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Abstract

Many real-world problems can be formulated as problems of predicting and learning objects

with some structural constraints. In this thesis we handle two standard models of machine

learning problem formulations. One is the online prediction model and the other is the statis-

tical learning model. Online prediction is a theoretical model of repeated processes of making

decisions, receiving feedbacks and incurring the loss defined by feedbacks and decisions. The

goal of the algorithm is to perform nearly as well as the best decision in hindsight, where the

best decision is determined by the feedback sequence. On the other hand, in the statistical

learning model, the algorithm is given a set of labeled instances which are generated according

to a probability distribution and then predicts a function called the hypothesis which maps an

instance to a label. The goal of the algorithm is to minimize the probability that the hypothesis

makes a wrong label.

We consider various formulations of machine learning problems with some structural con-

straints. The motivation to introduce constraints is that many problems can be naturally and/or

well formulated as optimization problems whose feasible solutions should satisfy some struc-

tural constraints, where by structural constraints we mean combinatorial constraints or algebraic

constraints.

For example, a network routing problem is naturally formulated as an online prediction

problem where decisions made by the algorithm are restricted to paths or spanning trees of a

graph. Another example is a recommendation by ranking, where the decisions are restricted to

permutations over the set of items under consideration.

As for the algebraic constraints, we consider the matrix completion problem under the both

models of online prediction and statistical learning. The most common application of the matrix

completion is the collaborative filtering, which can be viewed as the problem of matrix comple-

tion of the preference matrix. One of the most successful method is to put a low rank or a low

matrix norm constraint on the space of matrices for the algorithm to choose from [70, 72].
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In this thesis we develop the methods of designing and analyzing algorithms for predicting

objects with some structural constraints, so that they are robust and efficient. For the robustness,

we require algorithms to perform well against the worst-case environment. For the efficiency,

we require algorithms to run in polynomial time.

There are four main results in this thesis. First, we consider an online prediction task of

matrices. The reduction technique from some online prediction tasks of matrices to online pre-

diction of symmetric positive semi-definite matrices (shortly online SDP problems) [38], and

a framework of designing an algorithm [36]were known. The algorithm based framework of

[36] makes prediction as minimize the cumulative loss and a convex function called the regu-

larizer simultaneously. We develop a new technique of analyzing algorithms with introducing

new notion of the strong convexity of the regularizer. We suggest an algorithm using the log-

determinant as the regularizer for a online SDP problem, and analyze it with our new technique.

We improve the performance measure of the algorithm and is optimal in some online prediction

tasks. Next, we handle the binary matrix completion problem in online and statistical learning

model. We introduce the new notion for measuring the difficulty of the data which the algorithm

receives, and reduce the online binary matrix completion problem to the online SDP problem.

And then apply our algorithm proposed in previous chapter. We improve the upper bound of

mistakes that the algorithm will make and has the optimal mistake bound We can apply this

algorithm to the statistical learning setting. In the statistical learning setting, our algorithm

competes with the Support Vector Machine with the best feature mapping without knowing

the feature map. Thirdly, we propose new classes of matrices for the matrix completion prob-

lem. The new class of matrices defined by matrix factorization with norm constraints. We give

generalization error bounds for these matrix classes. We also show some experimental results.

Finally, we develop an algorithm for the Metrical Task System problem (shortly MTS problem)

of combinatorial objects. In combinatorial setting, the number of the decision grows exponen-

tially of some domain and the naı̈ve implementation of the algorithms for the MTS problem

leads exponential time algorithms. We reduce the bottleneck of Marking algorithm [16] to a

sampling problem over combinatorial objects. Combining sampling oracles, our algorithm is

the first efficient time algorithm for this problem under the uniform metric. We derive its per-

formance measure and give a proof of the optimality of our algorithm in some specific case of

the combinatorial objects.
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Chapter 1

Introduction

Machine learning is used in many fields, and there are various problem formulations of machine

learning problems. In particular, many real-world problems can be formulated as the problems

of predicting and learning objects with some structural constraints. In this thesis we handle two

standard models of machine learning problem formulations. One is the online prediction model

and the other is the statistical learning model.

Online prediction is a theoretical model of repeated processes of making decisions, receiving

feedbacks and incurring the loss defined by feedbacks and decisions. Each repeat is called the

round. This type of problem has been extensively studied in the machine learning community

for a couple of decades [27, 44, 23]. The goal of the algorithm is to perform nearly as well as

the best decision in hindsight, where the best decision is determined by the feedback sequence.

In particular, we consider two measures to evaluate the algorithm performance relative to the

best decision. One is the regret which is defined as the difference of the cumulative loss of the

algorithm and that of the best decision, and the other is the competitive ratio which is defined

as the ratio of them.

On the other hand, in the statistical learning model, the algorithm is given a set of labeled

instances (where the label of each instance represents its correct classification) which are gen-

erated according to a probability distribution and then predicts a function called the hypothesis

which maps an instance to a label. The goal of the algorithm is to minimize the generaliza-

tion error, the probability that the hypothesis makes a wrong label. This model is called the

Probably Approximately Correct learning (PAC learning, for short) framework [75]. One of the

major issues of the PAC learning framework is to give theories for analyzing the generalization

error and has been extensively studied until now [78, 5].

We consider various formulations of machine learning problems with some structural con-
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CHAPTER 1. INTRODUCTION

straints. The motivation to introduce constraints is that many problems can be naturally and/or

well formulated as optimization problems whose feasible solutions should satisfy some struc-

tural constraints, where by structural constraints we mean combinatorial constraints or algebraic

constraints.

For example, a network routing problem is naturally formulated as an online prediction

problem where decisions made by the algorithm are restricted to paths or spanning trees of a

graph. Another example is a recommendation by ranking, where the decisions are restricted to

permutations over the set of items under consideration. In these cases, the algorithm is required

to choose a combinatorial object as the prediction.

As for the algebraic constraints, we consider a particular problem, the matrix completion,

under the both models of online prediction and statistical learning. Intuitively, the matrix com-

pletion problem is to predict the whole entries of a matrix from partial entries given. The most

common application of the matrix completion is the collaborative filtering, where the task is to

predict the preferences of m users over n items from partial information, which can be viewed

as the problem of matrix completion of the m×n preference matrix. One of the most successful

method is to put a low rank or a low matrix norm constraint on the space of matrices for the

algorithm to choose from [70, 72].

Our aim in this thesis is to develop the methods of designing and analyzing algorithms for

predicting objects with some structural constraints, so that they are robust and efficient. For the

robustness, we require algorithms to perform well against the worst-case environment. For the

efficiency, we require algorithms to run in polynomial time.

1.1 Our contributions

In this section, we briefly describe the problems we consider in this thesis and show related

work and our contribution.

1.1.1 Online semi-definite programming problem

Modeling with matrices is more natural than modeling with vectors for some applications such

as ranking and recommendation tasks [20, 39, 42]. Hazan et.al. [38] show that some online

prediction problem of matrices related to ranking and recommendation can be reduced to an

online prediction problem of symmetric positive semi-definite matrices under linear loss func-
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CHAPTER 1. INTRODUCTION

tions. Thus, we can focus on the online prediction problems for symmetric positive semi-

definite matrices, which we call the online semi-definite programming (online SDP) problems.

In the online SDP problem, the algorithm repeats the following round: first chooses a symmet-

ric positive semi-definite matrix from an bounded set, then receives a symmetric matrix from

an environment and finally incurs the loss defined as the inner product of chosen matrix and

received matrix. The goal of the algorithm is to minimize the regret, the difference between the

cumulative loss of the algorithm and that of the best fixed matrix in hindsight in the bounded

set.

On the online prediction tasks, there is a standard framework called Follow the Regularized

Leader (FTRL) for designing and analyzing algorithms [36, 65, 68, 37], where we need to

choose as a parameter an appropriate function called regularizer.

Hazan et.al.p̃ropose an algorithm for the online SDP problems which employ the von Neu-

mann entropy as the regularizer, and shows that the O(
√
Tβτ lnN) of the upper bound of the

regret where β, τ are bounding parameter of the algorithm’s predictions, N is the size of the ma-

trices and T is the number of rounds. However, their algorithm turns out to be sub-optimal [38].

Another possible choice of the regularizer is the log-determinant. Christiano uses the log-

determinant as the regularizer and considers a very specific sub-class of online SDP problems

and succeeds to improve the regret bound for a particular application problem [21]. But the

problems he examines do not cover the whole class of online prediction tasks which admit the

reduction to online SDP problems.

In this thesis, we propose an algorithm for the online SDP problems which uses the log-

determinant regularization. We extend the analysis of Christiano in [21] and develop a new

technique of deriving regret bounds by exploiting the new notion of the strong convexity of

the regularizer. The analysis in [21] is not explicitly stated as in a general form and focused

on a very specific case. We improve the regret bound for online SDP problem when feedback

matrices are sparse, and show the O(
√
Tβτ) of the upper bound of the regret which is optimal

for some application problems proposed in [38].

1.1.2 Online binary matrix completion problem

Learning preferences of users over a set of items is an important task in recommendation sys-

tems. In particular, the collaborative filtering approach is known to be quite effective and pop-

ular [66, 52, 80]. The approach is formulated as the matrix completion problem, where, an

3



CHAPTER 1. INTRODUCTION

underlying matrix represents user’s preferences of items, only some entries of the matrix are

given and the goal is to predict rest of preferences. Under the natural assumption that captures

the low rank property of the matrix, a lot of work have been done in various settings, say, the

statistical i.i.d. setting [71, 31, 69, 56] and the online learning setting [20, 38, 59, 42]

The online binary matrix completion problem posed by Herbseter et al. [39] is defined in

the following way. The problem is defined as a series of round. For each round, the algorithm

receives a pair of a user and an item, then predicts that the user likes given item or not and

finally incurs the loss if the prediction is wrong. The goal of the algorithm is to minimize the

total loss (i.e. the number of errors).

Herbster et al. [39] considered an online version of the binary matrix completion problem

and give an algorithm. Their analysis introduce the margin complexity of the matrix, an differ-

ent aspects of the complexity of the matrix from the matrix rank. Their algorithm enjoys the

mistake bounds of O( (m+n) log(m+n)
γ2 ) for the problem, where the m,n are the numbers of users

and items respectively and γ is the margin complexity. However, their mistake bound is not

optimal yet.

For the online binary matrix completion problem, we propose an FTRL-based algorithm

with the log-determinant regularizer and prove mistake bounds of the algorithm under a natural

assumption of [39]. We develop a sharper reduction technique from the online binary matrix

completion to the online SDP problem [38] and apply of a modified notion of the strong con-

vexity mentioned in previous subsection for the log-determinant [59, 58].

The mistake bounds of our algorithm O(m+n
γ2 ) are optimal,

We also apply our online algorithm in the statistical learning model by a standard online to

batch conversion framework (see, e.g., [57]), and derive a generalization error bound. In this

setting, we also can drop the logarithmic factor from the result of [39]. Our generalization error

bound is similar to the known margin-based bound obtained by the best kernel in hindsight.

Additionally, we introduce the standard notion of the margin loss [57] to measure the difficulty

of the given sample in the both settings. This is a tighter measure than the margin error.

1.1.3 Matrix factorization under norm constraints

We studied the matrix completion problem in statistical machine learning setting, that is, learn-

ing a user-item rating matrix from given sample. The sample consists partial entries of the

matrix. Different from previous result, in this problem, the algorithm requires to predict user’s

4



CHAPTER 1. INTRODUCTION

ratings in the real value (not binary). A common assumption in the previous work is that the

true matrix X ∈ Rm×n can be well approximated by a matrix of low rank matrix X̂ = UVT

(or low trace norm, as a convex relaxation of the rank constraint). Generalization ability of

algorithms (such as the empirical risk minimization) using low rank or low trace norm matrices

is intensively studied in the literature (see, e.g., [70, 71, 72, 31]).

Recently, further additional constraints on the class of hypothesis matrices turns out to be

effective in practice. In particular, a major approach is to impose the constraints that U and

V are non-negative with bounded L2 norm [51, 48, 33, 79, 54, 28]. Such a decomposition is

called the non-negative matrix factorization (NMF, for short). A typical scheme of the NMF

approach is the empirical risk minimization with the norm regularization [48, 33, 28]. Despite

the empirical success of the NMF approach, no theoretical justification has been given.

In this thesis, we consider different but closely related classes of hypothesis matrices and

give generalization bounds of these classes. Our bounds are of O(
√

(nK +m logK)/T ),

where T is the sample size and K is the rank of X̂. These bounds improve the previously

known bound Õ(
√

(n+m)K/T ) that is derived for the class where only the low-rank con-

straint is imposed [70]. Therefore, our results would give theoretical evidence for the empirical

success of the NMF. However, our new bounds hold even when U and V have negative values

in some components. This result suggests that our analysis may not yet fully capture the prop-

erty of the non-negativity constraint, or the empirical success of the NMF may not rely on the

non-negativity very much but mostly on the regularization.

Our technical contributions are twofold. The first one is that we develop a new technique

for bounding the Rademacher complexity to derive generalization bounds. The second one is

that we prove a matching lower bound of the Rademacher complexity of the first hypothesis

class. This means that our generalization bounds are tightest among those derived from the

Rademacher complexity argument. There are few results in the literature on deriving lower

bounds of the Rademacher complexity.

1.1.4 Combinatorial metrical task system problems

The metrical task system (MTS) problem is a scheme of the online learning model, it repeats the

round (making decision and receive feedbacks) but it impose cost for changing the algorithm’s

decision. The MTS problem is defined as a repeated game between the player and the adversary.

Consider a fixed set of states, a metric over the state set and a initial state. For each round,

5



CHAPTER 1. INTRODUCTION

the adversary reveals a (processing) cost function, then the algorithm chooses a state from the

state set and finally the algorithm incurs the loss defined as the sum of the processing cost and

the distance from previous state to current state. The goal of the algorithm is minimizing the

cumulative (processing and moving) cost. The performance of the algorithm is measured by

the competitive ratio, that is, the ratio of the cumulative cost of the algorithm to the cumulative

cost of the best fixed sequence of states in hindsight. In the setting that the state set consists of

n states, there are many existing works on the MTS [16, 40, 8, 29, 9] problem. In particular,

for the uniform metric (which is defined as 1 if states are different and otherwise 0), the MTS

problem is well studied [16, 8, 40, 1].

When we consider the situation where the state set is a combinatorial set from {0, 1}d,

the computational issue arises. In general, for typical combinatorial sets, the size could be

exponential in the dimension size d as well and straightforward implementations of known

algorithms for the MTS problem take exponential time as well since time complexity of these

algorithms is proportional to the size n = O(2d).

In this thesis, for the combinatorial MTS problem under the uniform metric, we propose a

modification of the Marking algorithm [16], which employs an exponential weighting scheme.

We prove that our algorithm retains O(log n) competitive ratio for the standard MTS problem

with n states. Combining with efficient sampling techniques w.r.t. exponential weights on

combinatorial objects [73, 19, 41, 2], our algorithm works efficiently for various classes of

combinatorial sets. We also give a lower bound of the competitive ratio in the case of that the

state set is k-set. This result shows that our algorithm is optimal in this case.

1.2 Organization

The rest of this thesis is organized as follows: In Chapter 3 we consider an online prediction

problem of symmetric positive semi-definite matrices and propose a novel method for analyzing

online algorithms by introducing a new notion of strong convexity. In Chapter 4, we apply the

log-determinant regularization technique in the binary matrix completion problem, and show

the mistake bound. We also apply our online algorithm to the statistical learning setting and

derive a generalization error bound. In Chapter 5, we consider the matrix completion problem

and give a generalization error bound of the class defined by the matrix factorization with norm

constraints. In Chapter 6, we propose the first efficient algorithm for metrical task system

problems over combinatorial objects under the uniform metric.

6



Chapter 2

Preliminaries

In this chapter, we define some notations to be used throughout this thesis and introduce three

learning models, the statistical learning model, the online learning model.

2.1 Notations

In this thesis, matrices are denoted by roman capital letters. Let Rm×n, SN×N , SN×N
+ be the

set of m× n matrices, the set of N ×N symmetric matrices, and the set of N ×N symmetric

positive semi-definite matrices, respectively.

For a matrix X, let σi be its i-th largest singular value. We write the trace of a matrix X as

Tr(X) and the determinant as det(X). We write its trace norm as ∥X∥Tr =
∑

i σi, spectral norm

as ∥X∥Sp = maxi σi, and Frobenius norm as ∥X∥Fr =
√∑

i σ
2
i . For the matrix X, we write its

largest eigenvalue and smallest eigenvalue by λmax(X) and λmin(X), respectively.

We write the identity matrix as E. The notion X ⪰ 0 means X is positive semi-definite. For

any positive integer m, we write [m] = {1, 2, . . . ,m}. We define the vectorization of a matrix

X ∈ Rm×n as

vec(X) = (XT
∗,1, X

T
∗,2, . . . , X

T
m,∗)

T,

where X∗,i is the i-th column of X. For m×n matrices X and L, X•L =
∑m

i=1

∑n
j=1Xi,jLi,j =

vec(X)Tvec(L) is the Frobenius inner product.

For a vector x ∈ RN , diag(x) denote the N ×N diagonal matrix X such that Xi,i = xi.

For m × n matrices X and L, X • L =
∑m,n

i,j Xi,jLi,j = vec(X)Tvec(L) is the Frobenius inner

product. For a matrix X, we write its i-th row as Xi,∗ and j-th column as X∗,j .

For a differentiable function R : Rm×n → R, its gradient∇R(X) is the m×n matrix whose

7



CHAPTER 2. PRELIMINARIES

(i, j)-th component is ∂R(X)
∂Xi,j

, and its Hessian [55, 30] ∇2R(X) is the mn ×mn matrix defined

by

(∇2R(X))(j−1)m+i,(l−1)m+k =
∂2R(X)

∂Xk,l∂Xi,j

.

We denote the Kronecker product of two matrices A ∈ RM1×N1 and B ∈ RM2×N2 as A⊗B ∈
RM1M2×N1N2 , which is defined as (A ⊗ B)M2(i−1)+j,N2(k−1)+l = Ai,kBj,l. We use the notation

A⊠ B ∈ RM1M2×N1N2 as the box product of A and B, which is introduced by [30] and defined

as (A⊗ B)M2(i−1)+j,N1(k−1)+l = Ai,lBj,k. These products have following properties [30]:

(A⊗ B)vec(X) = vec(BXAT), (2.1)

(A⊠ B)vec(X) = vec(BXTAT). (2.2)

For a differentiable convex function R, the Bregman divergence with respect to R is defined

as

BR(X,Y) = R(X)−R(Y)−∇R(Y) • (X− Y).

2.2 Statistical learning model

The statistical learning model is one of the most important model in machine learning. In this

model, the algorithm given a set of randomly generated data called the sample set, and then

required to produce a function called as the hypothesis which maps a data to the label. The

performance of the algorithm is measured by the generalization error of the hypothesis that

the algorithm produced. Intuitively, the generalization error measures how well the hypothesis

predicts labels for unseen data generated according to same distribution which generates the

sample set.

2.2.1 Problem setting

Let X and Y be the input space and the label space, respectively. Let a sequence

S = ((x1, y1), (x2, y2), . . . , (xT , yT ))

be a sample set where each (xt, yt) ∈ X ×Y for t ∈ [T ] are generated independently according

to some unknown distribution D over X × Y . We call T as the size of S. The algorithm is

given a sample S and then required to produce a function h ∈ H maps X to Y . We call h

8



CHAPTER 2. PRELIMINARIES

the hypothesis and H the hypothesis set. The goal of the algorithm is to produce h ∈ H that

minimizes the generalization error as small as possible.

Let ℓ : Y × Y be a loss function, then the generalization error is defined as follows:

Definition 1 (Generalization error). For a hypothesis h : X → Y and distribution D The

generalization error of h is

L(h) = E(x,y)∼D[ℓ(h(x), y)].

If ℓ(x, y) = 1[x ̸=y] then L(h) = Pr(x,y)∼D[h(x) ̸= y]. We cannot compute the generalization

error due to unknown distribution D, but one can estimate it by the empirical error:

Definition 2 (Empirical error). For a hypothesis h : X → Y and a sample S of size T , the

empirical error of h is

L̂(h) =
1

T

T∑
t=1

ℓ(h(x), y).

Thus ES∼DT [L̂(h)] = L(h).

2.3 Online learning model

The online learning model consists a series of repeated games between the algorithm and an

(adversarial) environment. We study two types under this model, the online convex optimization

and the metrical task system.

2.3.1 Online convex optimization

Online convex optimization is a repeated game between an algorithm and an adversarial envi-

ronment.

Problem setting

In the online convex optimization, the following protocol proceeds; For each round t = 1, . . . , T ,

the algorithm (i) predicts xt ∈ K, (ii) receives a convex function ℓt : K → R and (iii) suffers

the loss ℓt(xt). The goal of the algorithm is to minimize the cumulative loss
∑T

t=1 ℓt(xt). In

this thesis, in some cases, the loss function is the linear function ℓt(xt) = ℓt ·xt. We regard the

algorithm receives ℓt instead of ℓt and this problem was called the online linear optimization.

The regret is most standard measure of the performance of the algorithm.

9
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Definition 3. Let x1,x2, . . . ,xT ∈ K be the predictions of the algorithm. The regret of the

algorithm is

Reg(T,K,L,x⋆) =
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x
⋆),

where x⋆ ∈ K is a competitor.

Usually, the best offline solution x⋆ = argminx∈K
∑T

t=1 ℓt(x) was used as the competitor.

2.3.2 Metrical task system

The metrical task system takes into account a cost of changing decisions.

Problem setting

The metrical task system is defined by a set C and a metric function δ : C × C → R. In the

metrical task system, first the adversary chooses a task sequence σ = (ℓ1, ℓ2, . . . , ℓT ), where

each ℓt : C → R is called a loss function. For a given initial state c0 ∈ C, in each round

t = 1, . . . , T , the algorithm (i) receives ℓt : K → R and (ii) chooses ct ∈ C, (iii) suffers the cost

ℓt(xt)+ δ(ct−1, ct). The first term ℓt(ct) of the cost is called the processing cost at round t, and

the second term δ(ct, ct−1) is called the moving cost at round t.

