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Abstract

Online prediction is a theoretical framework of sequential decision making such as weather

forecasting and stock investment. The problem is formulated as a repeated game between the

player and the adversarial environment, where in each trial the player first chooses a decision

from a fixed decision space and then adversary returns a feedback. At this trial, the player

incurs a loss defined by the decision and the feedback. The goal of the player is to minimize

the total loss. The problem has been extensively studied for a couple of decades and still now

it is a major topic in the machine learning community. In particular, for the online convex

optimization, which is an online prediction problem where the decision space and loss functions

are both restricted to be convex, several methodologies of designing and analyzing algorithms

are established. Moreover, the methodologies have been recently applied to solving offline

version of convex optimization of large scale, by utilizing the fact that the time and space

complexity per trial of the online algorithms developed are typically very small. On the other

hand, when the decision space is not convex, the problem is not fully understood.

Among non-convex problems, an especially important class is the online combinatorial

optimization whose decision space is defined in some combinatorial way, since it has lots of

real-world applications. The difficulty is that the corresponding offline combinatorial optimiza-

tion problems are often NP-hard. In this study, we set two goals: One is to establish a general

methodology of designing and analyzing efficient algorithms for online combinatorial optimiza-

tion; and the other is to apply the methodology to the offline combinatorial optimization of large

scale. This thesis makes some progress on the two goals and have the following three results.

First, we show that we have an efficient algorithm for online combinatorial optimization

if the corresponding offline problem is approximable in polynomial time based on the LP re-

laxation. This result implies that we partially solved a long standing open problem on the

offline-online equivalence conjecture. More precisely, we give a more general condition for the

existence of an efficient algorithm for online combinatorial optimization: There exists a relaxed
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CHAPTER 0. ABSTRACT

convex space such that (i) the relaxed space is easy to project, and (ii) the relaxed space has an

efficient meta-rounding algorithm. What we show is that this condition is satisfied when there

exists an efficient approximation algorithm based on LP relaxation.

Second, we generalize the condition for the existence of an efficient algorithm for online

combinatorial optimization. More precisely, we show that we can weaken the condition (i)

to the one in terms of multiple subsequent projections. Informally, the condition is stated as

follows: the relaxed space is easy to project from a further relaxed space, which is easy to

project from an even further relaxed space, . . . . We then apply this general theory to a particular

problem of online job scheduling.

Thirdly, we propose a new approach to large-scale machine learning, learning over com-

pressed data: First compress the training data in a directed acyclic graph representation, and

then employ a boosting algorithm over the compressed data, with the hope that the computation

time is significantly reduced when the training data is well compressed. Here every instance in

the training data corresponds to a path in the graph and thus the boosting can be viewed as a

combinatorial optimization problem over the set of paths. Using a technique developed in the

online linear optimization over paths, we give an algorithm that simulates the boosting and runs

in time proportional to the size of the graph for each trial.
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Chapter 1

Introduction

In this thesis, we consider the online prediction problem, which is a fundamental problem in

the field of machine learning, and it has been studied extensively for decades. The problem

is a repeated game between the player and the adversarial environment, where in each trial the

player first chooses a decision from a fixed decision space and then adversary returns a feedback.

At this trial, the player incurs a loss defined by the decision and the feedback. The goal of the

player is to minimize the total loss. The feedback is not known in advance, and might be chosen

by the adversary with full knowledge of the player’s strategy. Many problems such as the web

search engine and the recommendation system are modeled as online prediction problems. In

particular, for the online convex optimization, which is an online prediction problem where

the decision space and loss functions are both restricted to be convex, several methodologies

of designing and analyzing algorithms are established [31, 10]. Moreover, the methodologies

have been recently applied to solving offline version of convex optimization of large scale, by

utilizing the fact that the time and space complexity per trial of the online algorithms developed

are typically very small. On the other hand, when the decision space is not convex, the problem

is not fully understood.

Among non-convex problems, an especially important class is the online combinatorial

optimization whose decision space is defined in some combinatorial way, since it has lots of

real-world applications [47, 13, 62, 64, 15, 41, 60, 59, 79, 42]. Examples of such decision

spaces k-sets of a given universal set [78], s-t paths in a given graph [76], spanning trees of a

given graph [11], permutations over a fixed item set [32, 83, 84], and so on. The difficulty is

that the corresponding offline combinatorial optimization problems are often NP-hard and these

decision spaces typically contain finite but exponentially many concepts. The amount of data

is typically very large in these areas and even rapidly increasing. Therefore, it is particularly
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CHAPTER 1. INTRODUCTION

important to develop the algorithms.

In this study, we set two goals: One is to establish a general methodology of designing and

analyzing efficient algorithms for online combinatorial optimization; and the other is to apply

the methodology to the offline combinatorial optimization of large scale.

1.1 Combinatorial Online Optimization

Background and motivation

We now consider the online combinatorial optimization problems. For example, consider the

following network routing problem. Image that a network represented by a finite directed

acyclic graphs. In each trial, we have to send along a stream of packets from distinguished

vertex, called source, to another vertex, called destination. First, the system chooses a route

connecting source and destination, and then send along a packet by the chosen route. The loss

of system is the total delay on each edge composing the chosen route. In this problem, the

number of routes is typically exponentially large in the number of edges.

The most well known problem in the online combinatorial problems is the expert problem.

In each trial, the learner has to choose from the advice of n given expert (corresponding to

decisions). The goal of the player is to do as the best expert in hindsight. In this case, we

can employ a simple algorithm called the Hedge algorithm [19] (or Randomized Weighted

Majority [48]), which keep track of a weight for each expert and makes predictions based on

the weighted majority. However, when the concept classes contain finite but exponentially

many concepts, this requires explicitly keeping track of a weight for each of the exponentially

many combinatorial concepts, and thus results in an inefficient algorithm. Observe here that the

decision space (i.e., the set of routes over graphs with n edge) is defined in a combinatorial way

from a small seed, (i.e., the set of n edges), and the seed is only explicitly given to the player.

One of the major approaches to the combinatorial online optimization is to apply Follow the

Regularized Leader (FTRL) framework [30], which is a general scheme of designing efficient

combinatorial online algorithms with a good performance bound. In the framework, we assume

that two external procedures called the projection and the decomposition are implemented. In

other words, we need to design efficient algorithms for the two procedures individually for each

concept class. In fact, in all the results mentioned above, algorithms for the two procedures are

constructed individually for each of the concept classes.

Another approach to constructing online algorithm is to convert an offline approximation

2



CHAPTER 1. INTRODUCTION

algorithm for combinatorial optimization to online algorithm. More precisely, we assume an

offline approximation algorithm for the linear optimization problem over the combinatorial con-

cepts and the player has access to the offline algorithm as an oracle. The convert method called

Follow the Perturbed Leader (FPL) [38] gives good loss bound, but the algorithm can use exact

offline algorithm only. While the convert methods in [37, 26] can use any approximation offline

algorithm and achieve an good loss bound, the computation complexity issue of the algorithms

arise.

Our contributions

In this thesis, we propose a new construction method of efficient algorithms for the problems.

The key notion of our result is metarounding, a robust version of rounding for relaxation-based

approximation schema. Originally, metarounding was proposed by Carr and Vempala for ap-

proximately solving the multicast congestion problem [9]. We show that metarounding is quite

suitable for online prediction of combinatorial concepts as well. Our algorithms consist of two

components, an online prediction algorithm and a metarounding algorithm. Combined with

a metarounding algorithm, FTRL and FPL achieve good regret bounds. One of our technical

contribution is a new construction of metarounding using a boosting algorithms. Boosting [68]

is a technique to construct highly accurate hypothesis by combining moderately accurate base

hypotheses, which apparently seems nothing to do with metarounding. But, in fact, robust

rounding and boosting hypotheses share a common structure and they are formulated as simi-

lar optimization problems. For this observation, we solve metarounding by using boosting-like

algorithm. Our metarounding algorithms is adaptive in the sense that it does not require the

explicit knowledge on the approximation ratio, which is advantageous in practice. Our prelim-

inary experiments show that our metarounding algorithm indeed obtains better approximation

ratios than theoretically guaranteed and its running time is much faster than a method based on

previous work of Carr and Vempala.

In addition, for the FTRL + metarounding framework, we generalize the projection to mul-

tiple projections. As an application of the framework, we consider an online job scheduling

problem with a single machine with precedence constraints under uncertainty. We formulate

the problem as an online linear optimization problem over the permutahedron (the convex hull

of permutation vectors) with specific linear constraints, in which the underlying decision space

is written with exponentially many linear constraints. In this problem, we give polynomial

time algorithms for the mulitiple projection and the metarounding. Our online algorithm pre-
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CHAPTER 1. INTRODUCTION

dicts almost as well as the state-of-the-art offline approximation algorithms do in hindsight.

In preliminary experiments, our algorithm runs considerably faster than the alternatives while

performing competitively.

1.2 Learning over Compressed Data

Background and motivation

Most tasks in machine learning are formulated as optimization problems of various types. Re-

cently, the amount of data to be treated is growing enormously large, and so the demands on

scalable optimization methods are increasing. Probabilistic approach such as stochastic gradient

descent methods [31] is now widely employed as standard techniques for large scale machine

learning. Obviously, these methods require the time and/or the space complexity to be propor-

tional to the size of given data.

On the other hand, the methodology of working over compressed data has gained much at-

tention in the areas of database and data mining, where various methods have been developed,

say, for the string search from a compressed string and the frequent word extraction from com-

pressed texts [45, 33, 28]. But, as far as we are aware, most of all the methods developed so

far are limited to simple tasks such as search and counting, and few results are known for more

complex tasks such as optimization in machine learning.

Our contributions

In this thesis, we propose a new approach to large-scale machine learning, learning over com-

pressed data: First compress the training data somehow and then employ various machine learn-

ing algorithms on the compressed data, with the hope that the computation time is significantly

reduced when the training data is well compressed. As the first step, we consider a variant of

the Zero-Suppressed Binary Decision Diagram (ZDD) as the data structure for representing the

training data, which is a generalization of the ZDD by incorporating non-determinism. For the

learning algorithm to be employed, we consider boosting algorithm called AdaBoost∗ and its

precursor AdaBoost. In this work, we give efficient implementations of the boosting algorithms

whose running times (per iteration) are linear in the size of the given ZDD.

4



CHAPTER 1. INTRODUCTION

1.3 Organization

The rest of this thesis is organized as follows: In Chapter 2, we describe the online prediction

model with basic learning algorithms and theory. In Chapter 3, we propose efficient algorithms

for the online combinatorial optimization using matarounding. in Chapter 4, we describe a

method for online scheduling with precedence constraints. In Chapter 5, we consider boosting

over non-deterministic ZDDs. In Chapter 6, we give conclusion of this thesis.

5



Chapter 2

Online Combinatorial Optimization

In this chapter, we introduce the online combinatorial optimization, with some recent results on

universal and efficient implementations of low-regret algorithmic frameworks such as Follow

the Regularized Leader (FTRL) and Follow the Perturbed Leader (FPL).

2.1 Problem settings

We assume a finite class C of concepts, where each concept in C is encoded as a nonnegative

vector in Rn for some integer n, i.e., C ⊆ Rn. The online prediction problem over a concept

class C is described as a repeated game between the player and the adversary as follows: For

each trial t = 1, . . . , T

1. the player predicts ct ∈ C

2. the adversary returns a loss vector ℓt ∈ [0, 1]n

3. the player incurs loss ct · ℓt.

The goal of the player is to minimize the α-regret:
∑T

t=1 ct · ℓt−αminc∈C
∑T

t=1 c · ℓt. The first

term represents the cumulative loss of the algorithm, and the second term the cumulative loss

of the best concept in the class C in hindsight.

2.2 Combinatorial Concept Classes

In this section, we give the formal definition of combinatorial concept classes. A family of

combinatorial concept classes F is defined by a pair (S, ϕ), where S is a language over a finite

6
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alphabet and ϕ : S → F is a semantic function such that for each word s ∈ S , ϕ(s) is a finite

subset of Rn
+ for some integer n ≥ 1. Usually, n is upper bounded by a polynomial in ∥s∥. In

other words, a combinatorial concept C we consider in the thesis is ϕ(s) for some s ∈ S and

semantic function ϕ. We call S a seed set. In this thesis, we consider an online algorithm that

works efficiently and uniformly over the family F . So, we assume that the algorithm receives a

seed s ∈ S as input and makes predictions with the concept class C = ϕ(s).

2.2.1 Examples

Below we show some examples of combinatorial concept classes.

Experts: The classical experts problem [19] is an example of our problem. Here the seed

set S contains natural numbers, and for a seed n, the concept class ϕ(n) is the set e1, . . . , en ⊆
{0, 1}n, where ei is a unit vector whose i-th component is 1 and other components are 0.

k-sets: The concept class of k-sets is a generalization of Experts, where each concept corre-

sponds to a set of k experts among n experts. This problem was first studied by [78, 76]. Here

the seed set S contains a pair (n, k) of natural numbers with k ≤ n, and the concept class for a

seed s = (n, k) is ϕ(s) = {c ∈ {0, 1}n∥
∑n

i ci = k}.

s-t Paths: The online shortest path problem is studied in many papers such as [40]. Here,

the seed set S contains directed graphs G = (V,E) with two special nodes s and t, and the

concept class for a seed G is ϕ(G) = {c ∈ {0, 1}E∥ the edge set e ∈ E|ce = 1 forms an s-t

paths in G }. A related problem is also studied by [63].

Spanning Trees: The online problems for undirected or directed spanning trees are studied

in [11, 32]. Here we consider undirected versions. Then, the seed set S contains undirected

graphs G = (V,E) and the concept class for a seed G is ϕ(G) = {c ∈ {0, 1}E∥ the edge set

{e ∈ E∥ce = 1} forms a spanning tree of G}.

Permutations: Online linear optimization problem for this concept class models an online

scheduling problem of n jobs with a single processor, where the sum of the flow time over all

jobs is to be minimized [83]. Here the seed set S contains natural numbers and the concept class

ϕ(n) for a seed n is the set of all permutations Sn over {1, . . . , n}. A different representation

of permutations and related problem is also studied by [32].

Rank Aggregation: The online rank aggregation problem is studied in [83], where the

semantic function is different from the previous one. The problem is specified by the set of

permutations Sn as follows: For each trial t, (i) the player predicts a permutation σt ∈ Sn, (ii)

7
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the adversary returns a (true) permutation σ̂t ∈ Sn, and (iii) the player incurs the loss d(σt, σ̂t),

where d is the Kendall tau distance. For two permutations σ1, σ2 ∈ Sn, d(σ1, σ2) is the number

of index pairs (i, j) such that the relative order of σ1(i) and σ2(i) is inconsistent with that of

σ1(j) and σ2(j). This is an online linear optimization problem with appropriate seed set S and

semantic function ϕ. To see this, let the seed set S be the set of natural numbers, and let the

concept class C = ϕ(n) and the loss space L for a seed n be defined as C = L = {c ∈ {0, 1}n

∥c is a comparison vector }. Here, a vector c ∈ {0, 1}n2 is a comparison vector if the set of

index pairs {(i, j)|c(i, j) = 1} coincides with the set {(i, j)|σ(i) < σ(j)} for some permutation

σ ∈ Sn, which is denoted by σc. Then, it is easy to see that for any permutations σc and σℓ,

d(σc, σℓ) = c · ℓ̄, as required, where ℓ̄ is a bit-wise complement of .ℓ

Set Covers: The problem is described by the following family F = (S, ϕ): The seed set S

be a subset family U of some ground set X such that ∪u∈Uu = X , and for a seed U , the concept

class is ϕ(U) = {c ∈ {0, 1}U |{u ∈ U |cu = 1} is a cover of X}.

