Let Cl denote the number of SCs in the lth cluster
with the total number of SUs and antennas across all SBSs in the lth cluster denoted as
Kl = ClKS and Nl = ClN, respectively. Meanwhile, we assume that ((Ol − 1)N + 1)th to
(OlN)th antennas are taken as the N SBS antennas in the Olth SBS in the lth cluster with
Ol = 1,2, . . . ,Cl . Similarly, the indices of SUs in the Olth SBS in the lth cluster can be
denoted as the ((Ol−1)KS +1)th to (OlKS)th.

The received signal by the kth SU in the lth cluster can be expressed as:

ylk =
C

∑
i=1

Ki

∑
j=1

hilkvi jxi j +
KM

∑
m=1

h0lkv0mx0m +nlk

= hllkvlkxlk︸ ︷︷ ︸
Desired signal

+
Kl

∑
j ̸=k

hllkvl jxl j︸ ︷︷ ︸
Intra−cluster interference

+
C

∑
i ̸=l

Ki

∑
j=1

hilkvi jxi j︸ ︷︷ ︸
Inter−cluster interference

+
KM

∑
m=1

h0lkv0mx0m︸ ︷︷ ︸
Inter−tier interference

+ nlk︸︷︷︸
Noise

,
(6.1)

where hilk ∈ C1×Ni and h0lk ∈ C1×M, respectively, denote the downlink channel from all Ci

SBSs and the MBS to the kth SU in the lth cluster. vi j ∈CNi×1 and v0m ∈CM×1, respectively,
denote the precoding vector for the jth SU in the ith cluster and the mth MU. xi j and x0m

denote the transmit signals of the jth SU in the ith cluster and the mth MU, respectively. We
assume E[|x|2] = 1 and nlk is an i.i.d. AWGN defined as CN(0, δ 2).

Similarly, the received signal at the kth MU can be expressed as follows:

y0k =
KM

∑
m=1

h00kv0mx0m +
C

∑
i=1

Ki

∑
j=1

hi0kvi jxi j +n0k

= h00kv0kx0k︸ ︷︷ ︸
Desired signal

+
KM

∑
m ̸=k

h00kv0mx0m︸ ︷︷ ︸
intra−tier interference

+
C

∑
i=1

Ki

∑
j=1

hi0kvi jxi j︸ ︷︷ ︸
Inter−tier interference

+ n0k︸︷︷︸
Noise

,
(6.2)

where h00k ∈ C1×M and hi0k ∈ C1×Ni denote the downlink channel from the MBS and all Ci

SBSs in the ith cluster to the kth MU, respectively.
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Following this, the constraints for eliminating inter-tier interference from MBS to SUs
and intra-cluster interference are given as:

h0lkv0m = 0,∀l,k,m = {1, . . . ,KM}, (6.3a)

hllkvl j = 0,∀k ̸= j, l = {1, . . . ,C}, (6.3b)

Therefore, the received signal by the kth SU in the lth cluster can be rewritten as:

ylk =hllkvlkxlk +
C

∑
i ̸=l

Ki

∑
j=1

hilkvi jxi j +nlk, (6.4)

and its rate can be expressed as follows:

Rlk = log2

1+
hllkvlkvH

lkhH
llk

C
∑
i ̸=l

Ki
∑
j=1

hilkvi jvH
i jhH

ilk +δ 2

 . (6.5)

6.2.2 Problem Formulation

Since total transmit antennas in each cluster comes from more than one SBS, the per-SBS
power constraint is expressed as follows:

Kl

∑
k=1

Tr(BOl vlkvH
lk)≤ P,∀l,Ol = {1, . . . ,Cl}, (6.6)

with

BOl , Diag(0, . . . ,0︸ ︷︷ ︸
(Ol−1)N

,1, . . . ,1︸ ︷︷ ︸
N

, 0, . . . ,0︸ ︷︷ ︸
(Cl−Ol)N

). (6.7)
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Fig. 6.2 An example for interference graph.

Next, we formulate the optimization problem to maximize the downlink sum rate of SUs
as follows:

max
{V1,...,VC},VM

C

∑
l=1

Kl

∑
k=1

Rlk (6.8a)

s.t. h0lkv0m = 0,∀l,k,m = {1, . . . ,KM}, (6.8b)

hllkvl j = 0,∀k ̸= j, l = {1, . . . ,C}, (6.8c)
Kl

∑
k=1

Tr(BOl vlkvH
lk)≤ P,∀l,Ol, (6.8d)

vlk ≽ 0,v0m ≽ 0,∀l,k,m, (6.8e)

where Vl = [vT
l1, . . . ,v

T
lKl

]T and VM = [vT
01, . . . ,v

T
0KM

]T .
To solve the above problem (6.8), we consider the following three steps. The first step

is to design a SC clustering scheme so that all SCs form multiple clusters as shown. The
second step designs precoding at MBS to eliminate inter-tier interference, namely (6.8b).
The last step designs precoding at each cluster to maximize the downlink sum rate of SUs,
namely (6.8a), (6.8c) and (6.8d).

6.3 SC Clustering Scheme for Interference Coordination

We define the average interference channel strength between two SCs i, j as follows:

γi, j =
1

NKT

KS

∑
k=1

(∥∥h̄i jk
∥∥+∥∥h̄ jik

∥∥) , i, j = {1, . . . ,C}, (6.9)

where KT denotes the total number of SUs in SCs i and j (KT = 2KS). h̄i jk ∈ C1×N

denotes the downlink interference channel from the ith SC to the kth SU in the jth SC. γi, j

in (6.9) represents the potential average interference strength level between SCs i and j. For
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Fig. 6.3 An example for SC clustering with γth=-100dB.
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Fig. 6.4 An example for SC clustering with γth=-105dB.
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Algorithm 6: Interference graph-based dynamic SC clustering algorithm
Input :J, γth, n = 1.
Output :C.

1 for i = 1 : J do
2 C{n}= {i}.
3 for j = 1 : J (i ̸= j) do
4 Compute γi, j according to (6.9).
5 if γi, j ≥ γth then
6 The SCs i and j form a new cluster, namely C{n}= C{n}∪{ j}.
7 if The SC i or j has belonged to any other cluster n′ then
8 The SCs i, j and their all cluster members form a new cluster, namely

C{n}= C{n}∪C{n′}, n = n−1.
9 end if

10 end if
11 end for
12 n = n+1.
13 end for
14 Note: Here, C should be a set consisting of several subsets. Each subset indicates a

cluster and its elements represent SCs’ index. C{n} denotes the nth subset in set C.

example, a larger γi, j denotes higher interference and vice versa. Therefore, two SCs form a
cluster when γi, j is high.

The potential interference relationship among all SCs can be constructed as the interfer-
ence graph. First, we set an interference threshold γth that is used to determine whether two
SCs should form a cluster. We assume three SCs in Fig. 6.2 denoted as i, j, l. If we have
γi, j ≥ γth, γ j,l ≥ γth and γi,l < γth, according to the above definition, the SC j will belong
to two different clusters. For simplifying the problem and coordinating more interference
among SCs, the SCs i, j and l will form one cluster under the above situation.