For a task sequence σ, the cumulative cost of an algorithm A is defined as

costA(σ) =
T∑
t=1

(ℓt(ct) + δ(ct, ct−1)),

and the cumulative cost of the best offline solution is defined as

costOPT(σ) = min
(c∗1,c

∗
2,...,c

∗
T )∈CT

T∑
t=1

(ℓt(c
∗
t ) + δ(c∗t , c

∗
t−1)).

We measure the performance of algorithm A by its competitive ratio, which is defined as

CR(σ) =
E[costA(σ)]
costOPT(σ)

,

where the expectation is with respect to the internal randomness of A. The goal of the algorithm

is to minimize the worst case competitive ratio maxσ CR(σ).

10
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2.4 Well-known formulas

In this section we show well-known mathematical theorems we use in this thesis.

Definition 4 (Martingale difference). A sequence of random variables V1, V2, . . . is a martingale

difference sequence with respect to X1, X2, . . . if for all t > 0, Vt is a function of X1, . . . , Xt

and E[Vt+1|X1, . . . , Xt] = 0.

Theorem 1 (Azuma’s inequality). Let V1, V2, . . . be a martingale difference sequence with re-

spect to the random variables X1, X2, . . .. Assume that for all t > 0, there is a constant ct and

random variable Zt which is a function of X1, . . . , Xt−1 such that Zt ≤ Vt ≤ Zt + ct. Then, for

all ϵ > 0 and T , following inequalities hold:

Pr[
T∑
t=1

Vt ≥ ϵ] ≤ e−2ϵ2/
∑T

t=1 c
2
t ,

Pr[
T∑
t=1

Vt ≤ −ϵ] ≤ e−2ϵ2/
∑T

t=1 c
2
t .

Theorem 2 (McDirmid’s inequality). Let X1, . . . , XT ∈ X T be a set of T ≥ 1 independent

random variables and assume that ∃c1, . . . , cT > 0 such that f : X T → R satisfies

|f(x1, . . . , xt, . . . , xT )− f(x1, . . . , x
′
t, . . . , xT )| ≤ ct

for all t ∈ [T ] and any points x1, . . . , xT , x
′
t.

Then the following inequality holds:

Pr[f(X1, . . . , XT )− E[f(X1, . . . , XT )] ≥ ϵ] ≤ e−2ϵ2/
∑T

t=1 c
2
t ,

Pr[f(X1, . . . , XT )− E[f(X1, . . . , XT )] ≤ −ϵ] ≤ e−2ϵ2/
∑T

t=1 c
2
t .

11



Chapter 3

Online linear optimization with the
log-determinant regularizer

3.1 Introduction

Online prediction is a theoretical model of repeated processes of making decisions and receiving

feedbacks, and has been extensively studied in the machine learning community for a couple

of decades [27, 44, 23]. Typically, decisions are formulated as vectors in a fixed set called

the decision space and feedbacks as functions that define the losses for all decision vectors.

Recently, much attention has been paid to a more general setting where decisions are formulated

as matrices, since it is more natural for some applications such as ranking and recommendation

tasks [20, 39, 42].

Take the online collaborative filtering as an example. The problem is formulated as in

the following protocol: Assume we have a fixed set of n users and a fixed set of m items.

For each round t = 1, 2, . . . , T , the following happens. (i) The algorithm receives from the

environment a user-item pair (it, jt), (ii) the algorithm predicts how much user it likes item jt

and chooses a number xt that represents the degree of preference, (iii) the environment returns

the true evaluation value yt of the user it for the item jt, and then (iv) the algorithm suffers

loss defined by the prediction value xt and the true value yt, say, (xt − yt)
2. Note that, (iii)

and (iv) in the protocol above can be generalized in the following way: (iii) the environment

returns a loss function ℓt, say ℓt(x) = (x− yt)
2, and (iv) the algorithm suffers loss ℓt(xt). The

goal of the algorithm is to minimize the cumulative loss, or more formally, to minimize the

regret, which is the most standard measure in online prediction. The regret is the difference

between the cumulative loss of the algorithm and that of the best fixed prediction policy in

12
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some policy class. Note that the best policy is determined in hindsight, i.e., it depends on the

whole feedback sequence. Now we claim that the problem above can be regarded as a matrix

prediction problem: the algorithm chooses (before observing the pair (it, jt)) the prediction

values for all pairs as an m×n matrix, although only the (it, jt)-th entry is used as the prediction.

In this perspective, the policy class is formulated as a restricted set of matrices, say, the set of

matrices of bounded trace norm, which is commonly used in collaborative filtering [71, 56, 69,

47]. Moreover, we can assume without loss of generality that the prediction matrices are also

chosen from the policy class. So, the policy class is often called the decision space.

In most application problems including the online collaborative filtering, the matrices to be

predicted are not square, which makes the analysis difficult. Hazan et al. [38] show that any on-

line matrix prediction problem formulated as in the protocol above can be reduced to an online

prediction problem where the decision space consists of symmetric positive semi-definite ma-

trices under linear loss functions. A notable property of the reduction is that the loss functions

of the reduced problem are the inner product with sparse loss matrices, where only at most 4

entries are non-zero. Thus, we can focus on the online prediction problems for symmetric pos-

itive semi-definite matrices, which we call the online semi-definite programming (online SDP)

problems. In particular we are interested in the case where the problems are obtained by the

reduction, which we call the online sparse SDP problems. Thanks to the symmetry and positive

semi-definiteness of the decision matrices and the sparseness of the loss matrices, the problem

becomes feasible and Hazan et al. propose an algorithm for the online sparse SDP problems, by

which they give regret bounds for various application problems including the online max-cut,

online gambling, and the online collaborative filtering [38]. Unfortunately, however, all these

bounds turn out to be sub-optimal.

In this chapter, we propose an algorithm for the online sparse SDP problems by which we

achieve optimal regret bounds for those application problems.

To this end, we employ a standard framework called Follow the Regularized Leader (FTRL)

for designing and analyzing algorithms [36, 65, 68, 37], where we need to choose as a parameter

an appropriate regularization function (or regularizer) to obtain a good regret bound. Hazan et

al. use the von Neumann entropy (or sometimes called the matrix negative entropy) as the

regularizer to obtain the results mentioned above [38], which is a generalization of Tsuda et

al. [74]. Another possible choice is the log-determinant regularizer, whose Bregman divergence

is so called the LogDet divergence. There are many applications of the LogDet divergence such

as metric learning [26], learning of low-rank kernels [50], clustering of multivariate Gaussians
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[25], and Gaussian graphical models [67]. However, the log-determinant regularizer is less

popular in online prediction and it is unclear how to derive general and non-trivial regret bounds

when using the FTRL with the log-determinant regularizer, as posed as an open problem in [74].

Indeed, Davis et al. apply the FTRL with the log-determinant regularizer for square loss and give

a cumulative loss bound [26], but it contains a data-dependent parameter and the regret bound is

still unclear. Christiano considers a very specific sub-class of online sparse SDP problems and

succeeds to improve the regret bound for a particular application problem, the online max-cut

problem [21]. But the problems he examines do not cover the whole class of online sparse SDP

problems and hence his algorithm cannot be applied to the online collaborative filtering, for

instance.

We improve regret bounds for online sparse SDP problems by analyzing the FTRL with the

log-determinant regularizer. In particular, our contributions are summarized as follows.

1. We give a non-trivial regret bound of the FTRL with the log-determinant regularizer for a

general class of online SDP problems. Although the bound seems to be somewhat loose,

it gives a tight bound when the matrices are diagonal (which corresponds to the vector

predictions).

2. We extend the analysis of Christiano in [21] and develop a new technique of deriving re-

gret bounds by exploiting the property of strong convexity of the regularizer with respect

to the loss matrices. The analysis in [21] is not explicitly stated as in a general form and

focused on a very specific case where the loss matrices are block-wise sparse.

3. We improve the regret bound for the online sparse SDP problems, by which we give

optimal regret bounds for the application problems, namely, the online max-cut, online

gambling, and the online collaborative filtering.

4. We apply the results to the case where the decision space consists of vectors, which can

be reduced to online matrix prediction problems where the decision space consists of

diagonal matrices. In this case, the general regret bound mentioned in 1 also gives tight

regret bound.

14



CHAPTER 3. ONLINE LINEAR OPTIMIZATION WITH THE LOG-DETERMINANT REGULARIZER

3.2 Problem setting

We first describe the problem setting: the online semi-definite programming problem (online

SDP problem, for short).

3.2.1 Online SDP problem

We consider an online linear optimization problem over symmetric semi-definite matrices,

which we call the online SDP problem. The problem is specified by a pair (K,L), where

K ⊆ SN×N
+ is a convex set of symmetric positive semi-definite matrices and L ⊆ SN×N is a

set of symmetric matrices. The set K is called the decision space and L the loss space. The

online SDP problem (K,L) is a repeated game between the algorithm and the adversary (i.e.,

an environment that may behave adversarially), which is described as the following protocol.

In each round t = 1, 2, . . . , T , the algorithm

1. chooses a matrix Xt ∈ K,

2. receives a loss matrix Lt ∈ L from the adversary, and

3. suffers the loss Xt • Lt.

The goal of the algorithm is to minimize the regret RegSDP(T,K,L,X⋆), defined as

RegSDP(T,K,L,X⋆) =
T∑
t=1

Lt • Xt −
T∑
t=1

Lt • X⋆.

where X⋆ ∈ K is some competitor matrix.

If the competitor is the best matrix in the decision set K that minimizes the cumulative loss

i.e. X⋆ = argminX∈K
∑T

t=1 Lt • X, the matrix X⋆ is called the best offline matrix. In this case

we abbreviate the argument X⋆ and write RegSDP(T,K,L) = RegSDP(T,K,L,X⋆).

3.2.2 Online linear optimization over vectors

The online SDP problem is a generalization of the online linear optimization problem over

vectors, which is a more standard problem setting in the literature. For the “vector” case, the

problem is described as the following protocol:

In each round t = 1, · · · , T , the algorithm
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1. chooses xt ∈ K ⊂ RN
+ ,

2. receives ℓt ∈ L ⊂ RN from the adversary, and

3. suffers the loss xT
t ℓt.

It is easy to see that the problem is equivalent to the online SDP problem (K′L′) where K′ =

{diag(x) | x ∈ K} and L′ = {diag(ℓ) | ℓ ∈ L}. So, all the results for the online SDP problem

can be applied to the online linear optimization over vectors.

3.3 FTRL and its regret bounds by standard derivations

Follow the Regularized Leader (FTRL) is a standard framework for designing algorithms for a

wide class of online optimizations (see, e.g., [68]). To employ the FTRL, we need to specify

a convex function R : K → R called the regularization function, or simply the regularizer.

For the online SDP problem (K,L), the FTRL with regularizer R suggests to choose a matrix

Xt ∈ K as the decision at each round t according to

Xt+1 = argmin
X∈K

(
R(X) + η

t∑
s=1

Ls • X
)
, (3.1)

where η > 0 is a constant called the learning rate. Note that we adopt X1 = argminX∈K R(X),

naturally induced by this rule. Throughout the thesis, we assume for simplicity that all the

regularizers R are differentiable.

The FTRL has two closely related or equivalent formulation, which has the different form

of from (3.1), and called as the Online Mirror Descent (OMD for short). Which is

X̃t+1 = (∇R)−1(∇R(X̃t)− ηLt) and Xt+1 = argmin
X∈K

BR(X, X̃t+1), (3.2)

X̃t+1 = (∇R)−1(∇R(Xt)− ηLt) and Xt+1 = argmin
X∈K

BR(X, X̃t+1), (3.3)

where BR is the Bregman divergence with respect to R. The algorithm defined by (3.3) is called

the lazy version and (3.3) is called the agile version [37]. We can say that if the loss function is

linear then the lazy version of OMD is equivalent to the FTRL in (3.1).

Proposition 3 ([37]). Let BR be the Bregman divergence with respect to the convex function R.

For any online SDP problem (K,L), Let X̃t+1 = (∇R)−1(∇R(X̃t)−ηLt) where (∇R)−1 is the
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inverse function of∇R. Then

argmin
X∈K

R(X) + η

t∑
s=1

Lt • X = argmin
X∈K

BR(X, X̃t+1). (3.4)

Proof. By the update rule of X̃t+1, we have

∇R(X̃t+1) = ∇R(X̃t)− ηLt = ∇R
(
(∇R)−1(∇R(X̃t−1)− ηLt−1)

)
− ηLt = −η

t∑
s=1

Ls.

Then

argmin
X∈K

BR(X, X̃t+1) = argmin
X∈K

R(X)−R(X̃t+1)−∇R(X̃t+1) • (X− X̃t+1)

= argmin
X∈K

R(X)−∇R(X̃t+1) • X

= argmin
X∈K

R(X) + η
t∑

s=1

Ls • X.

It is well known that the agile version of OMD has the same bound of the regret as the FTRL

or the lazy OMD.

There is a well-known derivation of the regret bound when R is strongly convex with respect

to some norm and the loss is bounded by its dual norm. The strongly convexity is defined as

follows;

Definition 5. A function R : K → R is s-strongly convex with respect to the norm ∥ · ∥ if it

satisfies the following condition; for any X,Y ∈ K,

R(X) ≥ R(Y) +∇R(Y) • (X− Y) +
s

2
∥X− Y∥2,

A sufficient condition of the strong convexity is, for any X ∈ K and W ∈ SN×N ,

vec(W)T∇2R(X)vec(W) ≥ s∥W∥2.

The next lemma is a standard derivation method of regret bounds.

Lemma 1 (See, e.g., Theorem 2.11 of [68]). Assume that for some real numbers s, g > 0 and a

norm ∥ · ∥ the following holds.
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1. R is s-strongly convex with respect to the norm ∥ · ∥.

2. Any loss matrix L ∈ L satisfies ∥L∥∗ ≤ g, where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Then, the FTRL with regularizer R and X1 = argminX∈K R(X) achieves

RegSDP(T,K,L) ≤
H0

η
+ η

g2

s
T.

where H0 = maxX,Y∈K(R(X)−R(Y)) Additionally, with the learning rate η =
√

H0s/(g2T ),

we have RegSDP(T,K,L) ≤ 2g
√
TH0/s.

The proof of this lemma consists of some series of other lemmas. First we show an in-

termediate bound of the regret known as the FTL-BTL (Follow-The-Leader-Be-The-Leader)

Lemma.

Lemma 2 (Lemma 2.3 of [68]). Let X1,X2, . . . ,XT ∈ K be matrices generated by a FTRL-

based algorithm with the regularizer R. Then for any X⋆ ∈ K,

RegSDP(T,K,L,X⋆) ≤ R(X⋆)−R(X1)

η
+

T∑
t=1

Lt • (Xt − Xt+1). (3.5)

Proof. For simplicity of the notation, let we write ft(X) = ηLt • X for t = 1, . . . , T and

f0(X) = R(X). Rearranging above inequality and subtracting R(X1) + η
∑T

t=1 Lt • Xt from

both sides, we have
T∑
t=0

ft(Xt+1) ≤
T∑
t=0

ft(X
⋆).

Actually we prove this inequality by induction. For the case T = 0, we have f0(X1) = R(X1) ≤
R(X⋆) = f0(X

⋆) by the definition of X1. For the case T ≥ 1, we assume that the inequality∑T−1
t=0 ft(Xt+1) ≤

∑T−1
t=0 ft(X

⋆) holds. Adding fT (XT+1) to both sides, we have

T∑
t=0

ft(Xt+1) ≤ fT (XT+1) +
T−1∑
t=0

ft(X
⋆).

This inequality holds for any X⋆, so we set X⋆ = XT+1 then we get

T∑
t=0

ft(Xt+1) ≤
T∑
t=0

ft(X
⋆) = min

X∈K

T∑
t=0

ft(X).

Thus we get the intermediate bound.
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Next we bound Lt • (Xt − Xt+1) in terms of s, the parameter of the strong convexity. To

bound this term, we need the following technical lemma.

Lemma 3 (Lemma 2.8 on [68]). Let K be a nonempty convex set. Let R be a differentiable and

s-strongly convex function w.r.t. the norm ∥ · ∥ over K. Let X⋆ = argminX∈K R(X). Then for

all X ∈ K,

R(X)−R(X⋆) ≥ s

2
∥X⋆ − X∥2.

Proof. In the X⋆ is interior ofK, then∇R(X⋆) = 0 and by the definition of the strong convexity

leads the lemma. In the boundary case, one can say ∀X⋆ ∈ K,∇R(X) • (X⋆ − X) ≥ 0.

Now we are ready to give a proof of 1.

Proof of Lemma 1. Let Ft(X) = R(X) + η
∑t

s=1 Ls •X. The FTRL update rule can be written

as Xt+1 = argminX∈K Ft(X). Adding an affine function does not change the convexity thus Ft

is also s-strongly convex w.r.t. ∥ · ∥. Using Lemma 3 to Ft and Ft+1, we get

Ft(Xt) ≥ Ft(Xt+1) +
s

2
∥Xt − Xt+1∥2,

Ft−1(Xt+1) ≥ Ft−1(Xt) +
s

2
∥Xt+1 − Xt∥2.

Summing these inequalities and rearranging, we have

s∥Xt − Xt+1∥2 ≤ Lt • (Xt − Xt+1) ≤ g∥Xt − Xt+1∥,

where the last inequality we use ∥Lt∥∗ ≤ g and Cauchy-Schwartz inequality. Thus we have

Lt • (Xt − Xt+1) ≤ g2/s and complete the proof.

In the subsequent subsections, we give regret bounds for the FTRL with popular regulariz-

ers. The first two are straightforward to derive from known results.

3.3.1 FTRL with the Frobenius norm regularization

The Frobenius norm regularization function is defined as R(X) = 1
2
∥X∥2Fr, which is the matrix

analogue of the L2-norm for vectors. The FTRL with this regularizer yields the online gradient

descent (OGD) algorithm [37]. Since R is 1-strongly convex with respect to ∥ · ∥Fr and the dual

of ∥ · ∥Fr is ∥ · ∥Fr, Lemma 1 gives

RegSDP(T,K2,L2) ≤ ργ2
√
2T , (3.6)
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where K2 = {X ∈ SN×N
+ : ∥X∥Fr ≤ ρ} and L2 = {L ∈ SN×N : ∥L∥Fr ≤ γ2}.

3.3.2 FTRL with the entropic regularization

The entropic regularization function is defined as R(X) = Tr(X logX−X), which is the matrix

analogue of the unnormalized entropy for vectors. Slightly modifying the proof in [38], we

obtain the following regret bound for the FTRL with this regularizer.

Proposition 4. For an online SDP problem (K1,L∞) such that K1 = {X ∈ SN×N
+ : ∥X∥Tr ≤

τ} and L∞ = {L ∈ SN×N : ∥L∥Sp ≤ γ∞}, the FTRL with the entropic regularizer R(X) =

Tr(X logX− X) achieves

RegSDP(T,K1,L∞) ≤ 2τγ∞
√

T logN. (3.7)

Proof. We begin with the intermediate bound shown in Theorem 18 of [38];

RegSDP(T,K1,L∞) ≤ η
T∑
t=1

Xt • L2
t +

τ logN

η
.

Thus our modification of the proof is bounding Xt • L2
t using our constraints. Using Cauchy-

Schwartz inequality and the fact that the spectral norm of a matrix is its maximal eigenvalue,

we have

Xt • L2
t ≤ ∥Xt∥Tr∥L2

t∥Sp = ∥Xt∥Trλ1(L
2
t ) = ∥Xt∥Trλ1(Lt)

2 ≤ τγ2
∞,

where λ1(L) is the maximal eigenvalue of L.

Note that, originally the algorithm proposed in [38] is the agile version of the OMD,

Xt+1 = arg min
X∈K1

BR(X, e
lnXt−ηLt).

where BR(X,Y) = Tr(X lnX−X lnY−X+Y), the Bregman divergence with respect to R. But

we can see that the regret bound of the FTRL with the regularizer R is same as the agile OMD

and Theorem 18 of [38] still holds in this case. We have∇R(X) = lnX, (∇R)−1(X) = eX and

X̃t+1 = eln(X̃t)−ηLt . Additionally, we can solve the projection step onto K1 as :

arg min
X∈K1

BR(X,Y) =

Y, Y ∈ K1.

τY/Tr(Y), Y /∈ K1
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by using the Lagrange multiplier and KKT conditions. This implies that X̃t+1 = eln(Xt)−ηLt so

the agile OMD is equivalent to the lazy OMD.

3.3.3 FTRL with the log-determinant regularization

The log-determinant regularization function is defined as R(X) = − ln det(X + ϵE) where ϵ is

a positive constant. This is the matrix analogue of the Burg entropy −
∑N

i=1 lnxi for vectors

x whose Bregman divergence is the Itakura-Saito divergence. The constant ϵ stabilizes the

regularizer to make the regret bound finite. Unfortunately, it is unclear what norm is appropriate

for measuring the strong convexity of the log-determinant regularizer to obtain a tight regret

bound. In the next theorem, we examine the spectral norm and give a (probably loose) regret

bound for the online SDP problem (K∞,L1), where K∞ = {X ∈ SN×N
+ : ∥X∥Sp ≤ σ} and

L1 = {L ∈ SN×N : ∥L∥Tr ≤ γ1}.

Theorem 5. The FTRL with the log-determinant regularizer with ϵ = σ achieves

RegSDP(T,K∞,L1) ≤ 4σγ1
√
TN ln 2. (3.8)

To show this theorem, we need the following technical lemma. This lemma is a composition

of the chain rule and standard derivation of the log-determinant appeared in many papers (e.g.

[67]).

Lemma 4 ([30]). The Hessian of R(X) = − ln det(X + ϵE) for X ∈ SN×N
+ is ∇2R(X) =

(X + ϵE)−1 ⊠ (X + ϵE)−1 where ⊠ denotes the box product.

