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Abstract
The nuclear expression of wild type p53-induced phosphatase 1 (Wip1) protein was found to be positive in 21
patients (10.4%) out of 201 breast cancer patients in our study. The protein phosphatase magnesium
dependent 1 delta DNA copy number was significantly correlated with Wip1 protein expression, which was
positively correlated with p21 expression. Tumors with positive Wip1 expression and negative p21 expression
showed the poorest prognosis of all tumors examined.
Background: Wild type p53-induced phosphatase 1 (Wip1), encoded by the protein phosphatase magnesium
dependent 1 delta (PPM1D), inhibits p53. PPM1D amplification has been reported in breast cancer. Breast cancer can
sometimes develop without a tumor protein 53 (TP53) mutation. In these cases, the p53 pathway might be disrupted
by alternative mechanisms, and Wip1 is reported to be a key molecule involved. Materials and Methods: Primary
invasive ductal carcinoma specimens were obtained from 201 cases, for which archival tissue samples for immu-
nohistochemistry were available. We evaluated Wip1 and p21 protein expression (201 cases), Wip1 mRNA expression
(63 cases), PPM1D DNA copy number (71 cases) and TP53 status (36 cases) using available samples among the 201
cases, and analyzed their relationships with clinicopathological factors and prognosis. Results: The nuclear
expression of Wip1 protein was positive in 21 cases (10.4%). The PPM1D DNA copy number was significantly
correlated with Wip1 protein expression. All cases with PPM1D amplification by single-nucleotide polymorphism
comparative genomic hybridization array showed positive nuclear Wip1 expression. Wip1 protein expression was
positively correlated with p21 expression. The tumors with positive Wip1 and negative p21 expression showed the
poorest prognosis among all tumor types. Conclusion: The protein expression of Wip1 might be regulated by PPM1D
amplification, independent of TP53 status. Positive Wip1 and negative p21 expression was associated with the
poorest prognosis and suggests the loss of p53 function.
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Introduction
Wild type p53-induced phosphatase 1 (Wip1), a member of the

serine/threonine protein phosphatases, is a key component in the
DNA damage response (DDR) network.1,2 Wip1 is encoded by the
protein phosphatase magnesium dependent 1 delta (PPM1D),
located on 17q23.3 Wip1 inhibits p53 function via the dephos-
phorylation of p53 and several proteins in the DDR/checkpoint
pathways, including ataxia telangiectasia mutated (ATM), check-
point kinase 1 (Chk1), checkpoint kinase 2 (Chk2), murine double
minute, and p38 mitogen activated protein kinase.1,2

Protein phosphatase magnesium dependent 1 delta gene
amplification and/or Wip1 overexpression have been observed in
numerous tumors, including breast cancer.3,4 Several studies have
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reported that Wip1 mRNA or Wip1 protein overexpression is
associated with a poor prognosis in several cancers, such as
nonesmall-cell lung cancer,5 hepatocellular carcinoma,6 and
colorectal cancer.7 However, univariate survival analyses have
failed to show a consistent association between PPM1D gene
amplification or Wip1 overexpression and the prognosis in breast
cancer.1,8 Bilal et al reported that gene amplification at several
loci, including the PPM1D gene, was useful as an independent
marker of a poor prognosis associated with early relapse in es-
trogen receptor (ER)-positive breast cancers treated with
tamoxifen.9