Based on the above analysis, an interference graph can be constructed as an undirected
graph G(J,E) in SBSs, where J vertices denote all SCs and E(u,v) edges stand the potential
interference between SCs u and v, ∀u,v ∈ J. Figs. 6.3 and 6.4 illustrate the SC clustering
results with different γth having the same randomly located SCs. It can be clearly observed
from the figure that higher interference threshold leads to smaller-size clusters with fewer SCs.
This reduces the information exchange within each cluster, which decreases the backhaul
overhead and system latency. On the contrary, lower interference threshold leads to larger-
size clusters with more SCs. This increases information exchange within each cluster, which
increases the backhaul overhead and system latency. Therefore, in practice, the interference
threshold can be determined according to the required criteria, e.g., the system sum rate
maximization, delay and/or backhaul overhead minimization. In this section, the interference
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threshold is empirically selected to maximize the system sum rate for simplicity. We note
here that information exchange is only done between SBSs within each cluster as indicated
by hllk and xlk in (6.4). The information exchange among users is not needed.

The SC clustering scheme is presented in Algorithm 6. We first compute γi, j between
SCs i and j (in line 4). Next, two SCs are decided whether to form a cluster or not based
on γth (in lines 5-6). When SC i and j form a cluster according to the above scheme, if any
one of them has belonged to other cluster, SCs i, j and that cluster members will reform one
cluster (in lines 7-9). The above procedure is repeated until all SCs are clustered.

6.4 CSBD Precoding Design for MBS

To eliminate the inter-tier interference from MBS to SUs and multi-MU interference simulta-
neously, we propose a CSBD precoding scheme for MBS.

First, we define the inter-tier interference channels from MBS to SUs as follows:

Hin = [hT
011, . . . ,h

T
01K1

, . . . ,hT
0C1, . . . ,h

T
0CKC

]T . (6.10)

where Hin ∈ CJKS×M. To obtain the null space of the inter-tier interference channels Null
(Hin), we apply the classical SVD to the matrix Hin, yielding

Hin = UΣΣΣVH , (6.11)

where U ∈ CJKS×JKS denotes the left-singular-vector matrix, V ∈ CM×M denotes the right-
singular-vector matrix, and ΣΣΣ ∈ CJKS×M denotes the singular values as follows:

Σ =

[
Σ̂ΣΣr 0r×(M−r)

0(JKS−r)×r 0(JKS−r)×(M−r)

]
. (6.12)

where r = rank(Hin) is the rank of Hin, and Σ̂ΣΣr = Diag{σ1, . . . ,σr}.
Therefore, the null space of Hin can be found by spanning the columns of V as follows:

V̂ = [vr+1,vr+2, . . . ,vM]. (6.13)

Note that there is a constraint condition for the existence of V̂ ∈ CM×(M−r), namely the
number of SUs must be lower than the number of MBS antennas (JKS ≤M). Then, we have
the following:

HinV̂ = 0. (6.14)
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According to (6.14), we can find that the inter-tier interference can be cancelled com-
pletely if a column vector for each MU is randomly chosen from V̂, but it may cause serious
multi-MU interference. To eliminate the inter-tier and multi-MU interference simultaneously,
we first define the projection matrix Ṽin based on the null space Null(Hin) as follows:

Ṽin = V̂V̂H . (6.15)

Accordingly, we can project ZF precoding matrix for MUs onto the null space Null(Hin)
and obtain the finall precoding matrix as:

WCSBD =
(

HMṼin

)H
(

HMṼin

(
HMṼin

)H
)−1

=
(

HMṼin

)H (
HMṼinṼH

inHH
M

)−1

=
(

HMṼin

)H (
HMV̂V̂HV̂V̂HHH

M

)−1

=
(

HMṼin

)H (
HMṼinHH

M

)−1
,

(6.16)

where HM = [hT
001,h

T
002, . . . ,h

T
00KM

]T denotes the multi-MU downlink channel matrix. Mean-
while, the necessary condition for the existence of WCSBD is JKS+KM ≤ M, namely the
number of SUs and MUs should be lower than the number of MBS antennas. Next, we
provide the proof for the above necessary condition. For the i.i.d. Rayleigh fading channel,
rank(Hin) should be JKS. Thus, V̂ is a M× (M−JKS) matrix, where rank(V̂) = M−JKS

and rank(Ṽin) ≤ M−JKS. In addition, since HMṼinHH
M is a KM×KM matrix, the condi-

tion for existence of (HMṼinHH
M)−1 is rank(HMṼinHH

M) = KM. Due to rank(HMṼinHH
M)≤

min{M− JKS,KM}, we have M−JKS ≥ KM, namely, JKS+KM ≤M.
According to the obtained precoding WCSBD, we have the following:

HMWCSBD = HM

(
HMṼin

)H (
HMṼinHH

M

)−1
= HMṼinHH

M

(
HMṼinHH

M

)−1
= I,

(6.17a)

HinWCSBD = Hin

(
HMṼin

)H (
HMṼinHH

M

)−1
= HinV̂V̂HHH

M

(
HMṼinHH

M

)−1
= 0,

(6.17b)

where (6.17a) and (6.17b), respectively, illustrate that the multi-MU and inter-tier interference
can be cancelled.
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The precoding vector for the kth MU can be written as:

v0k =

√
P0kWk

CSBD∥∥Wk
CSBD

∥∥ , (6.18)

where Wk
CSBD is the kth column vector of WCSBD, and P0k denotes the transmit power for

the kth MU.
In addition, when JKS+KM ≤M, the ZF precoding can be also used to cancelled the

multi-MU and inter-tier interference directly. For example, we define the following channel
matrix:

HZF = [hT
001,h

T
002, . . . ,h

T
00KM

,hT
011, . . . ,h

T
01K1

, . . . ,hT
0C1, . . . ,h

T
0CKC

]T . (6.19)

On this basis, we obtain the ZF precoding as follows:

WZF = HH
ZF
(
HZFHH

ZF
)−1

. (6.20)

The precoding vector for the kth MU can be written as:

v0k =

√
P0kWk

ZF∥∥Wk
ZF

∥∥ , (6.21)

where Wk
ZF is the kth column vector of WZF, and P0k denotes the transmit power for the kth

MU.
However, for ZF precoding, we find that HZFHH

ZF is a (JKS+KM)× (JKS+KM) matrix.
Accordingly, we need to inverse a high dimension matrix ((JKS+KM)×(JKS+KM)) in (6.20)
with high complexity, especially for a lager JKS (i.e., number of SUs). In contrast, for our
proposed CSBD precoding, we only need to inverse a low dimension matrix HMṼinHH

M

(KM×KM), reducing the computational complexity.

6.5 Non-Cooperative Game-Based Precoding Design for Clus-
tered SCs

The precoding vector of the kth SU in the lth cluster is designed as the product as follows:

vlk = Tlkslk, (6.22)
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where Tlk is used to remove the intra-cluster interference, and slk is designed to coordinate
the inter-cluster interference for maximizing the downlink sum rate of SUs.