Proof. By using Equation (R21) of [30], we have the first-order derivative,

vec(∇ ln det(X + ϵE)T) = (∇(X + ϵE))Tvec((X + ϵE)−1)

= ETvec((X + ϵE)−1) = vec((X + ϵE)−1).

Thus we get∇ ln det(X + ϵE) = (X + ϵE)−T .

Regarding F(X) = X−1 and G(X) = (X + ϵE) and using Equation (R18) with (R12) of

[30], we get

∇(X + ϵE)−T = ∇F(G(X)) = (∇YF(Y)|Y=G(X))∇G(X)

= −Y−T ⊠ Y−1|Y=X+ϵE

= −(X + ϵE)−T ⊠ (X + ϵE)−1 = −(X + ϵE)−1 ⊗ (X + ϵE)−1.
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Note that we use X ∈ SN×N
+ in the last equation. Thus we get the first statement.

Proof of Theorem 5. Below we show that R is (1/(4σ2))-strongly convex with respect to ∥ · ∥Sp
and R(X)− R(X′) ≤ N ln 2 for any X,X′ ∈ K. Since ∥ · ∥Tr is the dual norm of ∥ · ∥Sp and it

is clear that ∥L∥Tr ≤ γ1 for any L ∈ L1, the theorem follows from Lemma 1.

The strong convexity of the log-determinant can be verified by showing positive definiteness

of the Hessian of R. By Lemma 4, the Hessian of R(X) = − ln det(X + ϵE) is ∇2R(X) =

(X+ ϵE)−1⊠ (X+ ϵE)−1 [30]. Now we will convert the box product to the Kronecker product.

By using (2.1), (2.2) and the symmetricity of matrices we have

vec(W)T(X + ϵE)−1 ⊠ (X + ϵE)−1vec(W) = vec(W)Tvec((X + ϵE)−1W(X + ϵE)−1)

= vec(W)T((X + ϵE)−1 ⊗ (X + ϵE)−1)vec(W)

Since an eigenvalue of A⊗B is the product of some eigenvalues of A and B (see, e.g., [64]) and

an eigenvalue of A−1 is the reciprocal of an eigenvalue of A, the minimum eigenvalue of (X +

ϵE)−1⊗(X+ϵE)−1 is (∥X∥Sp+ϵ)−2. This implies that minW∈SN×N vec(W)T∇2R(X)vec(W)T ≥
(σ + ϵ)−2∥W∥2Fr. In other words, for any W ∈ SN×N ,

vec(W)T(∇2R(X)− (σ + ϵ)−2E)vec(W) ≥ 0.

Rearranging this inequality and using the fact that vec(W)Tvec(W) = ∥W∥2Fr ≥ ∥W∥2Sp, we

get vec(W)T∇2R(X)vec(W) ≥ (σ + ϵ)−2∥W∥2Sp. This implies that R is (1/(4σ2))-strongly

convex with respect to ∥ · ∥Sp.

Next we give upper and lower bounds of R. Note that det(X + ϵE) is the product of all

eigenvalues of X + ϵE. Since, all the eigenvalues are positive and the maximum of them is

bounded by σ+ϵ, we have ϵN ≤ det(X+ϵE) ≤ (σ+ϵ)N = (2ϵ)N . So, H0 = maxX,Y∈K(R(X)−
R(Y)) ≤ N ln 2.

Note that this result is not very impressive, because K∞ ⊆ K2 with ρ =
√
Nσ and L1 ⊆ L2

with γ2 = γ1, and hence the FTRL with the Frobenius norm regularizer has a slightly better

regret bound for (K∞,L1).

In the following sections, we consider a special class of online SDP problems (K,L) where

K and L are further restricted by some complicated way. For such problems, it is unlikely to

derive tight regret bounds from Lemma 1.
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3.4 Online matrix prediction and reduction to online SDP

Before going to our main contribution, we give a more natural setting to describe various appli-

cations, which is called the online matrix prediction (OMP) problem. Then we briefly review

the result of Hazan et al., saying that OMP problems are reduced to online SDP problems (K,L)
of special form [38]. In particular, the loss matrices in L obtained by the reduction are sparse.

This result motivates us to improve regret bounds for online sparse SDP problems.

An OMP problem is specified by a pair (W , G), whereW ⊆ [−1, 1]m×n is a convex set of

matrices of size m×n and G > 0 is a positive real number. Note that we do not require m = n

or WT = W . The OMP problem (W , G) is described as the following protocol: In each round

t = 1, 2, . . . , T , the algorithm

1. receives a pair (it, jt) ∈ [m]× [n] from the adversary,

2. chooses Wt ∈ W and output Wt,(it,jt),

3. receives G-Lipschitz convex loss function ℓt : [−1, 1]→ R from the adversary, and

4. suffers the loss ℓt(Wt,(it,jt)).

The goal is to minimize the following regret:

RegOMP(T,W) =
T∑
t=1

ℓt(Wt,(it,jt))− min
U∈W

T∑
t=1

ℓt(Uit,jt).

The online max-cut, the online gambling and the online collaborative filtering problems are

instances of the OMP problems.

Online max-cut: On each round, the algorithm receives a pair of nodes (i, j) ∈ [n] ×
[n] and should decide whether there is an edge between the nodes. Formally, the algorithm

chooses ŷt ∈ [−1, 1], which is interpreted as a randomized prediction in {−1, 1}: predicts 1

with probability (1 + ŷt)/2 and −1 with the remaining probability. The adversary then gives

the true outcome yt ∈ {−1, 1} indicating whether (it, jt) is actually joined by an edge or not.

The loss suffered by the algorithm is ℓt(ŷt) = |ŷt−yt|/2, which is interpreted as the probability

that the prediction is incorrect. Note that ℓt is (1/2)-Lipschitz. The decision space W of this

problem is the convex hull of the set C of matrices that represent cuts, that is, C = {CA ∈
{−1, 1}n×n : A ⊆ [n]}, where CA

i,j = 1 if ((i ∈ A) and (j /∈ A)) or ((i /∈ A) and (j ∈ A)), and
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CA
i,j = −1 otherwise. Note that the best offline matrix CA = argminCA∈C

∑
t ℓt(Uit,jt) in C is

the matrix corresponding to the max-cut A in the weighted graph whose edge weight are given

by wij =
∑

t:(it,jt)=(i,j) yt for every (i, j) [38]. This is the reason why the problem is called

online max-cut.

Online gambling: On each round, the algorithm receives a pair of teams (i, j) ∈ [n] × [n],

and should decide whether i is going to beat j or not in the upcoming game. The decision

space is the convex hull of all permutation matrices WP ∈ {0, 1}n×n, where WP is the matrix

corresponding to permutation P over [n] that satisfies W P
i,j = 1 if i appears before j in the

permutation P and W P
i,j = 0 otherwise.

Online collaborative filtering: We described this problem in Introduction. We consider

W = {W ∈ [−1, 1]m×n : ∥W∥Tr ≤ τ} for some constant τ > 0, which is a typical choice for

the decision space in the literature.

The next proposition shows how the OMP problem (W , G) is reduced to the online SDP

problem (K,L). We need to define the notion of (β, τ)-decomposability of W before stating

the proposition.

For a matrix W ∈ W , let sym(W) =

[
0 W

WT 0

]
if W is not symmetric (some W ∈ W

is not symmetric) and sym(W) = W otherwise. Let q = m ifW is not symmetric and q = 0

otherwise. Let p be the order of sym(W), that is p = q + n. Note that any symmetric matrix

can be represented by the difference of two symmetric and positive semi-definite matrices.

For real numbers β > 0 and τ > 0, the decision space W is (β, τ)-decomposable if for any

W ∈ W , there exists P,Q ∈ Sp×p
+ such that sym(W) = P − Q, Tr(P + Q) ≤ τ and Pi,i ≤ β,

Qi,i ≤ β for every i ∈ [p]. Note that ifW is (β, τ)-decomposable then its convex hull is also

(β, τ)-decomposable due to the linearity of the trace and the summation of matrices. According

to [38], the best offline solution of of the OMP U is chosen from an appropriate set of matrices,

not a convex hull W . But the decomposability of W also ensures that the regret bound still

holds even if we choose U from a convex hullW as in our problem formulation.

Proposition 6 (Hazan et al. [38]). Let (W , G) be the OMP problem where W ⊆ [−1, 1]m×n

is (β, τ)-decomposable. Then, the OMP problem (W , G) can be reduced to the online SDP
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problem (K,L), where N = 2p and

K = {X ∈ SN×N
+ : ∥X∥Tr ≤ τ, ∀i ∈ [N ], Xi,i ≤ β,

∀(i, j) ∈ [m]× [n], Xi,j+q −Xp+i,p+j+q ∈ [−1, 1]},

L = {L ∈ SN×N : ∀(i, j) ∈ [N ]× [N ], Li,j ≤ G, |{(i, j) : Li,j ̸= 0}| ≤ 4, L2 is diagonal}.

Moreover, the regret of the OMP problem is bounded by that of the reduced online SDP problem

RegOMP(T,W) ≤ 1

2
RegSDP(T,K,L).

We omit the condition

∀(i, j) ∈ [m]× [n]Xi,j+q −Xp+i,p+j+q ∈ [−1, 1]

for q = m ifW is not symmetric and q = 0 otherwise are from original definition of K in [38].

This is because these conditions does not affect the derivation of the regret bound we give in

this thesis.

Note that the loss spaceL obtained by the reduction is very sparse: each loss matrix has only

4 non-zero entries. Thus, we can say that for every L ∈ L, ∥L∥Fr ≤ 2G and ∥vec(L)∥1 ≤ 4G.

Hazan et al. also give a regret bound of the FTRL with the entropic regularizer when applied

to the online SDP problem (K,L) forK obtained by the reduction above with a larger loss space

L (thus applicable to the online OMP problems).

Theorem 7 (Hazan et al. [38]). For the online SDP problem (K,L) where

K = {X ∈ SN×N
+ : ∥X∥Tr ≤ τ, ∀i ∈ [N ], Xi,i ≤ β},

L = {L ∈ SN×N : Tr(L2) ≤ γ,L2 is diagonal},

the agile OMD with the Bregman divergence with respect to the negaitve entropy R(X) =

Tr(X lnX− X) achieves

RegSDP(T,K,L) ≤ 2
√

βτγT lnN.

Combining Proposition 6 and Theorem 7, we can easily get regret bounds for OMP prob-

lems.
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Corollary 8. For the OMP problem (W , G), whereW ⊆ [−1, 1]m×n is (β, τ)-decomposable,

there exists an algorithm that achieves

RegOMP(T,K,L) = O(G
√
βτT ln(m+ n)).

Hazan et al. apply the bound to the three applications, for which the decision classesW are

all (β, τ)-decomposable for some β and τ [38]. More specifically, the results are summarized

as shown below.

Online max-cut: The problem is (1, n)-decomposable and thus the algorithm has a regret

bound of O(G
√
nT lnn).

Online gambling: The problem is (O(lnn), O(n lnn))-decomposable and thus the algorithm

has a regret bound of O(G
√

nT (lnn)3).

Online collaborative filtering: The problem is (
√
m+ n, 2τ)-decomposable and thus the al-

gorithm has a regret bound of O(G
√

τT
√
m+ n ln(m+ n)), which is O(G

√
τT
√
n lnn)

if we assume without loss of generality that n ≥ m.

Christiano provides another technique of reduction from a special type of OMP problems

to a special type of online SDP problems, and apply the FTRL with the log-determinant regu-

larizer [21]. He then improves the regret bound for the online max-cut problem to O(G
√
nT ),

which matches a lower bound up to a constant factor. However, the regret bound for online

gambling is much worse (O(Gn2
√
T )) and his reduction cannot be applied to online collabora-

tive filtering. It is worth noted that the loss matrices obtained by his reduction are not just sparse

but block-wise sparse, by which we mean non-zero entries forming at most two block matrices,

and seemingly his regret analysis depends on this fact.

3.5 Main results

Motivated by the sparse online SDP problem reduced from an OMP problem, we consider a

specific problem (K̃, L̃), where

K̃ = {X ∈ SN×N
+ : ∥X∥Tr ≤ τ, ∀i ∈ [N ],Xi,i ≤ β},

L̃ = {L ∈ SN×N : ∥vec(L)∥1 ≤ g1},
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and give a regret bound of the FTRL with the log-determinant regularizer. Note that K̃ is the

same as the one obtained by the reduction and L̃ is much larger if g1 = 4G. By Proposition 6

the regret bound immediately yields a regret bound for the OMP problem (W , G) for a (β, τ)-

decomposable decision spaceW , which turns out to be tighter than the one using the entropic

regularizer shown in Theorem 7.

Our analysis partly follows that of [21] with some generalizations. In particular, we figure

out a general method for deriving regret bounds by using a new notion of strong convexity of

regularizers, which is implicitly used in [21]. First we state the general theory.

3.5.1 A general theory

We begin with Lemma 2, FTL-BTL lemma. Thanks to this lemma, all we need to do is to bound

H0 = maxX,Y∈K(R(X)−R(Y)) and Lt • (Xt − Xt+1).

Now we define the new notion of strong convexity. Intuitively, this is an integration of the

strong convexity of regularizers with respect to a norm and the Lipschitzness of loss functions

with respect to the norm.

Definition 6. For a decision space K and a real number s > 0, a regularizer R : K → R is

said to be s-strongly convex with respect to a loss space L if for any α ∈ [0, 1], any X,Y ∈ K,

and any L ∈ L,

R(αX+ (1− α)Y) ≤ αR(X) + (1− α)R(Y)− s

2
α(1− α)|L • (X− Y)|2. (3.9)

This condition has an equivalent form as same as the strong convexity with respect to the

norm.

Proposition 9 (Cf. [62]). The following condition is equivalent to (3.9) : For any X,Y ∈ K
and L ∈ L,

R(X) ≥ R(Y) +∇R(Y) • (X− Y) +
s

2
|L • (X− Y)|2. (3.10)

Proof. We prove this by showing that the convexity of R̃(X) = R(X) − s(L • X)2/2 and

using the first-order condition of the convexity. Note that the derivative of R̃ is ∇R̃(X) =

∇R(X) + s(L • X)L.

First we begin with (3.10) then derive the first order condition of R̃. By (3.10), we have

R(X) ≥ R(Y) +∇R(Y) • (X− Y) +
s

2
((L • X)2 − 2(L • X)(L • Y) + (L • Y)2).
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Thus, we get

R̃(X) ≥ R̃(Y) +∇R(Y) • (X− Y) + s((L • Y)2 − (L • X)(L • Y))

= R̃(Y) + (∇R(Y)− s(L • X)L) • (X− Y),

the first order condition of the convexity of R̃.

Next we start with the convexity of R̃ and derive (3.9). Let Z = αX + (1 − α)Y for any

α ∈ [0, 1]. Since R̃ is convex we have

R̃(Z) ≤ αR̃(Y) + (1− α)R̃(Y).

Thus we get,

R(Z) ≤ αR(X) + (1− α)R(Y)− s

2

(
α(L • X)2 + (1− α)(L • Y)2 − (L • Z)2

)
,

and Z = αX+ (1− α)Y leads

α(L • X)2 + (1− α)(L • Y)2 − (L • Z)2

= α(1− α)(L • X)2 + α(1− α)(L • Y)2 − 2α(1− α)(L • X)(L • Y)

= α(1− α)(L • (X− Y))2.

This completes the proof.

Note that the condition (3.10) has the same form as the condition of s-strong convexity given

in Lemma 1 except ∥X− Y∥ is replaced by |L • (X− Y)|.
The following lemma gives a bound of the term Lt • (Xt−Xt+1) in inequality (3.5) in terms

of the strong convexity of the regularizer. The lemma is implicitly stated in [68] and hence is

not essentially new. But we give a proof for completeness since it is not very straightforward to

show.

Lemma 5 (Main lemma of this chapter). Let R : K → R be s-strongly convex with respect to L
forK. Then, the FTRL with the regularizer R and learing rate η > 0 applied to (K,L) achieves

RegSDP(T,K,L) ≤
H0

η
+

ηT

s
.
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Proof. By Lemma 2, it suffices to show that

Lt • (Xt − Xt+1) ≤
η

s
,

since the theorem follows by setting η =
√

sH0/T . In what follows, we prove the inequality.

First observe that any s-strongly convex function F with respect to L satisfies

F (X)− F (Y) ≥ s

2
|L • (X− Y)|2 (3.11)

for any X ∈ K and any L ∈ L for Y = argminZ∈K F (Z). To see this, we use (3.10) (with

replacement of R by F ) due to the strong convexity of F and∇F (Y) • (X−Y) ≥ 0 (otherwise

Y would not be the minimizer since we can make a small step in the direction X − Y and

decrease the value of F .) See the proof of Lemma 2.8 of [68] for more detail.

Recall that the update rule of the FTRL is Xt+1 = argminX∈K Ft(X) where Ft(X) =∑t
i=1 ηLi • X + R(X). Note that Ft is s-strongly convex with respect to L due to the linearity

of Li • X. Applying (3.11) to Ft and Ft−1 with L = Lt, we get

Ft(Xt) ≥ Ft(Xt+1) +
s

2
|Lt • (Xt − Xt+1)|2,

Ft−1(Xt+1) ≥ Ft−1(Xt) +
s

2
|Lt • (Xt+1 − Xt)|2.

Summing up these two inequalities we get

ηLt • (Xt − Xt+1) ≥ s|Lt • (Xt − Xt+1)|2.

Dividing both side by Lt • (Xt − Xt+1) we get the desired result.

Note that Lemma 5 gives a more general method of deriving regret bounds than the standard

one given by Lemma 1. To see this, assume that the two conditions of Lemma 1 hold. Then,

Cauchy-Schwarz inequality says that |L • (X − Y)| ≤ ∥L∥∗∥X − Y∥ ≤ g∥X − Y∥ for every

L ∈ L and X,Y ∈ K, where the second inequality is from the second condition. Thus, the first

condition implies the condition of Lemma 5 with s replaced by s/g2 as

R(X) ≥ R(Y) +∇R(Y) • (X− Y) +
s

2
∥X− Y∥2

≥ R(Y) +∇R(Y) • (X− Y) +
s

2g2
|L • (X− Y)2|.

Another advantage of using Lemma 5 is that we can avoid looking for appropriate norms to
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obtain good regret bounds.

3.5.2 Strong convexity of the log-determinant regularizer

Now we prove the strong convexity of the log-determinant for our problem (K̃, L̃) defined in

the beginning of this section. The following lemma provides a sufficient condition that turns

out to be useful.

Lemma 6 (Christiano [21]). Let X,Y ∈ SN×N
+ be such that

∃(i, j) ∈ [N ]× [N ], |Xi,j − Yi,j| ≥ δ(Xi,i +Xj,j + Yi,i + Yj,j).

Then the following inequality holds:

− ln det(αX+ (1− α)Y) ≤ −α ln det(X)− (1− α) ln det(Y)− α(1− α)

2

δ2

72
√
e
.

Note that the original proof by Christiano only gives the order of the lower bound of the

last term of Ω(δ2). So we give the proof with a constant factor. Now we give the proof of this

lemma. To complete the proof, we need to show a series of definitions and technical lemmas.

First, we need to define some functions related to probability distributions. For a continuous

probability distribution P , we abuse the notation P as its probability density function. The

negative entropy function over the set of probability distributions P over RN is defined as

H(P ) = Ex∼P [lnP (x)]. The total variation distance between probability distributions P and

Q over RN is defined as 1
2

∫
x
|P (x) − Q(x)|dx. The characteristic function of a probability

distribution P over RN is defined as ϕ(u) = Ex∼P [e
iuTx], where i is the imaginary unit.

The following lemma shows that the difference of the characteristic functions gives a lower

bound of the total variation distance.

Lemma 7. Let P and Q be probability distribution over RN and ϕP (u), ϕQ(u) be their char-

acteristic functions, respectively. Then,

max
u∈RN

|ϕP (u)− ϕQ(u)| ≤
∫
x

|P (x)−Q(x)|dx.
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Proof.

max
u∈RN

|ϕP (u)− ϕQ(u)| = max
u∈RN

∣∣∣∫
x

eiu
TxP (x)dx−

∫
x

eiu
TxQ(x)dx

∣∣∣
≤ max

u∈RN

∫
x

|eiuTx||P (x)−Q(x)|dx

≤
∫
x

|P (x)−Q(x)|dx

where we use the fact that |eiuTx| = 1 for every u ∈ RN .

The negative entropy function is strongly convex with respect to the total variation distance.

In [21], the proof of the following lemma was given for only discrete entropies and the

differential entropies are regarded as the limit of the discrete entropies, but this assertion is

incorrect [22]. We fix the problem by considering the limit of the “difference” of discrete

entropies as given in our proof.

Lemma 8 (Christiano [21]). Let P and Q be continuous probability distributions over RN with

total variation distance δ. Then,

H(αP + (1− α)Q) ≤ αH(P ) + (1− α)H(Q)− α(1− α)δ2.

Proof. First we fix a discretization interval ∆. As in Sec 8.3 of [22], for a continuous distri-

bution P we consider its discretization. Let we divide RN be “tiles” with width ∆, namely

Sj = {x ∈ RN : ∀i ∈ [N ], xi ∈ [ji∆, (ji + 1)∆]} where j ∈ NN . By the mean-value theo-

rem, there exists xj ∈ Sj such that P (xj)∆
N =

∫
Sj
P (x)dx. Then we define the discretized

distribution P∆ over NN as following:

Pj =

∫
Sj

P (x)dx = P (xj)∆
N .

Thus we can define the discrete entropy H(P∆) and we have

H(P∆) =
∑
j

Pj lnPj =
∑
j

(P (xj)∆
N) ln(P (xj)∆

N) =
∑
j

∆NP (xj) lnP (xj) +N ln∆

Thus for two continuous distributions P and Q, lim∆→0

(
H(P∆)−H(Q∆)

)
= H(P )−H(Q).
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Next we consider the total variation distance δ∆ = 1
2

∑
j |Pj −Qj | then we get

2δ∆ =
∑
j

|Pj −Qj| =
∑
j

|(P (xj)∆
N)− (Q(xj)∆

N)| =
∑
j

∆N |P (xj)−Q(xj)|

thus lim∆→0 δ
∆ = δ. Using these equalities, we can prove this lemma.