p53 is a master regulatory protein, encoded by the tumor protein
53 (TP53) gene, that is involved in diverse cellularmetabolic processes
such as apoptosis, DNA repair, and cell cycle arrest.10,11 The pro-
tective function of p53 as a tumor suppressor is lost in >50% of
human cancers, caused by mutations in the TP53 gene.12 In many
other cancers, the p53 pathway might be disrupted by alternative
mechanisms, and the lack of functional p53 protein induces cancer
development and progression.13,14 As its molecular function, p53
Figure 1 Wild Type p53-Induced Phosphatase 1 (Wip1) Expression in
Quantitative Reverse Transcriptase Polymerase Chain Rea
(MCF7, T47D), Basal Type (BT20, HCC1937, Hst578T, MDA
Graph Shows the Percentage of Tumor Cells With Wip1-Po
Immunohistochemical Analyses for Wip1 in Breast Cancer
Expression of Wip1 (C) and a High Expression of Wip1 (D)
Protein Expression in Breast Cancer Tissue Samples (E)
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regulates the transcription of numerous genes,15,16 which is
controlled by post-translational modifications.17 In particular, p53
can be classified into 2 different phosphorylation states: p53 arrester
and p53 killer.18 p53 arrester, phosphorylated at Ser15 and
Ser20,17,19,20 controls the cell cycle arrest module and induces the
expression of p21.18 p53 killer, phosphorylated at Ser15, Ser20, and
Ser46,21,22 controls the apoptotic module.18 Wip1 induces the
alteration of p53 killer to p53 arrester through the dephosphorylation
of Ser46 and Wip1 is also activated by the p53 arrester itself.18,23

p21 is an important factor in cell cycle regulation and induces cell
cycle arrest in the G1 phase.24,25 Using MCF7, in which Wip1 as
well as p21 are positive, Mirzayans et al reported that the inhibition
of p21 leads to a decrease in Wip1 expression.26 They suggested that
p21 might contribute to the positive regulation of Wip1. However,
the association between p21 and Wip1 in breast cancer is not fully
elucidated.

Recently, Wip1 inhibitors have been reported in several
studies.27-30 The inhibition of Wip1 might have an important
therapeutic role in suppressing tumor growth and evolution.27 The
Breast Cancer Cell Lines and Breast Cancer Tissue Samples. (A)
ction Data Show the Wip1 Transcription Level in Luminal Type
-MB231) and HER2 Type (SKBR3) Breast Cancer Cell Lines. The
sitive Staining Using Immunohistochemistry (B).
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Table 1 Association Between Expression of Wip1 Protein and
the Clinicopathological Characteristics

Characteristic

Wip1 (n [ 201)

P
Negative
(n [ 180)

Positive
(n [ 21)

Age, Years
Mean ± SD, Range

53 � 13 (26-85) 55 � 15 (32-80) .17

Tumor Size, cm
Mean ± SD, Range

2.0 � 2.3 (0.5-5.5) 2.4 � 1.3 (1.2-6.0) .96

LN Metastasis

Negative 110 (64) 9 (47) .21

Positive 61 (36) 10 (53)

Nuclear Grade

1, 2 125 (70) 15 (79) .60

3 54 (30) 4 (21)

Ki-67, % Mean ± SD 15.4 � 1.4 19.6 � 4.7 .57

ER

Negative 47 (28) 4 (19) .60

Positive 123 (72) 17 (81)

PR

Negative 71 (41) 12 (57) .24

Positive 101 (59) 9 (43)

HER2

Negative 95 (72) 12 (63) .43

Positive 37 (28) 7 (37)

Subtype

HRþ HER2� 76 (58) 9 (47) .06

HRþ HER2þ 14 (11) 6 (32)

HR� HER2þ 23 (18) 1 (5)

HR� HER2� 17 (13) 3 (16)

Data are presented as n (%), except where otherwise specified.
Abbreviations: ER ¼ estrogen receptor; HR ¼ hormone receptor; LN ¼ lymph node; PR ¼
progesterone receptor; Wip1 ¼ wild type p53-induced phosphatase 1.
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oral administration of Wip1 inhibitors in mice resulted in expected
pharmacodynamic effects and caused the inhibition of lymphoma
xenograft growth.27 In addition, Wip1 inhibitor has been reported
to potentiate the sensitivity to murine double minute inhibitors.29

Wip1 is expected to be a novel molecular target for several can-
cers, including breast cancer.