We first define the intra-cluster interference channels of the kth SU in the lth cluster as
follows:

Hlk = [hT
ll1, . . . ,h

T
ll(k−1),h

T
ll(k+1), . . . ,h

T
llKl

]T , (6.23)

where Hlk ∈ C(Kl−1)×Nl . Then, we can obtain the null space of the interference channel
matrix Hlk by SVD of Hlk. The hllk is mutually independent for any k and we obtain:

Hlk = UlkΣlk

[
VlkṼlk

]H
, (6.24)

where Ṽlk ∈ CNl×(Nl−Kl+1) denotes the orthogonal basis of the null space of Hlk, namely
HlkṼlk = 0 and ṼH

lkṼlk = I. Thus, we have Tlk = Ṽlk. Following this, the original problem
(6.8) can be transformed as:

max
{Φlk}

C

∑
l=1

Kl

∑
k=1

log2

1+
hllkTlkΦΦΦlkTH

lkhH
llk

C
∑
i̸=l

Ki
∑
j=1

hilkTi jΦΦΦi jTH
i jhH

ilk+δ 2

 (6.25a)

s.t.
Kl

∑
k=1

Tr(BOl TlkΦΦΦlkTH
lk)≤ P,∀l,Ol, (6.25b)

rank(ΦΦΦlk) = 1, (6.25c)

where ΦΦΦlk = slksH
lk ∈ C(Nl−Kl+1)×(Nl−Kl+1). Here, we consider the single-antenna SU and slk

is a (Nl−Kl +1)×1 vector, so we have (6.25c).
Next, we define h̃llk = hllkTlk, h̃il j = hilkTi j and the final optimization problem can be

written as:

max
{ΦΦΦlk}

C

∑
l=1

Kl

∑
k=1

R̃lk (6.26a)

s.t.
Kl

∑
k=1

Tr(BOl TlkΦΦΦlkTH
lk)≤ P,∀l,Ol, (6.26b)

rank(ΦΦΦlk) = 1, (6.26c)
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where R̃lk = log2

(
1+ h̃llkΦΦΦlkh̃H

llk

∑
C
i ̸=l ∑

Ki
j=1 h̃il jΦΦΦi jh̃H

il j+δ 2

)
. We note here that (6.26) is a non-convex op-

timization problem due to the non-concave objective function (6.26a) and the rank-one
constraint (6.26c). Problem in (6.26) is very difficult to be directly solved even through a cen-
tralized algorithm. On this basis, we devise a distributed scheme based on the non-cooperative
game. Finally, we prove the existence and uniqueness of the NE for the formulated non-
cooperative game and propose an iterative algorithm to obtain NE solution.

6.5.1 The Formulated Non-Cooperative Game Model

With the certain price, the non-cooperative game for the cluster player is defined as:

G=
{
C,{ΦΦΦl}l∈C,{Ul (m,ΦΦΦl,ΦΦΦ−l)}

}
, (6.27)

where C= {1, . . . ,C} is the set of all clusters; ΦΦΦl = [ΦΦΦT
l1, . . . ,ΦΦΦ

T
lKl

]T (l ∈ C ) denotes the pre-
coding matrix of the lth cluster; Ul (m,ΦΦΦl,ΦΦΦ−l) is the utility function of the lth cluster; m =

[m1, . . . ,mC] denotes the interference price for clusters; ΦΦΦ−l = [ΦΦΦT
1 , . . . ,ΦΦΦ

T
l−1, . . . ,ΦΦΦ

T
l+1, . . . ,ΦΦΦ

T
C]

T

is precoding matrix of other (C−1) clusters. We define the utility function as follows:

Ul (m,ΦΦΦl,ΦΦΦ−l) =
Kl

∑
k=1

R̃lk−
Kl

∑
k=1

Llk(ΦΦΦlk)

=
Kl

∑
k=1

R̃lk−
Kl

∑
k=1

C

∑
i ̸=l

Ki

∑
j=1

mihli jTlkΦΦΦlkTH
lkhH

li j,

(6.28)

where Llk denotes the interference imposed by the precoding vector of the kth SU in the lth
cluster to all SUs in other (C−1) clusters.

From (6.28), we find that the second term of the utility function accounts for the cost due
to generated interference to other clusters, which discourages the lth cluster from maximizing
its own sum rate selfishly. However, when the price vector m = 0, the cluster will maximize
its own sum rate uniquely.

Therefore, for the cluster player l (l ∈ C), we solve the following problem:

max
{ΦΦΦl}

Ul (m,ΦΦΦl,ΦΦΦ−l) (6.29a)

s.t.
Kl

∑
k=1

Tr(BOl TlkΦΦΦlkTH
lk)≤ P,∀Ol, (6.29b)

rank(ΦΦΦlk) = 1,∀k. (6.29c)
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Problem (6.29) includes the non-convex constraint (6.29c). To overcome the obstacle of
non-convexity, we first reformulate the problem without the rank-one constraint and then,
the obtained closed-form solution can be guaranteed to be rank-one. Following this, we
formulate the optimization problem as follows:

max
{ΦΦΦl}

Ul (m,ΦΦΦl,ΦΦΦ−l) (6.30a)

s.t.
Kl

∑
k=1

Tr(BOl TlkΦΦΦlkTH
lk)≤ P,∀Ol. (6.30b)

Definition of NE: A strategy profile ΦΦΦ= [ΦΦΦT
1 , . . . ,ΦΦΦ

T
C ]

T is a NE, if ΦΦΦl is the best response
to ΦΦΦ−l for every player l. Formally, the strategy profile ΦΦΦl is an NE if

Ul (m,ΦΦΦl,ΦΦΦ−l)≥Ul
(
m,ΦΦΦ′l,ΦΦΦ−l

)
, l ∈ {1, . . . ,C}, (6.31)

where ΦΦΦ
′
l is an arbitrary profile of player l in strategy space.

Theorem 6.5.1 There exists a NE for the non-cooperative game G in (6.27).

Proof Please refer to Appendix D for proof.

6.5.2 The Solution of the Non-Cooperative Game

Before proving the uniqueness of NE, we first solve the optimization problem (6.30), where
a cluster obtains its best response for given other clusters’ action. Since we have proved that
the objective function in (6.30) is concave and the constraint is a convex set w.r.t. ΦΦΦl , (6.30)
is a convex optimization problem and can be solved using standard convex optimization
techniques, e.g., the interior point method [43] and standard determinant maximization
(MAXDET) software [58]. However, our interest is to design an algorithm for solving (6.30),
which is based on dual method due to the zero gap between problem (6.30) and its dual [43].

The Lagrange dual function of (6.30) is defined as:

g(µµµ l) = max
ΦΦΦl≽0

L(ΦΦΦl,µµµ l) , (6.32)
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where

L(ΦΦΦl,µµµ l) =
Kl

∑
k=1

(
log2

(
1+

h̃llkΦΦΦlkh̃H
llk

Ξlk +δ 2

)
−

C

∑
i ̸=l

Ki

∑
j=1

mihli jTlkΦΦΦlkTH
lkhH

li j

)

+
Cl

∑
Ol=1

µOl

(
P−

Kl

∑
k=1

Tr(BOl TlkΦΦΦlkTH
lk)

)

=
Kl

∑
k=1

(
log2

(
1+

h̃llkΦΦΦlkh̃H
llk

Ξlk +δ 2

)
−

C

∑
i ̸=l

Ki

∑
j=1

mihli jTlkΦΦΦlkTH
lkhH

li j

−
Cl

∑
Ol=1

µOl Tr(BOl TlkΦΦΦlkTH
lk)

)
+

Cl

∑
Ol=1

uOl P,

(6.33)

and µµµ l = [µ1, . . . ,µCl ] a vector of dual variables each associated with one corresponding
power constraint given in (6.30b). Accordingly, the dual optimization problem is as follows:

min
µµµ l≽0

g(µµµ l). (6.34)

It is obvious that (6.34) is convex and satisfies the Slater’s condition [43], so the dual gap
between the optimal objective value of (6.30) and that of (6.34) is zero. Therefore, we can
solve (6.34) to obtain the optimal value of (6.30). The subgradient method [43] can be used
to minimize g(µµµ l), and the dual variables µµµ l are updated as follows:

µOl(n+1)=

[
µOl(n)+ζ (n)

(
P−

Kl

∑
k=1

Tr(BOl TlkΦΦΦlkTH
lk)