The following lemma connects the entropy and the log-determinant.

Lemma 9 (Cover and Thomas [22]). For any probability distribution P over RN with 0 mean

and covariance matrix Σ, its entropy is bounded by the log-determinant of covariance matrix.

That is,

H(P ) ≥ −1
2

ln(det(Σ)(2πe)N),

where the equality holds if and only if P is a Gaussian.

We need the following technical lemma.

Lemma 10. e−x
2 − e−

1−x
2 ≥ e−1/4

2
(1− 2x) for 0 ≤ x ≤ 1/2

Proof. Since the function f(x) = e−x/2 − e−(1−x)/2 is convex on 0 ≤ x ≤ 1/2, its tangent

at x = 1/2 always gives a lower bound of f(x). Hence we get f(x) ≥ f ′(1/2)(x − 1/2) +

f(1/2) = e−1/4(1− 2x)/2.

The following lemma provides us a relation between covariance matrices and the total vari-

ation distance.

Lemma 11 (Christiano [21]). Let G1 and G2 are zero-mean Gaussian distributions with covari-

ance matrix Σ and Θ, respectively. If there exists (i, j) ∈ [N ]× [N ] such that

|Σi,j −Θi,j| ≥ δ(Σi,i +Θi,i + Σj,j +Θj,j),

then the total variation distance between G1 and G2 is at least 1
12e1/4

δ.

The original proof by Christiano gives an asymptotic bound of the form of Ω(δ). Now we

give the proof with a constant factor.

Proof. By Lemma 7, it is sufficient to derive a lower bound of the maximum of difference

between characteristic functions. In this case, the characteristic functions of G1 and G2 are

ϕ1(u) = e−
1
2
uTΣu and ϕ2(u) = e−

1
2
uTΘu, respectively.
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Let α1 = vTΣv, α2 = vTΘv,u = v√
α1+α2

. Then,

max
u∈RN

|ϕ1(u)− ϕ2(u)| ≥ max
v∈RN

∣∣∣e −α1
2(α1+α2) − e

−α2
2(α1+α2)

∣∣∣ ≥ max
v∈RN

∣∣∣ 1

2e1/4
α1 − α2

α1 + α2

∣∣∣.
Note that we use Lemma 10 in the last inequality.

By the assumption, we have for some (i, j) that

δ(Σi,i +Θi,i + Σj,j +Θj,j) ≤ |Σi,j −Θi,j|

=
1

2

∣∣(ei + ej)
T(Σ−Θ)(ei + ej)− (Σ−Θ)i,i − (Σ−Θ)j,j

∣∣
This implies that one of (ei + ej)

T(Σ − Θ)(ei + ej), eT
i (Σ − Θ)ei, and eT

j (Σ − Θ)ej has

absolute value greater than 2δ
3
((Σ + Θ)i,i + (Σ + Θ)j,j).

On the other hand,

(ei + ej)
T(Σ + Θ)(ei + ej) = (Σ + Θ)i,i + (Σ + Θ)j,j + 2(Σ + Θ)i,j

≤ 2(Σ + Θ)i,i + 2(Σ + Θ)j,j.

In the last inequality we use Σ+Θ ∈ SN×N
+ and the fact that Xi,j ≤ 1

2
(Xi,i+Xj,j) for symmetric

semi-definite matrix X . So,

∀v ∈ {ei, ej, ei + ej},vT(Σ + Θ)v ≤ 2(Σ + Θ)i,i + 2(Σ + Θ)j,j

and thus we have

max
u∈RN

|ϕ1(u)− ϕ2(u)| ≥ max
v∈{ei,ej ,ei+ej}

∣∣∣ 1

2e1/4
vT(Σ−Θ)v

vT(Σ + Θ)v

∣∣∣ ≥ δ

6e1/4
.

Now we are ready to give a proof of Lemma 6.

Proof. Let G1,G2 are zero-mean Gaussian distributions with covariance matrix Σ = X,Θ = Y,

respectively. By the assumption and Lemma 11, total variation distance between G1 and G2 is

at least δ
12e1/4

. For simplicity of notation, let δ̃ = δ
12e1/4

. Consider the entropy of the following

probability distribution of v; with probability α, v ∼ G1, with remaining probability 1 − α,
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v ∼ G2. Its covariance matrix is αΣ + (1− α)Θ. By Lemma 8 and 9,

− ln det(αΣ + (1− α)Θ) ≤ 2H(αG1 + (1− α)G2) + ln(2πe)N

≤ 2αH(G1) + 2(1− α)H(G2) + ln(2πe)N − α(1− α)δ̃2

= −α ln det(Σ)− (1− α) ln det(Θ)− α(1− α)δ̃2.

The following lemma shows that the sufficient condition actually holds for our problem

(K̃, L̃) for δ = O(|L • (X−Y)|), which establishes the strong convexity of the log-determinant

regularizer. The lemma is a slight generalization of [21] in that loss matrices are not necessarily

block-wise sparse.

Lemma 12. Let X,Y ∈ SN×N be such that Xi,i ≤ β′ and Yi,i ≤ β′ for every i ∈ [N ]. Then, for

any L ∈ L̃, there exists (i, j) ∈ [N ]× [N ] such that

|Xi,j − Yi,j| ≥
|L • (X− Y)|

4g1β′ (Xi,i +Xj,j + Yi,i + Yj,j).

Proof. By Cauchy-Schwarz inequality,

|L • (X− Y)| ≤ ∥vec(L)∥1∥vec(X− Y)∥∞ ≤ g1max
i,j
|Xi,j − Yi,j|.

Thus the lemma follows since Xi,i +Xj,j + Yi,i + Yj,j ≤ 4β′.

Applying Lemma 12 to X+ ϵE and Y+ ϵE for X,Y ∈ K̃ and β′ = β+ ϵ, and then applying

Lemma 6, we immediately get the following proposition.

Proposition 10. The log-determinant regularizer R(X) = − ln det(X+ϵE) is s-strongly convex

with respect to L̃ for K̃ with s = 1/(1152
√
eg21(β + ϵ)2).

Combining this proposition with Lemma 5, we can derive a regret bound.

Theorem 11 (Main theorem of Chapter 3). For the online SDP problem (K̃, L̃), the FTRL with

the log-determinant regularizer R(X) = − ln det(X + ϵE) achieves

RegSDP(T,K,L) ≤
τ

ϵη
+ η × 1152

√
eg21(β + ϵ)T
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Especially, for appropriate choices of η and ϵ,

RegSDP(T,K,L) ≤ 175g1
√
βτT .

Proof. By Proposition 10 we know that R is s-strongly convex for s = 1/(1152
√
eg21(β + ϵ)2).

It remains to give a bound on H0 = R(X0) − R(X1), where X0 and X1 be the maximizer and

the minimizer of R in K̃, respectively. Let λi(X) be the i-th eigenvalue of X. Then,

R(X0)−R(X1) =
N∑
i=1

ln
λi(X1) + ϵ

λi(X0) + ϵ

≤
N∑
i=1

ln

(
λi(X1)

ϵ
+ 1

)
≤

N∑
i=1

λi(X1)

ϵ
≤ τ

ϵ
.

Note that we use the inequality ln(x+ 1) ≤ x for −1 < x. Applying Lemma 5 with ϵ = β, we

get the theorem.

Since the OMP problem (W , G) for a (β, τ)-decomposable decision space W can be re-

duced to the online SDP problem (K̃, L̃) with g1 = 4G, Proposition 6 implies the following

regret bound for the OMP problem.

Corollary 12. For the OMP problem (W , G) whereW ⊆ [−1, 1]m×n is (β, τ)-decomposable,

there exists an algorithm that achieves

RegOMP(T,W) = O(G
√
βτT ).

Note that the bound does not depend on the size (m or n) of matrices and improves by a

factor of O(
√
m+ n) from Corollary 8. Accordingly, we get O(

√
lnn) improvements for the

three application problems:

Online max-cut has a regret bound of O(G
√
nT ).

Online gambling has a regret bound of O(G lnn
√
nT ).

Online collaborative filtering has a regret bound of O(G
√
τT
√
n) for n ≥ m.

All these bounds match the lower bounds given in [38] up to constant factors.
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3.5.3 The vector case

We can apply the results obtained above to the vector case by just restricting the decision and

loss spaces to diagonal matrices. That is, our problem (K̃, L̃) is now rewritten as

K̃ = {diag(x) : x ∈ RN
+ , ∥x∥∞ ≤ β, ∥x∥1 ≤ τ}, and

L̃ = {diag(ℓ) : ℓ ∈ RN , ∥ℓ∥1 ≤ g1},

and the log-determinant is a variant of the Burg entropy R(diag(x)) = −
∑N

i=1 ln(xi + ϵ).

Applying Theorem 11 to the problem, we have O(g1
√
βτT ) regret bound.

Curiously, unlike the matrix case, we can also apply the standard technique, namely, The-

orem 5 (with a slight modification), to get the same regret bound. To see this, observe that

∥diag(x)∥Sp = ∥x∥∞ ≤ β for every diag(x) ∈ K̃, and ∥diag(ℓ)∥Tr = ∥ℓ∥1 ≤ g1 for every

diag(ℓ) ∈ L̃. These imply that K̃ ⊆ K∞ with σ = β and L̃ ⊆ L1 with γ1 = g1. Moreover, as

shown in the proof of Theorem 11, we have maxX,X′∈K̃(R(X) − R(X′)) ≤ τ/ϵ. So, N ln 2 in

Theorem 5 can be replaced by τ/ϵ, and hence we get a regret bound of 4g1
√
βτT .

3.6 Conclusion

In this chapter, we consider the online symmetric positive semi-definite matrix prediction prob-

lem. We proposed an FTRL-based algorithm with the log-determinant regularization. We

tighten and generalize existing analyses. As a result, we show that the log-determinant reg-

ularizer is effective when loss matrices are sparse. Reducing online collaborative filtering task

to the online SDP problems with sparse loss matrices, our algorithms obtain optimal regret

bounds.

Our future work includes (i) improving a constant factor in the regret bound, (ii) applying

our method to other online prediction tasks with sparse loss settings including the “vector” case,

(iii) developing a fast implementation of our algorithm.
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Chapter 4

Optimal mistake bounds for binary matrix
completion the log-determinant
regularization

4.1 Introduction

Learning preferences over a set of items is an important task in recommendation systems. A

typical formulation of learning preferences is the matrix completion problem, where the under-

lying matrix represents user’s preferences of items, only some entries of the matrix are given

and the goal is to predict rest of preferences. Under the natural assumption that the matrix has

low rank or low trace-norm, a lot of work have been done in various settings, say, the statistical

i.i.d. setting [71, 31, 69, 56] and the online learning setting [20, 38, 59, 42]

Recently, another direction of work is done using a different notion from the rank. Herbster

et al. [39] considered an online version of the binary matrix completion problem and prove

a mistake bound for the problem using the notion of the margin complexity of the matrix.

Furthermore, the mistake bound is comparable to that of the perceptron with the best kernel

without knowing it. Their mistake bound, however, is not optimal yet. More precisely, the

upper and lower bounds have a logarithmic gap.

In this chapter, we close the gap by showing a new algorithm for the online binary matrix

completion task with matching lower/upper mistake bounds.

The online binary matrix completion problem posed by Herbseter et al. [39] is defined in

the following way. Let m and n are the numbers of users and items respectively. We consider

a matrix U ∈ {−1, 1}m×n where each component Ui,j denotes the user i likes or dislikes the
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item j, for i = 1, . . . ,m and j = 1, . . . , n. Our task is to predict U in an online fashion.

More precisely, we assume the following protocol; For each round t = 1, . . . , T , the algorithm

(i) receives (it, jt) ∈ [m] × [n], (ii) predicts ŷt ∈ {−1, 1}, (iii) receives yt ∈ {−1, 1} and

(iv) suffers the loss ℓt = 1yt ̸=ŷt . Thus, we assume that there is an underlying binary matrix

U ∈ {−1, 1}n×m. LetM be a set of rounds algorithm made mistakeM = {t ∈ [T ] : ŷt ̸= yt}.
The goal of the algorithm is to minimize the total loss (i.e. the number of errors) |M|.

We adopt the assumption of [39] that there exists a matrix P ∈ Rm×k (matrix of m users)

and Q ∈ Rn×k (matrix of n items), where k is possibly infinite, that for each user i ∈ [m] and

item j ∈ [n], Ui,j = sgn(Pi,∗Q
T
j,∗). In other words, there exists a k-dimensional feature space in

which each user i ∈ [m] and item j ∈ [n] have their own feature vectors Pi,∗ and Qj,∗ and the

weight vector Pi,∗ of each user i correctly classifies the feature vector Qj,∗ of item j. This is a

kind of realizability assumption. Apparently, the assumption looks strong, but we also assume

that the algorithm knows neither P and Q nor the feature space itself. Therefore, the assumption

is more generic than it looks.

For the online binary matrix completion problem, we propose an FTRL-based algorithm

with the log-determinant regularizer and prove mistake bounds of the algorithm under the real-

izability assumption. As mentioned, the mistake bounds are optimal, up to the constant factor.

The technical contributions of our results consist of (i) a sharper reduction technique from the

online binary matrix completion to the online SDP problem [38] and (ii) an application of a

modified notion of the strong convexity for the log-determinant [59, 58]. These techniques

might be interesting in their own rights.

We also apply our online algorithm in the statistical (batch) learning setting using the online-

to-batch conversion framework (see, e.g., [57]), and derive a generalization error bound. In this

setting, we also can drop the logarithmic factor from the result of [39]. Our generalization error

bound is similar to the known margin-based bound obtained by the best kernel in hindsight.

Additionally, we introduce the standard notion of the margin loss [57] to measure the difficulty

of the given sample in the both settings. This is a tighter measure than the margin error, the

quantity [39] used.

4.2 Related work

As mentioned in the previous section, [39] propose an algorithm for the online binary matrix

completion problem with a mistake bound O((m+n) log(m+n)/γ2+merr(S, γ)), where S is
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the sequence of (it, jt, yt) and merr(S, γ) is a measure of the complexity of S called the margin

error, which we formally define in next section. The key idea of [39] is, reducing the binary

matrix completion problem to an online prediction task over positive semi-definite matrices,

namely the online semi-definite programming task (online SDP, for short). Then Herbster et

al. apply the Matrix Winnow algorithm [77]. This algorithm can be regarded as a variant of the

matrix multiplicative weights algorithm [74].

For online prediction tasks, there is a standard framework called Follow the Regularized

Leader (FTRL) for designing algorithms [65, 68, 37], for which we need to choose an appro-

priate regularization function (or regularizer) as a parameter to obtain a good regret bound. As

mentioned in previous chapter, the matrix negative entropy R(X) = Tr(X lnX − X) is widely

used as the regularizer for some online SDP tasks[74, 38].

On the other hand, the log-determinant R(X) = − ln det(X) is also used as the regularizer

for positive semi-definite matrices [21, 59]. As shown in the previous chapter, for the online

SDP problem, the key point of the analysis of FTRL-based algorithm is the strong convexity of

the regularizer with respect to the loss space. We also know that the log-determinant regular-

ization works well when the loss information is “sparse” [59].

In batch learning setting, [72] also considers the assumption that the rating matrix was

generated from implicit classification of feature vectors of items by each user’s hyperplane.

They show generalization error bounds with the matrix trace-norm or the max-norm and the

margin of the hyperplane. The matrix completion from 1-bit observations is also well studied

[24, 11]. In their setting, the algorithm can observe binary information according to the uniform

distribution over [m] × [n]. The value of observed entry is probabilistically determined by

the true rating matrix M ∈ Rm×n. [24] show some generalization error bounds of learning

M and probability distribution which determines binary observations from given sample with

assumption that the trace norm of M is bounded. [11] show generalization error bounds for

learning a low-rank matrix M. [18] also study the 1-bit matrix completion with bounding the

max norm of M, and provide distribution-free generalization error bounds.

4.3 Preliminaries

In this section, we define some mathematical notations.

We write the sequence which the algorithm received as S = ((it, jt, yt) : t ∈ [T ]) ∈
([m]× [n]× {−1, 1})T .
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For a binary matrix U ∈ {−1, 1}m×n and a sequence S, we define the consistent set

cons(S) = {M ∈ Rm×n : ∀(i, j, y), yMi,j > 0}, the sign pattern set SP(U) = {M ∈ Rm×n :

∀(i, j), Ui,jMi,j > 0}.
The margin of U is defined as follows [53]:

m(U) = sup
PQT∈SP(U)

min
i,j

|Pi,∗Q
T
j,∗|

∥Pi,∗∥2∥Qj,∗∥2
. (4.1)

Note that this definition of m(U) is the inverse of the margin complexity originally used in [39].

We define the margin of a sequence S as m(S) = supM∈cons(S) m(M).

The margin error is defined as :

merr(S, γ) = inf
PQT∈cons(S)

∣∣∣{(i, j, y) ∈ S :
|Pi,∗Q

T
j,∗|

∥Pi,∗∥2∥Qj,∗∥2
< γ

}∣∣∣. (4.2)

Let ϕγ(x) be a function such that

ϕγ(x) =


0 γ ≤ x

1− x/γ 0 ≤ x ≤ γ

1 x ≤ 0.

Then we define the empirical margin loss as :

mloss(S, γ) = inf
PQT∈cons(S)

∑
(i,j,y)∈S

ϕγ

(
|Pi,∗Q

T
j,∗|

∥Pi,∗∥2∥Qj,∗∥2

)
(4.3)

Thus, if γ ≤ m(S) then merr(S, γ) = 0 and mloss(S, γ) = 0. This margin loss function ϕγ is

standard choice in statistical learning tasks of hyperplanes [57] .

4.4 Reduction of the binary matrix prediction

In this section we show the reduction technique of the binary matrix prediction to an online

SDP task which we consider in Chapter 3.

Let a decision space K ⊆ SN×N
+ be a convex set, let a loss space L ⊆ SN×N and let (K,L)

be a online SDP task described in Chapter 3. The regret is defined as;

RegSDP(T,K,L,X⋆) =
T∑
t=1

Lt • Xt −
T∑
t=1

Lt • X⋆ (4.4)
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where X⋆ ∈ K is an competitor matrix.

We adopt the Follow the Regularized Leader(FTRL) to design an algorithm for the online

SDP. Let R : K → R be a convex function called the regularizer. A FTRL-based algorithm

with the regularizer R and learning rate η > 0 makes prediction as;

Xt+1 = argmin
X∈K

R(X) + η
t∑

s=1

Lt • X. (4.5)

4.4.1 Details of the reduction

Key ideas of the reduction are positive semi-definite embedding of the decision set and convex-

ification of the loss function by the hinge loss.

We describe how to embed a prediction Û into a positive semi-definite matrix. One can pre-

dict yt without mistake over the sequence S if predictions are according to some Ũ ∈ cons(S).
Let the positive semi-definite embedding of this Ũ be X̃ and we design the decision set of online

SDP K to include X̃. The regret bound ensures that algorithm’s predictions (Xt)t∈[T ] are close

to X̃.

Now we design the decision set K. Let P ∈ Rm×k,Q ∈ Rn×k are matrices such that

PQT ∈ cons(S),

P̄ = diag
( 1

∥P1,∗∥2
, . . . ,

1

∥Pm,∗∥2

)
P ∈ Rm×k and Q̄ = diag

( 1

∥Q1,∗∥2
, . . . ,

1

∥Qn,∗∥2

)
Q ∈ Rn×k.

Then we choose Ũ = θP̄Q̄T ∈ cons(S) and its entries are θ(P̄Q̄T)i,j = θ
Pi,∗QT

j,∗
∥Pi,∗∥2∥Qj,∗∥2 . We

design its positive semi-definite embedding X̃ as

X̃ = θ

[
P̄

Q̄

][
P̄

Q̄

]T
= θ

[
P̄P̄T P̄Q̄T

(P̄Q̄T)T Q̄Q̄T

]
. (4.6)

Thus the set K = {X ∈ SN×N
+ : Xi,i ≤ θ} includes X̃ and we employ this set as the decision

set of the online SDP.

Next, we describe the design of loss matrices on the online SDP. To ease the analysis of the

0-1 loss 1[ŷy ̸= yt], we convexify this by the hinge loss. Let the hinge loss function with margin

ρ be h(x) = max(1 − x
ρ
, 0). The total loss measured by h upper bounds the total number of

mistake.

Let Zt = 1
2
(eit + em+jt)(eit + em+jt)

T then X̃ • Zt − θ = θ(P̄Q̄T)it,jt . We employ the
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prediction of ŷt = sgn(Zt • Xt − θ) at the round t where Xt ∈ K is the prediction of the

algorithm for the online SDP task and the loss is defined as h(yt(Xt • Zt − θ)).

Now we have the decision set K and loss functions for each t. The regret of this problem is

Regh(T,K,X⋆) =
T∑
t=1

(h(yt(Xt • Zt − θ))− h(yt(X
⋆ • Zt − θ))),

where X⋆ ∈ K is a competitor matrix.

By the convexity of h, we can bound Regh by the sub-gradient of h, this is a standard

linearization technique (see, e.g., [68]). Let Lt be the sub-gradient of h;

Lt = ∇Xh(yt(X • Zt − θ)) =

−yt
ρ
Zt yt(X • Zt − θ) ≤ ρ

0 otherwise.

Then we have

Regh(T,K,X⋆) ≤
T∑
t=1

Lt • (Xt − X⋆) =
∑
t∈Mh

Lt • (Xt − X⋆)

whereMh = {t ∈ [T ] : Lt ̸= 0}. This quantity can be regarded as the regret of a online SDP

task with loss matrices (Lt)t∈[T ], namely RegSDP(T,K,L,X⋆) =
∑T

t=1 Lt • (Xt−X⋆) where L
is the set of all possible Lt.

Now we have Regh ≤ RegSDP. In general, we cannot bound the number of mistake |M|
from this inequality due to the relation between |Mh| and |M| is unclear. But if S is consistent

(i.e. ∃U ∈ {−1, 1}m×n such that ∀t, Uit,jt = yt) and enforce the algorithm to be mistake-driven,

we can bound the number of mistakes the algorithm made.