Truth Assignments to CNF Formula: The problem is specied by a set of disjunctive

clauses (which is a seed) s = {C1, C2, ..., Cm} over k Boolean variables for some m and k,

where each clause Ci is a disjunction of some literals. The online MAX-SAT problem for the

seed s is the following: For each trial t, (i) the player predicts an assignment at ℓ ∈ {0, 1}k to

the variables, (ii) the adversary returns weights at ∈ [0, 1]m for the clauses, and (iii) the player

gets reward dened by the sum of weight ℓt, i over those clauses Ci that are satised by at. The

problem is the reward version of an online linear optimization problem with the concept class

C = ϕ(s) and reward vector space L as described below. The class C consists of vectors in

{0, 1}n for n = k+m such that the rst k bit vector a represents the truth assignment and the last

m bit vector b represents the truth values of the clauses for the assignment a. That is, for each

1 ≤ i ≤ m, bi = 1 if and only if Ci is satised by a. Note that the last m bits b are determined

by the rst k bits a. The reward space L consists of vectors 0kℓ, where the rst k bits are 0 and

ℓ ∈ [0, 1]m represents the weights. So, the dot product of a concept c = a · b and a reward 0k

becomes b · ℓ, which is the reward of the truth assignment a forthe weights ℓ, as required.

2.3 Follow the Regularized Leader

In this section, we introduce the online prediction model with a general scheme, called the

Follow the Regularized Leader (FTRL) [30], of designing online prediction algorithms. Par-

ticularly in this thesis, we deal with the online prediction problem over combinatorial concept

8
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classes, where the decision space is defined by some combinatorial way from a given seed.

2.3.1 Bregman Divergence

Let X be a subset of Rn. Let Φ : X → R be a continuously-differentiable strictly convex

function. The Bregman Divergence ∆Φ with respect to Φ (see, e.g., [10] for the details) is a

function on pairs of points p, q ∈ X where

∆Φ(p, q) = Φ(p)− Φ(q)−∇Φ(q) · (p− q)

By the strict convexity of Φ, the Bregman divergence ∆Φ is always nonnegative and ∆Φ(p, q) =

0 if and only if p = q. We say that the function Φ is separable if Φ has the form Φ(p) =∑n
i=1 ϕi(pi) and Φ is uniformly separable if Φ is separable and ϕi = ϕ for some ϕ. In our

thesis, we will use functions Φ which are uniformly separable. For example, for X ⊂ Rn

and Φ(x) = 1
2
∥x∥22, the corresponding Bregman divergence ∆Φ(p, q)is 1

2
∥p − q∥22 and for

X = {x ∈ [0, 1]n |
∑n

i=1 xi = 1} and Φ(x) =
∑n

i=1 −xi lnxi, ∆Φ(p, q) =
∑n

i=1 pi ln(pi/qi),

which is the Kullback-Leibler divergence or the relative entropy between distributions. We

will use a geometric property of the Bregman divergence which is known as the Generalized

Pythagorean Theorem.

Theorem 1 (Generalized Pythagorean Theorem (e.g., [8, 10])). Let X ′ ⊂ X be any closed

convex set. Let q be any point in X and let p = infp′∈X ′ ∆Φ(p
′, q). Then, it holds for any

r ∈ X ′ that

∆Φ(r, q) ≥ ∆Φ(r,p) + ∆Φ(p, q).

In particular, the equality holds when X ′ is an affine set.

2.3.2 Algorithm

We first consider the online linear optimization problem over a convex decision space P ⊆ Rn.

The FTRL needs an external procedure Projection.

Definition 1. The Projection onto a convex set P with respect to a Bregman divergence ∆Φ is

a procedure that takes as input a point z ∈ X and outputs arg infx∈P ∆Φ(x, z).

At each trial t, the FTRL maintains a point xt ∈ P . Given a loss vector t from the adver-

sary, it updates xt to xt+1/2 by solving a regularized convex optimization. Finally, it runs the

9
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Figure 2.1: projection

procedure Projection and get xt+1, which is the projection of xt+1/2 onto P with respect to the

Bregman divergence ∆Φ. See Algorithm 1 for more details.

Algorithm 1 Follow the Regularized Leader
Input: parameter η > 0, a separable strictly convex function Φ.

1. Let x1 be any point in P .

2. For t = 1, . . . , T

(a) Predict xt ∈ P
(b) Incur a loss ct · ℓt.
(c) Update xt+1/2 = argminx∈X ηx

∑t
j=1 ℓj + Φ(x).

(d) (Projection) xt+1 =Projection(xt+1/2).

The following proposition is known.

Lemma 1. For every u ∈ P , the algorithm enjoys the following regret guarantee

T∑
t=1

(xt − u) · ℓt ≤
T∑
t=1

(xt − xt−1) · ℓt +
1

η
(Φ(u)− Φ(x1))

Proof. The lemma is proved by induction on T . Assume that for T , we have

T∑
t=1

(xt − u) · ℓt ≤
T∑
t=1

(xt − xt+1) · ℓt

10
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and let us prove for T + 1. Since xT+1 = argminx∈X
∑T+1

t=0 x · ℓt we have:

T+1∑
t=0

xt · ℓt −
T+1∑
t=0

u · ℓt ≤
T+1∑
t=0

xt · ℓt −
T+1∑
t=0

xT+2 · ℓt

=
T∑
t=0

(xt · ℓt − xT+2 · ℓt) + xT+1 · ℓT+1 − xT+2 · ℓT+1

≤
T∑
t=0

(xt · ℓt − xt+1 · ℓt) + xT+1 · ℓT+1 − xT+2 · ℓT+1

=
T+1∑
t=0

(xt · ℓt − xt+1 · ℓt)

where in the first line we used the induction hypothesis for u = xT+2. We conclude that

T∑
t=1

xt · ℓt −
T∑
t=1

u · ℓt ≤
T∑
t=1

xt · ℓt −
T∑
t=1

xt+1 · ℓt − x0 · ℓ0 + u · ℓ0 + x0 · ℓ0 − x1 · ℓ0

=
T∑
t=1

xt · ℓt −
T∑
t=1

xt+1 · ℓt +
1

η
(Φ(u)− Φ(x1))

Theorem 2. For an appropriate choice of η, the expected 1-regret of the FTRL is O(
√
λDT )

where D = maxc,c′∈C ∥c− c′∥2.

Proof. Now recall that Φ(x) is a convex function and P is convex. Then by Taylor expansion

at xt+1, there exists a zt ∈ [xt,xt+1] for which

Φt(xt) = Φt(xt+1) + (xt − xt+1) · ∇Φt(xt+1) +
1

2
∥xt − xt+1∥2

≥ Φt(xt+1) +
1

2
∥xt − xt+1∥2

Recall our notation ∥y∥2 = y∇2Φt(z)y and it follows that ∥y∥2 = y∇2Φt(z)y. The inequality

above is true because xt is minimum of Φt over P . Thus,

∥xt − xt+1∥2 ≤ 2Φt(xt)− 2Φt(xt+1)

= 2(Φt−1(xt) + Φt−1(xt+1) + 2η(xt − xt+1) · ℓt

≤ 2η(xt − xt+1) · ℓt

11
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By the generalized Cauchy-Schwartz inequality,

(xt − xt+1) · ℓt ≤ ∥ℓt∥∗ · ∥xt − xt+1∥

≤ ∥ℓt∥∗ ·
√

2η(xt − xt+1) · ℓt

Shifting sides and squaring we get

(xt − xt+1) · ℓt ≤ 2η∥ℓt∥∗2

This together with the Lemma, summing over T periods we obtain

T∑
t=1

(xt − u) · ℓt ≤ 2ηλT +
1

η
[Φ(u)− Φ(x1)]

Choosing the optimal η, we obtain the Theorem.

Proposition 3. Let Φ(x) = 1
2
∥x∥22. Then, for an appropriate choice of η, the expected 1-regret

of the FTRL is O(D
√
nT ) where D = maxc,c′∈C ∥c− c′∥2.

Proposition 4. Let Φ(x) =
∑n

i=1 −xi lnxi. Then, for an appropriate choice of η, the expected

1-regret of the FTRL is O(
√
L∗D +D) where D = maxc∈C

∑T
t=1 c · ℓt .

2.3.3 FTRL over a Combinatorial Concept Class

Next we consider the online linear optimization problem over a combinatorial concept class C.

In this case, we let P be the convex hull of C and run Algorithm 1 to get predictions xt ∈ P
for all trials t. To get predictions from the concept class C, we need an external procedure

Decomposition.

Definition 2. The Decomposition for a concept class C is a randomized procedure that takes as

input a point x in the convex hull of C and outputs a point c ∈ C randomly so that E[c] = x.

So the FTRL for C is summarized in Algorithm 2. Since E[ct ·ℓt] = xt ·ℓt for all t, we have

the following regret bound.

Corollary 5. Let λ,D and η be the parameters defined in Proposition 2. Then the expected

1-regret of FTRL of Algorithm 2 is at most 2
√
2λDT .

12
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Figure 2.2: decomposition

Algorithm 2 FTRL over a combinatorial concept class C
1. For t = 1, . . . , T

(a) Run Algprithm 1 one step xt ∈ P
(b) Run Decomposition(xt) and get ct ∈ C randomly so that E[ct] = xt.

(c) Predict ctand incur a loss ct · ℓt.
(d) Feed ℓt to Algorithm 1 and resume it.

2.4 Follow the Perturbed Leader

A generic alternative approach for combinatorial online prediction is to convert offline approx-

imation algorithms for combinatorial optimization to online prediction algorithms. More pre-

cisely, we assume an offline α-approximation algorithm A for the linear optimization problem

OPT (C). The algorithm is supposed to take a loss vector ℓ ∈ [0, 1]n as input and outputs c ∈ C
such that c · ℓ ≤ αminc′∈C c

′ · ℓ. We assume that the player can use the offline algorithm A as

an oracle, and each call of the oracle can be done in a unit time.

The goal of the player is to minimize the α-regret:

T∑
t=1

ct · ℓt − αmin
c∈C

T∑
t=1

c · ℓt.

The α-regret measures the difference between cumulative loss of the player and that of an α-

approximate fixed concept in hindsight, which can be computed by the approximation algorithm

13
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A.

There are three main previous researches on the player’s strategy for combinatorial online

prediction problems where approximation algorithms are available.

Kalai and Vempala proposed Follow the perturbed leader (FPL [38] ). FPL is a simple

algorithm that adds random perturbations to the cumulative loss of each component, and then

predicts with the combinatorial object that has the minimum perturbed loss. FPL uses an exact

offline optimization algorithm (i.e., α = 1).

Algorithm 3 Follow the Perturbed Leader
Input: parameter ϵ > 0.

1. For t = 1, . . . , T

(a) Choose pt uniformly at random from the cube [0, 1
ϵ
]n

(b) use A(ℓ1 + ℓ2 + . . . ℓt−1 + pt).

Theorem 6. For an appropriate choice of ϵ, the expected 1-regret of the FPL is O(
√
n2DT )

where D = maxc,c′∈C ∥c− c′∥1.

Proof. First, we see by induction on T that using A(
∑t

i=1 ℓi) on trial t gives 0 regret,

T∑
t=1

A(
t∑

i=1

ℓi) · ℓt ≤ A(
T∑
t=1

ℓt) ·
T∑
t=1

ℓt

For T = 1, it is trivial. For the induction step from T to T + 1,

T+1∑
t=1

A(
t∑

i=1

ℓi) · ℓt =
T∑
t=1

A(
t∑

i=1

ℓi) · ℓt + A(
T+1∑
t=1

ℓt) · ℓT+1

≤ A(
T∑
t=1

ℓt) ·
T∑
t=1

ℓt + A(
T+1∑
t=1

ℓt) · ℓT+1

≤ A(
T+1∑
i=1

ℓt) ·
T∑
t=1

ℓt + A(
T+1∑
t=1

ℓt) · ℓT+1

= A(
T+1∑
i=1

ℓt) ·
T+1∑
t=1

ℓt

14
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Where in the third line we used the definition of algorithm A. Then, by using this inequality,

T+1∑
t=1

A(
t∑

i=1

ℓi + pt) · (ℓt + pt − pt−1) ≤ A(
T∑
t=1

ℓt + pT ) · (
T∑
t=1

ℓt + pT )

≤ A(
T∑
t=1

ℓt) · (
T∑
t=1

ℓt + pT )

= A(
T∑
t=1

ℓt) ·
T∑
t=1

ℓt +
T∑
t=1

(A(
T∑
t=1

ℓt) · (pt − pt−1)).

Rearranging we have that

T+1∑
t=1

A(
t∑

i=1

ℓi + pt) · ℓt

= A(
T∑
i=1

ℓi) ·
T∑
t=1

ℓt +
T∑
t=1

(A(
T∑
t=1

ℓt)− A(
T∑
t=1

ℓt + pt)) · (pt − pt−1)

≤ A(
T∑
i=1

ℓi) ·
T∑
t=1

ℓt +D
T∑
t=1

∥pt − pt−1∥∞

where D = maxc,c′∈C ∥c − c′∥1 and x · y ≤ ∥x∥1∥y∥∞. In terms of expected performance, it

wouldn’t matter whether we chose a new pt each trial or whether pt = p1 for all t > 1. Thus,

T+1∑
t=1

A(
t∑

i=1

ℓi + p1) · ℓt ≤ A(
T∑
t=1

ℓt) ·
T∑
t=1

ℓt +D∥p1∥∞

≤ A(
T∑
t=1

ℓt) ·
T∑
t=1

ℓt +
D

ϵ
.

Take a random point x ∈ [0, 1
ϵ
]n. If x /∈ [0, 1

ϵ
]n, then for some i, xi /∈ vi+ [0, 1

ϵ
], which happens

with probability at most ϵ∥vi∥ for any particular i. By the union bound, for any v ∈ Rn, the

cube [0, 1
ϵ
] and v + [0, 1

ϵ
] overlap in at least a (1− ϵ∥v∥1) fraction. Thus,

E[A(
t−1∑
i=1

ℓi + pt) · ℓt] ≤ E[A(
t∑

i=1

ℓi + pt) · ℓt] + (1− ϵ∥ℓt∥1)∥c∥2

Rearranging, summing over all T iterations, we have that

T∑
t=1

ct · ℓt −min
c∈C

T∑
t=1

c · ℓt ≤ ϵRT +
D

ϵ

15
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Choosing the optimal ϵ, we obtain the Theorem.
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Chapter 3

Combinatorial Online Prediction via
Metarounding

3.1 Introduction

Online prediction problems of combinatorial concepts arise in many situations such as routing,

ranking and scheduling. Examples of such combinatorial concepts include, s-t paths, set covers,

permutations and so on. In a combinatorial online prediction problem, we assume a finite set

C ⊆ Rn of combinatorial concepts, where each combinatorial concept is represented as a vector

in Rn. Then we consider the following protocol between the player and the adversary: For

each trial t = 1, ..., T , (i) the player predicts ct ∈ C, (ii) the adversary returns a loss vector

ℓt ∈ L ⊆ [0, 1]n, and (iii) the player incurs loss ct · ℓt. Typical goal of the player is to minimize

the regret
∑T

t=1 ct · ℓt −minc∈C
∑T

t=1 c · ℓt.
A straightforward approach for combinatorial online prediction problems is to apply Hedge [19].

Given a set of experts (i.e., prediction strategies or algorithms), Hedge is guaranteed to predict

almost as well as the best expert in hindsight. So, with each combinatorial concept c ∈ C as an

expert, Hedge can achieve a good regret bound 1. This approach, however, is inefficient in gen-

eral since there are exponentially many concepts in the class C and thus Hedge takes exponential

time at each trial.

There are many results on efficient combinatorial online prediction algorithms for individual

concepts such as k-sets [78], permutations [32, 83, 84], spanning trees [11] and so on. There

are some work on classes of combinatorial concepts [40, 11, 74].

A generic alternative approach for combinatorial online prediction is to convert offline ap-

1Note that Hedge is suboptimal in some cases (see [6] for the details ).
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proximation algorithms for combinatorial optimization to online prediction algorithms. More

precisely, we assume an offline α-approximation algorithm A for the linear optimization prob-

lem over C. The algorithm is supposed to take a loss vector ℓ ∈ [0, 1]n as input and outputs

c ∈ C such that c · ℓ ≤ αminc′∈C c
′ · ℓ. We assume that the player can use the offline algorithm

A as an oracle, and each call of the oracle can be done in a unit time.

The goal of the player is to minimize the α-regret:

T∑
t=1

ct · ℓt − αmin
c∈C

T∑
t=1

c · ℓt.

