
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Impact of pixel-based machine-learning
techniques on automated frameworks for
delineation of gross tumor volume regions for
stereotactic body radiation therapy

河田, 康雄

https://doi.org/10.15017/1931769

出版情報：Kyushu University, 2017, 博士（保健学）, 課程博士
バージョン：
権利関係：(c) 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All
rights reserved.



Physica Medica 42 (2017) 141–149
Contents lists available at ScienceDirect

Physica Medica

journal homepage: ht tp : / /www.physicamedica.com
Original paper
Impact of pixel-based machine-learning techniques on automated
frameworks for delineation of gross tumor volume regions for
stereotactic body radiation therapy
https://doi.org/10.1016/j.ejmp.2017.08.012
1120-1797/� 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Division of Quantum Radiation Science, Department
of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan.

E-mail address: arimurah@med.kyushu-u.ac.jp (H. Arimura).
Yasuo Kawata a, Hidetaka Arimura b,⇑, Koujirou Ikushima a, Ze Jin a, Kento Morita c, Chiaki Tokunaga d,
Hidetake Yabu-uchi b, Yoshiyuki Shioyama e, Tomonari Sasaki b, Hiroshi Honda b, Masayuki Sasaki b

aGraduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
b Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
cDepartment of Health Sciences, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
dDepartment of Medical Technology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
e Saga Heavy Ion Medical Accelerator in Tosu, 415, Harakoga-cho, Tosu 841-0071, Japan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 May 2017
Received in Revised form 21 August 2017
Accepted 26 August 2017

Keywords:
Gross tumor volume (GTV)
Planning computed tomography
18F-fluorodeoxyglucose (FDG)-positron
emission tomography (PET)
Pixel-based machine learning
Image segmentation
The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e.,
fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector
machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung
cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions,
which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel
basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated
into the automated delineation framework of GTVs followed by an optimum contour selection (OCS)
method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for
16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets
of planning computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography
(PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of
region similarity between the GTVs contoured by radiation oncologists and those estimated using the
automated framework. The FCM-based framework achieved the highest DSCs of 0.79 ± 0.06, whereas
DSCs of the ANN-based and SVM-based frameworks were 0.76 ± 0.14 and 0.73 ± 0.14, respectively. The
FCM-based framework provided the highest segmentation accuracy and precision without a learning pro-
cess (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor
regions in practical treatment planning.

� 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Stereotactic body radiotherapy (SBRT) is a promising technique
for treatment of lung cancer, which was the leading cause of cancer
death in Japan, as of 2011 [1]. The three-year overall survival rate
after SBRT was 56.6%, which did not differ significantly between
SBRT and surgery in patients with operable Stage I non-small cell
lung cancer (NSCLC) [2]. However, SBRT requires fewer uncertain-
ties on many factors, especially the target delineation, because
higher doses (e.g., 12 Gy) per fraction are administrated to small
targets (�5 cm) rather than to the surrounding normal tissues.
The uncertainties on the clinical target volume (CTV) and planning
target volume (PTV) in the radiation treatment planning engenders
high impacts on the precisions of entire radiation treatment
courses, including planning and patient positioning [3]. The CTV
and PTV have been determined based on gross tumor volume
(GTV). However, the GTV regions are manually delineated on treat-
ment planning computed tomography (CT) images by treatment
planners (e.g., radiation oncologists) in current radiation therapy.
Consequently, the manual delineation based on the experiences
and expertise of treatment planners can cause intra- and inter-
observer variations in GTV contours in clinical practice [4,5]. This
issue prevents us from performing the multi-institutional planning
comparison [6,7]. Therefore, the automated frameworks are sub-
stantially necessary to unify GTV contours in the comparison of
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multi-institutions. Furthermore, it is time-consuming for treat-
ment planners to manually delineate the GTV contours.