Theorem 13. Let matrices P and Q be chosen to realize the infimum of the equation (4.3) and

X̃ be an embedding of U defined in the equation (4.6). Assume that an FTRL-based algorithm

A for an online SDP task has a regret bound RegSDP(T,K,L, X̃). Then running A with the

sequence of loss matrices

Lt =

−yt
ρ
Zt t ∈M

0 t /∈M

satisfies the following inequality;

|M| ≤ RegSDP(|M|,K,L, X̃) + mloss(S, ρ/θ).
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Proof. By the definition of the FTRL update rule and Lt = 0 if t /∈M, we have

RegSDP(T,K,L, X̃) = RegSDP(|M|,K,L, X̃).

The regret on the online SDP RegSDP can be lower bounded as;

RegSDP(|M|,K,L, X̃) =
∑
t∈M

(
−yt
ρ

Zt • Xt −
−yt
ρ

Zt • X̃)

=
∑
t∈M

(
−yt
ρ

(Zt • Xt − θ)− −yt
ρ

(Zt • X̃− θ)) ≥
∑
t∈M

yt
ρ
(Zt • X̃− θ)

where the last inequality we use if t ∈ M then yt ̸= sgn(Zt • Xt − θ). For the simplicity of

the notation, we write St =
Pit,∗Q

T
jt,∗

∥Pit,∗∥2∥Qjt,∗∥2
. By the definition of Zt and X̃ the Frobenius product

Zt • X̃− θ = θSt. Let

M− = {t ∈M : ytSt ≤ ρ/θ} and M+ = {t ∈M : ytSt ≥ ρ/θ}

then we have

RegSDP(|M|,K,L, X̃) ≥
∑
t∈M

yt
ρ
(Zt • X̃− θ) =

∑
t∈M−

θ

ρ
ytSt +

∑
t∈M+

θ

ρ
ytSt.

The definition of M+ implies ytStθ/ρ ≥ 1 for all t ∈ M+ and we have
∑

t∈M+
ytStθ/ρ ≥

|M+|. For t ∈M− we have 0 ≤ ytSt ≤ ρ/θ thus

ytSt =
ρ

θ
(1− ϕρ/θ(ytSt))

and

∑
t∈M−

θ

ρ
ytSt = |M−| −

∑
t∈M−

ϕρ/θ(ytSt) = |M−| −
∑
t∈M

ϕρ/θ(ytSt) = |M−| −mloss(S, ρ/θ),

where the second equality we use ϕρ/θ(ytSt) = 0 for t ∈M+.

Combining them, we get a lower bound of RegSDP as

|M| ≤ RegSDP(|M|,K,L, X̃) + mloss(S, ρ/θ).
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By this theorem, we can fix one of θ or ρ at arbitrary value and then ρ/θ = γ be a new

parameter.

4.5 Our algorithm and analysis

In this section, we describe our algorithm and derive its mistake bound. We adopt the FTRL-

based algorithm with the log-determinant regularization R(X) = − ln det(X+ϵE) to this online

SDP problem. Of course Lt = 0 if t /∈ M, hence we can avoid the optimization on the update

rule and employ Xt = Xt+1 in these rounds.

The pseudo code of our algorithm is shown in Algorithm 1.

Algorithm 1 Binary matrix completion by Log-determinant regularization
1: Parameters θ > 0, ρ > 0, ϵ > 0, η > 0
2: Initialize X1 = θE.
3: for t = 1, 2, . . . , T do
4: Receive (it, jt).
5: Let Zt =

1
2
(eit + em+jt)(eit + em+jt)

T.
6: Predict ŷt = sgn(Xt • Zt − θ) and receive yt.
7: if yt(Wt • Xt − θ) ≤ 0 then
8: Let Lt =

−yt
ρ
Zt and

Xt+1 = argmin
X∈K
− ln det(X + ϵE) + η

t∑
s=1

X • Ls.

9: else
10: Let Lt = 0 and Xt+1 = Xt.
11: end if
12: end for

Now we derive the regret bound and the mistake bound. As shown in Theorem11, for any

online SDP task (K,L) and competitor matrix X⋆, the FTRL with the regularizer R(X) =

− ln det(X + ϵE) satisfies

RegSDP(T,K,L,X⋆) ≤ O(g21(β + ϵ)2T )η +
τ

ϵη
, (4.7)

for the decision space K = {X ∈ SN×N
+ : Xi,i ≤ β,Tr(X) ≤ τ} and the loss space L = {L ∈

SN×N : ∥vec(L)∥1 ≤ g1}.
In our situation, parameters are N = m + n, β = θ, τ = Nθ and g1 = 2/ρ. As mentioned
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in previous section, we put ρ/θ = γ as the new parameter. Now we have

RegSDP(T,K,L,X⋆) ≤ O(T/γ2)η + (m+ n)/η, (4.8)

by setting ϵ = θ. Additionally setting η =
√

γ2

NT
leads the following corollary.

Corollary 14. For any X⋆, the FTRL with the regularizer R(X) = − ln det(X + θE) running

with the loss sequence Lt = ∇Xh(yt(X • Zt − θ)) satisfies the following regret bound.

RegSDP(T,K,L,X⋆) = O(
1

γ

√
(m+ n)T ). (4.9)

Applying Theorem 13 to inequality (4.8), we have the mistake bound.

Theorem 15. Assume that cons(S) ̸= ∅ and X⋆ = X̃ be the same as defined in Theorem 13.

Then Algorithm (1) mistakes at most

|M| = O

(
m+ n

γ2

)
+ 2mloss(S, γ). (4.10)

Proof. By applying Theorem 13 to inequality (4.8) and rearranging, we have

(1− η/γ2)O(|M|) ≤ (m+ n)/η +mloss(S, γ).

Setting η = γ2/2 we get the theorem.

Of course, optimizing γ is impossible due to the dependency of S. Fortunately, as shown in

Algorithm 2, we can use the standard “doubling trick” as same as [39] to avoid tuning γ.

Algorithm 2 Binary matrix completion with the doubling trick
1: Set κ =

√
2

2: for t = 1, 2, . . . , do
3: Run Algorithm 1 with parameter γ = 1/κ until it has made ⌈(m+ n)κ2⌉ mistakes.
4: Set κ← κ×

√
2

5: end for

Corollary 16. For any γ⋆ ≥ 0, Algorithm 2 satisfies

|M| = O

(
m+ n

(γ⋆)2

)
+ 2mloss(S, γ⋆). (4.11)
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Proof. By slightly modifying the original proof on [39], replacing the definition of A(γ) and

B(γ) in original proof, we get the proof in our case.

For any γ > 0, we define A(γ) = (m + n)/γ2, B(γ) = 2merr(S, γ) and M(γ) = A(γ) +

B(γ). Since A(·) is continuous, positive, monotonically decreasing and B(·) is monotonically

non-decreasing, we can define η such that for all γ ≤ η we have A(γ) ≥ B(γ) and for all γ ≥ η

we have A(γ) ≤ B(γ).

Let ϵ be such that A(η+ϵ) ≥ A(η)−1/2. For γ ≤ η+ϵ we have M(γ) ≥ A(γ) ≥ A(η+ϵ)

and for γ ≥ η + ϵ we have M(γ) ≥ B(γ) ≥ B(η + ϵ) ≥ A(η + ϵ). Either case we have

M(γ) ≥ A(η + ϵ) ≥ A(η)− 1/2.

Let z be the minimum integer power of
√
2 that is greater than or equal to 1/η. Since

1/z ≤ η we have B(1/z) ≤ B(η) ≤ A(η) ≤ A(1/z) so M(1/z) = A(1/z) + B(1/z) ≤
2A(1/z) = 2(m+n)z2 and hence the doubling algorithm above terminates at some κ ≤ z. The

total number of mistakes M made by Algorithm 2 is bounded by

(2A(2−1/2) + 1) + (2A(2−2/2) + 1) + (2A(2−3/2) + 1) + . . .+ (2A(1/z) + 1)

≥ 3A(2−1/2) + 3A(2−2/2) + 3A(2−3/2) + . . .+ 3A(1/z)

≥ 3(m+ n)(2 + 22 + . . .+ z2)

= 6(m+ n)z2 − 6 = 6A(1/z)− 6.

We also have z ≤
√
2/η so A(1/z) ≤ 2A(η) and putting together we get M ≤ 12A(η) −

6.

Now we consider the lower bound. We can say that the upper bound of the mistake of our

algorithm matches the lower bound shown in [39].

Definition 7 ([39]). The class of (k, l)-biclusterd matrices is defined as

Bm×n
k,l = {U ∈ {−1, 1}m×n : r ∈ [k]m, c ∈ [l]n,V ∈ {−1, 1}k×l, Ui,j = Vri,cj , i ∈ [m], j ∈ [n]}

Theorem 17 ([39]). Given l ∈ [n] and an online algorithmA that predicts entries of U ∈ Bm×n
m,l ,

an adversary can construct a sequence S such that m(S) ≥ 1/
√
l and on this sequence A will

make at least l ×m mistake.

We need the following lemma.

Lemma 13 ([39]). If U ∈ Bm×n
k,l then m(U)2 ≥ 1/min(k, l).
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One can take the “transpose” of the Theorem 17 i.e. an adversary also can construct a S̃ s.t.

m(S̃) ≥ 1/
√
k andA will make at least k×n mistake for any k ∈ [m]. Henceforth, we assume

m ≥ n and l ≤ k without loss of generality.

Now we compare our result and Theorem 17.

Theorem 18. For any U ∈ Bm×n
m,l and S consistent with U, Algorithm 1 with γ = 1/

√
l makes

mistake at most O(l ×m) on the sequence S.

Proof. By the same argument on Section 4.4.1, for any U ∈ Bm×n
m,l , we can embed U in X⋆ ∈

K = {X ∈ SN×N
+ : Xi,i ≤ 1} (w.l.o.g we set θ = 1 and γ = ρ) and Algorithm 1 runs over this

decision set.

By Lemma 13, the margin of the sequence S is m(S) ≥ 1/
√
l. So setting γ = 1/

√
l leads

mloss(S, γ) = 0. Combining Theorem 15, we have the mistake bound of |M| ≤ O((m+n)l) =

O(ml).

Thus, our algorithm has optimal mistake bound up to a constant factor.

4.6 Connection to the batch setting

In this section, we derive a generalization error bound of our algorithm based on its mistake

bound. In the batch learning, the algorithm is given a sample S all at once, and learns a matrix

X ∈ W from S . Finally, algorithm predicts ŷ ∈ {−1, 1} using the learned hypothesis X.

First, we describe our batch setting precisely. We fix a true matrix U ∈ {−1, 1}m×n to be

learned and a probability distribution D over [m] × [n], which is unknown to the learner. We

consider the problem under the standard PAC learning framework. Let F be a set of functions

[m] × [n] maps to {−1, 1}, which is called the hypothesis class. The input to the learner is a

sequence of triples

S = ((i1, j1, Ui1,j1), (i2, j2, Ui2,j2), . . . , (iT , jT , UiT ,jT )) ,

where each (it, jt) ∈ [m]× [n] is independently chosen according to the distribution D. When

given the sample S, the learner produce a hypothesis f ∈ F , so that its generalization error is

as small as possible (with high probability over the random choice of S). The generalization

error of f is defined as

L(f) = E(i,j)∼D[ℓ(f(i, j);Ui,j)] (4.12)
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for a fixed loss function ℓ : R × R → R. If the loss function ℓ is 0-1 loss ℓ(x, y) = 1[x ̸= y],

the generalization error is equivalent to the probability of the algorithm makes mistake L(f) =

Pr(i,j)∼D[f(i, j) ̸= Ui,j].

In our situation, we restrict our hypothesis as f(i, j) = sgn(X • Z − θ) where Z = 1
2
(ei +

em+j)(ei + em+j)
T and X ∈ K = {X ∈ SN×N

+ : Xi,i ≤ θ}. Thus, the hypothesis can be

represented by a symmetric positive semi-definite matrix X. The loss function is the 0-1 loss

ℓ(f(i, j); y) = 1[f(i,j)̸=y] or the hinge loss ℓ(f(i, j); Ui,j) = h(y(X • Z− θ)).

Now we describe how to use Algorithm 1 in the batch setting and show its generalization

error bound. Our application of Algorithm 1 in the batch setting is shown in Algorithm 3;

Algorithm 3 Binary matrix completion by Log-determinant regularization in the batch setting
1: Parameters θ > 0, ρ > 0, ϵ > 0, η > 0
2: Receive the sample set S of size T and sort S randomly.
3: Initialize X1 = θE.
4: for t = 1, 2, . . . , T do
5: Run Algorithm 1 with input (it, jt, yt) as the t-th member of S, and store Xt.
6: end for
7: Choose X ∈ {X1,X2, . . . ,XT} uniformly random.
8: Predict f(i, j) = sgn(X • Z− θ) where Z = 1

2
(ei + em+j)(ei + em+j)

T.

To bound the generalization error, we use the following lemma.

Lemma 14 (Lemma 7.1 of [57]). Let S be a sample drawn i.i.d. according to D. ℓ is bounded

by B. ft be the hypothesis generated by an online algorithm by sequentially processing S. Then

for any δ > 0, with probability at least 1− δ, the following inequality holds;

1

T

T∑
t=1

L(ft) ≤
1

T

T∑
t=1

ℓ(ft(it, jt); yt) +B

√
2 log 1/δ

T
(4.13)

Proof. For any t ∈ [T ], let Vt be a random variable Vt = L(ft) − ℓ(ft(it, jt); yt) ∈ [−B,B].

Then for any t, we have

E[Vt|(it, jt)t−1
t=1] = L(ft)− E[ℓ(ft(it, jt); yt)|ft] = L(ft)− L(ft) = 0.

Using Azuma’s inequality, Pr[
∑T

t=1 Vt/T ≥ ϵ] ≤ e−2Tϵ2/(2B)2 . Let δ = e−2Tϵ2/(2B)2 then we

get the lemma.

Applying this lemma to Algorithm 3 with the fact that
∑T

t=1 L(ft)/T = E[L(f)] by choos-

ing Xt uniformly randomly, we have the following bound.
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Theorem 19. For any δ > 0, with probability at least 1− δ, Algorithm 3 satisfies the following

two inequalities. If ℓ(f(i, j);Ui,j) = h(y(X • Z− θ)) then for any X⋆ ∈ K,

E[L(f)] ≤ O

(√
m+ n

γ2T

)
+

1

T

T∑
t=1

h(yt(X
⋆ • Zt − θ))) + (1 +

θ

ρ
)

√
2 log 1/δ

T
. (4.14)

If ℓ(f(i, j);Ui,j) = 1[f(i, j) ̸= y] and cons(S) ̸= ∅ then for X⋆ defined in Theorem 13,

E[L(f)] ≤ 1

T
×O

(
m+ n

γ2
+mloss(S, γ)

)
+

√
2 log 1/δ

T
. (4.15)

In both cases, the expectation is by the randomness of choosing Xt of the algorithm.

Now we compare our generalization bound with the following known bound based on kernel

method.

Theorem 20 (Corollary 5.1 of [57]). Consider a classification task with given a sample S =

((x1, y1), . . . , (xT , yT )) ∈ (X × {−1, 1})T . Let K : X × X → R be a positive definite

symmetric kernel with r = supx∈X K(x, x). Let H be a Hilbert space and Φ : X → H be the

feature mapping associated with K. Let F = {x 7→ wTΦ(·) : ∥w∥H ≤ Λ} for some Λ ≥ 0.

Fix γ > 0 then for any δ > 0, the following inequality holds with probability at least 1− δ for

any f ∈ F :

L(f) ≤ 1

T

T∑
t=1

ϕγ(ytf(xt)) + 2

√
r2Λ2

γ2T
+

√
log 1/δ

2T
(4.16)

In our case, the norm of the instance (i.e. Q̄j,∗) and the norm of the hyperplane (i.e. P̄i,∗) are

equal to 1 due to the normalization. The corollary shows that excess risk term of a hyperplane

with some kernel is bounded by O(
√

1
γ2T

) in this case. Thus if we use such a kernel based

methods in our situation, there are m individual learners to learn each classification tasks and

this term grows O(m) times in the whole execution of the algorithm.

On the other hand, in our bound, we obtain a similar sample complexity with the one ob-

tained by minimizing the right hand of side of (4.16) over any possible feature mapping and

linear hypotheses in the feature space. Of course, we have to learn m hyperplanes simultane-

ously, so our bound has O(m) factor (w.l.o.g., we assume m ≥ n). On the other hand, we can

remove the square root by the separability assumption cons(S) ̸= ∅.
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4.7 Implementation details

Herbster et al. [39] uses R(X) = Tr(X lnX − X) as the regularizer. One of the advantage of

this reguarizer function is, one can solve the FTRL update rule analytically.

On the other hand, our FTRL update rule

argmin
X
− ln det(X + ϵE) + L • X s.t. ∀i ∈ [N ], Xi,i ≤ β,X ∈ SN×N

+ (4.17)

do not admit any analytical solution due to − ln det(X + ϵE) cannot force X be positive semi-

definite. This is one of shortcomings of our algorithm.

Of course, this optimization problem is an convex optimization so one can solve this in

polynomial time by optimizing O(N2) variables but this is too slow for large N . In this ap-

pendix, we describe the implementation techniques with some relaxation to avoid time con-

suming projections onto SN×N
+ . For the sake of simplicity of the notation, we write f(X) =

− ln det(X + ϵE) + L • X.

We use the proximal gradient descent algorithm (see, e.g., [63]) to solve (4.17) shown in the

following pseudo code in Algorithm 4.

Algorithm 4 FTRL update with the log-determinant regularization
1: Parameters β > 0,L ∈ SN×N , step size νt
2: Initialize X1 = βE.
3: while until converge do
4: Vt+1 = Xt−1 − νt∇Xf(Xt−1).
5: Xt+1 = argminX

1
2
∥X− Vt+1∥2Fr s.t. X ∈ K.

6: end while

Note that ∇Xf(X) = −(X + ϵE)−1 + L. Unfortunately, still we cannot analytically solve

the optimization problem

argmin
X

1

2
∥X− V∥2Fr s.t. X ∈ SN×N

+ , Xi,i ≤ β. (4.18)

Now we relax the semi-definite constraint X ∈ SN×N
+ on this problem by using a log-barrier

function. The relaxed problem is,

argmin
X

1

2
∥X− V∥2Fr − µ ln detX s.t. XT = X, Xi,i ≤ β. (4.19)

Thanks to this barrier function, we can reduce the number of variables O(N2) to O(N). Note
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that by the update rule on the proximal gradient descent, V is symmetric.

We introduce Lagrange multiplier α ∈ RN
+ and Γ ∈ RN×N then the Lagrangean function of

Problem (4.19) is

Lag(Xα,Γ) =
1

2
∥X− V∥2Fr − µ ln detX +

N∑
i=1

αi(Xi,i − β) + X • (Γ− ΓT). (4.20)

Let a N ×N diagonal matrix which has αi as the (i, i)-th element by diag(α) = A. Setting

∇WLag = 0, we have

∇XLag(X,α,Γ) = X− V − µX−1 +A+ ΓT − Γ = 0. (4.21)

The symmetricity constraint forces

0 = X− V − µX−1 +A+ ΓT − Γ = X− V − µX−1 +A+ Γ− ΓT.

This leads ΓT − Γ = 0. We have a matrix quadratic equation 0 = X2 + (A − V)X − µE

and its solution is X(α) = 1
2
(
√

(A− V)2 + 4µE − (A − V)2). Thus we can get a solution of

Problem (4.19) by maximizing Lag(X(α),α) (for short, we write this as Lag(α)). Substitute

X(α) and rearranging we get

Lag(α) =
1

4
Tr(QD)− 1

4
Tr(D2) + µ ln det(Q + D)−αTβ + Const.

where D = A − V,Q =
√
D2 + 4µE. Note that in this case D and Q are commute. Now the

variable is only α.

To solve this maximization more easily, we derive the derivative of Lag(α). Let Ii be the

N ×N matrix with only (i, i)-th element is 1 and others are 0. Using the chain rules and

derivative of matrix functions (see, e.g., [64, 55]), we get

∂

∂αi

Tr(QD) = Tr

(
∂Q

∂αi

D+QIi

)
,

∂

∂αi

Tr(D2) = 2Tr(IiD),

∂

∂αi

ln det(Q + D) = Tr

(
(Q + D)−1(

∂Q

∂αi

+ Ii)

)
.
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The derivative ∂Q
∂αi

can be calculated as,

∂

∂αi

QQ =
∂

∂αi

(D2 + 4µE) = IiD+DIi = Q
∂Q

∂αi

+
∂Q

∂αi

Q

where the last equality we use the product rule. This type of matrix equation is known as a

Lyapunov equation. Now −Q is negative definite and the solution of the equation was given as
∂Q
∂αi

=
∫∞
0

e−QxSie
−Qxdx where Si = IiD + DIi (see Corollary 11.9.4 on [10]). Thus if matrix

M commutes with Q, we have

Tr(M
∂Q

∂αi

) =

∫ ∞

0

Tr(Me−QxSie
−Qx)dx = Tr(MSi

∫ ∞

0

e−2Qxdx) =
1

2
Tr(MSiQ

−1)

where the last equality we use
∫∞
0

e−2λxdx = 1
2λ

and the property of matrix exponential with

eigenvalue decomposition. Using this derivative with the fact that D and (Q + D)−1 are com-

mutable with Q, we get the derivative of the Lagrangean;

∂

∂αi

Lag(α) =
1

8
Tr(DSiQ

−1)+
1

4
Tr(QIi)−

1

2
Tr(IiD)+µTr

(
(Q + D)−1

(
SiQ

−1

2
+ Ii

))
−β.

4.8 Conclusion

In this chapter, we consider the binary matrix completion problem and derive the optimal mis-

take bounds under a mild realizability assumption. We also apply our online algorithm in the

batch setting by applying a standard online-to-batch conversion technique, and derive a gener-

alization error bound which is compatible with the best kernel in hindsight without explicitly

knowledge what the best kernel is.