The α-regret measures the difference between cumulative loss of the player and that of an α-

approximate fixed concept in hindsight, which can be computed by the approximation algorithm

A.

There are two main previous researches on the player’s strategy for combinatorial online

prediction problems where approximation algorithms are available. First, Kalai and Vempala

proposed Follow the perturbed leader (FPL [38] ). FPL uses an exact offline optimization

algorithm (i.e., α = 1). The 1-regret bound of FPL is O(
√
T ) and its running time per trial is

O(n). FPL also works with α-approximation algorithms, however, its α-regret bound becomes

O(αT
√
T ) in general.

Kakade et al. proposed a different strategy using α-approximation algorithms, which achieves

O(α
√
T ) α-regret bound [37]. The running time of the algorithm is O(poly(n)T ). Unfortu-

nately, the time complexity at each trial depends on T , which is not desirable in practice.

In this thesis, we consider a slightly stronger assumption on the offline approximation algo-

rithms. We assume that the player has access to the following approximation algorithm A:

Assumption 1. Given ℓ ∈ [0, 1]n as input, A outputs c ∈ C such that c · ℓ ≤ αminx∈P x · ℓ
for some α > 1, where P is a convex set such that P ⊃ C, and linear optimization over P can

be done in polynomial time in n.

This assumption is motivated by the fact that many combinatorial optimization problems

have LP relaxation schemes. Then, our main result is stated as follows:

Theorem 7. Under Assumption 1, there exists a strategy of the player whose α-regret bound is

O((α + ε)
√
T ) and its running time is polynomial in n and 1/ε for any ε > 0.

The key notion of our result is metarounding, a robust version of rounding for relaxation-

based approximation schema. Originally, metarounding was proposed by Carr and Vempala for
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approximately solving the multicast congestion problem [9]. We will show that metarounding

is quite suitable for online prediction of combinatorial concepts as well.

One of our technical contribution is a new construction of metarounding using a boosting

algorithms. Boosting [68] is a technique to construct highly accurate hypothesis by combining

moderately accurate base hypotheses, which apparently seems nothing to do with metarounding.

But, in fact, robustifying rounding and boosting hypotheses share a common structure and they

are formulated as similar optimization problems.

Our algorithm is adaptive in the sense that it does not require the explicit knowledge on the

approximation ratio α, which is advantageous in practice. Our preliminary experiments show

that our algorithm indeed obtains better approximation ratios than theoretically guaranteed and

its running time is much faster than a method based on previous work of Carr and Vempala.

3.2 Preliminaries

Let Φ : Γ → R be a strictly convex function defined on a closed convex set Γ ⊆ Rn. The

Bregman divergence ∆Φ with respect to Φ is defined as ∆Φ(p, q) = Φ(p) − Φ(q) − ∇Φ(q) ·
(p− q).

The unnormalized relative entropy ∆(p, q) from q ∈ Rn
+ to p ∈ Rn

+ is defined as

∆(p, q) =
n∑

i=1

pi ln
pi
qi

+
n∑

i=1

qi −
n∑

i=1

pi.

It is known that ∆(p, q) ≥ 0 and ∆(p, q) = 0 if and only if p = q. Unnormalized relative

entropy is not symmetric in general, i.e., ∆(p, q) ̸= ∆(q,p) for some p, q ∈ Rn
+. In fact,

unnormalized relative entropy is a special case of Bregman divergence [10].

3.3 Main Structure

In this section, we describe the main structure of our algorithms for combinatorial online predic-

tion. Let P ⊂ Rn
+ such that (i) P is convex, (ii) P contains C, and (iii) linear optimization over

P can be done in polynomial time in n. For example, P might be represented a set of poly(n)

linear constraints. Then linear programming over P can be solved in polynomial time, say, by

using interior point methods. Also, P might be described as linear constraints and semidefi-

nite constraints. Then linear optimization over P belongs to semidefinite programs, which are
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solvable efficiently.

Our algorithms consist of two components, an online prediction algorithm and a metaround-

ing algorithm. At each trial t, our online prediction algorithm predict xt not in C, but in a “re-

laxed”space P . Then the metarounding algorithm chooses ct ∈ C by “rounding” xt, where,

roughly speaking, ct is close to xt. Then, the regret of the algorithm would be close to that of

online prediction algorithms over P . We give a formal definition of metarounding algorithms

as follows.

Definition 3. An algorithm A is a metarounding algorithm if A is given x ∈ P as input and

outputs c ∈ C such that for any ℓ ∈ L ⊆ [0, 1]n, E[c · ℓ] ≤ αx · ℓ, where the expectation is

taken w.r.t. the internal randomness of the algorithm A.

The notion of metarounding was first proposed by Carr and Vempala [9]. Given an α-

approximation algorithm with relaxation, which requires ℓ ∈ L = [0, 1]n and outputs c · ℓ ≤
αminx∈P x · ℓ, they show how to construct a metarounding algorithm by using the approxima-

tion algorithm as an oracle. We will propose more efficient methods to construct a metarounding

algorithm from the approximation algorithm.

A related notion is proposed by Kalai and Vempala [38]. An algorithm has α-pointwise

approximation property if, given any ℓ ∈ L, the algorithm outputs c ∈ C such that ci ≤
αc∗i for i = 1, . . . , n, where c∗ = argminc′∈C c

′ · ℓ. Kalai and Vempala showed that FPL

with approximation algorithm with this property can achieve good α-regret bounds [38]. In

particular, when L = [0, 1]n, the notion of metarounding turns out to be equivalent with α-

pointwise approximation property in some sense (shown in Proposition 4). But, in general cases

where L ⊂ [0, 1]n, both notions seem to be incomparable with each other. Further, as we will

show, the notion of metarounding is applicable more widely than the point-wise approximation

property.

We show that any online prediction algorithm A whose prediction space is P can be com-

bined with a metarounding algorithm. At each trial t, the combined algorithm gets the predic-

tion pt of the precition algorithm A, gives the prediction pt to the metarounding algorithm as

an input, and get the combinatrial concept ct, which is used as the prediction of the combined

algorithm.

Proposition 8. Suppose that there exists an online prediction algorithm A whose prediction pt

at each trial t belongs to P and its 1-regret w.r.t. P is bounded by RegA. Then, the α-regret of

A combined with a metarounding algorithm w.r.t. the concept class C is at most αRegA.
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Proof. Assume that the algorithm A with a metarounding algorithm predicts ct at each trial t.

Then,

T∑
t=1

ct · ℓt ≤ α

T∑
t=1

pt · ℓt (by definition of metarounding)

≤ αmin
p∈P

T∑
t=1

p · ℓt + αRegA (by definition of algorithm A)

≤ αmin
c∈C

T∑
t=1

c · ℓt + αRegA (since C ⊆ P).

As corollaries, combined with a metarounding algorithm, Follow the Regularized Leader(FTRL,

e.g., [30]) and FPL achieve good α-regret bounds. In particular, FTRL generalizes popular al-

gorithms such as Hedge [19] and OGD [86], respectively. The details of the algorithms are

shown in Algorithm 5 and 4, respectively.

Corollary 9. Let λ = maxt,x∈P ℓTt [∇2Φ(x)]−1ℓt and D = maxx∈P Φ(x)−Φ(x1). Then, with

an appropriate choice of η, the α-regret of FTRL(η) with Metarounding is O(α
√
λDT ).

Corollary 10. Let D ≥ |c − c′|1 for all c, c′ ∈ C. Then, with an appropriate choice of η, the

α-regret of FPL(η) with Metarounding is O(αD
√
nT ).

Algorithm 4 FTRL(η) with Metarounding

1. Let x1 ∈ P be any initial point.

2. For t = 1, . . . , T

(a) Run the metarounding with xt and get ct ∈ C.

(b) Predict ct and incur loss c · ℓt.
(c) Update xt+1/2 = argminx∈P ηx ·

∑t
j=1 ℓj + Φ(x).

(d) (Projection) Let xt+1 = argminx∈P ∆Φ(x,xt+1/2).

3.4 Examples and Applications of Metarounding

We show some examples and applications of metarounding.
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Algorithm 5 FPL(η) with Metarounding

1. Let ℓ0 = 0.

2. For t = 1, . . . , T

(a) Solve the linear program over P: xt = argminx∈P x ·
(∑t−1

j=0 ℓj + pt

)
, where pt

is a uniform random vector in [0, 1/η]n.

(b) Run the metarounding algorithm with xt and get ct ∈ C.

(c) Predict ct ∈ C and incur the loss ct · ℓt.

3.4.1 Online Set Cover

Let S be a finite set and U ⊆ 2S be a fixed set of the subsets of S. A cover is a subset U ′ of U

that satisfies
∪

u∈U ′ u = S. The online set cover problem is stated as follows: For each trial t,

(i) the player predicts a cover Ut ⊆ U , (ii) the adversary returns weights ℓt ∈ [0, 1]U , and (iii)

the player incurs loss
∑

u∈Ut
ℓt(u). The problem is a combinatorial online prediction problem

with the concept class C = {c ∈ {0, 1}U | {u ∈ U | c(u) = 1} is a cover} and the loss vector

space L = [0, 1]U .

The corresponding offline optimization problem is the weighted minimum set cover prob-

lem. The problem has an O(log |S|) approximation algorithm using an LP-relaxation and a

randomized metarounding [73]. The relaxed space P ⊆ [0, 1]U is described as the set of fea-

sible solutions x ∈ [0, 1]U that satisfies the following linear constraints:
∑

u∈U :s∈u x(u) ≥ 1

(∀s ∈ S). The metarounding is simple: Given a feasible solution x ∈ P as input, set c(u) = 1

with probability x(u) and c(u) = 0 with probability 1 − x(u). It is shown that the metaround-

ing has approximation factor O(log |S|). That is, for any loss vector ℓ ∈ [0, 1]U , it holds that

E[c · ℓ] = O(log |S|)x · ℓ.

3.4.2 Online MAX-SAT

Let {C1, C2, . . . , Cm} be a fixed set of disjunctive clauses over a set of k Boolean variables.

Each clause Ci is a disjunction of some literals, where a literal is either a Boolean variable or its

negation. The online MAX-SAT problem is the following: For each trial t, (i) the player predicts

an assignment at ∈ {0, 1}k to the variables, (ii) the adversary returns weights ℓt ∈ [0, 1]m for

the clauses, and (iii) the player gets reward defined by the sum of weights ℓt,i over the clauses Ci

satisfied by at. The problem is the reward version of a combinatorial online prediction problem
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with the concept class C and reward vector space L as described below. The class C consists of

vectors in {0, 1}n for n = k+m such that the first k bit vector a represents the truth assignment

and the last m bit vector b represents the truth values of the clauses for the assignment a. That

is, for each 1 ≤ i ≤ m, bi = 1 if and only if Ci is satisfied by a. Note that the last m bits b are

determined by the first k bits a. The reward space L consists of vectors 0kℓ where the first k

bits are 0 and ℓ ∈ [0, 1]m represents the weights. So, the dot product of a concept c = ab and

a reward 0kℓ becomes b · ℓ, which is the reward of the truth assignment a for the weights ℓ, as

required.

The corresponding offline optimization problem is the weighted MAX-SAT problem. The

problem has an 3/4 approximation algorithm using an LP-relaxation and a randomized metaround-

ing [27]. The relaxed space P ⊆ [0, 1]n is described as the set of feasible solutions x = yz ∈
[0, 1]n that satisfies the following linear constraints:

∑
j∈S+

i
yj +

∑
j∈S−

i
(1 − yj) ≥ zi (1 ≤

∀i ≤ m), where S+
i (S−

i , resp.) denotes the set of Boolean variables occurring nonnegated

(negated, resp.) in Ci. The metarounding only computes the first k bit vector a from a relaxed

solution y ∈ [0, 1]k in the following way: Let d be the flip of a fair coin. If d = 0, then choose

a from {0, 1}n uniformly at random, and if d = 1, then for each 1 ≤ j ≤ k, set aj = 1 with

probability yj and set aj = 0 with probability 1 − yj . Note again that the last m bit vector b is

determined by a. It is shown that the metarounding has approximation factor 3/4. That is, for

any weight vector ℓ ∈ [0, 1]m, it holds that E[b · ℓ] ≥ (3/4)y · ℓ.

3.4.3 Other Examples and Applications

Other applications include the rank aggregation problem for which metarounding algorithms

exist [3, 1]. An online version of the problem was investigated in [84]. Interestingly enough, in

this case, L ̸= [0, 1]n, for which the pointwise property does not hold.

As far as we know, all rounding methods used in relaxation-based approximation algo-

rithms are metarounding as well. In general, however, there might be concept classes C for

which metarounding algorithms are not known and only α-approximation algorithms are avail-

able. Also, one might prefer approximation algorithms with better approximation ratios to

metarounding algorithms. In fact, in our experiments, we show a modification of a set covering

algorithm, which is not known to metarounding but has better approximation ratio. In the next

section, we show a construction of metarounding using α-approximation algorithms.
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3.5 Construction of Metarounding Algorithms

In this section, we describe our metarounding algorithms for L = [0.1]n using an α-approximation

algorithm with the relaxation scheme in Assumption 1 as an oracle. Recall that the approxima-

tion algorithm, given ℓ ∈ L, is supposed to output c ∈ C such that c · ℓ ≤ αminx∈P x · ℓ. The

following characterization of metarounding for L = [0, 1]n is useful.

Proposition 11. Suppose that L = [0, 1]n. A is a metarounding algorithm if and only if given

input x ∈ P , A outputs c ∈ C such E[ci] ≤ αxi for each i = 1, . . . , n.

Proof. Suppose that A is a metarounding algorithm. Then, for ℓ ∈ [0, 1]n such that ℓi = 1 for

some i and ℓj = 0 for j ̸= i, it must be that E[ci] ≤ αxi. On the other hand, If E[ci] ≤ αxi, it

trivially follows that A is a metarounding algorithm.

Due to Proposition 11, the problem of constructing a metarounding algorithm is reduced to

finding a convex combination λ over C such that
∑

c∈C λcci ≤ αxi (i = 1, . . . , n). That is, by

choosing a combinatorial concept c ∈ C randomly according to the convex combination λ, we

get that E[c · ℓ] ≤ αx · ℓ for any ℓ ∈ [0, 1]n. Note that the size of C is exponentially large

w.r.t. n in general. Therefore, a naive linear programming formulation over C to find the convex

combination λ would take exponential time.

As noted in the previous section, the first metarounding algorithm was proposed by Carr and

Vempala [9]. They formulate a linear program over C (so the size of the problem could be expo-

nential!). Yet, surprisingly, they showed the problem is solvable by the ellipsoid method (see,

e.g, [69]) in polynomial time.

Their theoretical result is quite beautiful, however, might not be practical in the following

reasons. First, the ellipsoid method is often much slower in practice, compared to the sim-

plex method or interior point methods. The number of iterations of the ellipsoid method is

O(n2 ln R
ε
), where R is the radius of the initial ellipsoid which contains the feasible region and

ε is a precision parameter 2. Its time complexity per iteration is O(n2), under the assumption

that the running time of the approximation algorithm is constant. The O(n4) dependence of its

time complexity makes the algorithm impractical.

Second, the ellipsoid method requires the knowledge about R which is sometimes not at-

tainable in advance. Setting sufficiently large R would work, but could result in unnecessary

2In addition, to achieve this bound, we need to allow the ellipsoid method to violate feasible constraints by
amount of ε.
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computation. A more detailed treatment of R and ε for rational linear programs is found in,

e.g., Schrijver’s book [69].

3.5.1 Our formulation

Our formulation is a modification of the original formulation by Carr and Vempala with an

additional advantage. The advantage is that our formulation does not require the knowledge

of the approximation ratio α of the rounding algorithm. This property is beneficial since, as

is often the case, theoretical bounds of the approximation ratio are loose. In other words, our

formulation can take advantage of such situations. Our formulation is in problem (3.1). By

linear programming duality, the equivalent dual problem turns out to be problem (3.2).

min
λ,β

β (3.1)

s.t.
∑
c∈C

λcci ≤ βxi (i = 1, . . . , n),∑
c∈C

λc ≥ 1,

λc ≥ 0 (c ∈ C).

max
ℓ,γ

γ (3.2)

s.t. c · ℓ ≥ γ (c ∈ C),
ℓ · x ≤ 1,

ℓ ≥ 0, γ ≥ 0.