Therefore, several computational approaches have been
reported for determining the GTV contours [8–21]. There are two
major types of conventional approaches with and without machine
learning (ML) techniques: unsupervised and supervised learning.
Several researchers have shown the potential of ML techniques
to estimate initial regions of GTV contours, i.e., the fuzzy locally
adaptive Bayesian approach [15], the Bayesian network model
and support vector machine (SVM) model [16], the fuzzy c-
means algorithm [17], artificial neural network (ANN)-based
thresholding segmentation [19], and SVM-based delineation using
an optimum contour selection (OCS) method [21]. One of the draw-
backs of supervised ML, however, is that the learning step requires
certain knowledge (teaching data, such as reference GTV regions)
and longer computational times compared with unsupervised
learning. On the other hand, a disadvantage of unsupervised ML
is the lack of knowledge. Nevertheless, no studies have been con-
ducted that compared performances of unsupervised and super-
vised ML techniques for delineation of GTV contours of lung
cancer. Furthermore, since there are several lung tumor types
(solid, ground glass opacity (GGO), and part-solid GGO), the prop-
erties of the ML techniques for the three types of tumor should be
explored. A nodule obscured the entire lung parenchyma within
them was defined as solid. A nodule that did not completely
obscure the entire lung parenchyma within them and there was
no solid component was defined as GGO. A non-solid nodule devel-
oping an internal solid component was defined as part-solid GGO.
The classification of the lung cancer was described in [22–24].

Therefore, the aim of this study was to investigate the impact of
ML techniques on an automated framework for delineation of GTV
regions of lung cancer for SBRT. The fuzzy-c-means clustering
method (FCM) was selected as an unsupervised ML technique,
and ANN and SVM were selected as the supervised ML techniques.
The three ML techniques were incorporated as pixel-based ML
classifiers into an automated delineation framework of GTVs
followed by the OCS method, which we proposed in a previous
study [21].
2. Materials and methods

2.1. Clinical cases

This study was performed with the approval of the Institutional
Review Board of our university hospital. We selected for this study
sixteen lung cancer patients (mean age: 76 years; range: 65–
86 years; eight females; eight males; GTV mean effective diameter:
21 mm), who received SBRT at the university hospital. The patient
datasets consisted of the planning CT and positron emission
tomography (PET)/CT images. The planning CT images were
acquired by a four-slice CT scanner (Mx 8000; Philips, Amsterdam,
The Netherlands) with a 512 � 512 matrix size, a nominal in-plane
pixel size of 0.98 mm, and a nominal slice thickness of 2.0 mm. The
patients were scanned with free-breathing due to small tumor
motion in upper lobe or patient’s performance status. The nominal
in-plane pixel size in mm is technically determined based on (field
of view (FOV) in mm along the anterior-posterior or left-right
direction)/(number of pixels). Similarly, the nominal slice thick-
ness is obtained based on (FOV in mm along the superior-inferior
direction)/(number of slices). The planning CT images with the ani-
sotropic voxel were transformed into images with matrix sizes of
512 � 512 � 266–389 and a nominal 0.98 mm isotropic voxel
using a cubic interpolation method.

Table 1 shows the sixteen lung cancer patients characteristics.
There were six solid, four ground glass opacity (GGO), and six
part-solid GGO types of lung cancer. The lung window level and
width were set at �600 and 1500 Hounsfield units [HU], respec-
tively, and the mediastinal window level and width were set at
50 and 400 HU, respectively, for determining the tumor types on
the planning CT image by a radiologist (H.Y.).

The integrated PET/CT scanner (Discovery STE, General Electric
Medical Systems, Milwaukee, WI; and BiographmCT, Siemens, Ber-
lin, Germany) was used for scanning each patient with their arms
down while freely breathing 60 min after FDG injection. The PET
images could help treatment planners delineate GTV regions with
relevant metabolic information. By using a three-dimensional (3D)
ordered subset-expectation maximization (OS-EM) algorithm (VUE
Point Plus, GE Healthcare; and ultraHD, Siemens), the PET images
were acquired in the 3D mode and reconstructed with correction
for attenuation, scatter, decay, random, and dead time. The number
of iterations was set to two, the number of subsets was set to 21,
and the full width at half maximum of a Gaussian filter was set
as 6.0 mm, respectively. The PET images were acquired with 128
� 128 pixels with a nominal in-plane pixel size of 5.5 mm, and a
nominal slice thickness of 3.3 mm, or 256 � 256 pixels with a nom-
inal in-plane pixel size of 3.2 mm and a nominal slice thickness of
3.0 mm. In addition, the diagnostic CT images consisted of a
512 � 512 matrix, a nominal in-plane pixel size of 0.98 mm, and
a nominal slice thickness of 3.3 or 3.0 mm. The diagnostic CT
images were acquired by using a 16-slice CT scanner in the PET/
CT system.