One of our future work is experimental evaluation of our algorithm over real data. In Sec-

tion 4.7, we provide some implementation techniques of our algorithm, making an update un-

der the FTRL faster by avoiding the projection onto SN×N
+ . But an implementation of the

log-determinant regularization is still harder than existing methods using the negative entropy.

Reducing a constant factor is also our task. As mentioned in Chapter 3, the constant factor on

the regret bound of log-determinant regularization is very large.
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Chapter 5

Tighter generalization error bounds for
matrix completion

5.1 Introduction

Learning preferences of users over a set of items is an important task in recommendation sys-

tems. In particular, the collaborative filtering approach is known to be quite effective and pop-

ular [66, 52, 80]. Simply put, the collaborative filtering is an approach of inferring user’s rating

for an item, which the user has not rated yet, from the existing ratings of other users. The

approach is formulated as the matrix completion problem, that is, learning a user-item rating

matrix from given partial entries of the matrix. More formally, we consider a (true) rating ma-

trix X ∈ Rm×n to be learned, where m and n are the numbers of users and items, respectively,

and each component Xi,j corresponds to user i’s rating for item j. The task is to find a hypoth-

esis matrix X̂ ∈ Rm×n that approximates the true matrix X when only some of components of

X are given as a sample.

A common assumption in the previous work is that the true matrix X ∈ Rm×n can be

well approximated by a matrix of low rank (or low trace norm, as a convex relaxation of the

rank constraint). In other words, we assume that our hypothesis matrix X̂ ∈ Rm×n can be

decomposed as X̂ = UVT for some U ∈ Rm×K and V ∈ Rn×K with a small number K, where

K gives an upper bound of the rank of X̂. Generalization ability of algorithms (such as the

empirical risk minimization) using low rank or low trace norm matrices is intensively studied

in the literature (see, e.g., [70, 71, 72, 31]).

Recently, further additional constraints on the class of hypothesis matrices turns out to be

effective in practice. One of the major approach is the regularization by bounding some norm
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of U and V [51]. Another important approach is to impose the constraints that U and V are

non-negative [48, 33, 79, 54, 28]. Such a decomposition is called the non-negative matrix

factorization (NMF, for short). More precisely, a typical scheme of the NMF approach on col-

laborative filtering is the empirical risk minimization with the norm regularization, formulated

as the following optimization problem: Find non-negative matrices U ∈ Rm×K
+ and V ∈ Rn×K

+

that minimizes ∑
(i,j)

ℓ((UVT)i,j, Xi,j) + α∥U∥2 + β∥V∥2,

where the sum is over all components (i, j) in the sample that the learner observes, ℓ is a fixed

loss function, α, β are regularization parameters, and ∥Ui,∗∥ and ∥Vj,∗∥ are some norm. The

L2-norm regularization is widely adopted [48, 54]. The Mahalanobis norm defined via graph

which models the relation between users and items are also used for regularization [33]. Note

that this formulation is essentially equivalent to the empirical risk minimization:

min
U∈Rm×K

+ ,V∈Rn×K
+

∑
(i,j)

ℓ((UVT)i,j,Xi,j) sub.to ∥U∥ ≤ a, ∥V∥ ≤ b

for appropriate choices of a and b. Despite the empirical success of the NMF approach, no

theoretical justification has been given.

In this chapter, we consider different but closely related classes of hypothesis matrices and

give generalization bounds of these classes. Our bounds are of O(
√

(nK +m logK)/T ),

where T is the sample size. These bounds improve the previously known Õ(
√
(nK +mK)/T )

bound that is derived for the class where only the rank K constraint is imposed [70]. Therefore,

our results would give theoretical evidence for the empirical success of the NMF. However, our

new bounds hold even when U and V have negative values in some components. This result

suggests that our analysis may not yet fully capture the property of the non-negativity constraint,

or the empirical success of the NMF may not rely on the non-negativity very much but mostly

on the regularization. Now we give our hypothesis classes.

Convex combination constraints: The first one is the class of all matrices X̂ = UVT ∈
Rm×n with U ∈ Rm×K

+ and V ∈ Rn×K such that for every i ∈ [m] and j ∈ [n],

∥Ui,∗∥1 = 1, ∥Vj,∗∥∞ ≤ B.

That is, each row X̂i,∗ is a convex combination of the vectors VT
k,∗ with weights Ui,k. This class
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has a natural interpretation, just as the topic model for document classification [12, 13, 4], that

the rating of each user i (row of X̂) is a convex combination of the ratings of K latent “model”

users (rows of VT), where the model users are allowed to assign ratings in [−B,B]. There are

some studies on the topic model like approach for recommendation tasks[76, 7] and showing

some experimental results.

L1 and L∞ norm constraints: The second one is the class of all matrices X̂ = UVT ∈ Rm×n

with U ∈ Rm×K and V ∈ Rn×K such that for every i ∈ [m] and j ∈ [n],

∥Ui,∗∥1 ≤ 1, ∥Vj,∗∥∞ ≤ B.

Note that any matrix X̂ of rank K has a factorization X̂ = UVT with ∥Ui,∗∥1 ≤ 1, because

otherwise we can replace U by cU and V by V/c for a sufficiently small constant c. In other

words, any matrix X̂ of rank K is in the second class for some parameter B.

Our technical contributions are twofold. The first one is that we develop a new technique

for bounding the Rademacher complexity to derive generalization bounds. The second one is

that we prove a matching lower bound of the Rademacher complexity of the first hypothesis

class. This means that our generalization bounds are tightest among those derived from the

Rademacher complexity argument. There are few results in the literature on deriving lower

bounds of the Rademacher complexity.

Our generalization bounds suggest to use the structural risk minimization scheme, where the

rank K and the bound B of L∞ constraints on V are parameters to tune. Note that, by setting

B =∞, the scheme is reduced to the standard scheme with the low-rank constraint only. In our

experiments on real data sets, our scheme with appropriate choices of B performs better than

other schema with only the rank constraint (i.e., the case B =∞) or the trace norm constraint.

5.2 Related work

Before describing our results, we briefly review some related results on the collaborative fil-

tering problem. As mentioned in the previous section, Srebro et al. [70] give a generalization

bound Õ(
√
K(m+ n)/T ) for the class of rank K matrices. There are many results for the class

of matrices with the trace norm constraint, which is a convex relaxation of the rank constraint.

Srebro, Shraibman and Foygel [71, 31] estimate the expected Rademacher complexity of the

class of low trace norm matrices and their generalization bound is O(τ
√

(n+m)/(Tmn))
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where τ is the bound of the trace-norm. Shamir and Shalev-Shwartz [69] also give a generaliza-

tion bound O(
√
τ(
√
m+

√
n)/T ). The parameter τ is usually scaled as τ = O(

√
nmK) [69],

and in this setting the both bounds are not less than Õ(
√
K(m+ n)/T ).

There are some results which exploit prior knowledge of the distribution D that gener-

ates the sample [47, 46], while in our setting we only consider the worst case generaliza-

tion ability. [3] derives a generalization bound under Bernstein condition, which is between√
(m+ n)K log(m+ n)/T and (m+n)K log(m+n)/T . Natarajan and Jain [61] handle non-

decomposable loss function, which cannot be written as a sum of element wise loss functions.

We emphasize that all of these result have (n+m)K or (n+m)A factors in the generalization

bound, where A is an upper bound of the trace norm scaled to be compatible to the rank. We

conjecture that if we use our hypothesis classes in the distribution-dependent settings above, we

would improve the factors in the generalization bounds to nK +m logK.

5.3 Problem setting

In this section, we describe the problem setting. Then we briefly review a standard method of

deriving generalization bounds via the Rademacher complexity arguments.

Now we fix a true rating matrix X ∈ Rm×n to be learned and a probability distribution D
over [m] × [n], which is unknown to the learner. Note that the matrix X can be regarded as a

function (i, j) 7→ Xi,j . So we consider the problem under the standard PAC learning framework.

Let X ⊆ Rm×n be a set of matrices called the hypothesis class. The input to the learner is a

sample of X, i.e., a sequence of triples

S = ((i1, j1, Xi1,j1), (i2, j2, Xi2,j2), . . . , (iT , jT , XiT ,jT )) ,

where each (it, jt) ∈ [m]× [n] is independently chosen according to the distribution D. When

given the sample S, the learner is required to produce a hypothesis matrix X̂ chosen from X ,

so that its generalization error is as small as possible (with high probability over the random

choice of S), where the generalization error of X̂ is defined as

L(X̂; X) = E(i,j)∼D[ℓ(X̂i,j;Xi,j)]

for a fixed loss function ℓ : R× R→ R. Throughout this chapter, we assume that the function

ℓ is CL-Lipschitz with respect to the first argument and |ℓ| is bounded by a constant.
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A typical strategy for achieving the goal is the empirical risk minimization, i.e., to output a

matrix X̂ in X that minimizes the empirical error, defined as

L̂S(X̂; X) =
1

T

T∑
t=1

ℓ(X̂it,jt , Xit,jt).

A generalization bound of the hypothesis class X with respect to a sample size T and a confi-

dence parameter δ is a real number ξ such that for any distribution D, it holds that

Pr
S∼DT

(
∀X̂ ∈ X , L(X̂; X) ≤ L̂S(X̂; X) + ξ

)
≥ 1− δ.

So, if we have a generalization bound ξ that converges 0 as T goes to infinity, then the inequality

above justifies to use the empirical risk minimization.

Now we show a general theorem that gives a generalization bound of X in terms of the

Rademacher complexity. The (empirical) Rademacher complexity of X with respect to the

sample S is defined as

R̂S(X ) =
1

T
Eσ

[
sup
X̂∈X

T∑
t=1

σtX̂it,jt

]
,

where σt’s are independent random variables taking value 1 or −1 with probability 1/2.

Using the Rademacher complexity, we can bound the generalization error. To show this fact,

we need the following theorem and lemma.

Theorem 21 (Theorem 3.1 of [57]). Let G = {g : Z → [−B,B]} for some space Z . Let

S ∈ ZT is drawn independently according to unknown distributionD. With probability at least

1− δ over the random choice of S, it holds that for any g ∈ G,

Ez∼D[g(z)] ≤
1

T

T∑
t=1

g(zt) + 2R̂S(G) + 3

√
ln(2/δ)

2T
.

Proof. For any sample S = (z1, z2, . . . , zT ), we define function Φ as

Φ(S) = sup
g∈G

(
Ez∼D[g]−

1

T

T∑
t=1

g[zt]

)
.

Let S = (z1, z2, . . . , zT ) and S ′ = (z1, z2, . . . , z
′
T ) be two samples differs only one instance
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zT ̸= z′T . Then we have

Φ(S)− Φ(S ′) ≤ sup
g∈G

1

T

(∑
zt∈S

g(zt)−
∑
zt∈S′

g(zt)

)
= sup

g∈G

g(zT )− g(z′T )

T
≤ 2B

T

As same argument, we have Φ(S ′)− Φ(S) ≤ 2B/T and thus |Φ(S)− Φ(S ′)| ≤ 2B/T Using

McDirmid’s inequality, for any δ > 0,

Φ(S) ≤ ES [Φ(S)] +B

√
log 2/δ

2T

holds with probability at least 1− δ/2.

Next we bound ES [Φ(S)] as

ES [Φ(S)] = ES [sup
g∈G

(Ez∼D[g]−
1

T

∑
zt∈S

g(zt))]

= ES [sup
g∈G

(ES′ [
1

T

∑
zt∈S′

g(zt)]−
1

T

∑
zt∈S

g(zt))]

≤ ES,S′ [sup
g∈G

1

T
(
∑
z′t∈S′

g(z′t)−
∑
zt∈S

g(zt))]

= ES,S′ [sup
g∈G

1

T

T∑
t=1

(g(z′t)− g(zt))]

= Eσ,S,S′ [sup
g∈G

1

T

T∑
t=1

σt(g(z
′
t)− g(zt))]

≤ Eσ,S′ [sup
g∈G

1

T

T∑
t=1

σtg(z
′
t)] + Eσ,S [sup

g∈G

1

T

T∑
t=1

σtg(zt)]

= 2Eσ,S [sup
g∈G

1

T

T∑
t=1

σtg(zt)] = 2E[R̂S(G)]

Finally we reduce the bound by E[R̂S(G)] to R̂S(G). By the definition of the Rademacher

complexity, changing one instance zt ∈ S to z′t changes R̂S(G) by at most B/T . Using

McDirmid’s inequality again, we have

E[R̂S(G)] ≤ R̂S(G) +B

√
log 2/δ

2T

with probability 1 − δ/2. Combining this inequality and Φ(S) ≤ 2E[R̂S(G)] + B
√

log 2/δ
2T

by
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using the the union bound, we get the theorem.

Theorem 22 (Lemma 4.2 of [57]). Let Φ : R→ R be CL-Lipschitz function. Then for any class

G : Z → R, the following holds;

R̂S(Φ ◦ G) ≤ CLR̂S(G).

Proof. Let S = (z1, . . . , zT ) ∈ ZT be a fixed sample. By the definition of R̂S(Φ ◦ G),

R̂S(Φ ◦ G) =
1

T
Eσ[sup

g∈G

T∑
t=1

σt(Φ ◦ g)(zt)]

=
1

T
Eσ1,σ2,...,σT−1

[EσT
[sup
g∈G

uT−1(g) + σT (Φ ◦ g)(zT )]],

where uT−1(g) =
∑T−1

t=1 σt(Φ ◦ g)(zt). By the definition of the supremum, for any ϵ > 0, there

exists g1, g2 ∈ G such that

uT−1(g1) + (Φ ◦ g1)(zT ) ≥ (1− ϵ)[sup
g∈G

uT−1(g) + (Φ ◦ g)(zT )]

uT−1(g2)− (Φ ◦ g1)(zT ) ≥ (1− ϵ)[sup
g∈G

uT−1(g)− (Φ ◦ g)(zT )]

Thus for any ϵ > 0, we have

(1− ϵ)EσT
[sup
g∈G

uT−1(g) + σT (Φ ◦ g)(zT )]

= (1− ϵ)
1

2
(sup
g∈G

uT−1(g) + (Φ ◦ g)(zT ) + sup
g∈G

uT−1(g)− (Φ ◦ g)(zT ))

≤ 1

2
(uT−1(g1) + (Φ ◦ g1)(zT ) + uT−1(g2)− (Φ ◦ g2)(zT )).

Let s = sgn(g1(zT )− g2(zT )) then this inequality implies

(1− ϵ)EσT
[sup
g∈G

uT−1(g) + σT (Φ ◦ g)(zT )]

≤ 1

2
(uT−1(g1) + uT−1(g2)− sCL(g1(zT )− g2(zT )))

=
1

2
(uT−1(g1) + sCLg1(zT )) +

1

2
(uT−1(g2)− sCLg2(zT ))

≤ 1

2
sup
g∈G

(uT−1(g) + sCLg(zT )) +
1

2
sup
g∈G

(uT−1(g)− sCLg(zT ))

= EσT
[sup
g∈G

(uT−1(g)− σCLg(zT ))]
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This inequality holds for any ϵ > 0 thus we have

EσT
[sup
g∈G

uT−1(g) + σT (Φ ◦ g)(zT )] ≤ EσT
[sup
g∈G

uT−1(g) + σTCLg(zT )].

Using same argument for other σt for t ∈ [T − 1], we get the lemma.

The following theorem is a combination of Theorem 3.1 of [57] and Lemma 4.2 of [57].

Theorem 23 (Generalization bounds [57]). With probability at least 1 − δ over the random

choice of S ∈ ([m]× [n]× R)T , it holds that for any X̂ ∈ X ,

L(X̂; X) ≤ L̂S(X̂; X) + 2CLR̂S(X ) +O

(√
ln(1/δ)

T

)
.

Thus, to derive a generalization bound from this theorem, we need to estimate the Rademacher

complexity R̂S(X ).

5.4 Generalization bounds for our hypothesis classes

In this section, we give upper bounds of the Rademacher complexity of our hypothesis classes,

whereby we give generalization bounds of these classes.

5.4.1 Matrix factorization with convex combination constraints

Here we assume that the preferences of each user can be expressed as the convex combination

of a small number K of model users’ preferences. Let P ⊆ Rn be a finite set of vectors,

so that its convex hull conv(P) defines the class of model user’s preferences. In particular,

if P = {−B,B}n, then conv(P) = [−B,B]n. For a set of vectors Y ⊆ Rn, we define

YK as the set of all matrices in Rn×K whose columns are chosen from Y . That is, YK =

{(y1,y2, . . . ,yK) : ∀k ∈ [K],yk ∈ Y}. Let U and V be the sets of matrices defined as

U =
{
U ∈ [0, 1]m×K : ∀i ∈ [m], ∥Ui,∗∥1 = 1

}
, (5.1)

V = (conv(P))K . (5.2)

Then, first we examine the following hypothesis class:

X =
{
X̂ = UVT ∈ Rm×n : U ∈ U , V ∈ V

}
. (5.3)
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In order to derive an upper bound of the Rademacher complexity of X , we need some

technical lemmas.

Lemma 15. Let F ⊆ {f : Y → Z} and G ⊆ {g : W → Y} be finite sets of functions. Then

conv(F) ◦ G ⊆ conv(F ◦ G).

Proof. By the definition of the convex hull, we can write

conv(F) =

{∑
f∈F

aff(·) : a ∈ ∆F

}
,

where ∆F denotes the probability simplex over F . Therefore, for any h ∈ conv(F) ◦ G, there

exist some a ∈ ∆F and g ∈ G such that h = (
∑

f∈F aff) ◦ g. Then, for any w ∈ W ,

h(w) =
∑

f∈F aff(g(w)) =
∑

f∈F af (f ◦ g)(w). This implies that h ∈ conv(F ◦ G).

The following lemma is crucial in our analysis.

Lemma 16. Let P be a finite set of vectors. Then (conv(P))K ⊆ conv(PK).

Proof. Let V = (v1, . . . ,vK) ∈ (conv(P))K . Then we can write vi =
∑

p∈P ai,pp for some

ai ∈ ∆P . Let bp1,...,pK
=
∏K

i=1 ai,pi
. Then observe that

∑
(p1,...,pK)∈PK

bp1,...,pK
=

∑
(p1,...,pK)∈PK

K∏
i=1

ai,pi
=
∑
p1∈P

∑
p2∈P

· · ·
∑
pK∈P

K∏
i=1

ai,pi

=
(∑
p1∈P

a1,p1

)
. . .
(∑
pK∈P

aK,pK

)
= 1.

Thus {bp1,...,pK
: (p1, . . . ,pK) ∈ PK} defines a probability distribution over PK .

The K-th column vK can be represented as follows:

vK =
∑
p∈P

aK,pp

=
(∑
p1∈P

a1,p1

)
×
(∑
p2∈P

a2,p2

)
× · · · ×

( ∑
pK−1∈P

aK−1,pK−1

) ∑
pK∈P

aK,pK
pK

=

 ∑
(p1,...,pK−1)∈PK−1

K−1∏
i=1

ai,pi

 ∑
pK∈P

aK,pK
pK

=
∑
pK∈P

∑
(p1,...,pK−1)∈PK−1

K∏
i=1

ai,pi
pK =

∑
(p1,...,pK)∈PK

bp1,...,pK
pK .
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One can easily get the same results for other columns vj s.t. j ∈ [K − 1]. Note that bp1,...,pK

depends only on p1, . . . ,pK and not on j. This implies for any V ∈ (conv(P ))K ,

V =
∑

(p1,...,pK)∈PK

bp1,...,pK
(p1, . . . ,pK) ∈ conv(PK).

In 5.9, we show an alternative “algorithmic” proof for Lemma 16. Now we are ready to

prove one of our main results.

Theorem 24 (Main theorem of Chapter 5). Let P ⊆ [−B,B]n be a finite set of vectors and X
be the hypothesis class defined as in (5.1), (5.2) and (5.3). Then,

R̂S(X ) ≤ B

√
8
K ln |P|+m lnK

T
.

Proof. Any X̂ ∈ X can be decomposed as X̂ = UVT and hence X̂it,jt = Uit,∗ · Vjt,∗. So,

T R̂S(X ) = Eσ

[
sup

U∈U ,V∈V

T∑
t=1

σtUit,∗ · Vjt,∗

]

= Eσ

[
sup

U∈U ,V∈V

N∑
i=1

Ui,∗ ·

(∑
t:it=i

σtVjt,∗

)]

= Eσ

[
sup
V∈V

m∑
i=1

max
k∈[K]

(∑
t:it=i

σtVjt,k

)]
.

The last equation is from the fact that Ui,∗ is a probability distribution. One can regard the

operator maxk∈[K] inside the sum over all i as a mapping from i ∈ [m] to k ∈ [K]. Let

K = {κ : [m]→ [K]} be the set of all mappings from [m] to [K]. So, the formula above can be

rewritten as

Eσ

[
sup
V∈V

max
κ∈K

m∑
i=1

∑
t:it=i

σtVjt,κ(i)

]
= Eσ

[
sup
V∈V

max
κ∈K

T∑
t=1

σtVjt,κ(it)

]

= Eσ

[
sup

V◦κ∈V◦K

T∑
t=1

σtVjt,κ(it)

]
= T R̂S(V ◦ K).

Thus, we have R̂S(X ) ≤ R̂S(V ◦ K). Since V = (conv(P))K , Lemmas 15 and 16 imply that

R̂S(V ◦K) ≤ R̂S(conv(PK ◦K)), where PK ◦K is a finite set. Using the well known property
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of the Rademacher complexity of the convex hull of a finite set (See, e.g., Theorem 3.3 of [57]),

we get

R̂S(conv(PK ◦ K)) ≤ B

√
8 ln |PK ◦ K|

T

= B

√
8(K ln |P|+ ln |K|)

T
. (5.4)

Using the fact |K| = Km, we obtain the theorem.

Now we choose P = {−B,B}n so that conv(P) = [−B,B]n, i.e., the n-dimensional L∞-

norm ball. Clearly, |P| = 2n. Combining Theorem 23 and Theorem 24, we get the following

generalization bound for the class X induced by P .