Lemma 2. Suppose that there exists a rounding algorithm which, given input x ∈ P , outputs

c ∈ C s.t. c · ℓ ≤ αx · ℓ for any ℓ ∈ [0, 1]n. Then, the optimum of problem (3.1) is at most α.

Proof. We prove this lemma by contradiction. Let (λ∗, β∗) and (ℓ∗, γ∗) be optimal solutions

of problems (3.1) and (3.2), respectively. Note that, by duality of linear programs, β∗ = γ∗.

Suppose that β∗ = γ∗ > α. Then, by using the rounding algorithm with input ℓ∗, the algorithm

outputs some c ∈ C such that c·ℓ∗ ≤ αx·ℓ∗ ≤ α. On the other hand, this violates the constraint

that c · ℓ∗ ≥ γ∗ > α. So, it contradicts the assumption that (ℓ∗, γ∗) is an optimal solution.

3.5.2 Metarounding by Boosting

Now we are ready to describe our algorithm for constructing metarounding. The dual problem

(3.2), roughly speaking, can be viewed as the problem of finding a “difficult” loss vector ℓ

such that c · ℓ is large for each c ∈ C under some constraints. Here we have access to an α-

approximation algorithm with relaxation.Our key observation is that the problem has a similar

structure as boosting (e.g., [68]): The problem of boosting is to find a “difficult” distribution

over data such for which any base hypotheses (weak hypotheses) have low weighted accuracy,
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where the booster has access to weak learner which produce a hypothesis with reasonably small

error w.r.t. a given distribution over data.

In fact, we will prove that a boosting-type algorithm works for constructing a metaround-

ing algorithm. Our algorithm, Metarounding by Boosting (MBB), is based on the boosting

algorithm SoftBoost [77]. Note that a straightforward application of SoftBoost does not work

for our metarounding problem. SoftBoost is applicable for an entropy-maximizing problem of

probability distributions with constraints, while our problem deals with non-negative vectors

with constraints.

For the time being, we assume that we know an upper bound L on Lε, defined as Lε =

max{∥ℓ∥1 | ℓ is an optimal solution of the dual problem (3.2) over C ′ ⊆ C whose solution is

at most α + ε. }. Lε is the constant determined by P , C and ε. Later, we will explain how to

remove this assumption.

The description of MBB is given in Algorithm 6. MBB works in iterations. At each iteration

k, MBB solves a modified subproblem of the dual problem (3.2), which is a convex optimization

problem. The objective is unnormalized relative entropy from the initial vector ℓ1. Note that,

by definition of unnormalized relative entropy, any feasible solution satisfies ℓ ≥ 0. So, we can

remove the positivity constraint.

Algorithm 6 Metarounding by Boosting (MBB)
Input: x ∈ P , L > 0.

1. Let ℓ1 = 1
n
1 and let C1 = ∅.

2. For k = 1, . . . ,

(a) Run the approximation algorithm A with input ℓk and get ck ∈ C. Let Ck+1 =
Ck ∪ {ck} and let γ̂k+1 = maxj=1,...,k ck · ℓk + ε.

(b) Update ℓk+1 as

ℓk+1 =argmin
ℓ

∆(ℓ, ℓ1) (3.3)

sub.to c · ℓ ≥ γ̂t+1 (c ∈ Ct+1), ℓ · x ≤ 1, ℓ · 1 ≤ L.

(c) If problem (3.3) is infeasible, let K = k + 1 and break;

3. Solve problem (3.2) for the reduced set CK and output its Lagrange multipliers λ.
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Proposition 12. For A,B ≥ 0,

A ln
A

B
− A+B ≥ 1

2max{A,B}
(A−B)2.

Proof. Let f(x) = x ln x
B
− x+ B. By using Taylor expansion at x = B, there exists some B′

such that

f(x) = f(B) + f ′(B)(x−B) +
f ′′(B′)

2
(x−B)2 =

1

2B′ (x−B)2,

where B′ satisfies x < B′ < B or B < B′ < x. Since B′ ≤ max{x,B}, we have

f(x) ≥ 1

2max{x,B}
(x−B)2.

By letting x = A, we complete the proof.

Lemma 3. For each k = 1, . . . , K − 1, ∆(ℓk+1, ℓ1)−∆(ℓk, ℓ1) ≥ ∆(ℓk+1, ℓk).

Proof. Let Dk be the feasible set in problem (3.3) at k-th iteration. Observe that γ̂k is non-

decreasing because of max function. So, we have Dk+1 ⊆ Dk. Now, by Generalized Pythagorean

Theorem for Bregman divergences (see, e.g., [10]), ∆(ℓk+1, ℓ1) ≥ ∆(ℓk, ℓ1)+∆(ℓk+1, ℓk).

Let C = max{∥c∥∞ | c ∈ C}. Then the following lemma holds.

Lemma 4. ∆(ℓt+1, ℓt) ≥ ε2

8LC2 .

Proof. Let c̄k,i = ck,i/C and Lk =
∑n

i=1 ℓk,i. Then

∆(ℓk+1, ℓk) =
∑
i

ℓk+1,i ln
ℓk+1,i

ℓk,i
− Lk+1 + Lk.

By decomposing ℓj,i = ℓj,ic̄i + ℓj,i(1 − c̄i) for j = k, k + 1, and and then applying Log-Sum

inequality (e.g., [18]), the r. h. s. of the inequality above is lower bounded by

p ln
p

q
+ (P − p) ln

P − p

Q− q
− P +Q,

where p = c̄ · ℓt+1 and q = c̄ · ℓt, P = Lt+1, and Q = Lt, respectively. Then,

p ln
p

q
+ (P − p) ln

P − p

Q− q
− P +Q = p ln

p/P

q/Q

P

Q
+ (P − p) ln

1− p/P

1− q/Q

P

Q

= P∆2(p/P, q/Q) + P ln
P

Q
,
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where ∆2 is called binary relative entropy, i.e., ∆2(a, b) = a ln a
b
+(1− a) ln 1−a

1−b
. By Pinsker’s

inequality, ∆2(a, b) ≥ (a− b)2/2 (see,e.g., [77]). Then, by Proposition 12, the first term of the

lower bound is further bounded below as

P ln
P

Q
− P +Q+

P

2

(
p

P
− q

Q

)2

≥ (P −Q)2

2max{P,Q}
+

P

2

(
p

P
− q

Q

)2

. (3.4)

Then we consider two cases. Suppose that (i) P
Q
q ≥ q + ε

2C
. This assumption is equivalent

to the condition that P ≥ Q+ εQ
2qC

. So, the first term in (3.4) is bounded below by

1

2max{P,Q}

(
εQ

2qC

)2

≥ ε2

8LC2
,

where in the last inequality holds since q ≤ Q and P,Q ≤ L.

Otherwise, it holds that (ii) P
Q
q ≤ q + ε

2C
. This condition implies that q

Q
+ ε

2PC
≤ p

P
. So,

the second term is at least P
2

(
ε

2PC

)2
= ε2

8PC2 ≥ ε2

8LC2 .

Proposition 13. For each k = 1, . . . , K − 1, ∆(ℓk, ℓ1) ≤ O(L lnLn).

Proof.

∆(ℓ, ℓ1) =
n∑
i

ℓi ln
ℓi
L

L

1/n
− L+ 1 ≤

n∑
i

ℓi ln
ℓi
L

+ L lnLn+ 1 ≤ L lnLn+ 1.

where the inequalities hold since
∑

i ℓi ≤ L and ln ℓi
L
≤ 0.

Theorem 14. 1. Given a point x ∈ P , MBB outputs a convex combination λ over C such

that ∑
c∈C

λcci ≤ (α + ε)xi (i = 1, . . . , n).

2. MBB terminates after

K ≤ 8L2C2 lnLn

ε2
+ 2

iterations.

Proof. (i) The algorithm ensures that the problem (3.3) over CK is infeasible. So, if we solve the

dual problem (3.2) with the restricted set CK , its solution (ℓ∗K , γ
∗
K) must satisfy that γ∗

K ≤ γ̂K .

Note that, by the property of the approximation algorithm,

γ̂K = max
k=1,...,K

ck · ℓk + ε ≤ α min
x′∈P

x′ · ℓk∗ + ε ≤ αx · ℓk∗ + ε ≤ α + ε,
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where k∗ = argmaxk=1,...,K ck · ℓk. Finally, the corresponding primal problem over CK has an

optimal solution (λ∗
K , β

∗
K) such that β∗

K = γ∗
K by duality, which completes the proof of the first

claim.

(ii)By Lemma 3 for k = 1, . . . , K − 2 and summing them up, we have

∆(ℓK−1, ℓ1)−∆(ℓ2, ℓ1) ≥
K−2∑
k=1

(∆(ℓk+1, ℓk)) . (3.5)

By Lemma 4, the right hand side of (3.5) is bounded as

K−2∑
k=1

(∆(ℓk+1, ℓk)) ≥ (K − 2)
ε2

8LC2
. (3.6)

Combining Proposition 13 and inequalities (3.5) and (3.6), we have

(K − 2)
ε2

8LC2
≤ ∆(ℓK−1, ℓ1)−∆(ℓ2, ℓ1) ≤ ∆(ℓK−1, ℓ1),

where the last inequality holds since the unnormalized relative entropy is non-negative. Rear-

ranging this inequality, we complete the proof.

How to remove the assumption on L So far, we are assuming that Lε ≤ L for some L > 1

which is known. We can remove this assumption by a simple doubling method. Let Lm = 2m−1.

At each trial m = 1, . . . , we run MBB with L = Lm. Then, we check if the 1-norm of the dual

solution of problem (3.2) over CK is less than Lm. If the 1-norm is strictly less than Lm, we are

done. Otherwise, we let L = Lm+1 and try this process again. It can be easily verified that the

total number of iteration is still O(L2
εC

2 ln(Lεn)/ε
2).

Time complexity of MBB per iteration is that of convex and linear programs with n variables

and O(lnn/ε2) linear constraints, which are solved in polynomial time in n and 1/ε. Later, we

show that MBB is much faster than the metarounding based on the ellipsoid method in the next

section.

3.6 Experiments

We compare performances of two metarounding algorithms, that of the ellipsoid method [9] and

MBB on artificial data. Our experiment is performed on a server with four cores of Intel Xeon

CPU X5560 2.80GHz and a memory of 198G bytes. We implement programs using Matlab with
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Optimization Toolbox. We solve the convex program involved in MBB by sequential quadratic

programming.

We generate an artificial data set of set cover instances in the following way. The data set

consists of m items and n sets of items. We first add random perturbation to the instances by

setting so that for each instance i and each set j, the set j includes the instance i with probability

p. Then we fix k “relevant” sets which covers whole the instances. For each instance i, we

randomly choose a set among k relevant sets, so that the set covers the instance i. In our

experiments, we set m = 100, k = 0.2n, p = 0.2, n = 10, 50, 100, 200, 500, 1000, respectively.

We use the simple LP-relaxation based set covering algorithm using deterministic rounding

by Hochbaum [34, 80]. The algorithm has a f -approximation guarantee for the LP solution,

where f = maxi=1,...,m fi and fi is the number of sets covering the instance i. The algorithm

works as follows. First, the set covering problem is formulated as an integer program. Then, the

algorithm solves the LP-relaxation of the problem. Finally, the algorithm rounds the solution

p of LP and get the integer solution x by setting xi = 1 if and only if pi ≥ 1/f . Note that,

one can show that this rounding process is indeed a metarounding. So, we also consider a

modification of the algorithm which does not seem to be a metarounding. Our modification is

simple. After obtaining the integer solution x, we sort each element xi in the descending order

of its associated loss ℓi and get x̃. Then, for each j = 1, . . . , n, we remove the set j from x̃ as

long as the modified vector still represents a set cover.

We generate an internal point x ∈ P in the following way. For a random cost vector

ℓ ∈ [0, 1]n, we solve the offline set cover problem by using the set covering algorithm above

and get a cover c ∈ C. We repeat this process for 20 iterations and get the average vector of

obtained covers.

Given an internal point x ∈ P , we run metarounding algorithms. For the ellipsoid method,

we set R = n2 and ε = 0.01. For MBB, we set ε = 0.01 as well.

Fig. 3.1 shows the computation times (left) and numbers of iterations (right) of metaround-

ing algorithms when we increase the number n of sets. As can be seen in Fig. 3.1, MBB runs

about 102 or 103 times faster than the ellipsoid method. Further, since MBB runs in much fewer

iterations, MBB tends to produce much more sparse convex combination of concepts than the

ellipsoid method.

Then, we compare the actual approximation ratio β obtained by metarounding algorithms.

For the same data sets, we plot the approximation ratios in Fig. 3.2. In addition, we also plot the

approximation ratio obtained by MBB with our modified set covering algorithm. MBB achieves
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Figure 3.1: Computation times (left, CPU time in seconds) and numbers of iterations (right) of
metarounding algorithms.

better approximation ratios than the ellipsoid method. By using the modified algorithm, MBB

further gains better ratios than MBB with Hochbaum’s original algorithm. Therefore MBB can

take advantage of the situation where actual the approximation ratio of the algorithm is better

than theoretically guaranteed.

3.7 Conclusion

In this thesis, we proposed algorithms for online combinatorial prediction using metarounding

algorithms. Also, we showed an efficient construction method of metarounding algorithms us-

ing a relaxation-based approximation algorithm as an oracle. Our algorithm is adaptive in the

sense that it does not require the explicit knowledge on the approximation ratio of the approxi-

mation algorithm. Also, computation time of our algorithms at each trial do not depend on T ,

unlike previous methods.
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Figure 3.2: Actual approximation ratios obtained by metarounding algorithms, the ellipsoid
method and MBB with Hochbaum’s original set covering algorithm and MBB with our modified
set covering algorithm.
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Chapter 4

Online Combinatorial Optimization with
Multiple Projections and Its Application to
Scheduling Problem

4.1 Introduction

We study online linear optimization problems over combinatorial concept classes C ⊆ Rn that

are defined in some combinatorial ways. Examples of such classes are s-t paths in a given

graph, spanning trees of a given graph, permutations over a given set, truth assignments for a

given CNF formula, set covers of a given subset family, and so on. Typically, those concept

classes are finite but contain exponentially many concepts. The problem for a concept class C is

described as follows: For each trial t = 1, ..., T , (i) the player guesses ct ∈ C, (ii) the adversary

returns a loss vector ℓt ∈ [0, 1]n, and (iii) the player incurs loss ct · ℓt. A typical goal of the

player is to minimize the regret:
∑T

t=1 ct · ℓt −minc∈C
∑T

t=1 c · ℓt. The goal of the player is to

minimize the α-regret for some small α ≥ 1:

T∑
t=1

ct · ℓt − αmin
c∈C

T∑
t=1

c · ℓt.

The α-regret measures difference between the cumulative loss of the player and α times that

of the best fixed concept in hindsight. In particular, when α = 1, 1-regret is sometimes called

regret. The second term can be viewed as the cumulative loss of the fixed concept given by an

α-approximation (offline) algorithm which takes
∑T

t=1 ℓt as input and returns c ∈ C such that

c · (
∑T

t=1 ℓt) ≤ αminc∗∈C c
∗(
∑T

t=1 ℓt). In other words, the goal of the player is to predict as
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well as the best α-approximation offline algorithm in hindsight.

One of main approaches in the combinatorial online prediction is to relax the problem to

the online convex optimization, where the decision set is a continuous convex set Relax(C)
(typically, the convex hull of C) rather than a discrete set, and then to round the “fractional” real

prediction to a discrete combinatorial concept. There are many results following this approach,

e.g., for k-sets [78], permutations [32, 83], s-t paths [40], spanning trees [74] and so on. This

approach consists of three components: (i) an online prediction algorithm for real vectors (ii)

projection onto the relaxed domain, and (iii) rounding method from real vectors to combinatorial

concepts. For (i), we can employ many existing algorithms for the online convex optimization

such as the OGD [86] and the Hedge [19] and etc. For (ii) and (iii), we need to design specific

algorithms for each class of combinatorial concepts 1 In particular, the projection step onto

the relaxed set Relax(C) is computationally cumbersome in general, since the constraints are

sometimes exponentially many. Further, if we consider a set of combinatorial concepts C with

constraints, C ∩A, where A is a set of constraints, the underlying projection onto Relax(C)∩A
become harder to compute.