Therefore, we supposed that Wip1 is an important factor to
induce the loss of p53 function in breast cancer patients. Thus, we
hypothesized that p53 function is indirectly predicted by evaluating
Wip1 and p21 expression. In this study, we evaluated the expression
of Wip1 mRNA, Wip1 protein, PPM1D DNA copy number
alteration, TP53 status, and p21 expression. We also analyzed the
relationship between Wip1 expression and clinicopathological fea-
tures, prognosis, TP53 status, and p21 expression of breast cancer
patients to determine the clinical significance of Wip1.

Materials and Methods
Cell Lines, Culture Conditions, and Reagents

MCF7, T47D, MDA-MB231, HCC1937, HS578T, BT20, and
SKBr3 cells were obtained from the American Type Culture
Collection (Manassas, VA) and MCF7, MDA-MB231, HS578T,
BT20 and SKBr3 were maintained in Dulbecco modified Eagle’s
medium (Mediatech, Manassas, VA) containing 10% fetal bovine
serum (Life Technologies Japan, Tokyo, Japan) in 5% CO2 at
37�C. T47D and HCC1937 cells were maintained in RPMI 1640
medium (Sigma, Tokyo, Japan) containing 10% fetal bovine serum
(Life Technologies Japan) in 5% CO2 at 37�C.

Patient and Specimens
Primary invasive ductal carcinoma specimens were obtained from

Japanese patients at stage I to III who underwent surgery in the
Department of Surgery and Science, Kyushu University Hospital,
between 2000 and 2006. Two hundred one cases, for which
archival tissue samples for immunohistochemistry (IHC) were
available were included in this study. No patients had received
neoadjuvant chemotherapy or endocrine therapy, and histologically,
special types were also excluded. The histological diagnosis was on
the basis of the World Health Organization criteria. Written
informed consent was obtained from all patients. The institutional
review board of our university approved this study (27-197).

Total RNA Isolation and Quantitative Reverse
Transcriptase Polymerase Chain Reaction

The expression of Wip1 mRNA was evaluated using quantitative
reverse transcriptase polymerase chain reaction (qRT-PCR). Sixty-
three specimens, suitable for RNA extraction, were evaluated.
Immediately after surgery, the specimens were placed in liquid ni-
trogen and stored at �80�C. Total RNA was extracted from each
specimen with Isogen (Nippon Gene, Tokyo, Japan), and cDNA
was synthesized from RNAs using Super Script III FirstStrand
Synthesis Super Mix (Invitrogen, Carlsbad, CA) in accordance with
the manufacturer’s recommendations. qRT-PCR was performed
using a LightCycler 480 System II (Roche Diagnostics, Basel,
Switzerland) and QuantiFast SYBR Green PCR kit (Qiagen, Hil-
den, Germany). b-Actin was used as an internal control. Human
reference RNA (Promega, Madison, WI) was used as a standard for
quantitation. The oligodeoxynucleotide primers used for Wip1 were
as follows: forward, 50-AGCAGAAGGGTTTCACCTCG-30 and
reverse, 50-CTGGCAGTTGTCCCTGATGT-30. The primers used
for b-actin were as follows: forward, 50-GAAAATCTGGCACCA-
CACCT-30 and reverse, 50-TAGCACAGCCTGGATAGCAA-30.

Evaluation of Estrogen Receptor, Progesterone Receptor,
HER2, and Ki-67

The ER, progesterone receptor (PgR), and HER2 status were
examined as previously reported.31 ER and PgR were considered to
be positive if � 1% of the nuclei of cancer cells were stained on
IHC. Tumors were considered to be HER2-positive only if they
were scored 3þ in IHC or 2þ in IHC in combination with HER2
amplification (ratio > 2.0) using fluorescence in situ hybridization.
Ki-67 was examined as previously reported.32

Expression of Wip1 and p21 Protein
The expression of the Wip1 proteins and p21 were assessed

using IHC. The primary antibodies used were as follows: Wip1
(anti-mouse monoclonal, sc-376257, 1:100; Santa Cruz Biotech,
Dallas, TX), and p21 (anti-mouse monoclonal, WAF-1-L, 1:100;
Clinical Breast Cancer Month 2017 - 3