Corollary 25. Let P = {−B,B}n and X be defined as in (5.1), (5.2) and (5.3). Note here that

V = [−B,B]n×K . Then

R̂S(X ) ≤ B

√
8
nK ln 2 +m lnK

T
,

and an generalization bound of X is

O

(
CLB

√
nK +m lnK

T
+

√
ln(1/δ)

T

)
.

Another choice of P may be useful in some applications and lead an even smaller gener-

alization bound. For example, if we take P = {−e1, e1,−e2, e2, . . . ,−en, en} where each

ei ∈ {0, 1}n is the unit vector whose i-th element is 1, then we have conv(P) = {v ∈ Rn :

∥v∥1 ≤ 1}, which is the n-dimensional L1-norm ball. In this case |P| = 2n. Therefore, we

have the following corollary.

Corollary 26. Let P = {−e1, e1,−e2, e2, . . . ,−en, en} and X be defined as in (5.1), (5.2)

and (5.3). Then, a generalization bound of X is

O

(
CLB

√
K lnn+m lnK

T
+

√
ln(1/δ)

T

)
.
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5.4.2 Matrix factorization with L1 and L∞ norm constraints

Now we consider a slightly generalized hypothesis class. For a finite set P̃ ∈ Rn, let

U =
{
U ∈ Rm×K̃ : ∀i ∈ [m], ∥Ui,∗∥1 ≤ 1

}
, (5.5)

Ṽ =
(
conv(P̃)

)K̃
, (5.6)

and

X̃ =
{
X̂ = UVT ∈ Rm×n : U ∈ Ũ , V ∈ Ṽ

}
. (5.7)

Only the difference from the class X discussed in the previous subsection is that U in Ũ can

contain negative components and the L1-norm of each row Ui,∗ is not necessarily 1.

The next theorem says that the problem of learning with the hypothesis class X̃ can be

reduced to that with the hypothesis class X .

Theorem 27. X̃ ⊆ X , where X is defined as in (5.1), (5.2) and (5.3) with K = 2K̃ + 1 and

P = P̃ ∪ {−a : a ∈ P̃}.

Proof. It suffices to show that any X̃ = ŨṼT ∈ X̃ can be represented as UVT for some U ∈ U
and V ∈ (conv(P))K . To see this, let U+ ∈ [0, 1]m×K̃ and U− ∈ [0, 1]m×K̃ be non-negative

matrices such that U+
i,j = [Ũi,j]+ and U−

i,j = [−Ũi,j]+, respectively, where [x]+ = x if x ≥ 0

and [x]+ = 0 if x < 0. Moreover, let u ∈ [0, 1]m be a vector whose i-th component is

ui = 1− ∥Ũi,∗∥. Then, it is straightforward to show that

ŨṼT = [U+,U−,u][Ṽ,−Ṽ,0]T.

Moreover, it is easy to show that U = [U+,U−,u] ∈ U and V = [Ṽ,−Ṽ,0] ∈ (conv(P))K .

Since R̂S(X̃ ) ≤ R̂S(X ) by the theorem above, we have the same order of generalization

bound of X̃ as shown in Theorem 24.

5.5 A matching lower bound on the Rademacher complexity

We show that the bound stated in Corollary 25 is almost tight and cannot be significantly im-

proved in the worst case.
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Theorem 28. Let X be the matrix class defined in Corollary 25. For any sufficiently large T ,

there exists a sample S such that

R̂S(X ) = Ω

(
B

√
nK +m logK

T

)
.

Proof. Let L = ⌊log2K⌋ and J1 ∪ J2 ∪ · · · ∪ JL = [n] be a partition of the column set.

Consider a sample S that satisfies |T (i, u)| = T/(mL) for each i ∈ [m] and u ∈ [L], and

|{t : jt = j}| = T/n for each j ∈ [n], where T (i, u) = {t : it = i, jt ∈ Ju}.
From the proof of Theorem 24, we have

T

B
R̂S(X ) =

1

B
E

[
sup
V

max
κ∈K

T∑
t=1

σtVjt,κ(it)

]

=
1

B
E

[
max
κ∈K

sup
V

M∑
j=1

∑
t:jt=j

σtVj,κ(it)

]

=
1

B
E

max
κ∈K

sup
V

n∑
j=1

K∑
ℓ=1

∑
t:jt=j,κ(it)=ℓ

σtVj,ℓ


= E

max
κ∈K

n∑
j=1

K∑
ℓ=1

∣∣∣∣∣∣
∑

t:jt=j,κ(it)=ℓ

σt

∣∣∣∣∣∣
 . (5.8)

So, it suffices to show that (5.8) is lower bounded by Ω(
√
nKT ) and Ω(

√
mLT ).

First we give a proof of the Ω(
√
nKT ) part. To this end, we replace the max operator in

(5.8) by the expectation under the uniform distribution over K. Note then that Tj,ℓ = |{t : jt =
j, κ(it) = ℓ}| is a random variable and Eκ[Tj,ℓ] = T/(nK) for each j ∈ [n] and ℓ ∈ [K],

since κ is uniformly chosen. So, by Markov inequality, we have Pr[Tj,ℓ ≥ T/(2nK)] ≥ 1/2.

Moreover, Eσ[|
∑

t:jt=j,κ(it)=ℓ σt|]) ≥ c
√

Tj,ℓ for some constant c > 0 by the random-walk

argument. Therefore,

E

max
κ∈K

n∑
j=1

K∑
ℓ=1

∣∣∣∣∣∣
∑

t:jt=j,κ(it)=ℓ

σt

∣∣∣∣∣∣
 ≥ E

Eκ

 n∑
j=1

K∑
ℓ=1

∣∣∣∣∣∣
∑

t:jt=j,κ(it)=ℓ

σt

∣∣∣∣∣∣


≥ c

2

n∑
j=1

K∑
ℓ=1

√
T

2nK
= Ω

(√
nKT

)
.

Next we give a proof of the Ω(
√
mLT ) part. For each σ ∈ {−1, 1}T , we define κ ∈ K as
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described below, and replace the max operator in (5.8) by this particular κ, which gives a lower

bound. For each i ∈ [m] and u ∈ [L], let

ℓi,u =

1 if
∑

t∈T (i,u) σt ≥ 0,

−1 otherwise

and let the L-bit sequence ℓi = (ℓi,1, ℓi,2, . . . , ℓi,L) be identified with an integer in [K] whose

binary representation is ℓi. For example, (−1,−1,−1) = 1, (−1,−1, 1) = 2, . . . , (1, 1, 1) = 8

when L = 3. Now, our κ is given by κ(i) = ℓi for each i. Then, (5.8) is lower bounded by

E

 n∑
j=1

K∑
ℓ=1

∣∣∣∣∣∣
∑

t:jt=j,ℓit=ℓ

σt

∣∣∣∣∣∣
 .

Moreover,

n∑
j=1

K∑
ℓ=1

∣∣∣∣∣∣
∑

t:jt=j,ℓit=ℓ

σt

∣∣∣∣∣∣ =
L∑

u=1

K∑
ℓ=1

∑
j∈Ju

∣∣∣∣∣∣
∑

t:jt=j,ℓit=ℓ

σt

∣∣∣∣∣∣
≥

L∑
u=1

K∑
ℓ=1

∣∣∣∣∣∣
∑
j∈Ju

∑
t:jt=j,ℓit=ℓ

σt

∣∣∣∣∣∣
=

L∑
u=1

K∑
ℓ=1

∣∣∣∣∣∣
∑
i∈[n]

∑
j∈Ju

∑
t:it=i,jt=j

1[ℓi = ℓ]σt

∣∣∣∣∣∣
=

L∑
u=1

K∑
ℓ=1

∣∣∣∣∣∣
∑
i:ℓi=ℓ

∑
t∈T (i,u)

σt

∣∣∣∣∣∣ .
Now by the definition of ℓi,u, we have

∑
t∈T (i,u)

σt = ℓi,u

∣∣∣∣∣∣
∑

t∈T (i,u)

σt

∣∣∣∣∣∣ .
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Therefore, we get

E

 n∑
j=1

K∑
ℓ=1

∣∣∣∣∣∣
∑

t:jt=j,ℓit=ℓ

σt

∣∣∣∣∣∣
 ≥ E

 L∑
u=1

K∑
ℓ=1

∑
i:ℓi=ℓ

∣∣∣∣∣∣
∑

t∈T (i,u)

σt

∣∣∣∣∣∣


=
L∑

u=1

∑
i∈[n]

E

∣∣∣∣∣∣
∑

t∈T (i,u)

σt

∣∣∣∣∣∣


≥
L∑

u=1

∑
i∈[n]

c
√
|T (i, u)| = c

√
nLT ,

where the last inequality is derived from the random-walk argument.

5.6 Experimental results

We conduct two kind of experiments using three data sets. First data set is the MovieLens-100k

data set [35] 1 which contains 100000 ratings of 1682 movies by 943 users. All ratings are

valued in {1, 2, 3, 4, 5}. Second one is the sushi preference data set [45] 2 which contains 50000

ratings of 100 kind of sushi items by 5000 users. All ratings are valued in {0, 1, 2, 3, 4}. The

last data is a synthetic data. We made this data as follows; (i) generate Ui,k and Vj,k according

to the uniform distribution over [0, 1), (ii) generate a random noise matrix Ri,j according to the

standard normal distribution and (iii) then X = αUVT+(1−α)R and use randomly chosen 50%

entries of X as the sample and the test set. We adopt m = 200, n = 600, K = 10, α = 0.75.

This data contains 59736 entries with range [−0.347, 4.569]. The mean value of Xi,j is 1.886

and its variance is 0.349.

We adopt the squared loss ℓ(x, y) = 1
2
(x− y)2 in our experiments. We conduct 5-fold cross

validation, and then measure the mean squared error,

MSE(X̂, T ) = 1

|T |
∑

(i,j,Xi,j)∈T

ℓ(X̂i,j,Xi,j)

where T is the test set.
1http://grouplens.org/datasets/movielens/
2http://www.kamishima.net/sushi/
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5.6.1 Changing L∞ norm constraint

In first experiment, we change the value of L∞ norm constraint of our hypothesis class defined

in (5.1),(5.2) and (5.3), namely B. We seek a local minimizer X̂ of the empirical loss ℓ̂S from

the hypothesis class and then measure the training error MSE(X̂,S) and test error MSE(X̂, T ).
We use the alternating least square optimization scheme to get a local minimizer (See 5.8 for

implementation details). For all data sets, we choose the rank K = 10 in experiment.

B
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Figure 5.1: MovieLens 100k data set
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Figure 5.2: sushi3b data set
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Figure 5.3: synthetic data

Note that our hypothesis class with large B behaves like the class of matrices with the low

rank constraint only.

The results of training error and test error are shown in Figure 5.1, Figure 5.2 and Figure

5.3. One can see that, in both data sets, the training error is small enough when B reaches its

original range of rating values. This implies bounding B with some reasonable value does not

increase the upper bound of the generalization error.
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5.6.2 Comparison with trace norm regularization

In the second experiments, we compare our norm-constrained matrix factorization with conven-

tional trace norm regularized empirical risk minimization.

We seek a local minimizer of the empirical loss ℓ̂S from the hypothesis class defined as

(5.1), (5.2) and (5.3). We choose the best rank of our hypothesis K by grid searching from

{1, 2, 4, 8, 10} for MovieLens and sushi dataset, {4, 8, 11, 12, 14} for synthetic data set.

We compare our hypothesis class with the typical trace norm regularization approach, which

minimizes the empirical loss and its trace norm as the regularization term as follows;

X̂Tr = arg min
X̂∈Rm×n

1

2

∑
(i,j)∈S

(Xi,j − X̂i,j)
2 + λ∥X̂∥Tr

where λ is a parameter. We also choose the best λ ∈ {0.1, 0.2, 0.4, 0.8, 1, 2, 4, 6, 8, 10, 20, 40}
by grid searching. It is well known that this is the tightest convex relaxation of the rank con-

straint. To solve this minimization problem, we use SoftImpute implemented at fancyimpute

0.0.19 3. This is an implementation of SoftImpute algorithm proposed by Mazumder et al. [56].

Result of experiments are summarized in Table 5.1.

Table 5.1: MSE of matrix completion results
Data set Our approach SoftImpute

MovieLens 0.881 (K = 2, B = 5) 1.011 (λ = 8.0)
sushi 1.363 (K = 1, B = 4) 1.388 (λ = 8.0)

synthetic data 0.079 (K = 11, B = 4.569) 0.399 (λ = 4.0)

One can see that the empirical risk minimization with our hypothesis class performs better

than trace norm regularization.

In both data sets, the rank of the local minimizer X̂ is very small. Especially, on the sushi

data set, it is 1. This indicates that all users have almost the same preference over items.

5.7 Conclusion

In this chapter, we focus on the collaborative filtering problem and derive the generalization

error bounds for matrix factorization with L1 and L∞ norm constraints.
3https://pypi.python.org/pypi/fancyimpute
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One of our future work is, to derive generalization bounds with other norm constraints such

as the Frobenius norm. Also, one could improve our results for strongly convex loss functions

or some easy data setting such as the Bernstein conditions.

5.8 Implementation details

In this section we describe an algorithm to find a hypothesis from the hypothesis class. We

adopt the empirical risk minimization which selects the hypothesis X̂ as

X̂ = argmin
X̂∈X

L̂S(X̂i,j, Xi,j) = arg min
Û∈U ,V̂∈V

L̂S(ÛV̂
T; X)

where X is the hypothesis class.

In the implementation of experiments, we use the conventional alternating minimization

which iterates

Û = argmin
U∈U

L̂S(UV̂
T; X) and V̂ = argmin

V∈V
L̂S(ÛV

T; X)

until it converges. Each optimization step is just a convex optimization. Especially, if we

choose ℓ as squared loss, it is a quadratic programming. So we can solve optimization of U and

V efficiently using common QP solvers.

Of course our optimization of X̂ is not convex due to the rank constraint, we get a local

minimizer X̂ = ÛV̂T in the experiments and we use it as the hypothesis instead of the global

minimizer.

Because of our bounds based on Theorem 23 holds for any X̂ in the hypothesis class X , we

can use the generalization error bounds under this optimization scheme.

5.9 Yet another proof of Lemma 16

Proof. Given V = (v1, . . . ,vK) ∈ (conv(P)K) with vi =
∑

p∈P α
(i)
p p (i ∈ [K]), we can

construct a convex combination X =
∑

(p1,...,pK)∈PK αp1p2...pK
(p1, . . . ,pK) by the following

procedure.

1. Let Y ← V and k ← 1.

2. While Y ≥ 0, repeat:
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(a) Let P(i) = {p ∈ P | α(i)
p > 0}.

(b) Let (ik,pik
) = argmini∈[K] minp∈P(i) α

(i)
p .

(c) Pick up any pj ∈ P (j) for j ̸= ik and construct a vector qk = (p1, . . . ,pik
, . . . ,pK).

(d) Update Y ← Y − α
(ik)
pik

qk.

(e) Update all α(i)
p and k ← k + 1.

3. Output
∑

k≥1 α
(ik)
pik

qk.

Note that the while loop terminates in K|P| trials since the procedure increases a zero entry

by at least one at each loop. Also, one can observe that each α
(ik)
pik
≥ 0 and

∑
k≥1 α

(ik)
pik

= 1.

Therefore the procedure outputs a convex decomposition of V.
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Chapter 6

A Combinatorial Metrical Task System
Problem under the Uniform Metric

6.1 Introduction

The metrical task system is defined as a repeated game between the player and the adversary.

Given a fixed set C of states a metric δ : C×C → R+ and a initial state c0 ∈ C, for each round

t = 1, . . . , T , (i) the adversary reveals a (processing) cost function ft : C → R+, (ii) the player

chooses a state ct ∈ C, and (iii) the player incurs the processing cost ft(ct) and the moving cost

δ(ct, ct−1). The goal of the algorithm is minimizing the cumulative (processing and moving)

cost. The performance of the algorithm is measured by the competitive ratio, that is, the ratio of

the cumulative cost of the algorithm to the cumulative cost of the best fixed sequence of states

in hindsight.

In the expert setting, i.e., where the decision set consists of n states, there are many existing

works on the MTS [16, 40, 8, 29, 9]. In particular, for the uniform metric δ (which is defined as

δ(i, j) = 1 if i ̸= j and otherwise δ(i, j) = 0), the MTS problem is well studied [16, 8, 40, 1].

Borodin et al. show the lower bound of the competitive ratio of any randomized algorithm

is Hn, where Hn is the n-th harmonic number [16]. Especially, Abernethy et al. provide an

algorithm which uses the method of convex optimization, and shows the upper bound of the

competitive ratio of the algorithm is Hn +O(log log n) [1].

When we consider the situation where the decision set C is a combinatorial set from {0, 1}d

(e.g., the set of spanning trees or s-t paths of a graph), the computational issue arises. A natural

example of a combinatorial MTS is a routing problem. For example, we consider a routing

problem. Consider a fixed network G = (V,E) where V is the set of routers (nodes) and
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E ⊆ V × V is the set of d edges between routers and V includes two routers, the source s and

the sink t. The decision set C is the set of paths from s to t, whose size is exponential in d. In

general, for typical combinatorial sets, the size could be exponential in the dimension size d as

well and straightforward implementations of known algorithms for the MTS take exponential

time as well since time complexity of these algorithms is proportional to the size n of the

decision set.

In this chapter, for the uniform metric, we propose a modification of the Marking algo-

rithm [16], which we call the Weighted Marking algorithm. The weighted Marking algorithm

employs an exponential weighting scheme and can be viewed as an analogue of the Hedge

algorithm [32] for the MTS problem, whereas the Marking algorithm is an analogue of the

classical Halving algorithm. We prove that the Weighted Marking algorithm retains O(log n)

competitive ratio for the standard MTS problem with n states. The expected running time of

the Weighted Marking algorithm at each round is the same as that of the original one.

On the other hand, combining with efficient sampling techniques w.r.t. exponential weights

on combinatorial objects (k-sets, s-t paths [73], stars in a graph [19] permutation matrices [19,

41], permutation vectors [2]), the Weighted Marking algorithm works efficiently for various

classes of combinatorial sets.

6.1.1 Related Work

There are some existing works for combinatorial metrical task systems. Blum et al. provide

algorithms for the list update problem [14]. For the k-server problem, which can be viewed

as a combinatorial MTS problem, Koutsoupias et al. provide a deterministic algorithm [49].

Bansal et al. improve the results of Koutsoupias et al. by a randomization technique [6]. These

algorithms are efficient and perform well for specific problems, i.e., the list update problem and

the k-server problem. However, these algorithms are specialized for limited decision sets and

we cannot use them for other problems.

Buchbinder et al. consider combinatorial MTS problems where the decision space is defined

as a matroid [17]. The concept of matroid can express various classes of combinatorial objects

such as spanning trees. They show a unified algorithm with a guaranteed competitive ratio.

Their analysis is, however, applicable for a continuous “relaxed” space only. It is not known if

there exists a rounding scheme that approximately preserves the moving cost over the relaxed

space. Gupta et al. also consider combinatorial MTS problems over the basis of a matroid [34].
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They give a rounding algorithm and prove the competitive ratio of a rounded solution, for a

class of metrics including the Hamming distance but not the uniform metric.

6.2 Preliminaries

A metrical task system (MTS) is a pair (C, δ) where C is a set of states and δ : C × C → R+

is a metric. In particular, we consider a combinatorial setting where C is a subset of {0, 1}d

for some dimension d > 0. We denote by n the size of C, that is, n = |C|. Typically, n is

exponentially large in d. Moreover, we only consider the uniform metric δ, that is,

δ(c1, c2) =

1 if c1 ̸= c2,

0 if c1 = c2.

The combinatorial MTS problem for (C, δ) is defined as the following protocol between the

algorithm and the adversary.

First the adversary chooses a task sequence σ = (ℓ1, ℓ2, . . . , ℓT ), where each ℓt ∈ [0, 1]d is

called a loss vector. In other words, we assume the oblivious setting. For a given initial state

c0 ∈ C, the protocol proceeds in rounds, where in each round t = 1, 2, . . . , T ,

1. the algorithm receives the loss vector ℓt ∈ [0, 1]d,

2. the algorithm chooses a state ct ∈ C, and

3. the algorithm suffers a cost given by ct · ℓt + δ(ct, ct−1).

The first term ct · ℓt of the cost is called the processing cost at round t, and the second term

δ(ct, ct−1) is called the moving cost at round t.

For a task sequence σ, the cumulative cost of an algorithm A is defined as

costA(σ) =
T∑
t=1

(ct · ℓt + δ(ct, ct−1)),

and the cumulative cost of the best offline solution is defined as

costOPT(σ) = min
(c∗1,c

∗
2,...,c

∗
T )∈CT

T∑
t=1

(c∗t · ℓt + δ(c∗t , c
∗
t−1)).
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We measure the performance of algorithm A by its competitive ratio, which is defined as

CR(σ) =
E[costA(σ)]
costOPT(σ)

,

where the expectation is with respect to the internal randomness of A. The goal of the algo-

rithm is to minimize the worst case competitive ratio maxσ CR(σ). Note that the usual (non-

combinatorial) MTS problem is a special case where C consists of unit vectors.

We also require the algorithm A to produce a state ct in time polynomial in d for each round

t. Typically, the size n of C is exponential in d, and so we cannot directly maintain all states c

in C. Therefore, we assume two oracles to access the state set C efficiently. The first one is the

linear optimization oracle, which solves the following decision problem:

OPT(C)

Input: L ∈ Rd
+

Output:

0 if minc∈C c ·L < 1,

1 otherwise.

The assumption of this oracle is natural since the linear optimization problem has a polynomial

time algorithm for many useful state sets C.

The second one is a sampling oracle, which chooses a state c randomly according to a

certain probability distribution over C, where the distribution is specified by a given parameter

L ∈ Rd
+. In particular, we consider two kinds of sampling oracles, which will be defined later.

6.3 The Marking algorithm

Here we apply the Marking algorithm [16] to the combinatorial MTS problem. The Mark-

ing algorithm is a simple randomized algorithm whose competitive ratio is upper bounded by

2Hn ≤ 2(lnn+ 1), where Hn is the n-th harmonic number.