Our technical contributions have two folds. First, we propose an alternative framework

for the relaxation-rounding approach for the combinatorial online prediction. Our framework

allows multiple projections onto a series of sets Relax(C) ∩ A1 ⊇ Relax(C) ∩ A2, , ...,⊇
Relax(C) ∩ A. Whereas the last projection is not necessarily the same as the direct projec-

tion, we show essentially the same regret bounds with those with a single projection. So, our

framework is useful when a series of sequential projections are computationally advantageous

to a single direct projection.

Second, we exhibit a case where the multiple projections are indeed useful in a problem of

online scheduling of n jobs with a single machine under precedence constraints. In the problem,

we devise double projections to the sets of interest, where there is no efficient algorithm known

for the direct projection. More precisely, we propose an algorithm for the online job scheduling

with α-regret O(n2
√
T ) for α = 2− 2/(n+ 1). The time complexity of the algorithm per trial

is O(n4). Further, we show that a lower bound of the 1-regret is Ω(n2
√
T ).

In addition, we prove that there is no polynomial time algorithm with α-regret poly(n,m)
√
T

with α < 2−2/(n+1) unless there exists a randomized approximation algorithm with approx-

imation α < 2− 2/(n+ 1) for the corresponding offline problem. Thus far, the state-of-the-art

1As an exception, Suehiro et al. proposed generic projection and rounding algorithms for several classes of
combinatorial concepts parameterized by submodular functions [74].
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approximation algorithms have an approximation ratio 2 − 2/(n + 1), and it is a longstanding

open problem to find an approximation algorithm with a better ratio [82]. It has been determined

that there is no polynomial-time (1+ε)-approximation algorithm (PTAS) for any constant ε > 0

under some standard assumption of the complexity theory [5]. Therefore, the regret bound is

optimal among any polynomial algorithms unless there exists a better approximation algorithm

for the offline problem.

4.1.1 Online job scheduling with precedence constraints

We consider an online job scheduling problem on a single machine with precedence constraints

under uncertainty. Each day t = 1, . . . , T , we determine a total order of n fixed jobs satisfy-

ing some prefixed precedence constraints. Then, after processing all n jobs according to the

schedule, the processing time of each job is revealed. The goal is to minimize the sum of the

completion times over all jobs and all T days under fixed precedence constraints, where the

completion time of job i at day t is the sum of processing times of all jobs prior to i and the

processing time of job i.

Now, let us formulate the problem in a formal way. A permutation σ is a bijection from [n]

to [n]. Another representation of a permutation σ over the set [n] is a vector in [n]n, defined as

σ = (σ(1), . . . , σ(n)), which corresponds to σ. For example, (3, 2, 1, 4) is a representation of a

permutation for n = 4. The vector representation of permutations is convenient, since the sum

of the completion times of the jobs according to some permutation σ is expressed as the inner

product σ · ℓ, where ℓ is the vector consisting of the processing times of the jobs. For example,

there are 4 jobs to be processed according to the order 4, 1, 2, 3. Each processing time is given

as ℓ = (ℓ1, ℓ2, ℓ3, ℓ4). The completion times of jobs i = 4, 1, 2, 3 are ℓ4, ℓ4+ ℓ1, ℓ4+ ℓ1+ ℓ2, and

ℓ4 + ℓ1 + ℓ2 + ℓ3, respectively, and the sum of completion times is 4ℓ4 + 3ℓ1 + 2ℓ2 + ℓ3. Note

that the completion time exactly corresponds to σ ·ℓ, the inner product of ℓ and the permutation

vector σ = (3, 2, 1, 4). Here, component σi of the permutation σ represents the priority of job

i.

Let Sn be the set of all permutations over [n], i.e., Sn = {σ ∈ [n]n| σ is a permutation over

[n]}. In particular, the convex hull of all permutations is called the permutahedron, denoted as

Pn. Figure 4.1 illustrates the fourth-order permutahedron P4.

The set A of precedence constraints is given as A = {(ik, jk) ∈ [n] × [n] | ik ̸= jk, k =

1, . . . ,m}, meaning that object ik is preferred to object jk. The set A induces the set defined by
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Figure 4.1: the fourth-order permutahedron P4.

the linear constraints Precons(A) = {p ∈ Rn
+ | pi ≥ pj for (i, j) ∈ A}. We further assume

that there exists a linear ordering consistent with A. In other words, we assume there to exist a

permutation σ ∈ Sn ∩ Precons(A).

Figure 4.2: (i) P3; (ii) S3 ∩ Precons(A)

The online job scheduling problem can be formulated as the following online linear opti-

mization problem over Sn ∩ Precons(A). For each trial t = 1, . . . , T , (i) the player predicts a

permutation σt ∈ Sn∩Precons(A), (ii) the adversary returns a loss vector ℓt ∈ [0, 1]n, and (iii)

the player incurs loss σt · ℓt. The goal of the player is to minimize the α-regret for some small

α ≥ 1:

α-Regret =
T∑
t=1

σt · ℓt − α min
σ∈Sn∩Precons(A)

T∑
t=1

σ · ℓt.

We will use the notion of the permutahedron. The permutahedron Pn is the convex hull of

the set of permutations Sn. It is known that Pn can be represented as the set of points p ∈ Rn
+
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satisfying
∑

i∈S pi ≤
∑|S|

i=1(n+1− i) for any S ⊂ [n], and
∑n

i=1 pi = n(n+ 1)/2. For further

discussion of the permutahedron, see, e.g., [85, 21].

4.1.2 Related Work

Other approaches in the combinatorial online prediciton

A naive approach for combinatorial online prediction problems is to apply the Hedge algo-

rithm [19]. Given a set of experts (i.e., prediction strategies or algorithms), Hedge algorithm

is shown to predict almost as well as the best expert in hindsight. Therefore, with each com-

binatorial concept c ∈ C as an expert, Hedge algorithm achieves low regret. This approach,

however, is inefficient in general since there are exponentially many concepts in the class C and

thus the Hedge algorithm takes exponential time at each trial. Yet, for some classes of concepts,

polynomial time simulations of the Hedge are possible (see, e.g., [76] for s-t paths and [11] for

permutations, spanning trees and so on).

The other main approach for combinatorial online prediction is to convert offline approxima-

tion algorithms for combinatorial optimization to online prediction algorithms. More precisely,

we assume an offline α-approximation algorithm A for the linear optimization problem over

C. There are three main previous researches on the player’s strategy for combinatorial online

prediction problems where approximation algorithms are available. First, Kalai and Vempala

proposed Follow the perturbed leader (FPL [38]). The 1-regret bound of FPL is O(
√
T ) and its

running time per trial is O(n) when a call of the offline algorithm is done in a unit time. FPL

also works with α-approximation algorithms, however, its α-regret bound becomes O(αT
√
T )

in general. Second, Kakade et al. proposed a different strategy using α-approximation algo-

rithms, which achieves O(α
√
T ) α-regret bound [37]. The running time of the algorithm is

O(poly(n)T ). Unfortunately, the time complexity at each trial depends on T , which is not de-

sirable in practice. Finally, Fujita et al. [24] show that if the approximation algorithm is based

on relaxation scheme, we can construct an efficient online algorithm with low (α+ ϵ)-regret for

any constant ϵ > 0. However, the running time per trial is poly(n, 1
ϵ
), which is independent of

T but depends on 1
ϵ
.

Offline algorithms for job scheduling with a single machine under precedence constraints

In offline version of the problem, given the processing time of n jobs and the precedence con-

straints A, the typical goal is to find a schedule that minimizes the sum of the (weighted)
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completion times of the n jobs, subject to the constraints A. This problem is categorized as

1|prec|
∑

j Cj in the literature2. It is known that this problem is NP-hard [43, 44]. For further

developments, see, e.g., [17, 4]. Several 2-approximation algorithms have been proposed for

the offline setting [70, 29, 14, 52, 12] and a stochastic setting [58, 71].

4.2 Online Combinatorial Prediction with Multiple Projec-
tions

In this section, we propose a generic algorithm with multiple projections and prove its α-regret

bound.

Throughout the section, we put the following assumptions.

• There exist a number K of closed convex sets Relaxk(C) (k = 1, . . . , K) such that (i)

X def
= Relax0 ⊃ Relax1(C) ⊃ Relax2(C) ⊃ · · · ⊃ RelaxK(C) ⊃ C, and (ii) for any

k = 1, . . . , K, the Bregman Projection from Relaxk−1(C) to Relaxk(C) is feasible. More

precisely, for any x′ ∈ Relaxk−1(C), minx∈Relaxk(C) ∆Φ(x,x
′) can be computed in poly-

nomial time in n.

• C has an efficient α-metarounding algorithm from RelaxK(C) for some α ≥ 1. More

precisely, there exists a polynomial time algorithm that, when given any x ∈ RelaxK(C),
outputs c ∈ C such that for any loss vector ℓ ∈ Rn

+, c · ℓ ≤ αx · ℓ.

• The diameter of RelaxK(C) is upper bounded by D with respect to some norm ∥ · ∥ and

all loss vectors ℓt (t = 1, . . . , T ) returned by the adversary have bounded norm, i.e.,

∥ℓt∥∗ ≤ G∗ for some G∗ where ∥ · ∥∗ is the dual norm of ∥ · ∥.

Note that the notion of metarounding differs from the rounding in that the algorithm outputs a

rounded vector (concept) whose loss is small for any loss vector without seeing the loss vector3.

Our algorithm is shown as Algorithm 7. The algorithm consists of three components, an

online prediction algorithm, multiple projections, and a “metarounding” algorithm.

Our online prediction algorithm is based on the standard algorithm the Online Mirror De-

scent (see, e.g., [10, 30], OMD for short) for the online convex optimization. The OMD is a

2The weighted version is known as 1|prec|
∑

j wjCj .
3The notion was first formalized by Carr and Vempala [9] for optimization of a generalized congestion problem

and later it was shown to be useful in online combinatorial prediction [24].
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generalization of the Online Gradient Descent (OGD[86]). Given a uniformly separable strictly

convex function Φ, at each trial t, the OMD updates a vector xt to xt+1/2 by mapping xt using

∇Φ : Rn → Rn (note that ∇Φ is a bijection because of the strict convexity of Φ) to some

“parameter space”, performing an additive update yt = Φ(xt)− ηℓt and mapping back yt with

∇Φ−1.

Typical versions of the OMD uses a single projection onto the space of interest. On the

other hand, our algorithm uses multiple successive projections from X to Relax(C) defined in

Algorithm 8.

The meterounding algorithm, at each trial t, chooses ct ∈ C by rounding xt, where, roughly

speaking, ct is close to xt. More precisely, we say that an algorithm A is an α-metarounding

w.r.t. C and Relax(C) ⊇ C if, for any loss vector ℓ ∈ [0, 1]n and any x ∈ Relax(C), A, given x

as an input, outputs c ∈ C such that c · ℓ ≤ αminx∗∈Relax(C) x
∗ · ℓ. The notion of metarounding

differs from rounding in that the algorithm outputs a rounded vector which is effective for any

loss vector without using the information of the loss vector4.

After the loss vector ℓt is given, our algorithm updates the vector xt in an additive way and

multiple projects it onto the sets Relaxk(C) for k = 1, · · · , K.

Algorithm 7 PUMMA
Input: parameter η > 0, a separable strictly convex function Φ.

1. Let x0 be such that ∇Φ(x0) = 0 and x1 = argminx∈RelaxK(C) ∆Φ(x,x0).

2. For t = 1, . . . , T

(a) (Metarounding) get ct ∈ C such that ct ≤ αxt.

(b) Incur a loss ct · ℓt.
(c) Update xt+1/2 according to the rule:

yt = ∇Φ(xt)− ηℓt.

xt+1/2 = ∇Φ−1(yt).

(d) (Multiple Projection) xt+1 =MultipleProjection(xt+1/2).

First, we will prove an α-regret bound of the proposed algorithm. We begin our analysis of

the projection algorithms with the following lemma.

4The notion was first formalized by Carr and Vempala [9] for optimization of a generalized congestion problem
and later it was shown to be useful in online combinatorial prediction [24].
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Algorithm 8 MultipleProjection
Input: x ∈ Relax(C)

1. Let x(0) = x and Relax0(C) = X .

2. For k = 1, . . . , K:

(a) Let x(k) be the Bregman projection of x(k−1) ∈ Relaxk−1(C) w.r.t. Φ onto
Relaxk(C), .i.e.,

x(k) = arg min
x∈Relaxk(C)

∆Φ(x,x
(k−1)).

3. Output x(K).

Lemma 5. For any x∗ ∈ RelaxK(C) and for any t ≥ 1,

∆Φ(x
∗,xt+1/2) ≥ ∆Φ(x

∗,xt+1)

Proof. For simplicity of notations, let xt+1/2 = x(0) and xt+1 = x(K). For k = 1, . . . , K, let

x(k) be the Bregman projection of x(k−1) ∈ Relaxk−1(C) w.r.t. Φ onto Relaxk(C). By using

Theorem 1, for k = 1, · · · , K,

∆Φ(x
∗,x(k−1)) ≥ ∆Φ(x

∗,x(k)) + ∆Φ(x
(k),x(k−1))

≥ ∆Φ(x
∗,x(k)),

where the last inequality follows since the Bregman divergence is nonnegative. By combining

the inequality above for k = 1, . . . , K, we complete the proof.

The following lemma shows that the OMD using multiple projection can achieve O(
√
T )

bounds on the regret.

Lemma 6 (Cf. Hazan [30]). Suppose that for all p, q ∈ X .∆Φ(p, q) ≥ ∥p − q∥2/2 for some

norm ∥ · ∥ . Let ∥ℓt∥∗ ≤ G∗ for t = 1, . . . , T , where ∥ · ∥∗ is the dual norm of ∥ · ∥, and

∀x∗ ∈ RelaxK(C),∆Φ(x
∗,x1) ≤ D2/2. For any T ≥ 1 and η = D/(G∗

√
T ),

T∑
t=1

xt · ℓt ≤ min
x∗∈RelaxK(C)

T∑
t=1

x∗ · ℓt +DG∗
√
T .

Proof. The proof partly follows [30]. The following property of Bregman divergences follows
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easily from the definition: for any vectors p, q, r ∈ X ,

(p− q) · (∇Φ(r)−∇Φ(q))

= ∆Φ(p, q)−∆Φ(p, r) + ∆Φ(q, r).

Then, for all x∗ ∈ RelaxK(C) ⊂ X , by letting p = x∗, q = xt, and r = xt+1/2,

(xt − x∗) · ℓt

=
1

η
(x∗ − xt) · (∇Φ(xt+1/2)−∇Φ(xt))

=
1

η
(∆Φ(x

∗,xt)−∆Φ(x
∗,xt+1/2) + ∆Φ(xt,xt+1/2))

≤ 1

η
(∆Φ(x

∗,xt)−∆Φ(x
∗,xt+1) + ∆Φ(xt,xt+1/2)),

where the last inequality follows Lemma 5. Summing over all iterations,

T∑
t=1

xt · ℓt − min
x∗∈RelaxK(C)

T∑
t=1

x∗ · ℓt

≤ 1

η
(∆Φ(x,x1)−∆Φ(x,xT+1)) +

T∑
t=1

1

η
∆Φ(xt,xt+1/2)

≤ 1

η
D2 +

T∑
t=1

1

η
∆Φ(xt,xt+1/2), (4.1)

Now we proceed to bound ∆Φ(xt,xt+1/2). By definition of the Bregman divergence,

∆Φ(xt,xt+1/2) + ∆Φ(xt+1/2,xt)

= (∇Φ(xt)−∇Φ(xt+1/2) · (xt − xt+1/2)

= ηℓt · (xt − xt+1/2)

≤ η∥ℓt∥∗∥xt − xt+1/2∥ (by Hölder’s inequality)

≤ 1

2

(
η∥ℓt∥2∗ + ∥xt − xt+1/2∥2

)
≤ 1

2
(η2G2

∗ + ∥xt − xt+1/2∥2),

where the last inequality holds by the assumption on ∥ℓt∥∗. Thus, by the assumption that
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∆Φ(xt,xt+1/2) ≥ ∥xt − xt+1/2∥2/2, we have

∆Φ(xt,xt+1/2)

≤ 1

2
(η2G2

∗ + ∥xt − xt+1/2∥2)−∆Φ(xt,xt+1/2)

≤ 1

2
η2G2

∗.