)]+
, (6.35)

where ζ (n) is the diminishing step size, and n is the iterative index.
In addition, solving dual problem (6.34) involves determining the optimal ΦΦΦl at given

dual variables µµµ l . Next, we focus on solving ΦΦΦl for fixed µµµ l . We find that problem (6.32) can
be divided into Kl independent subproblems and each only involves ΦΦΦlk. Since ∑

Cl
Ol=1 uOl P

is a constant for fixed µµµ l , for the kth SU in the lth cluster, the corresponding subproblem can
be expressed as:

max
ΦΦΦlk≽0

log2

(
1+

h̃llkΦΦΦlkh̃H
llk

Ξlk +δ 2

)
−

C

∑
i ̸=l

Ki

∑
j=1

mihli jTlkΦΦΦlkTH
lkhH

li j

−Tr(BµTlkΦΦΦlkTH
lk),

(6.36)

where Bµ = ∑
Cl
Ol=1 µOl BOl .
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Next, we define the objective function of (6.36) as L (ΦΦΦlk) and then, we obatin:

L (ΦΦΦlk) = log2

(
1+

h̃llkΦΦΦlkh̃H
llk

Ξlk +δ 2

)
−

C

∑
i ̸=l

Ki

∑
j=1

miTr(ΦΦΦlkTH
lkhH

li jhli jTlk)−Tr(ΦΦΦlkTH
lkBµTlk)

= log2

(
1+

h̃llkΦΦΦlkh̃H
llk

Ξlk +δ 2

)
−Tr

(
ΦΦΦlk

(
C

∑
i̸=l

Ki

∑
j=1

miTH
lkhH

li jhli jTlk

))
−Tr(ΦΦΦlkTH

lkBµTlk)

= log2

(
1+

h̃llkΦΦΦlkh̃H
llk

Ξlk +δ 2

)
−Tr(ZlkΦΦΦlk),

(6.37)

where Zlk=
C
∑
i̸=l

Ki
∑
j=1

miTH
lkhH

li jhli jTlk+TH
lkBµTlk and Zlk ∈ C(Nl−Kl+1)×(Nl−Kl+1). Meanwhile,

for the above derivation, some equations are used, such as Tr(XY)=Tr(YX) and aTr(X)+

bTr(Y)=Tr(aX+bY). We then have the following theorem.

Theorem 6.5.2 For the problem in (6.36) to have a bounded objective value, matrix Zlk

should be positive definite.

Proof Please refer to Appendix E for proof.

We rewrite ΦΦΦlk in its original form, i.e., ΦΦΦlk = slksH
lk. Accordingly, the problem (6.36)

can be transformed as follows:

max
slk≽0

log2

(
1+

h̃llkslksH
lkh̃H

llk
Ξlk +δ 2

)
− sH

lkZlkslk. (6.38)

According to Cholesky decomposition [59], we have Zlk = ẐlkẐH
lk and Ẑlk is reversible

due to Zlk is positive definite. We define ŝlk = sH
lkẐlk and then, (6.38) can be rewritten as

follows:

max
ŝlk≽0

log2

(
1+

h̃llkẐ−H
lk ŝH

lkŝlkẐ−1
lk h̃H

llk
Ξlk +δ 2

)
− ŝlkŝH

lk. (6.39)

Next, we define alk = h̃llkẐ−H
lk /||h̃llkẐ−H

lk ||. It is clear that the optimal precoding ŝlk

has the same direction with alk, i.e., ŝlk =
√

plkalk, where plk needs to be optimized to
maximize (6.39). Based on this, substituting ŝlk =

√
plkalk into (6.39), we get the following

optimization problem:

max
plk≽0

log2

(
1+

plkαlk

Ξlk +δ 2

)
− plk. (6.40)
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Algorithm 7: Non-Cooperative Game-Based Precoding Design For Each Cluster
1 Form multiple SBS clusters according to Algorithm 6.

2 Given the price vector m, initialize the feasible precoding ΦΦΦ
(0) = [ΦΦΦ

(0)
1 , . . . ,ΦΦΦ

(0)
C ], set a

counter n = 1.
3 repeat
4 Design precoding for each cluster l ∈ {1, . . . ,C}.
5 Initialize µµµ l .
6 repeat
7 Compute ΦΦΦlk(k = 1, . . . ,Kl) according to (6.42).
8 Update dual varies according to (6.35).
9 until µµµ l converges;

10 Obtain ΦΦΦ
(n).

11 Update n← n+1.
12 until ∥ΦΦΦ(n)−ΦΦΦ

(n−1)∥ ≤ ξ , for some prescribed ξ ;
13 Obtain the optimal precoding ΦΦΦ

(n).

where αlk = ||h̃llkẐ−H
lk ||

2, and optimal plk can be obtained by the standard water-filling
algorithm [43]:

plk =

(
1

ln2
− Ξlk +δ 2

αlk

)+

. (6.41)

Finally, we obtain the precoding as follows:

slk =
√

plk(alkẐ−1
lk )H ,and ΦΦΦlk = plk(alkẐ−1

lk )HalkẐ−1
lk . (6.42)

From (6.42), it is clear that ΦΦΦlk is a rank-one solution. Therefore, the solution of relaxed
problem (6.30) is also the solution of the original problem (6.29) via our proposed algorithm.
Based on the above results, we define the following theorem:

Theorem 6.5.3 There exists an unique NE for the non-cooperative game G in (6.27).

Proof Please refer to Appendix F for proof.

6.5.3 NE Searching Algorithm

For SC clustering, the SBSs send SUs’ CSI to MBS through high speed backhaul links.
Next, the MBS executes Algorithm 6 according to a predefined interference threshold and
then, communicates the final clustering information with an interference price of each cluster



92
Small Cell Clustering and Precoding Design for Small Cell Type Heterogeneous Network

with Massive MIMO Marco Cell

Table 6.1 Simulation Parameters.

Parameters Value

Radius of MC 500 m
Radius of SC 40 m

Number of MUs 20
Number of SCs 20

Number of SUs each SC 2
Number of SBS antennas 2
Number of MBS antennas 500
Transmit power of MBS 46 dBm

Maximum transmit power of SBS 30 dBm
Pathloss between MBS and MU or SU 27.3+39.1log10(d)
Pathloss between SBS and MU or SU 36.8+36.7log10(d)

Downlink bandwidth 10 MHz
Noise power -174 dBm/Hz

to SBSs through backhaul links. After forming the clusters, each cluster sets the initial
feasible precoding (we assume that one of SBSs takes charge of the precoding design and
denoted as SBS header). Since the SBS header has obtained all CSI through sharing among
SBSs belonging to the same cluster, the precoding can be computed when SUs send back
the received interference to SBS header. The SBSH will update precoding when SUs send
back the updated interference, and the process is executed until convergence. We assume
that the update of the interference price and precoding strategy among clusters is ideal
synchronous. According to the above analysis, we find that information exchange is not
needed among clusters. We summarize the distributed precoding design scheme for each
cluster as Algorithm 7.

6.6 Numerical Results and Discussions

In this section, we provide numerical results to evaluate the performance of our proposed
schemes. We consider a single MC with a radius of 500 meters, where the MBS is located
at the center of the MC and MUs are randomly distributed in the MC. We assume that the
MC-hole radius is 100 meters (all MUs and SUs do not locate in this area). We assume that
the radius of each SC is 40 meters, where all SCs are randomly located within the MC but
their coverage are not overlapped each other. The minimum distance between SUs and SBS
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Fig. 6.5 Downlink sum rate of SUs versus iteration number.

is 5 meters. We assume that all prices for different clusters are the same for simplicity. Other
related simulation parameters are listed in Table 6.1.