Figure 2 Copy Number Alteration of PPM1D in Breast Cancer Cell Lines and Breast Cancer Tissue Samples. (A) Genomic Polymerase
Chain Reaction Data Show Copy Number Alteration of PPM1D Locus Among Breast Cancer Cell Lines. (B) The Association
Between the Expression of Wild Type p53-Induced Phosphatase 1 (Wip1) Protein and Copy Number Alteration of PPM1D
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Leica, Tokyo, Japan). The sections from formalin-fixed, paraffin-
embedded tissue specimens were used, and the sections were
deparaffinized with xylene and rehydrated in graded alcohol. The
sections were incubated in 10 mM citrate buffer (pH 9.0, S2367;
Dako, Glostup, Denmark) in an autoclave at 121�C for antigen
retrieval for 10 and 15 minutes for Wip1 and p21, respectively.
After quenching the endogenous peroxidase with 3% H2O2 in
methanol for 30 minutes, the sections were incubated with primary
antibodies at 4�C overnight and then labeled with the Envision
Detection System (Dako) for 1 hour at room temperature. The
Figure 3 Single Nucleotide Polymorphism Comparative Genomic Hy
Induced Phosphatase 1 (Wip1)-Positive Cases Accompanie
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sections were developed with 3,30-diaminobenzidine tetrahydro-
chloride (DAB plus; Dako) and then counterstained with 10%
Mayer hematoxylin, dehydrated, and mounted. Wip1 and p21
expression were independently evaluated by 2 researchers (Y.I. and
N.Y.), who were blinded to the patients’ clinical characteristics.
Wip1 and p21 indices were determined as the percentage of tumor
cells with positive nuclear staining among the counted tumor cells.
Samples were classified as Wip1-positive if the Wip1 index was
>10%. Ten percent was used as the cutoff according to the previous
reports.33-35 In our cohort, most of the cases showed nuclear
bridization (CGH) Array Data Showing 6 of the 8 Wild Type p53-
d by PPM1D Locus Amplification

Wip1 protein expression: posi ve
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Table 2 Wild Type p53-Induced Phosphatase 1 Protein
Expression and TP53 Mutation Status

Wip1, n (%)

TP53 Status

P
Wild Type
(n [ 31)

Mutated
(n [ 5)

Negative 22 (39) 4 (15) .68

Positive 9 (90) 1 (10)

Abbreviation: Wip1 ¼ wild type p53-induced phosphatase 1.

Yuka Inoue et al
staining <10% (Figure 1B). Samples were classified as p21-positive
if the p21 index was >5%, in accord with a previous report.36

Genomic DNA Polymerase Chain Reaction
The PPM1D DNA copy number was analyzed using genomic

polymerase chain reaction (PCR) in 71 cases, for which the extraction
of the genomic DNA were available, including 17 Wip1 protein-
positive and 54 Wip1 protein-negative cases. The amyloid precursor
protein (APP) gene, located on locus 21q21, for which no amplifica-
tions in breast cancer have been reported, was used as the internal
reference.37 The primers used for PPM1D genomic PCR were for-
ward: 50-CCAAGGGTGAATTCTAAGGACC-30 and reverse: 50-
GGGTATGACTACACCTTGGAC-30. The primers used for APP
genomic PCR were forward: 50-TCAGGTTGACGCCGCTGT-30

and reverse: 50-TTCGTAGCCGTTCTGCTGC-30.