Plugging back into Equation (1), and by the non-negativity of the Bregman divergence, we get

T∑
t=1

xt · ℓt − min
x∗∈RelaxK(C)

T∑
t=1

x∗ · ℓt

≤ 1

2
(
1

η
D2 + ηTG2

∗)

≤ DG∗
√
T

by taking η = D
G∗

√
T

.

We are now ready to prove the main result.

Theorem 15. There exists an online combinatorial optimization algorithm over C such that its

α-regret is O(αDG∗
√
T ).

Proof. By definition of the meterounding and Lemma 6, the cumulative loss of Algorithm 7 is

T∑
t=1

ct · ℓt ≤ α

T∑
t=1

xt · ℓt

≤ α min
x∗∈RelaxK(C)

T∑
t=1

x∗ · ℓt +DG∗
√
T

≤ αmin
c∈C

T∑
t=1

c · ℓt + αDG∗
√
T ,

where the last inequality holds since C ⊆ RelaxK(C).

4.3 Application: Online job scheduling with precedence con-
straints

In this section, we consider online job scheduling with precedence constraints. In this case,

the set C of combinatorial concepts corresponds to Sn ∩ Precons(A), the set of permutations
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satisfying some precedence constraints. Note that, for the convex hull Pn of the set of permuta-

tions Sn, the set Pn ∩ Precons(A) is a closed convex set described with linear constraints and

satisifies Pn ∩ Precons(A) ⊃ C. However, the Bregman projection onto Pn ∩ Precons(A) is

not known to be tractable, and it contains exponentially many linear constraints. Thus, we take

our approach with multiple projections given in the previous section. Instead of performing the

projection directly, we use successive projections onto Precons(A) and Pn∩Precons(A). That

is, we set Relax1(C) = Precons(A), and Relax2(C) = Pn ∩ Precons(A), and apply an online

prediction algorithm with the metarounding and the double projections. Below, we will show

that these successive projections are the key to an efficient implementation of our algorithm.

4.3.1 Implementations of the OMD

For the online scheduling problem, we employ the OMD with the squared 2-norm Φ(x) =

1
2
∥x∥22. This version is known to be the OGD ([86]). Then the update at each trial can be

simplified as xt+1/2 = xt − ηℓt. The Bregman divergence corresponds to ∆Φ(p, q) =
1
2
∥p −

q∥22. By setting x0 = 0 and x1 = Metarounding(x0), for any x∗ ∈ Relax(C), ∆Φ(x
∗,x1) =

O(n
3
2 ), where we can set D2 = O(n2). Also, since the dual norm of the 2-norm is the 2-norm

itsef, ∥ℓt∥∗ = ∥ℓt∥2 = O(
√
n). So we can set G∗ = O(

√
n). Therefore, by applying Lemma 6,

the regret of our algorithm is O(n2
√
T ).

4.3.2 Efficient Implementations of Multiple Projections

In this section, we propose efficient algorithms for multiple projections onto Precons(A) and

Pn ∩ Precons(A). We then show an implementation of the procedure Metarounding.

Projection onto the Set Precons(A) of the Precedence Constraints

The problem of projection onto Precons(A) is described as follows:

min
p∈Rn

∆Φ(p, q)

sub.to: pi ≥ pj, for (i, j) ∈ A.

This problem is known as the isotonic regression problem [53, 72, 50, 49]. Previously

known algorithms for the isotonic regression run in O(mn2 log n) or O(n4) time (see [49] for

details), where m = |A|.
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Projection of a point in Precons(A) onto Pn ∩ Precons(A)

In this subsection, we show an efficient algorithm for computing the projection a point in

Precons(A) onto the intersection of the permutahedron Pn and the set Precons(A) of the prece-

dence constraints. In fact, we will show that the problem can be reduced to projection onto Pn

only, and thus we can use the algorithm of Lim et al. [46] for finding the projection onto Pn

in time O(n log n) for the uniformly separable Bregman divergences. Also, a simpler O(n2)

projections algorithms for the Euclidean distance and the relative entropy are given in [74] and

[83], respectively.

Formally, the problem is stated as follows:

min
p∈Rn

∆Φ(p, q)

sub. to:
∑
j∈S

pj ≤
|S|∑
j=1

(n+ 1− j), for any S ⊂ [n],

n∑
j=1

pj =
n(n+ 1)

2
,

pi ≥ pj, for (i, j) ∈ A.

Without loss of generality, we may assume that elements in q are sorted in descending order,

i.e., q1 ≥ q2 ≥ · · · ≥ qn. This can be achieved in time O(n log n) by sorting q. First, we show

that this projection preserves the order in q. The following lemma is a generalization proved in

[74] for the Euclidean distance.

Lemma 7 (Order Preserving Lemma). Let p∗ be the projection of q onto Pn s.t. q1 ≥ q2 ≥
· · · ≥ qn. Then, the projection p∗ w.r.t. any uniformly separable Bregman divergences also

satisfies p∗1 ≥ p∗2 ≥ ... ≥ p∗n. In particular, pi = pj if qi = qj .

Proof. Assume that the lemma is false. Then, there exists a pair i and j such that qi ≥ qj and

p∗i < p∗j . Let p′ be the vector obtained by letting p′i = p∗j , p
′
j = p∗i , and p′k = p∗k for k ̸= i, j. It
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can be easily verified that p ∈ Pn. Now, observe that

∆Φ(p
∗, q)−∆Φ(p

′, q)

= Φ(p∗)− Φ(p′)−∇Φ(q) · (p′ − p∗)

= −(∇ϕ(qi)(p
∗
i − p∗j)−∇ϕ(qj)(p

∗
j − p∗i ))

= (p∗j − p∗i )(∇ϕ(qi) +∇ϕ(qj)) > 0,

where the strict inequality holds since the assumption that p∗j > p∗i and ∇ϕ is strictly increasing

function since ϕ is strictly convex. Therefore, this observation contradicts that p∗ is the pro-

jection. Thus, the order is preserved in the projection. The equality is also preserved since if

qi = qj , the projection preserves pi ≥ pj and pj ≥ pi.

Now we are ready to show one of our main technical lemmas.

Lemma 8. For any q ∈ Precons(A),

arg min
p∈Pn

∆Φ(p, q) = arg min
p∈Pn∩Precons(A)

∆Φ(p, q).

Proof. Let p∗ = argminp∈Pn ∆Φ(p, q). By definition of the projection, for any p ∈ Pn ∩
Precons(A) ⊆ Pn, ∆Φ(p, q) ≥ ∆Φ(p

∗, q). Further, by Lemma 7, p∗ preserves the order and

equality in q. That is, p∗ also satisfies the constraints defined by Precons(A). Therefore, we

have p∗ ∈ Precons(A). These facts imply that p∗ is indeed the projection of q onto Pn ∩
Precons(A).

So, by Lemma 6, when a vector q ∈ Precons(A) is given, we can compute the projection of

q onto Pn∩Precons(A) by computing the projection of q onto Pn only. By applying the method

of Lim et al. [46], the projection problem can be reduced to the following Isotonic Optimization

problem.

arg min
y∈Rn

n∑
i=1

(d∗i (yi)− yici)

sub. to:y1 ≤ y2 · · · ≤ yn

where di(xi) = ∆ϕ(xi, zi) and d∗i is the Legendre-Fenchel dual of di.

Lemma 9 (Cf. [46]). The projection problem onto Pn is reducible to the following Isotonic

Optimization problem.
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Proof. Let F denote the feasible set in the Isotonic Optimization problem. We have di(xi) =

maxyi(yixi − d∗i (yi)). We can rewrite the problem as

min
x∈F

n∑
i=1

= min
x∈F

(
n∑

i=1

max
yi

(yixi − d∗i (yi)))

= min
x∈F

max
y

(
n∑

i=1

(yixi − d∗i (x
∗
i )))

= max
y

min
x∈F

(
n∑

i=1

(yixi − d∗i (yi)))

= max
y

(
n∑

i=1

(−d∗i (yi)) + min
x∈F

y · x).

Let us focus on the minx∈F y ·x term. If we let Yi = yi − yi+1 for i ∈ [n− 1] and Yn = yn, we

have yi =
∑n

l=i Yk. This gives us

y · x = y · c+ y · (x− c)

= y · c+
n∑

i=1

yi(xi − ci)

= y · c+
n∑

i=1

(
n∑

k=i

Yk)(xi − ci)

= y · c+
n∑

i=1

(
k∑

i=1

(xi − ci))Yk

If any Yk is larger than 0 for any k ∈ [n − 1], then infx y · x = −∞; we can set xi = ci for

i /∈ {k, k + 1}, xk → −∞ and xk+1 = ck + ck+1 − xk. This means that we require Yk ≤ 0 for

all k (i.e. yi+1 ≥ yi). So minx y · x = y · c, obtained by setting xi = ci for all i.

From a dual solution y, we can recover x via the following relation: ∇ϕ(xi) = yi+∇ϕ(zi)

Isotonic Optimization problem, which has been studied in greater generality by Best et al.

and Ahuja et al. The problem can be solved in O(n log n).

Theorem 16. There exists an algorithm with input q ∈ Precons(A) that outputs the projection

of q onto Pn ∩ Precons(A) in time O(n log n).
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Algorithm 9 Metarounding
Input: p ∈ Pn ∩ Precons(A) satisfying p1 ≥ p2 ≥ · · · ≥ pn and the transitive closure A∗ of
A
Output: Permutation σ ∈ Sn ∩ Precons(A)

1. Sort elements of p in the descending order, where for elements i, j such that pi = pj , i is
larger than j if (i, j) ∈ A∗, otherwise break the tie arbitrarily.

2. Output the permutation σ s.t. σi = (n+ 1)− ri, where ri is the ordinal of i in the above
order.

4.3.3 Metarounding

Algorithm 9 is an implementation of our metarounding. The algorithm is quite simple. Roughly

speaking, if the input p ∈ Pn ∩ Precons(A) is sorted as p1 ≥ · · · ≥ pn, the algorithm outputs

σ ∈ Sn such that σ1 ≥ · · · ≥ σn, i.e., σ = (n, n − 1, . . . , 1). Note that we need to break

ties in p to construct σ. Let A∗ be the transitive closure of A. Then, given an equivalence set

{j | pi = pj}, we break ties so that if (i, j) ∈ A∗, σi ≥ σj . This can be done by, e.g., quicksort.

First, we will show that the procedure guarantees that for each i ∈ [n], σi ≤ (2− 2/(n+ 1))pi,

and then discuss its time complexity.

We prove the following lemma for Metarounding.

Lemma 10. For any p ∈ Pn ∩ Precons(A) s.t. p1 ≥ · · · ≥ pn, given p, the output σ of

Metarounding satisfies that for each i ∈ [n], σi ≤ (2− 2/(n+ 1))pi.

Proof. For each i ∈ [n], by definition of the permutahedron, we have

i∑
j=1

pj ≤
i−1∑
j=1

j =
i(i− 1)

2
. (4.2)

By the assumption that p1 ≥ · · · ≥ pn, the average of pi + pi+1 + · · ·+ pn is not larger than pi.

Thus, we have

pi ≥
∑n

j=i pj

n+ 1− i
=

∑n
j=1 pj −

∑i−1
j=1 pj

n+ 1− i

≥ (n+ i)(n+ 1− i)

2(n+ 1− i)
=

n+ i

2
,
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where the second inequality follows from (4.2). Thus, for each i ∈ [n],

σi

pi
≤ n− i+ 1

1
2
(n+ i)

=
2(n+ i− 1)

n+ i
= 2− 4i− 2

n+ i
.

Here, the second term 4i−2
n+i

is minimized when i = 1. Therefore, σi/pi ≤ 2 − 2/(n + 1), as

claimed.

For computing Metarounding, we need to construct the transitive closure A∗ of A before the

protocol begins. It is well known that a transitive closure can be computed by using algorithms

for all-pairs shortest paths. For this problem, the Floyd-Warshall algorithm can be used; it runs

in time O(n3) and space O(n2) (see, e.g., [16]). When A is small, for example, m << n2, we

can use Johnson’s algorithm, which runs in time O(n2 log n+ nm) and space O(m2).

The time complexity of Metarounding is O(n2), which is due to the sorting. The space

complexity is O(n2), if we use the Floyd-Warshall algorithm with an adjacency matrix. The

space complexity can be reduced to O(m2) if we employ Johnson’s algorithm, which uses an

adjacency list. On the other hand, we need an extra O(logm) factor in the time complexity

since we need O(logm) time to check if (i, j) ∈ A∗ when A∗ is given as an adjacency list.

4.3.4 Main Result

Finally, by combining the discussions in previous subsections, we obtains the following result.

Theorem 17. There exists an online linear optimization algorithm over Pn ∩Precons(A) such

that

1. its (2− 2/(n+ 1))-regret is O(n2
√
T ), and

2. its per-trial running time is O(n4).

Note that the running time at each trial is dominated by the projection onto Precons(A),

which takes time O(n4).

4.4 Lower Bound

In this section, we derive a lower bound for the regret for our online prediction problem over

the permutahedron Pn. Here, we consider the special case of no precedence constraint being

given.
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Theorem 18. For our prediction problem over the permutahedron Pn, the 1-regret is Ω(n2
√
T ).

Proof. We consider an adversary who makes random choices. More precisely, at each trial t,

the adversary randomly chooses a loss vector ℓt from ℓ0, ℓ1, where ℓ0 (ℓ1) is the loss vector in

which the first n
2

elements are 0s (1s) and the remaining elements are 1s (0s). Then, for any

online optimization algorithm that outputs σt ∈ St at trial t,

E[
T∑
t=1

σt · ℓt] =
n(n+ 1)T

4
.

Now, let us consider the best fixed permutation. Let σ0 = (n, n − 1, n − 2, . . . , 1) and

σ1 = (1, 2, 3, 4, . . . , n). Suppose that ℓ0 appears more frequently than ℓ1 by k. The best

permutation is σ0, and its cumulative loss is

n
2∑

i=1

i

(
T

2
+

k

2

)
+

n∑
i=n

2
+1

i

(
T

2
− k

2

)

=
n(n+ 1)T

4
+

k

2

(
2

n
2
(n
2
+ 1)

2
− n(n+ 1)

2

)
=
n(n+ 1)T

4
− k

2
n

(
n+ 1

2
−

n
2
+ 1

2

)
=
n(n+ 1)T

4
− k

2

n2

4
.

The same argument follows for the opposite case, where ℓ1 is more frequent by k. In fact,

k can be expressed as k =
∑T

t=1 δt, where each δt is a discrete uniform random variable

that takes values of ±1. Then, the expected regret of any online optimization algorithm is

at least n2

8
E
[∣∣∣∑T

t=1 δt

∣∣∣]. By the central limit theorem, the distribution of
∑T

t=1 δt converges

to a Gaussian distribution with mean 0 and variance
√
T . Thus, for sufficiently large T ,

Pr[|
∑T

t=1 δt| ≥
√
T ] is a constant: c (0 < c < 1). Therefore, the expected regret bound

has a lower bound of n2

8
c
√
T . This implies that there exists a sequence of loss vectors that

enforces any online optimization algorithm to incur regret that is at least Ω(n2
√
T ).

In general, this lower bound on 1-regret is tight, since there are online algorithms that

achieve a 1-regret with O(n2
√
T ) ([74, 2]).

It is natural to ask if the (2 − 2/(n + 1))-regret O(n2
√
T ) is tight under precedence con-

straints. We do not yet have a lower bound for this case, but we will show that our algorithm is

optimal unless there is an offline algorithm with an approximation ratio α < 2.
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Theorem 19. If there exists a polynomial-time online linear optimization algorithm with an

α-regret of poly(n,m)
√
T , then there also exists a randomized polynomial-time algorithm for

the offline problem with an approximation ratio α.