Fig. 6.5 shows the convergent speed under different interference prices, where γth=−110
dB. It is clearly found that the downlink sum rate of SUs is maximized after 6 iterations.
The sum rate under different interference prices is different. To clearly analyze the impact
of the interference price on the performance of the system, we plot Fig. 6.6 to shown the
downlink sum rate of SUs with the interference price m. It can be observed that the sum
rate first increases and then decreases with m. In other words, there exits an optimal m for
maximizing the sum rate under a certain γth. Therefore, we can use some simple methods,
e.g., one-dimension search, to find the optimal m for obtaining the maximum sum rate.
Meanwhile, we can find that the sum rate increases with γth decreases. This is because more
larger-size clusters are formed so that more interference are cancelled.

Fig. 6.7 shows that the downlink sum rate versus interference threshold γth. Here, the
one-dimension search is used to obtain the maximum sum rate under each interference
threshold. For a low γth, i.e., γth =−120 dB, all SCs form one cluster. In this case, the
interference among SUs will be cancelled completely, so that the sum rate is maximized.
Number of clusters increases as γth increases, while the sum rate decreases. This is because
the interference increases among SUs due to the increase of the number of clusters. When γth

is between −92 dB and −90 dB, there are no pairs of SCs to form the same cluster, resulting
in the lowest sum rate.



94
Small Cell Clustering and Precoding Design for Small Cell Type Heterogeneous Network

with Massive MIMO Marco Cell

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
12

290

300

310

320

330

340

350

360

370

Interference price m

D
o

w
n

lin
k
 s

u
m

 r
a

te
 o

f 
S

U
s
 (

b
p

s
/H

z
)

 

 

γ
th

=−106dB

γ
th

=−110dB

γ
th

=−114dB

Fig. 6.6 Downlink sum rate of SUs versus interference price.
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Fig. 6.8 Downlink sum rate of SUs versus interference price.
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Fig. 6.10 Downlink sum rate of SUs versus transmit power.
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Fig. 6.12 Downlink sum rate of MUs versus number of MBS antenas.
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Fig. 6.8 plots that the downlink sum rate versus m under different per-SBS transmit
power, where γth =−110 dB. When the maximum transmit power of each SBS is high, as
shown in Fig. 6.6, the sum rate first increases and then decreases with m. However, when
the maximum transmit power of each SBS is low, the impact of m on the sum rate is slow.
This is because for the former, each SBS is not allowed to fully transmit such large power
for avoiding serious interference among clusters. In the contrary, for the later, each SBS can
almost transmit overall power for improving sum rate.

Fig. 6.9 illustrates the downlink sum rate of SUs versus number of SUs in each SC, where
γth =−104 dB and N = 6. It can be observed that the sum rate increases with the number
of SUs, while the increased ratio is reduced. It is easy to understand that more SUs lead
to higher gain gaps and improve the sum rate. However, the increased sum rate is limited
because the total transmit power is a constant.

Figs. 6.10 and 6.11 show the downlink sum rate and transmit power versus the maximum
transmit power of each SBS, respectively. It is easy to understand that the sum rate increases
with the maximum transmit power. However, the increase of the sum rate is limited due to
interference among clusters, especially for a lower γth. The detailed reason can be found in
Fig. 6.11. When the maximum transmit power of each SBS is low, the power will be fully
transmitted due to weak interference among clusters. However, as the maximum transmit
power increases, to avoid serious interference, the transmit power at each SBS is not allowed
such high.

Fig. 6.12 shows that the downlink sum rate of MUs versus number of MBS antennas.
Here, “Conventional ZF precoding" denotes that only the ZF precoding is applied at MBS to
eliminate the multi-MU interference, while the proposed CSBD precoding scheme works to
eliminate the inter-tier and multi-MU interference simultaneously. From this figure, we can
find that the downlink sum rate of MUs with proposed CSBD precoding is always lower than
that with ZF precoding, but the sum-rate gap is slight when the number of MBS antennas
is larger. The reason is that when the proposed CSBD precoding is applied at MBS, the
MBS needs to sacrifice some DoFs to eliminate SUs’ interference, which results in the
decrease in the sum rate of MUs. However, for a large antennas at MBS, it is suitable to
apply the proposed CSBD precoding for eliminating SUs’ interference, which can effectively
improve the downlink sum rate of SUs (as shown in Fig. 6.13). Meanwhile, the impact on
the downlink sum rate of MUs is slight.

In Fig 6.13, we plot that the downlink sum rate of SUs versus number of SBS antennas,
where γth =−104 dB. We compare the performance gain with the conventional SC-based
non-cooperative game scheme, e.g., [60, 61]. It is clear that sum rate of SUs with our
proposed cluster-based scheme is higher than that with conventional SC-based scheme,
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which can be improved by about 40%. It means that it is necessary to form multiple clusters
for interference cancellation, especially for ultra-dense SCs. In addition, to compare with
the performance loss with optimal algorithm, we apply the centralized algorithm proposed
in [62] to obtain the optimal solution. We can find the rate gap is slight between optimal
centralized algorithm and our proposed distributed algorithm. Meanwhile, it can be observed
that the proposed CSBD effectively reduces the inter-tier interference and improves the sum
rate of the SUs.

In addition, we note here that a theoretical bound of the price-of-anarchy (i.e., the
optimal solution) is very difficult if not impossible to be derived. This is because for the
optimal algorithm [62] or our proposed suboptimal algorithm, the closed-form expression is a
function of iteratively updated parameters such as Lagrange dual variables until convergence
to reach a stable and optimal solution. Furthermore, the closed-form expression for optimal
or suboptimal algorithm includes Lagrange dual variables with uncertain range, which
additionally makes the bound derivation of price-of-anarchy very difficult if not impossible
at all.

6.7 Conclusions

We have investigated the SC clustering and precoding design problems for the mMIMO-SC
HetNet. An interference graph-based dynamic SC clustering scheme has been proposed in
order to cooperative transmission among SBSs belonging to the same cluster. We designed
precoding schemes for MBS to eliminate the inter-tier and multi-MU interference. Then, we
presented the precoding design at clustered SCs as an optimization problem to maximize
downlink sum rate of SUs under per-SBS power constraint. A non-cooperative game-based
distributed algorithm was proposed to obtain a suboptimal solution. Simulation results show
that our proposed cluster-based scheme can improve the sum rate of SUs by about 40% in
comparison with the conventional SC-based scheme.





Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, we introduced the recent development and some key techniques of the wireless
communications, e.g., mMIMO, HetNet. We analyzed the potential problems and main
challenges in mMIMO, mMIMO-CR and mMIMO-CR HetNet, e.g., pilot contamination and
interference management. Then, we proposed effective pilot allocation and power allocation
schemes to relieve the pilot contamination and coordinate the interference.

We divided our research into three parts. The first part (i.e., chapter 2) presented the
basic pilot contamination problem in a mMIMO homogeneous network. Based on this, we
proposed a low-complexity pilot allocation scheme to maximize the uplink rate of the system.
Meanwhile, to improve the users’ fairness, a fairness-based pilot allocation scheme was
proposed. Simulation results showed that the our proposed scheme can improve per-user rate
by about 17% in comparison with the conventional scheme.