Single Nucleotide Polymorphism-Comparative Genomic
Hybridization Array

The copy number analysis of the PPM1D gene was performed by
whole genome single nucleotide polymorphism (SNP)-comparative
genomic hybridization (CGH) array using genomic DNA from 12
breast cancer specimens including 8 Wip1 protein-positive cases and
4 Wip1 protein-negative cases. A tiling array was designed with a
mean probe density of 1 probe per 1169 base pairs, 50-mer length,
covering the whole chromosomal regions, including chromosome
17. Hybridizations were performed in the Nimble Gen Service
Laboratory as described previously.38

TP53 Gene Mutation Analysis
We analyzed the TP53 gene mutation from 36 breast cancer

specimens including 10 Wip1 protein-positive cases and 26 Wip1
protein-negative cases. The TP53 gene, exon 5 to exon 9 including
exoneintron junctions, was amplified using PCR with p53 primers
(Nippon Gene) and Ex Taq DNA polymerase with 30 exonuclease
activity (TaKaRa Bio Inc, Tokyo, Japan). The p53 primers were as
follows: exon 5 forward, 50-TGCAGGAGGTGCTTACACATG-30;
exon 5 reverse, 50-TCCACTCGGATAAGATGCTG-30; exon 6
forward, 50-GAAAATCTGGCACCACACCT-30; exon 6 reverse,
50-GGAGGGCCACTGACAACCA-30; exon 7 forward,
50-TGCCACAGGTCTCCCCAAGG-30; exon 7 reverse, 50-GCA-
CAGCAGGCCAGTGTGCA-30; exon 8-9 forward,
Figure 4 p21 Expression in Breast Cancer Tissue Samples. Represe
High Expression of p21
50-TTGGGAGTAGATGGAGCCT-30; and exon 8-9 reverse,
50-AGTGTTAGACTGGAAACTTT-30. The PCR products were
purified and used as templates for cycle sequencing reactions with the
Big Dye Terminator Cycle Sequencing Kit version 1.1 (Applied
Biosystems, Foster City, CA). Mutations detected in a PCR product
were verified using reverse sequencing and reconfirmed in 2 inde-
pendently amplified PCR products.39

Statistical Analyses
The statistical analyses were performed using the JMP software

program, version 9.0.1 (SAS Institute Inc, Cary, NC). Relationships
among the clinicopathological factors and Wip1 expression were
analyzed using c2 tests, Fisher exact probability tests, and Student t
test. Survival curves were plotted using the KaplaneMeier method,
and the log rank test was used to determine the associations between
individual variables and survival. Recurrence-free survival (RFS) was
defined as the time from surgery to the first breast cancer event,
including local recurrence, distant metastasis, or a new cancer in the
contralateral breast. Differences were considered to be statistically
significant for values of P < .05.

Results
Wild Type p53-Induced Phosphatase 1 mRNA Expression
in Breast Cancer Cell Lines and Breast Cancer Tissues

The Wip1 mRNA expression evaluated using qRT-PCR was
significantly elevated in the luminal type cell line (MCF7) and low
in the other cells (T47D, MDA-MB231, HCC1937, HS578T,
BT20, and SKBr3; Figure 1A). In contrast, there was no significant
correlation between Wip1 mRNA expression and prognosis (data
not shown).
ntative Images Showing (A) a Low Expression of p21 and (B) a
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Table 3 Wild Type p53-Induced Phosphatase 1 Protein
Expression and p21 Expression

Wip1, n (%)

p21

P
Negative
(n [ 129)

Positive
(n [ 71)

Negative 139 (77) 41 (23) .03

Positive 11 (52) 10 (48)

Positive Wip1 expression was significantly associated with positive p21 expression (shown in
bold).
Abbreviation: Wip1 ¼ wild type p53-induced phosphatase 1.

Clinical Significance of Wip1 Expression in Breast Cancer
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Wild Type p53-Induced Phosphatase 1 Protein Expression
in Breast Cancer Specimens

The Wip1 protein expression level was evaluated using IHC in
breast cancer specimens. Cell blocks of MCF7 were used as positive
controls. In the tumor cells, immunostaining for Wip1 was
observed in the nucleus as well as cytoplasm. In this study, we
evaluated Wip1 expression in the nucleus.33,40 Representative
photographs of Wip1-positive and Wip1-negative tumors are shown
in Figure 1C and D. Positive Wip1 expression was observed in 21
cases (10.4%). There was no significant correlation between Wip1
Figure 5 Kaplan-Meier Survival Curves of Recurrence-Free Survival
p53-Induced Phosphatase 1 (Wip1) Protein Expression, (B
Positive Wip1 Expression and Negative p21 Expression Sh
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mRNA expression and Wip1 protein expression (Figure 1E). There
was no significant correlation between Wip1 protein expression and
clinicopathological factors (Table 1).