Proof. The proof is based on standard online-to-offline conversion methods that can be found

in the online learning literature (see, e.g., [20]). Let A be such an online linear optimization

algorithm, and let its output at each trial t be denoted as σt. Let ℓ ∈ [0, 1]n be the loss vector

in the offline problem. We consider an adversary who returns ℓt = ℓ at each trial t. Then, the

cumulative loss of A divided by T is bounded as follows:

1

T

T∑
t=1

σt · ℓ ≤ α min
σ∈Sn∩Precons(A)

σ · ℓ+ poly(n,m)

T
.

Now, let σ̂ be a uniformly and randomly chosen permutation from {σ1, . . . ,σT}. Then,

E[σ̂ · ℓ] ≤ α min
σ∈Sn∩Precons(A)

σ · ℓ+ poly(n,m)

T
.

By setting T = poly(n,m), the expected cumulative loss of σ̂ is at most α times the cumulative

loss of the best permutation (with a constant additive term), which completes the proof.

4.5 Experiments

In this section, we show preliminary experiments with artificial data sets in order to compare

the performance of our algorithm with other methods. The experiments were performed on

a server with four cores of Intel Xeon CPU X5560 2.80 GHz and a memory of 198 GB. We

implemented the programs using Matlab with its Optimization Toolbox. To generate the loss

vector at each trial t, we independently and randomly specified each element ℓt,i of the loss

vector ℓt as follows: Let ℓt,i = 1 with probability ri and ℓt,i = 0, otherwise. We set ri = i/n

so that E[ℓt] = (1/n, 2/n, ..., 1). We constructed random acyclic precedence constraints on n

jobs in the following way. First, we constructed a random total order over n jobs (vertices).

Then, we constructed an acyclic directed graph over n vertices by adding
(
n
2

)
directed edges

according to the total order. Finally, we kept each edge (i, j) alive with probability π = 0.2, and

otherwise, we removed the edge. The resulting directed graph represented the set of precedence

constraints.

Using the above method, for each fixed n and T , we constructed three random sequences
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Figure 4.3: Upper panel: cumulative losses of the three algorithms with the artificial data set
for n = 50 and T = 10, 20, 50, 100, 200, 250; lower panel: total computation times of the three
algorithms with T = 50 with n = 10, 20, 50, 100, 200, 250.

of loss vectors and three random sets of precedence constraints. The results (cumulative loss or

computation time) were then averaged.

We compared our algorithm PermLearnPrec (PLP) to the following algorithms. We used

the offline-to-online conversion techniques of Kakade et al. [37] (KKL) and the metarounding

technique of Fujita et al. [24] combined with (FPL) ([38]; FPLM). For the metarounding of

Fujita et al., we set ϵ = 0.01 to guarantee (α + ε)-regret when using an α-approximation

offline algorithm. We used the linear programming (LP) relaxation-based scheduling algorithm

of Chudak and Hochbaum [14] as the offline algorithm. This algorithm solves a minimum-

cut problem on a network with O(n2) nodes and O(n3) arcs. We used the maxflow algorithm

of Boykov and Kolmogorov [7] to solve the minimum-cut problem. In our PLP algorithm,

we solved the isotonic regression by using the standard quadratic programming (QP) solver in

Matlab.

In Figure 4.3, we summarize the cumulative losses and total computation times, both aver-

aged over three random data sets. As can be seen, the cumulative losses of all of the algorithms

are quite similar. KKL performed slightly better than the other two algorithms, which is not

surprising since they have almost identical α-regret bounds. On the other hand, if we consider

the computation times of the algorithms, there is a very large difference. Our algorithm runs

roughly 20 to 30 times faster than the other methods. The reason for this is that since the data

are relatively “easy,” the best permutation might not change frequently over time. Thus, in

many trials, the projections onto the set of precedence constraints are already satisfied, and if

this is the case, our algorithm can skip this step, whereas the other methods must compute the
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precedence constraints for every trial.

4.6 Conclusion

In this thesis, we proposed a framework of the online combinatorial prediction with multiple

projections. As an application of the framework, we showed a polynomial-time online linear

optimization algorithm over the permutahedron under precedence constraints. Our algorithm

achieves a (2 − 2/(n + 1))-regret bound O(n2
√
T ), which means that it can predict as well as

the state-of-the art offline approximation algorithms in hindsight. The approximation algorithm

for which the approximation ratio is strictly less than 2− 2/(n+ 1).

An interesting open question is how our online framework can be extended to minimize the

sum of weighted completion times. We note that Woeginger [81] showed that the offline prob-

lem of minimizing the sum of weighted completion time can be reduced to that of minimizing

the unweighted sum. This reduction might be useful for designing an online version.
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Chapter 5

Boosting over non-deterministic ZDDs

5.1 Introduction

Most tasks in machine learning are formulated as optimization problems of various types. Re-

cently, the amount of data to be treated is growing enormously large, and so the demands on

scalable optimization methods are increasing. Probabilistic approach such as stochastic gradient

descent methods [31] is now widely employed as standard techniques for large scale machine

learning. Obviously, these methods require the time and/or the space complexity to be propor-

tional to the size of given data.

In this thesis, we propose a new approach: learning over compressed data. That is, we first

compress the given data somehow, and then employ various machine learning algorithms on the

compressed data without explicitly re-constructing the original data. To be more precise, for any

target machine learning algorithm to be employed, we apply an efficient algorithm running over

the compressed data, which simulates the behavior of the target algorithm running over the

original data, with the hope that the time and space complexity are significantly reduced when

the data is well compressed. Although the complexity for compressing data of the first phase

needs to be sufficiently small, we can expect great improvement of time and space complexity,

especially when high compression ratio is achieved.

The methodology of working over compressed data has gained much attention in the areas of

database and data mining, where various methods have been developed, say, for the string search

from a compressed string and the frequent word extraction from compressed texts [45, 33, 28].

But, as far as the authors are aware, most of all the methods developed so far are limited to

simple tasks such as search and counting, and few results are known for more complex tasks

such as optimization in machine learning. Notable exceptions contain the results of Nishino et
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al. [61] and Tabei et al. [75], respectively. Their methods use string compression techniques to

perform matrix-based computations under small memory spaces. Our method, we will show

later, is completely different from theirs.

As the first step toward establishing a general methodology of learning from compressed

data, we consider a variant of the Zero-Suppressed Binary Decision Diagram (ZDD) as the data

structure for representing the training data. The ZDD is a general data structure for representing

a family of sets [54, 39], and is appropriate for our purpose. One of the reasons is that many

results are reported in the literature that the ZDD indeed has ability of compactly representing

various data in various domains [56, 55, 35].

In this thesis, we slightly generalize the ZDD by incorporating non-determinism and pro-

pose a new data structure called the non-deterministic ZDD (NZDD, for short). The NZDD

has more flexibility for representing data because of the non-determinism. Also, our efficient

simulation algorithms (showed later) fit naturally to the NZDDs. On the other hand, it seems

to be NP-hard to construct an NZDD of minimal size from a given training data. An efficient

construction method of succinct NZDDs is left as future work.

For the learning algorithm to be employed over the NZDD representation of the training

data, we consider a boosting algorithm called the AdaBoost∗ [66]. The AdaBoost∗ is a refined

version of the seminal boosting algorithm AdaBoost [19] and is guaranteed to find a hyperplane

that maximizes the margin. In this thesis, we give an efficient implementation of the AdaBoost∗.

Its running time (per iteration) does not depend on the size of training data but is only linear

in the size of the given NZDD. In addition, our proposed framework can be applicable to the

AdaBoost as well and a similar guarantee also holds.

So, our method takes advantage when the size of NZDD is much smaller than the size of the

training data, provided that the time complexity of constructing the NZDD is moderately small.

5.2 Problem statement and AdaBoost∗

First we describe the problem of 1-norm hard margin maximization and then briefly review the

AdaBoost∗ which is one of the boosting algorithms that solve the problem.
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5.2.1 1-norm hard margin maximization

Let X be a set called the instance space, and assume that we are given a finite set of base hy-

potheses H = {h1, h2, . . . , hn} ⊆ {h : X → {0, 1}}. Note that the base hypotheses are usually

assumed to take values in {−1, 1}, but since any function g : X → {−1, 1} can be represented

as the difference of 0-1 valued functions (e.g., g(x) = 1[g(x) = 1] − 1[g(x) = −1]), we can

assume 0-1 valued hypotheses without loss of generality. The base hypothesis class H defines a

feature map, which maps any instance x ∈ X to the feature vector (h1(x), h2(x), . . . , hn(x)) in

the feature space {0, 1}n. Later we will regard the feature vector for x as the set H(x) = {hj |
hj(x) = 1} and thanks to the assumption above, any base hypothesis hj ̸∈ H(x) takes value 0

for x, which is a crucial property that makes our algorithm work.

Now we give the problem statement of 1-norm hard margin maximization. The input is a

sample S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}, where xi for yi = 1 is called a positive

instance and xi for yi = −1 a negative instance, and the output is a hyperplane in the feature

space that separates the positive instances from the negative instances as much as possible.

More precisely, the goal is to find

α∗ = arg max
α∈{Rn|∥α∥1=1}

min
1≤i≤m

yi

n∑
j=1

αjhj(xi). (5.1)

We denote by α ∈ {Rn | ∥α∥1 = 1} the hyperplane whose normal vector is α, which also rep-

resents the convex combination of base hypotheses f(x) =
∑n

j=1 αjhj(x). Note that since the

1-norm of α is normalized, |f(x)| denotes the distance of the feature vector (h1(x), . . . , hn(x))

to the hyperplane α measured by ∞-norm. Thus, the signed distance yif(xi) (which is positive

if and only if f correctly classifies xi) is called the margin of the hyperplane α with respect to

the labeled instance (xi, yi). Let ρ = mini yif(xi) be the minimum margin of α over all labeled

instances in the sample. Note that α∗ is the hyperplane that maximizes ρ. It is well known that

if ρ > 0, which means that the sample S is linearly separable, then the combined hypothesis f

has a generalization error bound that is proportional to 1/ρ [51]. So, the goal of maximizing ρ

is natural. Let ρ∗ = mini yi
∑

j α
∗
jhj(xi) be the optimal margin. In what follows, we assume

without loss of generality that all labeled feature vectors (h1(xi), . . . , hn(xi), yi) are distinct.
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5.2.2 AdaBoost∗

The optimization problem (5.1) can be formulated as a linear programming problem of size

O(nm) and hence efficiently solved by an LP solver. However, in many cases, the number n

of base hypotheses is very large (sometimes infinite), and thus the problem is infeasible for LP

solvers. In such cases, boosting may provide an alternative way. In particular, the AdaBoost∗
of Rätsch and Warmuth [66] provably converges to the maximum margin ρ∗ within precision

ν in 2 log(m
ν2
) iterations. Below we describe how the AdaBoost∗ behaves when applied to the

base hypothesis class H . On each round t = 1, 2, . . . , T , it (i) computes a distribution dt over

the sample S, (ii) finds a base hypothesis hjt ∈ H with the maximum edge (average margin)

with respect to dt, and (iii) updates the coefficient αjt . Finally, normalizing the coefficient α,

it obtains a final hypothesis f . A pseudocode is given in Algorithm 10, where part (ii) above is

implemented in a very naive manner: compute the edges of all base hypotheses (line 3-(a)) and

then choose the maximum among them (line 3-(b)). So, this implementation is inefficient for a

very large n. But, AdaBoost∗ (and any other boosting algorithm) has a considerable advantage

over LP solvers when the hypothesis class H has an efficient implementation, called the base

learner, for this part: to find a base hypothesis with the maximum edge from a given distribution

over the sample. In this case, the two lines (3-(a) and 3-(b)) are replaced by the base learner.

The next theorem shows a performance guarantee of the AdaBoost∗.

Theorem 20 (Rätsch and Warmuth [66]). If T ≥ 2 logm
ν2

, then AdaBoost∗ (Algorithm 10) outputs

a combined hypothesis f such that min1≤i≤m yif(xi) ≥ ρ∗ − ν.

In this thesis, we consider the situation where the size n of H is small but the sample size

m is very large, as is often the case, and both the direct applications of LP solvers and the

AdaBoost∗ may be useless.

5.2.3 AdaBoost

The AdaBoost, proposed by Freund and Schapire [19], is a precursor of the AdaBoost∗. The

algorithm, unlike the AdaBoost∗, is not shown to provably maximize the hard margin. However,

it is shown that it achieves at least half of the maximum hard margin asymptotically under weak

technical conditions [65, 66]. Besides, the AdaBoost is much more popular because of its

simplicity and the empirical performances. The behavior of the AdaBoost is almost the same as

the AdaBoost∗. More precisely, instead of 3. (c) and (d) in Algorithm 10, the AdaBoost updates
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Algorithm 10 AdaBoost∗
Input S = {(x1, y1), . . . , (xm, ym)} ⊆ X × {−1, 1}
Output f

1. Let αj = 0 for j = 1, . . . , n

2. Let d1(i) = 1/m for i = 1, . . . ,m

3. For t = 1, . . . , T

(a) Compute the edges
γt,j =

∑m
i=1 dt(i)yihj(xi) for j = 1, . . . , n.

(b) Let jt = argmax1≤j≤n |γt,j|; γt = γt,jt .

(c) Set ρt = minr=1,...,t |γr| − ν;

(d) Update cofficients αjt = αjt +
1
2
log 1+γt

1−γt
− 1

2
log 1+ρt

1−ρt

(e) Update weights
dt+1(i) = dt(i) exp(−αjtyihjt(xi))/Zt

for i = 1, . . . ,m, where
Zt =

∑m
i=1 dt(i) exp (−αjtyihjt(xi))

4. Let f(x) =
∑n

j=1
αj

∥α∥1hj(x)

the coefficient as αjt = αjt +
1
2
log 1+γt

1−γt
. Therefore, the theoretical results we will show also are

applicable to the AdaBoost.

5.3 A dag representation for samples

As a data structure for storing the sample, we propose a dag representation for a family of sets

called the non-deterministic ZDD (NZDD, for short). It can be seen as a generalization of the

ZDD by incorporating non-determinism.

5.3.1 Zero-suppressed decision diagram(ZDD)

A ZDD is defined by a 4-tuple G = (V,E,N,Φ), where (V,E) is a directed acyclic graph and

Φ : V → N is a function that assigns to each node v a natural number. Furthermore we require

the additional definition as described below.

1. A leaf node is either the special node ⊤, or the special node ⊥.
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Figure 5.1: An NZDD representation for {{a, b}, {a, b, c}, {a, d, e}, {b, c, d}, {b, d}}

2. Each nornterminal node satisfies the following conditions: (i) The node has outdegree 2.

One of the outgoing edges is named ”LO” and the other is named ”HI”. In diagrams,

we draw dotted lines for LO edges and solid lines for HI edges. (ii) A destination node

is either terminal or labelled with an integer strictly larger than v. (iii) Thus we can

omit arrowheads in diagrams because the edge directions can be inferred from the labels.

(iv)The HI edge never points to the ⊥ node.

3. There is exactly one node with zero indegree, which we call the root node. The above

implies the root node is either terminal or labelled by the smallest integer in the dag.

4. If two nodes have the same label, then their LO or HI edges point to different nodes. In

other words, there are no redundant nodes.

5.3.2 Non-deterministic ZDD (NZDD)

An NZDD is specified by a 4-tuple G = (V,E,Σ,Φ), where (V,E) is a directed acyclic graph

with a single root and a single leaf , Σ is a ground set, and Φ : E → 2Σ is a function that assigns

to each edge e a subset Φ(e) of Σ. Note that Φ(e) can be the empty set ∅. Furthermore we

require the additional properies as described below. Let PG be the set of all paths from the root

to the leaf in G, where a path P in PG is specified by the set of edges in P , i.e., P ⊆ E.

1. Every path P ∈ PG represents a subset S(P ) ⊆ Σ defined as S(P ) =
∪

e∈P Φ(e). Thus,

the NZDD G defines a subset family as L(G) = {S(P ) | P ∈ PG} ⊆ 2Σ.