The second part (i.e., chapters 3 and 4) solved the pilot and power allocation problems
in mMIMO-CR HetNet. In chapter 3, we proposed a pilot allocation scheme to obtain a
win-win paradigm between PN and CN. The results showed that the PN and CN can obtain
positive revenue, which implies that pilot sharing concept between PN and CN is effective in
improving the performance of both PN and CN. Then, we investigated the power allocation
problem in chapter 4. Based on this, we formulated the power allocation optimization
problem of the CN to maximize the downlink sum rate of the CN subject to the total transmit
power and PUs’ SINR constraints. An iterative power allocation algorithm was proposed.
The numerical results presented that our proposed scheme can improve the sum rate of the
CN by about 10% in comparison with the conventional scheme.

The third part (i.e., chapters 5 and 6) mainly focused on pilot allocation and interference
coordination problems in mMIMO-SC HetNet. In chapter 5, we investigated pilot allocation
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problem. We proposed a new pilot allocation scheme for maximizing ergodic downlink sum
rate of the system. In addition, we proposed two suboptimal pilot allocation algorithms to
simplify the computational process and improve SUs’ fairness, respectively. Simulation
results showed that our proposed scheme can improve the sum rate of the system by about
12% in comparison with the conventional scheme. To consider the interference coordination,
we investigated the dynamic SC clustering strategy and their precoding design problem in
chapter 6. An interference graph-based dynamic SC clustering scheme was proposed. Based
on this, we formulated an optimization problem as design precoding weights at MBS and
clustered SCs for maximizing the downlink sum rate of SUs subject to the power constraint
of each SBS, while mitigating inter-cluster, eliminating inter-tier, intra-cluster and multi-MU
interference. A non-cooperative game-based distributed algorithm was proposed. Simulation
results showed that our proposed scheme can improve the sum rate of SUs by about 40% in
comparison with the conventional SC-based scheme.

Summarily, in this thesis, we studied the pilot allocation and interference coordination
problems in two types of mMIMO-HetNets, including mMIMO-CR HetNet and mMIMO-SC
HetNet. According to the simulation results, our proposed schemes effectively improve the
capacities of the system.

7.2 Future Works

Just as our analysis in this thesis, mMIMO-SC HetNet has been considered as a promising
technique to meet the requirements of explosive data capacity in future wireless communica-
tions. However, the interference coordination to deal with inter- and intra-tier interference
is still an important technical challenge. One of the effective interference coordination
techniques is cooperative transmission and reception called as coordinated multipoint process
(CoMP). To realize cooperative transmission among SBSs, the centralized network architec-
tures have been investigated, under the assumption that CSI and the signaling information
are shared among SCs through a high-speed backhaul link. However, since wireless data rate
is increased especially when massive antennas are used, it increases the required amount of
data to be shared which may need higher backhaul capacity.

The heterogeneous centralized radio access network (H-CRAN) is an emerging network
architecture to realize the SC concept, where remote-radio heads (RRHs) are distributed
to provide high rates for SUs while the MBS provides the seamless coverage. In this
architecture, the centralized baseband processing unit (BBU) performs the baseband signal
processing and resource allocation optimization while remote radio units called as RRH are
distributed in service area. However, the full-scale coordination in a large-scale H-CRAN
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requires very large channel matrices to perform cooperative processing, which leads to high
computational complexity. Therefore, RRH cluster -based partial-scale coordination is an
effective scheme to decrease the required complexity. In addition, fronthaul links are needed
to share the required information for cooperative processing in H-CRAN. In this case, limited
capacity provided by fronthaul links has to be considered. Therefore, we will investigate
the resource allocation and interference management in a RRH cluster-based H-CRAN with
limited fronthaul capacity.





References

[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2016–2021 White Paper”, Mar. 2017.

[2] Cisco, “Visual Networking Index,” White paper, Feb. 2015 [Online]. Available:
www.Cisco.com.

[3] T. S. Rappaport, W. Roh and K. Cheun, “Wireless engineers long considered high
frequencies worthless for cellular systems. They couldn’t be more wrong,” IEEE Spectr.,
vol. 51, no. 9, pp. 34–58, Sep. 2014.

[4] B. Lars T., S. Andreas, P. Pascal and S. Daniel M, MIMO Power Line Communications:
Narrow and Broadband Standards, EMC, and Advanced Processing. Devices, Circuits,
and Systems. CRC Press, Feb. 2014.

[5] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin and R. Zhang, “An overview of
massive MIMO: Benefits and challenges,” IEEE J. Sel. Top. Signal. Process., vol. 8,
no. 5, pp. 742-758, Oct. 2014.

[6] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base
station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov.
2010.

[7] F. C. Commission, “Facilitating opportunities for flexible, efficient, and reliable spec-
trum use employing cognitive radio technologies,” NPRM & Order ET Docket No.
03-108, FCC 03-322, Tech. Rep., Dec. 30, 2003.

[8] Y. Tachwali, B. F. Lo, I. F. Akyildiz and R. Agusti, “Multiuser resource allocation
optimization using bandwidth-power product in cognitive radio networks,” IEEE J. Sel.
Areas Commun., vol. 31, no. 3, pp. 451-463, Mar. 2013.

[9] Y. H. Zhang and C. Leung, “Resource allocation in an OFDM-based cognitive radio
system,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1928-1931, Jul. 2009.



106 References

[10] F. Fernandes, A. Ashikhmin and T. L. Marzetta, “Inter-Cell Interference in Noncooper-
ative TDD Large Scale Antenna Systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2,
pp. 192-201, Feb. 2013.

[11] X. Zhu, Z. Wang, L. Dai and C. Qian, “Smart pilot assignment for massive MIMO,”
IEEE Commun. Letters, vol.19, no.9, pp.1644-1647, Sep. 2015.

[12] E. Bjornson, E. Larsson and M. Debbah, “Massive MIMO for maximal spectral ef-
ficiency: How many users and pilots should be allocated?” IEEE Trans. Wireless
Commun., vol. 15, no. 2, pp. 1293-1308, Feb. 2016.

[13] I. Atzeni, J. Arnau and M. Debbah, “Fractional pilot reuse in massive MIMO systems,”
in Proc. IEEE Conf. Commun. Workshop. (ICCW), pp.1030-1035, Jun. 2015.

[14] X. Zhu, L. Dai and Z. Wang, “Graph coloring based pilot allocation to mitigate pilot
contamination for multi-cell massive MIMO systems,” IEEE Commun. Letters, vol.19,
no.10, pp.1842-1845, Oct. 2015.

[15] R. Mochaourab, E. Bjornson and M. Bengtsson, “Pilot clustering in asymmetric massive
MIMO networks,” in Proc. IEEE Int. Workshop Signal Process. Advances in Wireless
Commun. (SPAWC), Jun. 28-Jul. 1, 2015.

[16] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval research
logistics quarterly, pp.83-97, 1955.

[17] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station
antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.

[18] P. Hahn, T. Grant and N. Hall, “A branch-and-bound algorithm for the quadratic
assignment problem based on the Hungarian method,” European Journal of Operational
Research, vol.108, no.3, pp.629-640, Aug. 1998.

[19] T. Nguyen, V. Ha and L. Le, “Resource allocation optimization in multi-user multi-
cell massive MIMO networks considering pilot contamination,” IEEE Access, vol. 3,
pp.1272-1287, 2015.

[20] T. Seyama, D. Jitsukawa, T. Kobayashi, et al., “Study of coordinated radio resource
scheduling algorithm for 5G ultra high-density distributed antenna systems,” IEICE
Technical Report of RCS, vol. 115, no, 472, pp. 181-186, 2015.



References 107

[21] L. Sboui, Z. Rezki and M.-S. Alouini, “A unified framework for the ergodic capacity of
spectrum sharing cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 12, no.
2, pp. 877-887, Feb. 2013.