By using a linear and cubic interpolation method, the PET and
diagnostic CT images were converted into isotropic images with
a nominal isotropic voxel of 0.98 mm, respectively. The matrix
sizes for the PET images were 716 � 716 � 793–920, or
834 � 834 � 811–992. The matrix sizes for the diagnostic CT
images were 512 � 512 � 811–992 with a nominal isotropic voxel
of 0.98 mm. The linear interpolation method was applied to the
PET images to avoid the problem that the edge portions in the
PET images were likely to be enhanced by a cubic interpolation
method. The isotropic diagnostic CT images were smaller than
the isotropic PET images. However, for obtaining the image fea-
tures at the same voxels in both images, the matrix sizes of both
images should have been the same size. Therefore, the isotropic
diagnostic CT images were situated on the centers of the isotropic
PET images. Then, the isotropic PET images were cropped to the
same sizes as the isotropic diagnostic CT images.

The standardized uptake values (SUVs) were used as metabolic
features of the PET images to be input to the FCM, ANN and SVM.
The SUV is the ratio of the radioactivity concentration of the tissue
at one time point to the injected dose of radioactivity concentra-
tion at that time point divided by the body weight. The SUV is cal-
culated by the following equation:
SUV ¼ C
D=W

; ð1Þ
where C is the radioactivity concentration in kBq/mL obtained from
the pixel value in the PET image multiplied by a cross calibration
factor. In addition, D is the injected dose of 18FDG administered in
megabecquerels (MBq; decay corrected), and W is the patient body
weight in kilograms.

Two experienced radiation oncologists approved radiation
treatment plans by using a commercially available radiation treat-
ment planning (RTP) system (Eclipse v. 6.5 and 8.1, Varian Medical
Systems Inc., Palo Alto, USA). Two experienced radiation oncolo-
gists (Y.S. and T.S.) delineated the GTV contours based on a consen-
sus between them by using the RTP system on the planning CT
images by referencing fusion images of the PET and diagnostic CT
images.



Table 1
Summary of patient characteristics.

Case No. Gender Age (years) GTV sizea (mm) Tumor location SUVmax
b Tumor type Tumor CT imaging characteristics

1 Fc 71 18 RULe 8.4 Solid Homogeneous
Irregular

2 F 67 24 RUL 12 Solid Homogeneous
Irregular
Vascular

3 Md 65 25 RUL 6.8 Solid Inhomogeneous
Irregular

4 M 75 20 LULf 8.7 Solid Inhomogeneous
Irregular
Adjacent Pleural

5 M 86 29 LUL 9.7 Solid Cavity
Irregular

6 F 81 26 RUL 4.4 Solid Homogeneous
Irregular
Pleural Indentation

7 M 76 18 LUL 1.7 GGO Irregular
Pleural Indentation
Vascular

8 F 74 16 RLLg 1.3 GGO Smooth
9 M 81 19 LUL 2.6 GGO Smooth
10 F 79 21 RUL 1.5 GGO Irregular
11 M 77 21 LLLh 6.6 Part solid GGO Inhomogeneous

Irregular
Cavity

12 F 85 14 RUL 1.7 Part solid GGO Irregular
13 M 65 18 RUL 1.3 Part solid GGO Smooth

Inhomogeneous
14 F 84 16 LLL 1.4 Part solid GGO Irregular

Pleural Indentation
Vascular

15 F 78 19 RUL 1.4 Part solid GGO Smooth
Pleural retraction

16 M 75 25 RUL 2.2 Part solid GGO Smooth

a Effective diameter.
b Maximum standardized uptake value.
c Female.
d Male.
e Right upper lobe.
f Left upper lobe.
g Right lower lobe.
h Left lower lobe.
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2.2. Automated framework for delineation of GTV regions

Fig. 1 shows an overall scheme of the automated framework for
delineation of GTV regions. The basic concept of this study was to
extract GTV regions from the volume of interest (VOI) based on the
Fig. 1. An overall scheme of the automated framework for delineation of GTV
regions.
knowledge and experience of radiation oncologists by using the
pixel-based ML techniques with six image features. Therefore,
the six image features, i.e., the voxel values and the magnitudes
of the image gradient vectors on the planning CT and PET/CT image
datasets, were used as the input image features for the pixel-based
ML techniques.

2.2.1. Registration of PET and diagnostic CT images to planning CT
images

The PET and diagnostic CT images were registered to the plan-
ning CT images by the lung region centroid matching method
described in [21] for utilization of the metabolic and morphological
information of the PET, diagnostic CT, and planning CT images. The
registration of the PET and diagnostic CT images to the planning CT
images was performed based on centroid matching of lung regions
with bronchi. These lung regions with bronchi were extracted from
diagnostic CT and planning CT images. The algorithm for extraction
of lung regions with bronchi was described in [21].