2. For every pair of paths P, P ′ ∈ PG, S(P ) ̸= S(P ′) if P ̸= P ′.

3. For every path P ∈ PG, Φ(e) ∩ Φ(e′) = ∅ for any e, e′ ∈ P with e ̸= e′.
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Note that by the second property, there exists a one-to-one correspondence between the set

of paths PG and the subset family L(G). In particular, we have |PG| = |L(G)|. The third

property says that every element a ∈ Σ appears at most once in every path P ∈ PG. That is,

letting E(a) = {e ∈ E | a ∈ Φ(e)}, we have |E(a) ∩ P | ≤ 1 for every P ∈ PG. Finally,

we define the size of G as |G| =
∑

e∈E |Φ(e)|. Note that the size |G| can be significantly

small as compared with the number of paths |PG|. In other words, the NZDD G is a compact

representation for the subset family L(G). As an example, we give in Fig. 5.2 an NZDD that

represents a subset family.

5.3.3 NZDD representation for the sample

Now we describe how we represent the sample S as an NZDD.

Recall that H(x) = {hj ∈ H | hj(x) = 1} for each instance x ∈ X . Let Z+ = {H(xi) |
(xi, 1) ∈ S} and Z− = {H(xi) | (xi,−1) ∈ S} be the subset families with the ground set Σ =

H , which correspond to the positive and the negative instances in the sample S, respectively.

Let G+ and G− be NZDDs for the families Z+ and Z−, respectively. That is, L(G+) = Z+ and

L(G−) = Z−. Finally, the NZDD G for the sample S is obtained by (i) putting an additional

node as the global root with two outgoing edges labeled with ∅, where one edge is connected to

the root of G+ and the other is to the root of G−, and (ii) merging the leaves of G+ and G− to

a single leaf (See Fig. 5.3 for example). Note that G is not necessarily a minimal NZDD even

if G+ and G− are minimal, because G may be further simplified by merging a node in G+ and

a node in G−. But, we define G in this way, so that any path in G+ and any path in G− are

disjoint.

(i) (ii)

Figure 5.2: (i) An NZDD G+ for Z+ = {{h1, h3}, {h2, h3}}; (ii) An NZDD G− for Z− =
{{h1, h2, h4}, {h2, h4}, {h3}}
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Figure 5.3: An NZDD for the sample consisting of positive instances Z+ and negative instances
Z−

5.3.4 Relations to ZDDs and NFAs

We show that the ZDD representation is a special case of the NZDD representation. To see this,

we consider the class of NZDDs of the following form:

1. Each edge e is labeled with either a singleton or the empty set. That is, |Φ(e)| ≤ 1.

2. Each internal node has one or two outgoing edges. If it has two outgoing edges, one of

them is labeled with the empty set.

3. There exists a fixed ordering over Σ such that for any pair of edges e and e′ labeled with

singletons {a} and {a′}, respectively, if e is an ancestor of e′, then a precedes a′ in this

ordering.

It is easy to see that any ZDD can be seen as an NZDD in this form.

Conversely, consider the class of NZDDs of the following form:

1. It is ordered. That is, the third condition above is satisfied.

2. For each pair of edges e and e′ outgoing from a common node, Φ(e) ∩ Φ(e′) = ∅.

Then, we can show that any NZDD of this class has an equivalent ZDD of the same size.

So, only the difference of ordered NZDDs from ZDDs is that we allow non-determinism, i.e.,

Φ(e) ∩ Φ(e′) ̸= ∅.

Next we consider the relation of ordered NZDDs to NFAs. Under the ordering over Σ, we

can identify a subset {a1, a2, . . . , ak} ⊆ Σ with a string a1a2 · · · ak ∈ Σ∗ over the alphabet Σ,
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(i) (ii)

Figure 5.4: (i) An ZDD for {{1}, {2}, {3}, {1, 3}, {2, 3}}; (ii) A NZDD corresponding to the
ZDD.

where a1 < a2 < · · · < ak under the ordering <. Note that the empty set corresponds to the

empty string ϵ. In this way, a subset family can be seen as a language. From this viewpoint, we

can regard an NZDD G as an NFA that recognizes the language L(G), with the root identified

with the start state and the leaf with the unique accepting state. The difference is that, in the

NZDD representation, we have only a single accepting path for each string in the language.

This implies that any DFA for such a language can be converted to an NZDD in an obvious

way. Note that in order to make the accepting state unique, we may need to put an additional

leaf and connecting every accepting state to the leaf by an additional edge labeled with the

empty set (ϵ-transition).

5.3.5 Complexity of constructing NZDDs

When given a subset family L ⊆ 2Σ, we want to compute a minimal NZDD G with L(G) = L.

So far, the time complexity of the problem is unknown, but it seems to be NP-hard because

so are the closely related problems, namely, construction of a minimal ZDD (over all order-

ing) [39] and construction of a minimal NFA [36]. On the other hand, we have a polynomial

time algorithm for constructing a minimal ZDD when given an ordering [67] and a linear time

algorithm for constructing a minimal DFA for a finite lanugage [67]. So, practically, we can use

these algorithms for constructing an ordered NZDD of small size.

61



CHAPTER 5. BOOSTING OVER NON-DETERMINISTIC ZDDS

5.4 Simulating AdaBoost∗ over an NZDD representation for
the sample

In this section, we give an algorithm that efficiently simulates the AdaBoost∗ over an NZDD

G that represents a sample S = {(x1, y1), . . . , (xm, ym)}, without explicitly reconstructing the

sample S from G. In particular, the running time (per iteration) of our algorithm does not

depend on the sample size m but is linear in the size of G. First we state the main theorem.

Theorem 21. There exists an algorithm that, when given an NZDD G that represents a sample

S, exactly simulates AdaBoost∗ whose running time is O(|G|) per iteration.

So, if the sample is significantly compressed in the NZDD representation, our algorithm

runs much faster than the direct application of the AdaBoost∗ when the computation time of

constructing G from S is negligible. More specifically, if we use a linear time algorithm for

constructing an NZDD from a minimal DFA as described in the previous section, then the total

running time of our algorithm is O(nm + T |G|), whereas the total running time of the direct

application of the AdaBoost∗ is O(nmT ). So, if |G| ≪ nm, then our algorithm would be

faster1.

Further, since the AdaBoost is almost identical to the AdaBoost∗ in an algorithmic sense,

we have the following corollary as well.

Corollary 22. There exists an algorithm that, when given an NZDD G representing S, simulates

AdaBoost whose running time is O(|G|) per iteration.

Below we describe a basic idea of the algorithm. Obviously, we cannot explicitly maintain

the distribution dt over the sample S. Instead, we maintain one weight wt,e for each edge e of G,

so that the edge weights wt implicitly represents dt. The same idea is used in [76] to efficiently

simulate online prediction algorithms with multiplicative update rules, where the decision space

is the set of paths of a given directed acyclic graph.

To describe the idea formally, we need some additional notations. Recall that there exists

a one-to-one correspondence between the sample S and the set of all root-to-leaf paths PG in

G. So, we identify a labeled instance (xi, yi) ∈ S with a path P ∈ PG, and we will denote the

weight for the instance by dt(P ) instead of dt(i). Furthermore, let P+
G and P−

G denote the set of

paths that pass through G+ and the set of paths that pass through G−, respectively.

1Note that it always holds that |G| ≤ nm.
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Now we give the two conditions C1 and C2 that the edge weights wt need to satisfy, so as

to represent the path distribution dt.

C1. The edge weights wt need to satisfy

dt(P ) =
∏
e∈P

wt,e

for every path (labeled instance) P ∈ PG.

C2. The outflow from each internal node should be one. That is, wt need to satisfy

∑
a:(u,a)∈E(G)

wt,(u,a) = 1

for every internal node u, where E(G) denotes the set of edges of G.

What we need to show is how to simulate AdaBoost∗ efficiently by using the edge weights

wt. More precisely, we need to simulate the two parts of AdaBoost∗:

(a) updating the path distributions dt (corresponding to Line 2 and Line 3-(e) of Algorithm 1),

and

(b) computing the edges γt,j (corresponding to Line 3-(a)).

In the following subsections, we give algorithms that simulate the two parts.

5.4.1 Updating the path distributions dt

To simulate this part, we use the Weight Pushing algorithm developed by [57], which rearranges

the edge weights so that relative weights on the path remain unchanged but again satisfy the two

conditions. More precisely, the Weight Pushing algorithm has the following property.

Proposition 23 (Mohri [57]). When given arbitrary edge weights w′
e ≥ 0, the Weight Pushing

algorithm produces edge weights we in time O(|E|) such that we satisfies condition C2 and

∏
e∈P

we =

∏
e∈P w′

e∑
P∈PG

∏
e∈P w′

e

for every path P ∈ PG.
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Algorithm 11 Initializing the path distribution

1. Let w′
e = 1 for all edges in G.

2. Apply the Weight Pushing algorithm to w′ and get w1.

Algorithm 12 Updating the path distribution

1. Forall e ∈ E(G), let w′
e = wt,e

2. Forall e ∈ E(G+) such that hjt ∈ Φ(e), let w′
e = w′

e exp(−αjt)

3. Forall e ∈ E(G−) such that hjt ∈ Φ(e), let w′
e = w′

e exp(αjt)

4. Apply the Weight Pushing algorithm to w′ and get wt+1.

The initialization of the path weights (d1(P ) = 1/m) of Line 2 of Algorithm 10 can be

realized by the two steps as described in Algorithm 11. It is justified by Proposition 23 which

implies ∏
e∈P

w1,e =
1

|PG|
= 1/m = d1(P ).

Moreover, the running time of Algorithm 11 is O(|E|).
The update of path distributions of Line 3-(e) of Algorithm 10 can be realized by multiplying

the weights of the edges e such that hjt ∈ Φ(e), and applying the Weight Pushing algorithm.

See Algorithm 12 for more details.

Below we give a justification of Algorithm 12.

Lemma 11. Algorithm 12 exactly simulates Line 3-(e) of Algorithm 10 in time O(|E|).

Proof. Let P be a path in PG that corresponds to a labeled instance (xi, yi) and examine the

quantity
∏

e∈P w′
e. Recall that

∪
e∈P

Φ(e) = {hj ∈ H | hj(xi) = 1}

by the definition of the NZDD construction for S.

First consider the case where hjt(xi) = 0. In this case, there is no edge e ∈ P such that
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hjt ∈ Φ(e). Therefore, w′
e = wt,e for all edges e in P . Thus,

∏
e∈P

w′
e =

∏
e∈P

wt,e = dt(P )

= dt(P ) exp(−αjtyihjt(xi))

= dt(i) exp(−αjtyihjt(xi)).

Next consider the case where yi = 1 (i.e., P passes through G+) and hjt(xi) = 1. In this

case, there exists a unique edge e ∈ P such that hjt ∈ Φ(e). The uniqueness comes from

Property 3 of the NZDD. So, w′
e = wt,e exp(−αjt) for the edge e. Since hjt ̸∈ Φ(e′) for any

other edge e′ ∈ P , we have

∏
e∈P

w′
e =

(∏
e∈P

wt,e

)
exp(−αjt)

= dt(P ) exp(−αjtyihjt(xi))

= dt(i) exp(−αjtyihjt(xi)).

For the last case where yi = −1 and hjt(xi) = 1, a similar argument to the case above gives

∏
e∈P

w′
e =

(∏
e∈P

wt,e

)
exp(αjt)

= dt(P ) exp(−αjtyihjt(xi))

= dt(i) exp(−αjtyihjt(xi)).

Hence for all paths P , we have

∏
e∈P

w′
e = dt(i) exp(−αjtyihjt(xi)).

Therefore, Proposition 23 ensures that wt+1 represents the path distribution dt+1 as desired.

5.4.2 Computing the edges γt,j

To compute γt,j , we first compute the following quantity

fe =
∑

P∈PG:e∈P

dt(P )
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for all edges e, which can be interpreted as the probability flow of edge e, i.e., the probability

that the path P goes through edge e when P is chosen according to the distribution dt. Since

G is a directed acyclic graph, we can compute fe for all edges e by dynamic programming

(e.g., the forward-backward algorithm) in linear time. Then, it is not hard to see that γt,j can be

computed by

γt,j =
∑

e∈E(G+):hj∈Φ(e)

fe −
∑

e∈E(G−):hj∈Φ(e)

fe.

We summarize the result as in the following lemma.

Lemma 12. There exists an algorithm that exactly simulates Line 3-(a) of Algorithm 10 in time

O(|G|).

Theorem 21 follows from Lemma 11 and Lemma 12.

5.5 Conclusions

We have proposed the NZDD, a variant of ZDDs for representing the training data succinctly

and algorithms, given a NZDD, simulate AdaBoost∗ as well as AdaBoost on the training data

efficiently. As future work, we will evaluate empirical performances of our method on real and

synthetic data sets. Also, investigation of efficient construction methods of NZDDs is important.

One of open problems is to extend our method to the 1-norm soft margin maximization, where

additional constraints make the theoretical results of the direct application of our method worse.

Also, the problem of obtaining similar results for the 2-norm support vector machines remains

open.
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Chapter 6

Conclusion

In this thesis, we considered online prediction for combinatorial concept classes and learning

over compressed data.

In Chapter 3, we considered combinatorial online optimization problems and proposed a

new method to construct a low-regret online algorithm by using an offline algorithm. The

method was that if the corresponding offline algorithm is based on solving a relaxation problem

of original and base on metarounding, an efficient online algorithm can be constructed. Fur-

thermore, we showed that the problem of metarounding has similar structure to boosting and

solved metarounding by using boosting-like algorithm.

In Chapter 4, we extended our construction method for combinatorial online optimization.

In our previous method, we assumed existing efficient algorithms for the projection and the

metarounding. For this assumption, we generalizes the projection to multiple projections. Fur-

ther, we exhibited a case where the multiple projection are useful in a problem of online schedul-

ing of jobs with a single machine under precedence constraints. We proposed a polynomial time

online scheduling algorithm, which have a tight cumulative loss bound.

In Chapter 5, we considered efficient learning methods over compressed data sets. We

employed non deterministic ZDDs as the data structure for representing the data sets. For

the learning algorithm to be applied over the ZDDs, we consider a boosting algorithm called

AdaBoost*. We gave an efficient implementation of AdaBoost* and its running time does not

depend on the size of data sets but is linear in the size of the ZDD. Our method took advantage

when the size of the ZDD is much smaller than the size of the training data and the time of

constructing the ZDD is moderately small.
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[77] M. Warmuth, K. Glocer, and G. Rätsch. Boosting Algorithms for Maximizing the Soft

Margin. In Advances in Neural Information Processing Systems 20 (NIPS 2007), pages

1585–1592, 2007.

[78] M. K. Warmuth and D. Kuzmin. Randomized Online PCA Algorithms with Regret Bounds

that are Logarithmic in the Dimension. Journal of Machine Learning Research, 9:2287–

2320, 2008.

[79] Z. Wen, B. Kveton, and A. Ashkan. Efficient learning in large-scale combinatorial semi-

bandits. In Proceedings of the 32nd International Conference on Machine Learning,

ICML, pages 1113–1122, 2015.

[80] D. P. Williamson and D. B. Shmoys. The Design of Approximation ALgorithms. Cam-

bridge University Press, 2011.

[81] G. J. Woeginger. On the approximability of average completion time scheduling under

precedence constraints. In Proceedings of the 28th International Colloquium on Automata,

Languages and Programming (ICALP 2001), pages 862–874, 2001.

[82] G. J. Woeginger and P. Schuurman. Polynomial time approximation algorithms for ma-

chine scheduling: Ten open problems. Journal of Scheduling, 2:203–213, 1999.

[83] S. Yasutake, K. Hatano, S. Kijima, E. Takimoto, and M. Takeda. Online Linear Op-

timization over Permutations. In Proceedings of the 22nd International Symposium on

Algorithms and Computation (ISAAC 2011), pages 534–543, 2011.

[84] S. Yasutake, K. Hatano, E. Takimoto, and M. Takeda. Online Rank Aggregation. In

Proceedings of 4th Asian Conference on Machine Learning (ACML2012), volume 25 of

JMLR W&CP, pages 539–553, 2012.

[85] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics 152. Springer-

Verlag, 1995.

[86] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.

In Proceedings of the Twentieth International Conference on Machine Learning (ICML

’03), pages 928–936, 2003.

75