[22] M. Filippou, D. Gesbert and H. Yin, “Decontaminating pilots in cognitive massive
MIMO networks,” in Proc. Int. Symp. Wireless Commun. Syst., pp. 816-820, Aug. 2012.

[23] B. Kouassi, I. Ghauri and L. Deneire, “Reciprocity-based cognitive transmissions using
a MU massive MIMO approach,” in Proc. IEEE ICC, pp. 2738-2742, 2013.

[24] G. Scutari and D. P. Palomar, “MIMO cognitive Radio: A game theoretical approach,”
IEEE Trans. Signal Process., vol. 58, no. 2, pp. 761-780, Feb. 2010.

[25] F. Moghimi, R. K. Mallik, and R. Schober, “Sensing time and power optimization in
MIMO cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp.
3398-3408, Sep. 2012.

[26] L. Fu, Y. J. A. Zhang and J. Huang, “Energy efficient transmissions in MIMO cognitive
radio networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2420-2431, Nov.
2013.

[27] L. Zhang, Y. Xin and Y.-C. Liang, “Weighted sum rate optimization for cognitive
radio MIMO broadcast channels,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp.
2950-2959, Jun. 2009.

[28] L. Wang, H. Q. Ngo, M. Elkashlan, T. Q. Duong and K. Wong, “Massive MIMO
in spectrum sharing networks: achievable rate and power efficiency,” IEEE Systems
Journal, vol. 11, no. 1, pp. 20-31, Mar. 2017.

[29] M. Filippou, D. Gesbert and H. Yin, “Decontaminating pilots in cognitive massive
MIMO networks,” in Proc. Int. Symp. Wireless Commun. Syst., pp. 816-820, Aug. 2012.

[30] B. Kouassi, I. Ghauri and L. Deneire, “Reciprocity-based cognitive transmissions using
a MU massive MIMO approach,” in Proc. IEEE ICC, pp. 2738-2742, 2013.

[31] H. Xie, B. Wang, F. Gao and S. Jin, “A full-space spectrum-sharing strategy for massive
MIMO cognitive radio systems,” IEEE J. Sel. Areas Commun., vol.34, no.10, pp.2537-
2549, Oct. 2016.

[32] W. Wang, G. Yu and A. Huang, “Cognitive radio enhanced interference coordination
for femtocell networks,” IEEE Commun. Mag., vol. 51, no. 6, pp. 37-43, Jun. 2013.



108 References

[33] F. A. Khan, C. Masouros and T. Ratnarajah, “Interference-driven linear precoding in
multiuser MISO downlink cognitive radio network,” IEEE Trans. Veh. Techol., vol. 61,
no. 6, pp. 2531-2543, Jul. 2012.

[34] J. H. Noh and S. J. Oh, “Beamforming in a multi-user cognitive radio system with
partial channel state information,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp.
616-625, Feb. 2013.

[35] H. F Yin, D. Gesbert, M. Filippou and Y. Z Liu, “A coordinated approach to channel
estimation in large-scale multiple-antenna systems,” IEEE J. Sel. Areas Commun., vol.
31, no. 2, pp. 264-273, Feb. 2013.

[36] Z. Mokhtari, M. Sabbaghian and R. Dinis, “Massive MIMO downlink based on single
carrier frequency domain processing,” IEEE Trans. Commun., vol. PP, no.99, pp.1-1,
2017.

[37] W. B. Dang, M. X. Tao, H. Mu and J. W. Huang, “Subcarrier-pair based resource
allocation for cooperative multi-relay OFDM systems,” IEEE Trans. Wireless Commun.,
vol. 9, no. 5, pp. 1640-1649, May 2010.

[38] R. F. Fan and H. Jiang, “Optimal multi-channel cooperative sensing in cognitive radio
networks,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1128-1138, Mar. 2010.

[39] R. Zhang, “On peak versus average interference power constraints for protecting primary
users in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 8 no. 4, pp.
2112-2120, Apr. 2009.

[40] S. Cui, A. J. Goldsmith and A. Bahai, “Energy-constrained modulation optimization,”
IEEE Trans. Wireless Commun., vol. 13, no. 7, pp. 2349-2360, Apr. 2005.

[41] J. Papandriopoulos and J. S. Evans, “SCALE: A low-complexity distributed protocol
for spectrum balancing in multiuser DSL networks,” IEEE Trans. Inf. Theory., vol. 55,
no. 8, pp. 3711-3724, Aug. 2009.

[42] X. Kang, “Optimal power allocation for Bi-directional cognitive radio networks with
fading channels,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp. 567-570, Oct. 2013.

[43] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University Press,
2004.

[44] B. R. Marks and G. P. Wright, “A general inner approximation algorithm for non-convex
mathematical programs,” Operations Research, vol. 26, no. 4, pp. 681-683, Jul. 1978.



References 109

[45] D. Bethanabhotla, O. Y. Bursalioglu, H. C. Papadopoulos and G. Caire, “Optimal
user-cell association for massive MIMO wireless networks,” IEEE Trans. Wireless
Commun., vol. 15, no. 3, pp. 1835-1850, Mar. 2016.

[46] Y. Xu and S. Mao, “User association in massive MIMO HetNets,” IEEE Systems
Journal, vol. 11, no. 1, pp. 7-19, Mar. 2017.

[47] G. Xu, A. Liu, W. Jiang, H. Xiang and W. Luo, “Energy-efficient beamforming for
two-tier massive MIMO downlink,” China Commun., vol. 12, no. 10, pp. 64-75, Oct.
2015.

[48] Y. Liu, L. Lu, G. Li and Q. Cui, “Performance analysis and interference cancellation
for heterogeneous network with massive MIMO,” IEEE GlobalSIP, Orlando, FL, pp.
888-892, 2015.

[49] L. Zhou et al., “A dynamic graph-based scheduling and interference coordination
approach in heterogeneous cellular networks,” IEEE Trans. Vehic. Tech., vol. 65, no. 5,
pp. 3735-3748, May 2016.

[50] R. Seno, T. Ohtsuki, W. Jiang and Y. Takatori, “Complexity reduction of pico cell
clustering for interference alignment in heterogeneous networks” IEEE APCC, pp.
267-271, 2015.

[51] M. Hong, R. Sun, H. Baligh and Z. Q. Luo, “Joint base station clustering and beam-
former design for partial coordinated transmission in heterogeneous networks,” IEEE J.
Sel. Areas Commun., vol. 31, no. 2, pp. 226-240, Feb. 2013.

[52] A. Papadogiannis, D. Gesbert and E. Hardouin, “A dynamic clustering approach in
wireless networks with multi-cell cooperative processing,” IEEE ICC, Beijing, China,
pp. 4033-4037, 2008.

[53] S. Fan, J. Zheng and J. Xiao, “A clustering-based downlink resource allocation algorithm
for small cell networks,” 2015 International Conference on Wireless Communications
and Signal Processing (WCSP), Nanjing, China, pp. 1-5, 2015.

[54] R. Zhang, “Cooperative multi-cell block diagonalization with per-base-station power
constraints,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1435-1445, Dec. 2010.

[55] A. Wiesel, Y. C. Eldar and S. Shamai, “Zero-forcing precoding and generalized in-
verses,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4409-4418, Sep. 2008.



110 References

[56] L. N. Tran, M. Juntti, M. Bengtsson and B. Ottersten, ”Weighted sum rate maximization
for MIMO broadcast channels using dirty paper coding and zero-forcing methods,”
IEEE Trans. Commun., vol. 61, no. 6, pp. 2362-2373, Jun. 2013.