2.2.2. Calculation of morphological and metabolic image features
The voxel values and the magnitudes of image gradient vectors

calculated from PET, diagnostic CT, and planning CT images were
used as the image features. The image gradient magnitude at a
voxel was derived from the following first-order polynomial within
a 5 � 5 � 5 voxel region obtained by use of the least squares
method [25]:
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f ðx; y; zÞ ¼ ixþ jyþ kzþ l; ð2Þ
where x, y and z are the coordinates of one of the three types of
images, f(x, y, z) is the first-order polynomial, and i, j, k and l are con-
stants. Therefore, gradient magnitude G was calculated by

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@f
@x

� �2

þ @f
@y

� �2

þ @f
@z

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2 þ k2

q
: ð3Þ
2.2.3. Identification of initial GTV region based on three pixel-based ML
techniques (FCM, ANN, and SVM)

The initial GTV regions were identified by classifying pixels
within VOI based on three pixel-based ML techniques, i.e., FCM,
ANN, and SVM, with the image features from VOI based on the
knowledge and experience of the radiation oncologists. The image
features used as input image features for the pixel-based ML tech-
niques were the voxel values and the magnitudes of the image gra-
dient vectors on the planning CT and PET/CT image datasets.

2.2.4. Extraction of a GTV region by using thresholding and/or the OCS
method

Membership map values of tumor and normal tissue were cal-
culated by applying FCM to each voxel. The membership map val-
ues of tumors were used for initial GTVs because membership map
values indicate the degree of GTVs.

On the other hand, initial GTV regions and other regions were
classified by applying ANN and SVM to each voxel. The initial
GTV regions obtained by FCM, ANN, and SVM were smoothed by
applying a Gaussian filter with a standard deviation (SD) of three
pixels. Finally, the GTV regions were determined by thresholding
the smoothed initial GTV regions. In addition, the GTV regions of
a solid type obtained by ANN and SVMwere determined by thresh-
olding and applying the OCS method to the smoothed initial GTV
regions. The post-processing method for the initial GTV regions
extracted by ANN and SVM was the same as the method developed
by Ikushima et al. [21].

2.2.5. Fuzzy c-means clustering method
The FCM method is an unsupervised ML technique that is used

to cluster the dataset. In this study, the initial GTV regions were
extracted by using the FCM method. A class membership value
was assigned to each voxel by the FCM method, depending on
the similarity of the pixel to a particular class relative to all other
classes [26–29]. The FCM algorithm is shown in Fig. 2. The FCM
method was performed by minimizing the following objective
Fig. 2. An algorithm of FCM.
function with respect to the membership function uik at voxel k
and cluster i and the centroid vector of a cluster vi:

JFCM ¼
Xn
k¼1

Xc
i¼1

um
ik xk � vik k2; ð4Þ

where xk is the image feature vector at voxel k, c is the number of
clusters, n is the number of voxels, and m is a constant that controls
the fuzziness of the resulting partition. Additionally, m is set to two
in this paper. The membership functions are constrained to be pos-
itive and to satisfy the following equation:

Xc
i¼1

uik ¼ 1: ð5Þ

Minimization of JFCM is performed by an iterative calculation of
uik and vi using the following equation:

uik ¼
Xc
j¼1

xk � vik k2
xk � vj

�� ��2
 ! 1

m�1
2
4

3
5

�1

; ð6Þ

where

vi ¼
Pm

k¼1 um
ikxk

� �
Pn

k¼1 um
ik

� � : ð7Þ

The objective function is minimized when high membership
values are obtained.

2.2.6. Artificial neural network
The ANN is a supervised ML technique that can classify the

input data to any categories based on training [30]. The ANN is a
framework modeled as a biological neural network with an activa-
tion function. In the ANN, the activation function is applied to the
sum of the input data multiplied by weights. The weights in the
ANN are determined by using a back-propagation of errors
between predicted outputs and teacher signals at a learning step.
The activation function is expressed by

f ðxÞ ¼ 1� 2
expðaxÞ þ 1

; ð8Þ

where a determines the slope of the activation function. In this
paper, a was set to 0.5. In addition, the learning rate used for
back-propagation was set to 0.001, and the number of nodes in a
middle layer was set to two.