Protein Phosphatase Magnesium Dependent 1 Delta DNA
Copy Number Alteration in Breast Cancer Cell Lines and
Specimens

The PPM1D DNA copy number was significantly elevated in
MCF7 and low in the other cells (T47D, MDA-MB231, BT20,
and SKBr3; Figure 2A). In breast cancer specimens, a positive
correlation was found between PPM1D DNA copy number and
Wip1 protein expression (P ¼ .0253; Figure 2B).

Copy Number Alteration in the PPM1D Gene Locus
Using SNP-CGH Array

We performed SNP-CGH array in 8 cases with positive Wip1
protein expression and 4 cases with negative expression to clarify
potential mechanisms of disruption of the intact allele of the
PPM1D gene in Wip1 protein expression. Significant amplification
at locus 17q23, on which the PPM1D gene was encoded, was
detected in 6 cases, all of which showed elevated Wip1 expression.
No PPM1D amplification was observed in the cases with negative
Wip1 expression (Figure 3).
for Breast Cancer Patients Stratified According to (A) Wild Type
) p21 Protein Expression and (C) Wip1 and (D) p21 Expression.
owed the Poorest Prognosis Among the Groups Examined
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Figure 6 Schematic Illustration of the Possible Association
Between Wild Type p53-Induced Phosphatase 1
(Wip1) and the Phosphorylation (P) States of p53. The
Molecular Function of p53 is Controlled by
Phosphorylation. p53 is Classified as Either p53
Arrester or p53 Killer According to Its
Phosphorylation States. p53 Arrester, Phosphorylated
at Ser15 and Ser20, Controls the Cell Cycle Arrest
Module and Induces the Expression of p21. p53
Killer, Phosphorylated at Ser15, Ser20, and Ser46,
Controls the Apoptotic Module. Wip1 Induces p53
Killer to p53 Arrester Alteration Via Ser 46
Dephosphorylation. In Some Cases, Wip1
Dephosphorylates Ser15 and Ser20 Through Several
Pathways and Might Lead to the Loss of the p53
Function
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Wild-Type p53-Induced Phosphatase 1 Protein Expression
and TP53 Mutation Status

TP53 mutation status was analyzed using direct sequencing. Of
the 10 cases with Wip1 protein expression, only 1 had a TP53
mutation, whereas another 10 cases had wild type TP53. In
contrast, of the 26 cases with negative Wip1 protein expression, 4
had a TP53 mutation. However, there was no significant correlation
between the Wip1 protein expression and TP53 mutation status
(Table 2).

p21 Protein Expression in Breast Cancer Specimens
p21 expression was investigated in 201 breast cancer specimens.

Representative photographs of positive and negative p21 expression
are shown in Figure 4. In tumor cells, immunostaining for p21 was
observed in the nucleus. Positive p21 expression was observed in 51
cases (25.4%). Positive Wip1 expression was significantly associated
with positive p21 expression (P ¼ .03; Table 3). There was no
significant correlation between Wip1 and p21 expression and
clinicopathologic characteristics (data not shown).

Wild Type p53-Induced Phosphatase 1 and p21 Protein
Expression and Prognosis

Wild type p53-induced phosphatase 1 protein expression was
significantly associated with a poor prognosis in terms of RFS (P ¼
.0274; Figure 5A). However, there was no significant correlation
between p21 expression and RFS (Figure 5B). In the combination
analysis of Wip1 and p21 expression, Wip1-positive and p21-
negative cases showed a significantly shorter RFS than the other
groups (Figure 5C and D).