[57] Q. Niu, Z. Zeng, T. Zhang, Q. Gao and S. Sun, “Joint interference alignment and power
allocation in heterogeneous networks,” IEEE PIMRC, pp.733-737, 2014.

[58] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” IEEE
Int. Symp. Computer-Aided Control Systems Design (CACSD), Taipei, Taiwan, R.O.C.,
pp. 284-289, Sep. 2004.

[59] J. H. Wilkinson, “The Algebraic Eigenvalue Problem.” Oxford, U.K.: Clarendon Press,
1965.

[60] S. Fu, B. Wu, H. Wen, P. H. Ho and G. Feng, “Transmission scheduling and game theo-
retical power allocation for interference coordination in CoMP,” IEEE Trans. Wireless
Commun., vol. 13, no. 1, pp. 112-123, Jan. 2014.

[61] A. Y. Al-Zahrani and F. R. Yu, “A game theory approach for inter-cell interference
management in OFDM networks,” IEEE ICC, Kyoto, pp. 1-5, 2011.

[62] S. He, Y. Huang, S. Jin, and L. Yang, “Coordinated beamforming for energy efficient
transmission in multicell multiuser systems,” IEEE Trans. Commun., vol. 61, no. 12,
pp. 4961-4971, Dec. 2013.

[63] A. M. Tulino and S. Verdu, “Random matrix theory and wireless communications,”
Foundations and Trends in Communications and Information Theory, vol. 1, no. 1, pp.
1–182, Jun. 2004.

[64] D. Fudenberg and J. Tirole, “Efficient power control via pricing in wireless data
networks,” Game Theory, MIT Press, 1991.

[65] R. Yates, “A framework for uplink power control in cellular radio system,” IEEE J. Sel.
Areas Commun., vol. 13, no. 7, pp. 1341-1347, Sep. 1995.



Appendix A

Firstly, we have
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where τS
1n =
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)
and γp (γp = ρ

σ2 ) denotes the SNR of each pilot,
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Then,
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Combining (A.1) and (A.2), we can get
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(A.3)

where E{ϑ} = Γ(MS+1/2)
Γ(MS)

,E{ϑ 2} = MS and var{ϑ} = MS −E2{ϑ}. Here, Γ(·) is the
Gamma function.

We have analyzed the uplink training and downlink data transmission of the SN and omit
the similar analysis for the PN because of limited space and get some conclusions directly.
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When n = k (KP−KT +1≤ k ≤ KP), namely the n-th CU in the 1-st cell use the same
pilot with the k-th PU in adjacent cell, according to the decomposition of MMSE, we have
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According to (A.4) and ĥSP
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j1k, we have
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where ε =
√

∑
MP
m=1 |um|2. E{ε}= Γ(MP+1/2)
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,E{ε2}= MP and var{ε}= MP−E2{ε}.
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ĥPP†

j jk

∥ĥPP
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We finish the proof.



Appendix B

Since the process of the PU’s SINR is similar with that of the CU, we directly get the PU’s
SINR as follows
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We assume two cases:
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Combining (4.10b) and (B.2), we can get

KP

∑
n=KP−KT+1

P1n ≤min{IP,Pmax}, (B.3)
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where
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After ZF precoding, the SINR of the MU m can be written as:
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According to Jensen’s inequality and the convexity of log2(1+ 1
x ), we can get as follows:
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Then, we have:
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Since hS,S
k,k is independent of hS,M

k,m , we have
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where (a) is obtained by using the identity [63],

E
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where W∼Wm(n,In) is an m×n central complex Wishart matrix with n(n > m) degrees of
freedom. Then, we can get:
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Therefore, we finish the proof.
For (6.9), similar to (C.1),
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Then, we have:
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We finish the proof.





Appendix D

Proo f : According to the Nash theorem [64], NE exists if the following conditions hold:1) The
action space of each player is convex and compact. 2) The utility function Ul (m,ΦΦΦl,ΦΦΦ−l) is
concave with respect to (w.r.t.) ΦΦΦl .

According to (6.30b), we can easily get that the action space ΦΦΦl satisfies the above 1).
Next, we still need to prove that Ul (m,ΦΦΦl,ΦΦΦ−l) is concave w.r.t. ΦΦΦl .
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where Ξlk = ∑
C
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il j. Then, we have:
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According to (D.2), we can verify that Ûlk (m,ΦΦΦl,ΦΦΦ−l) is concave w.r.t. ΦΦΦlk [43], so the
utility function Ul (m,ΦΦΦl,ΦΦΦ−l) is concave w.r.t. ΦΦΦl . Therefore, (6.30) is a concave game and
there exists one NE.





Appendix E

Proo f : It is clear that matrix Zlk is a symmetric matrix. Therefore, we only need to prove
that matrix Zlk is a full-rank matrix. Next, we prove it by contradiction. We assume that
Zlk is not a full-rank matrix and then, we can always find a vector qlk ∈ C(Nl−Kl+1)×1 such
that Zlkqlk = 0 and h̃llkqlk ̸= 0. On this basis, we assume the optimal ΦΦΦ

∗
lk = xqlkqH

lk(x≥ 0).
Substituting this optimal solution the (6.36) and yielding:
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Since h̃llkqlkqH
lkh̃H

llk > 0, the objective value is unbounded as x goes to infinity. Therefore,
the original assumption that Zlk not is a full-rank matrix is not correct. Furthermore, Zlk is a
positive definite matrix .





Appendix F

Proo f : The concept of the standard function is defined in [65] to prove the uniqueness of the
NE for a non-cooperative game. Here, we define ΦΦΦlk = ΦΦΦlk (Ξlk), namely other parameters
(m and µµµ l) other than Ξlk can be taken as given constants. Next, we need to prove that
ΦΦΦlk (Ξlk) is a standard function with respect to (w.r.t.) Ξlk, which must hold following: 1)
positive: ΦΦΦlk (Ξlk)≽ 0; 2) monotonic; 3) scalable: λΦΦΦlk (Ξlk)≻ΦΦΦlk (λΞlk) for any λ > 1.

First, we rewrite the ΦΦΦlk as follows:

ΦΦΦlk(Ξlk) =

(
1

ln2
− Ξlk +δ 2

αlk

)+

ΘΘΘlk, (F.1)

where ΘΘΘlk = (alkẐ−1
lk )HalkẐ−1

lk .
From (F.1), it is clear that ΘΘΘlk ≽ 0 and ΦΦΦlk(Ξlk) is a monotonically decreasing function

w.r.t. Ξlk. Therefore, 1) and 2) hold. Next, we focus on proving 3).

λΦΦΦlk (Ξlk)−ΦΦΦlk (λΞlk)

=λ

(
1

ln2
−Ξlk+δ 2

αlk

)+

ΘΘΘlk−
(

1
ln2
−λΞlk+δ 2

α2
lk

)+

ΘΘΘlk

=(λ −1)
(

1
ln2
− δ 2

α2
lk

)+

ΘΘΘlk (F.2)

≻(λ −1)
(

1
(ln2
−Ξ+δ 2

α2
lk

)+

ΘΘΘlk

=(λ −1)ΦΦΦlk (Ξlk)

≽0.

According to (F.2), it can be verified that the above 3) is held and ΦΦΦlk (Ξlk) is a standard
function w.r.t. Ξlk. Since a standard function will converge to a unique value, the NE for the
non-cooperative game (6.30) is unique and we finish the proof.
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