Below we describe how the Marking algorithm works. For a naive implementation, it main-

tains the cumulative processing costs l[c] for all states c ∈ C. For each round t,

1. Observe the loss vector ℓt and update l[c] = l[c] + c · ℓt for all c ∈ C.

2. If l[ct−1] < 1 then output ct = ct−1.

3. Else choose a state ct uniformly at random from the set of states c with l[c] < 1, and

output ct.
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4. If no such states exist, then reset l[c] = 0 for all c ∈ C and choose a state ct uniformly at

random from C, and output ct.

Note that Line 2 and Line 3 intuitively mean that the Marking algorithm does not change

states until l[ct] ≥ 1. As is well known as a folklore (See, e.g., [15]), we can assume without

loss of generality that the loss vectors ℓt are small enough so that l[ct] ≤ 1 always holds. In

the appendix we give more detailed discussion. In other words, the Marking algorithm changes

states only when l[ct] = 1.

Of course, the naive implementation of the Marking algorithm is not efficient because it

maintains the cumulative processing cost l[c] for all states c ∈ C. Instead, we can maintain

the cumulative loss vector L =
∑

t ℓt, which implicitly maintains l[c] as l[c] = c · L for all c.

Furthermore, the sampling problem at Line 3 can be restated as the following problem in terms

of L, which we call Sampling 1.

Sampling 1

Input: L ∈ Rd
+,

Output: c ∈ CL = {c ∈ C | c ·L < 1} uniformly at random.

Note that the problem Sampling 1 is only defined when CL ̸= ∅, but we can check whether

the condition holds by using the linear optimization oracle for OPT(C). Moreover, the uniform

sampling at Line 4 is also restated as Sampling 1 with L = 0. So, if we assume a linear

optimization oracle for OPT(C) and a sampling oracle for Sampling 1, then we can emulate

the Marking algorithm in O(d) time per round. We give this implementation of the Marking

algorithm in Algorithm 5.

Algorithm 5 An implementation of the Marking algorithm
Input: A linear optimization oracle for OPT(C) and a sampling oracle for Sampling 1
Initialize: Let L = 0.
For each round t = 1, 2, . . . , T ,

1. Observe the loss vector ℓt and update L = L+ ℓt.

2. Let ct = ct−1 and output ct.

3. If ct ·L ≥ 1, then

(a) If minc∈C c ·L ≥ 1, then reset L = 0. // use the linear optimization oracle

(b) Choose a state ct ∈ CL uniformly at random. // use the sampling oracle
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The question that naturally arises is that for what state set C, the problem Sampling 1 is

efficiently solved. Unfortunately, we do not know any non-trivial sets C that have polynomial

time algorithm for Sampling 1. We could use MCMC sampling methods to design approximate

sampling, but it seems hard to show theoretically guaranteed performance bounds for many

natural state sets C.

6.4 The Weighted Marking algorithm

The computational cost of the sampling problem Sampling 1 would be due to the fact that the

support of the sampling distribution is restricted to the set CL. So, we relax the distribution to a

continuous distribution whose support is not restricted to CL.

Specifically, we propose the following sampling problem, called Sampling 2.

Sampling 2

Input: L ∈ Rd
+,

Output: c ∈ C chosen with probability πL(c) =
exp(−ηc ·L)∑
c∈C exp(−ηc ·L)

,

where η > 0 is a parameter.

In words, the new sampling distribution πL is such that πL(c) is a monotone decreasing

function with respect to its cumulative processing cost l[c] = c · L. So, the probability that

a state c with large l[c] is chosen is very low, and thus we will see that the support of πL is

essentially restricted to a set {c ∈ C | c ·L < L} for some L > 1.

Unlike Sampling 1, there are known efficient implementations of Sampling 2 for several

combinatorial objects such as k-sets, s-t paths [73], permutation matrices [19, 41], stars in a

graph [19] and permutation vectors [2].

Now we modify the Marking algorithm by assuming the sampling oracle for Sampling 2, as

well as assuming the linear optimization oracle for OPT(C). The modified version is called the

Weighted Marking algorithm. The difference from the Marking algorithm is that (1) it does not

change states until its cumulative processing cost reaches L instead of 1, and (2) it uses πL as

the sampling distribution instead of the uniform distribution over CL. Note that the Weighted

Marking algorithm resets the cumulative loss vector as L = 0 when minc∈C c · L reaches

1, which is the same condition as the Marking algorithm. So, unlike the Marking algorithm,

resetting L may happen at some round where the cumulative processing cost of the current state

does not reach L, since L ̸= 1.
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The detailed description of the Weighted Marking algorithm is given in Algorithm 6.

Algorithm 6 Weighted Marking algorithm
Input: A linear optimization oracle for OPT(C) and a sampling oracle for Sampling 2
Parameter: η > 0 and L > 1 such that ne−ηL ≤ e−η/2.
Initialize: Let L = 0.
For each round t = 1, 2, . . . , T ,

1. Observe the loss vector ℓt and update L = L+ ℓt.

2. Let ct = ct−1 and output ct.

3. If minc∈C c ·L ≥ 1 then // use the linear optimization oracle

(a) Reset L = 0.

(b) Choose a state ct ∈ C with probability πL(c) // use the sampling oracle

4. Else if ct ·L ≥ L, then

(a) Repeat
Choose a state ct ∈ C with probability πL(c) // use the sampling oracle
Until ct ·L < L.

For convenience, we define the notion of phases for analyzing the behavior of the Weighted

Marking algorithm. A phase is an interval {t | tb ≤ t ≤ te} of rounds such that the resetting

happens at round tb − 1 and te but does not happen at every round tb ≤ t < te.

Again, as is well known as a folklore, we assume without loss of generality that the loss

vectors ℓt are small enough so that it always holds that minc∈C c ·L ≤ 1 at Line 3 and it always

hold that ct · L ≤ L at Line 4. In other words, a phase ends (resetting happens) only when

minc∈C c · L = 1 and states ct are changed only when ct · L = L. These assumptions greatly

simplifies the analysis.

More formally, the assumption is described as follows:

Assumption 29. Whenever the previous state ct−1 satisfies ct−1 ·L < L, where L is the cumu-

lative loss vectors up to round t − 1 in the current phase, and the phase did not end at round

t− 1, i.e., minc∗∈C c∗ ·L < L, then ℓt satisfies the two conditions:

1. ct−1 · (L+ ℓt) ≤ L, and

2. minc∗∈C c∗ · (L+ ℓt) ≤ 1.
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As is well known as a folklore, we assume Assumption 29 holds throughout this section.

We can assume without loss of generality that the loss vectors ℓt are small enough, so that

Assumption 29 is satisfied. This is because, when ℓt violates the assumption, then we can

replace ℓt by a sequence of non-negative loss vectors ℓt1 , ℓt2 , . . . , ℓtk so that ℓt = ℓt1 + · · ·+ℓtk

and the new sequence of loss vectors satisfy the assumption in the following way:

1. If the first condition is violated, i.e., ct−1 · (L+ ℓt) = a > L, then we let

α1 =
L− ct−1 ·L
a− ct−1 ·L

.

Otherwise, we let α1 = 1. In the former case, we can easily verify that 0 < α1 < 1 and

ct−1 · (L+ α1ℓt) = L.

2. If the second condition is violated, i.e., minc∗∈C c∗ · (L+ℓt) > 1, then we let 0 < α2 < 1

be such that minc∗∈C c∗ · (L + α2ℓt) = 1. Otherwise, we let α2 = 1. Note that, in the

former case, we can find such α2 efficiently by binary search.

3. Let α = min{α1, α2} and ℓt1 = αℓt and ℓt2 = (1 − α)ℓt. Then, clearly ℓt1 satisfies

Assumption 1. If ℓt2 still violates the assumption, then repeat the same procedure for ℓt2
recursively.

In the next theorem, we give an upper bound of the competitive ratio of the Weighted Mark-

ing algorithm.

Theorem 30 (Main theorem of Chapter 6). Let η = ln 2n, and L = 2. Then for any task

sequence σ = (ℓ1, ℓ2, . . . , ℓT ), the competitive ratio of the Weighted Marking algorithm is

upper bounded by

CR(σ) ≤ 6e lnn+ 9.

Moreover, the expected running time per round is O(d+Tlin+TSamp2), where Tlin is the running

time of the linear optimization oracle and TSamp2 is that of the sampling oracle for Sampling 2.

To prove this theorem, we show that the cumulative moving cost in each phase is O(log n).

So in the following, we fix a particular phase I = {tb, . . . , te}. For each round t ∈ I , Lt denotes

the cumulative loss vector L at Line 1 at round t. Note by definition that minc∗∈C c∗ ·Lte = 1.

Let G = {c ∈ C | c · Lte < L} be the goal set, meaning that if we choose a state in G at

some round t ∈ I , i.e., ct ∈ G, then the Weighted Marking algorithm never changes the state
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until the end of the phase. Note that c∗ ∈ G and so G ̸= ∅. Let c1, c2, . . . , cn be the members of

C. (This is an abuse of notation. Do not confuse them with the states ct the algorithm chooses

at round t.) For any ci ̸∈ G, we can define ti ∈ I such that ci · Lti = L. Then, without loss of

generality, we assume t1 ≤ t2 ≤ · · · ≤ tn−|G| and cn = c∗, i.e., cn · Lte = 1. Moreover, we

assume |G| = 1 just for simplicity. Clearly, the algorithm changes states only at some rounds in

{t1, . . . , tn−1}. Let t(k) be the round where the algorithm makes the k-th change of states. For

any state c ∈ C, we define the weight function Wk(c) as

Wk(c) :=

{
e−ηc·L

t(k) if c ·Lt(k) < L,

0 if c ·Lt(k) ≥ L.

Let W k :=
∑

c∈C Wk(c). Then Wk(c)/W k is the probability of choosing state c at the k-th

change of states. One can see that Wk(c) is monotonically decreasing w.r.t. k because Lt is

monotonically increasing vector w.r.t. t.

If the best offline solution changes its state in the phase, then its cumulative moving cost

is at least 1, and otherwise its cumulative processing cost is at least 1 by the definition of the

phase. This immediately implies the following lemma.

Lemma 17. For any sequence of loss vectors (ℓ1, ℓ2, · · · , ℓT ), the best offline solution suffers

cost at least 1 on each phase.

On the other hand, whenever the Weighted Marking algorithm changes states (i.e., suffers

the moving cost of 1) from ct(k−1) to ct(k) , then its cumulative processing cost from t(k−1) to t(k)

is at most L. This implies the following lemma.

Lemma 18. For any sequence of loss vectors (ℓ1, ℓ2, · · · , ℓT ), the cumulative processing cost of

the Weighted Marking algorithm is at most L times the cumulative moving cost on each phase.

The following lemma provides the probability of ending a phase.

Lemma 19. For any α ∈ (0, 1) and for any k, if αW k ≤ e−η holds then the phase will end at

the k + 1-th change of the state with probability at least α.

Proof. By the assumption cn · Lte = 1, if the algorithm choose cn then the algorithm will

change its state at the end of the phase te, i.e. if the state cn is chosen then the phase rests only

1 change. By cn · L ≤ 1, we get Wk(cn) ≥ e−η for any k. Using this and the condition of the

lemma, we get

α ≤ e−η

W k

≤ Wk(cn)

W k

.
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Here, the right hand side is the probability of the state cn will be chosen by the Weighted

Marking algorithm.

The following lemma guarantees the probability of choosing cn becomes higher at each

change of the state.

Lemma 20. For any α ∈ (0, 1), for any k, if αW k ≥ e−η holds then

Pr[W k+1 ≤ αW k] > α.

Proof. Summing up weights of states from n, n−1, · · · and consider when the sum gets greater

than αW k. E.g. consider ik s.t.
∑n

i=ik+1 Wk(ci) ≤ αW k and
∑n

i=ik
Wk(ci) > αW k.

Assume that the Weighted Marking algorithm chooses the state cs at the k-th change of the

state. If s ≥ ik, the algorithm changes its state at t(k+1) and then Wk+1(ci) = 0 for any i ≥ ik

by the definition of W and ik. Thus,

W k+1 =
n∑

i=1

Wk+1(ci) =
n∑

i=ik+1

Wk+1(ci).

Because Wk is monotonically decreasing w.r.t. k, one can get

n∑
i=ik+1

Wk+1(ci) ≤
n∑

i=ik+1

Wk(ci) ≤ αW.

So we get if s ≥ ik then W k+1 ≤ αW . The probability of the Weighted Marking algorithm

choosing the state cs such that s ≥ ik satisfies

Pr[s ≥ ik] =

∑n
i=ik

Wk(ci)

W k

>
αW k

W k

= α.

By Lemma 19, one can get the following immediately.

Lemma 21. For any α ∈ (0, 1) and round t(k), if αW k ≤ e−η then the expected number of

remaining changes of states in the phase is less than 1
α
+ 1.

Because of Wk is monotonically decreasing w.r.t. k and Lemma 20, one can get the follow-

ing lemma.
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Lemma 22. For any k, for any α ∈ (0, 1), if αW k ≤ e−η then the expectation of m such that

W k+m ≤ αW k is E[m] < 1
α

.

We say that a sequence W = {W 1,W 2, · · · ,WK} of weights is α-fast decreasing at the

round t(k+1) if W k+1 ≥ αW k holds.

Proof of Theorem 30. Assume that the Weighted Marking algorithm changes its state at K

times in a phase. By Lemma 21, if αW k′ ≤ e−η holds then we have

E[K] ≤ k′ +
1

α
+ 1.

Thus, we need to estimate k′ s.t. αW k′ ≤ e−η to bound E[K].

Let αW k′ ≤ e−η holds after α-fast decreasing K ′ times, then

αK′
W 0 ≤ W k′ ≤

eη

α
.

By W 0 = n, we get αK′
n ≤ e−η

α
and rearranging, K ′ ≤ 1

ln 1
α

(lnn+ η)− 1. Using Lemma 22,

E[k′] ≤ E[m]K ′ =
1

α
K ′ =

1

α ln 1
α

(lnn+ η)− 1

α
.

Thus, the number of changing of states at a phase is

E[K] ≤ E[k′] +
1

α
+ 1 =

1

α ln 1
α

(lnn+ η) + 1.

The bound of E[K] is minimized when α = 1/e. So we get E[K] ≤ e(lnn+ η) + 1.

Setting η = ln 2n, we get E[K] ≤ 2e lnn+ 3. By Lemma 18,

E[(cumulative processing cost)] ≤ L× E[(cumulative moving cost)].

At each phase, we have

E[Cumulative loss]

= E[Cumulative processing cost] + E[Cumulative moving cost]

≤ 3× E[K]

≤ 6e lnn+ 9.
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By Lemma 17, at each phase the best offline solution has the cumulative processing cost at least

1. Thus we get the bound of the competitive ratio.

Next, we prove the running time of the Weighted Marking algorithm. The key point of

analysis of the Weighted Marking algorithm is the number of calls to the oracle for Sampling 2

at Line 4-(a) of the pseudo code. The following lemma gives a theoretical bound of retrying.

Lemma 23. The expected number of calls to the sampling oracle at Line 4-(a) is at most 2.

Proof. For any state c such that c ·L ≥ L, the probability that the sampling oracle chooses c is

exp(−ηc ·L)∑
c′ exp(−ηc′ ·L)

≤ exp(−ηL)
exp(−ηcn ·L)

≤ exp(−ηL)
exp(−η)

since cn · L < 1. By the union bound, the probability that the sampling oracle chooses some c

with c ·L ≥ L is at most
n exp(−ηL)
exp(−η)

=
1

2

by our choice of η and L.

Finally, we show our upper bound of the competitive ratio given in Theorem 30 is tight if

C is an k-set by deriving the asymptotic lower bound of the asymptotic competitive ratio of the

combinatorial MTS problem. The asymptotic lower bound of the competitive ratio for MTS

problem in expert setting under the uniform metric is nHn where Hn =
∑n

i=1
1
i

[16].

We call CR(σ) is a asymptotic competitive ratio if there exists some constant K such that

E[costA(σ)]− CR(σ)costOPT(σ) ≤ K.

If costOPT(σ)→∞ with T →∞, CR(σ)→ CR(σ).

Theorem 31. Let C = {c ∈ {0, 1}d : ∥c∥1 = k} and δ be the uniform metric. For any

algorithm for MTS problem (C, δ), there exists a task sequence σ = (ℓ1, ℓ2, . . . , ℓT ) such that

the competitive ratio of the algorithm is lower bounded by

CR(σ) ≥ k(Hd −Hk) = O(k log
d

k
).

To prove the lower bound, we use Lemma 7.2 of [16]. If σ = (ℓ1, ℓ2, . . . ) is infinite sequence

of tasks, let σT = (ℓ1, ℓ2, . . . , ℓT ) be the first T tasks.
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Lemma 24 (Lemma 7.2 of [16]). Let D be any distribution over infinite task sequence σ. Sup-

pose that limT→∞ ED[costOPT(σT )]→∞. Then

CR(σ) ≥ lim
T→∞

sup
minA∈A ED[costA(σT )]

ED[costOPT(σT )]

where A is the set of all deterministic algorithm.

No we give the proof of the theorem 31.

Proof. We show that minA∈A ED[costA(σT )] ≥ kT/d and ED[costOPT(σT )] ≤ T/d(Hd−Hk).

Let D be the distribution over the loss sequences obtained by choosing ℓt = eit with prob-

ability 1/d at each round t, where ei has 1 in the i-th component and others are all 0.

In round t, any algorithm suffers loss 1 if ℓt = eit and the it-th component of the current

state ct−1,it = 1. Since ct−1 represents a k-set, this happens with probability k/d and hence

minA∈A ED[costA(σT )] ≥ kT/d.

Let a(t) be minimum of the round such that the set {it+1, it+2, . . . , ia(t)} = I contains d−k

indices. Now we consider the following offline algorithm A.

A :=

{
Stay current state ct−1 unless ct−1,it = 1.

Change the state from ct−1 to ct where ct,i = 1[i∈I].

Let Xb be the time that the total cost incurred by algorithm A reaches b. Then costA(σT ) =

max{b : Xb ≤ T} and random variables Yb = Xb − Xb−1 are independently and identically

distributed. Using the elementary renewal theorem,

lim
T→∞

ED[costA(σT )]

T
=

1

ED[Yb]
.

Now we estimate ED[Yb]. Yb is the number of rounds need to collect d − k kind of indices

using uniformly generating it. When m indices are appeared then the probability of randomly

generated next index is new is (d −m)/d. Hence the expected number of states between m-th

and (m+ 1)-st indices has appeared is d/(d−m). Thus, summing up this to d− k,

ED[Yb] =
d−k∑
m=1

d

d−m
= d(Hd −Hk).

Combining with the well-known fact that Hd = Θ(log d), we complete the proof.

84



CHAPTER 6. A COMBINATORIAL METRICAL TASK SYSTEM PROBLEM UNDER THE UNIFORM
METRIC

6.5 Conclusion and future work

In this chapter, we proposed the Weighted Marking algorithm for combinatorial MTS prob-

lems under the uniform metric space, and proved its competitive ratio is at most 6e lnn + 9 =

O(log n). We showed that, by combining with existing sampling techniques for exponential

weights over combinatorial objects, the proposed algorithm runs efficiently for several combi-

natorial classes, e.g., s-t paths and k-sets.

There are several open problems to investigate. First one is to provide a lower bound of the

competitive ratio of the combinatorial MTS. In particular, it still remains open to prove Ω(log d)

or Ω(log n) lower bounds for some combinatorial class of the decision set.

Secondly, it is not known if FPL [43] is applicable for the combinatorial MTS problem. If

so, the sampling oracle is no longer necessary and we could efficiently solve MTS problems for

more classes of combinatorial objects.

Finally, the hardness of the Sampling 1(C) is not known, either. Our conjecture is, it is #P

hard for a specific class.
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Conclusion

In this thesis, we developed algorithms which run efficiently under some structural constraints

with theoretical guarantees of its robustness.

In Chapter 3, we considered the online semi-definite programming problem and an FTRL-

based algorithm which the log-determinant regularizer. To analyze the performance of the algo-

rithm, we introduced a new notion of strong convexity, namely the strong convexity with respect

to the loss space, and gave a general method of deriving a regret bound of the FTRL with a reg-

ularizer that is strongly convex in the sense above. We then proved that the log-determinant is

actually strongly convex and thus obtained a regret bound of the algorithm. Our result implies

that the log-determinant regularization works well when the loss matrices are sparse. We also

applied the algorithm to various online matrix prediction problems [38], and showed that our

algorithm realizes optimal regret bounds.

In Chapter 4, we considered the binary matrix completion problem in the online prediction

model and the statistical learning model. We reduced the online binary matrix completion into

an online semi-definite programming problem, and then applied the log-determinant regular-

ization proposed in Chapter 3. The proposed algorithm achieves the optimal mistake bound.

We applied our online algorithm to the statistical learning setting by the standard online-batch

conversion technique, and gave a generalization error bound. Our mistake bound and general-

ization error bound depend on the margin loss, which, in some sense, measures the easiness of

the given sample. The generalization error bound obtained is somewhat surprising, since it im-

plies that our algorithm is competetive with that of the SVM equipped with the optimal feature

map, despite the fact that our algorithm is not given the optimal feature map.

In Chapter 5, we studied some matrix classes defined by the norm constrained matrix fac-

torization. We used these classes as the hypothesis classes of the matrix completion prob-
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lem in the statistical learning model, and proved generalization error bounds by estimating

the Rademacher complexity of these classes. We also gave matching lower bounds of the

Rademacher complexity, and thus our estimations of the Rademacher complexity are tight. We

showed by some experiments that our hypothesis classes yield better performance than the class

of low-rank matrices.

In Chapter 6, we proposed an algorithm for the combinatorial metrical task systems problem

under the uniform metric. Our algorithm is the first efficient algorithm in running time, which

runs in time polynomial in the dimension. We proved a competitive ratio of our algorithm,

which is optimal for some decision set.
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