Discussion
There is increasing evidence that PPM1D is an oncogene.18,41

Wip1, the transcriptional product of PPM1D, exists mainly in the
nucleus, and dephosphorylates several proteins in the DDR/
checkpoint pathways.1,2 Therefore, Wip1 might play an important
role as an oncogene in the nucleus. To our knowledge, this is the
first report to show that Wip1 nuclear protein expression is asso-
ciated with PPM1D amplification in invasive breast cancer using
genomic PCR and SNP-CGH.

Wild type p53-induced phosphatase 1 nuclear protein expression
is considered to be regulated by PPM1D amplification. However, in
some cases with Wip1 protein expression, PPM1D gene amplifi-
cation was not observed. According to previous reports, the amount
of Wip1 protein in tumors is much higher than the transcript levels,
suggesting additional mechanisms for regulating the Wip1 protein
expression level, including post-translational modifications, the
regulation of protein degradation, and post-transcriptional mecha-
nisms like alternative splicing.42-44

In cancers with wild type TP53, the p53 pathway is disrupted
by several mechanisms,14,15 and Wip1 is reported to be a key
molecule involved.1 The relationship between PPM1D amplifi-
cation and TP53 status has been inconsistent. In 1 study, most
of breast cancers with PPM1D amplification were reported to
show no structural changes in the TP53 gene.4 However, in The
Cancer Genome Atlas studies, TP53 mutations have been re-
ported in breast cancer samples with PPM1D amplification or
Wip1 overexpression.41 Demidov et al reported that PPM1D
amplification or Wip1 overexpression was not dependent on
TP53 status in vivo.45 In our study, of the 10 cases with Wip1
protein expression, only 1 had a TP53 mutation.

Our data show that positive Wip1 expression was significantly
associated with positive p21 expression. Wip1 induces p53 killer to
p53 arrester alteration via Ser 46 dephosphorylation and p53
arrester induces the expression of p21 and controls cell cycle ar-
rest.18 This previous report supports the positive correlation be-
tween Wip1 and p21 expression in this study. However, some cases
showed positive Wip1 expression without p21 expression. One
potential reason for this apparent discrepancy is that Wip1 can also
dephosphorylate Ser15 and Ser20 of p53 arrester through several
pathways, such as ATM and Chk2 (Figure 6).17-21,46

In the present study, Wip1 protein expression was significantly
associated with a poor RFS. Furthermore, the expression pattern of
positive Wip1 and negative p21 showed the worst prognosis among
the groups examined; this outcome might be because of the loss of
the p53 function among these populations (Figure 6).

Conclusion
Wild type p53-induced phosphatase 1 protein expression in the

nucleus was significantly associated with the PPM1D DNA copy
number gain and p21 expression. In addition, the tumors with
positive Wip1 expression and negative p21 expression showed the
poorest prognosis among the evaluated cohort. The Wip1 protein
expression might be regulated by PPM1D amplification, indepen-
dent of TP53 status. Positive Wip1 and negative p21 expression
might reflect the loss of p53 function.
Clinical Breast Cancer Month 2017 - 7
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� Some breast cancers can develop without a TP53 mutation. In
such cases, the p53 pathway might be disrupted by alternative
mechanisms. One of the key molecules involved in these
mechanisms is Wip1, which works as an oncogene dephos-
phorylating several proteins including p53.

� The PPM1D DNA copy number was significantly correlated
with the Wip1 protein expression. Amplification at the PPM1D
locus was detected using SNP-CGH array, and all of the cases
showed positive nuclear Wip1 expression. To our knowledge,
this is the first report to show a significant association between
the nuclear Wip1 protein expression and PPM1D amplification
in breast cancer tissues.

� Wild type p53-induced phosphatase 1 protein expression in the
nucleus was significantly associated with p21 expression. The
tumors with positive Wip1 and negative p21 expression showed
the poorest prognosis among the groups evaluated. Positive
Wip1 and negative p21 expression suggests the loss of p53
function.
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