2.2.7. Support vector machine
The SVM is a supervised ML technique that can classify the

input dataset into two classes based on a discriminant function
[31]. The discriminant function is constructed in a linearly separa-
ble space by using a non-linear kernel function with training data-
sets. In the separable space, a margin is calculated to maximize the
distance between the support vector and hyperplane. The margin
is calculated by a Lagrangian function based on the training data-
set. The following equation is constructed by SVM as the discrim-
inant function:

f ðxÞ ¼
XN
i¼1

yiaiK x;xið Þ þ b; ð9Þ

where xi (i = 1,� � �, N, N: number of support vectors) is the support
vector, b and ai are parameters for determining the discriminant
function, and Kðx;xiÞ is the non-linear kernel function for mapping
a linearly non-separable dataset to a linearly separable dataset. In
this study, the Gaussian kernel, i.e., expð�c x� yk k2Þ, was used as
the non-linear kernel function of the SVM. The value c was set to
0.001 for solid and GGO, and to 0.00001 for part-solid GGO. In
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addition, a parameter for the soft margin of SVM was set at ten for
solid and part-solid GGO, and to 0.01 for GGO. These SVM parame-
ters were optimized by using image features of the training dataset
for each tumor type.

2.3. Evaluation of GTV extracted by the ML techniques

The GTV regions extracted by the ML techniques were evalu-
ated by using 3D DSC [32]. The DSC indicates the degree of region
similarity between the GTV ground truth region and the GTV
region estimated using the ML techniques. The DSC is calculated
according to the following equation:

DSC ¼ 2n T \ Dð Þ
nðTÞ þ nðDÞ ; ð10Þ

where T is the GTV ground truth region determined by two radi-
ation oncologists (Y.S., T.S.), D is the GTV region estimated using
the ML techniques, n(T) is the number of pixels in a region T, n
Fig. 3. Original images and gradient vector magnitude images obtained from the plannin
based ML techniques.

Fig. 4. Illustrations of the output images obtained by the three pixel-based
(D) is the number of pixels in a region D, and n(T\D) is the num-
ber of logical AND pixels between regions T and D. The DSC ranges
from zero (no overlap between T and D) to one (T and D are
identical).

The GTV regions obtained from the Digital Imaging and Com-
munications in Medicine (DICOM) for radiation therapy
(DICOM�RT) files were used as ground truths.

Planning CT (0.98 � 0.98 � 2.0 mm3), PET (5.5 � 5.5 � 3.3 or
3.2 � 3.2 � 3.0 mm3), and diagnostic CT images (0.98 � 0.98 � 3.3
or 0.98 � 0.98 � 3.0 mm3) were converted into images with an iso-
tropic voxel of 0.98 mm to easily perform the image processing
techniques developed in this study. To avoid the influence of these
large upsampling on the evaluation of segmentation accuracy of
the ML techniques, the GTV regions estimated by the ML tech-
niques were downsampled into the original anisotropic voxel using
a nearest neighbor method to calculate the DSCs with the ground
truths on the planning CT images with the original anisotropic
voxel.
g CT and PET/CT image dataset that were used as image features for the three pixel-

ML techniques for solid, GGO, and part-solid GGO lung tumor types.
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3. Results

Fig. 3 shows the image features, which were given the three ML
techniques. The solid (Case 2) and part solid GGO (Case 16) tumors
have visible but blurry boundaries in the gradient images, and
show bright regions in PET images. In the contrast, the GGO (Case
9) tumor is depicted with subtle edges and dark appearance. Fig. 4
shows the output images obtained by the three pixel-based ML
techniques for three lung tumor types. The FCM framework shows
the stronger outputs for three types of tumors, but the other
frameworks produced weaker outputs for GGO and part solid
GGO tumors. Fig. 5 shows extracted GTV regions by the three ML
techniques with the planning CT images for the three lung tumor
types. For the solid tumor (Case 2), the GTV region of a homoge-
neous and irregular tumor with vascularization was well extracted
Fig. 5. A comparison of results of the three pixel-based ML f

Table 2
Average three-dimensional Dice similarity coefficients (DSCs) obtained by using three pixe
and SVM-based framework) for 16 cases.

Case No. Tumor type FCM-based framework

1 Solid 0.83
2 Solid 0.82
3 Solid 0.81
4 Solid 0.82
5 Solid 0.90
6 Solid 0.83
7 GGO 0.80
8 GGO 0.84
9 GGO 0.70
10 GGO 0.80
11 Part solid GGO 0.73
12 Part solid GGO 0.74
13 Part solid GGO 0.76
14 Part solid GGO 0.74
15 Part solid GGO 0.71
16 Part solid GGO 0.87

Mean ± SD 0.79 ± 0.06
Pa (t-test with FCM) –
Pb (F-test with FCM) –

a The p-value was calculated by t-test with FCM-based framework.
b The p-value was calculated by F-test with FCM-based framework.
by using the three ML techniques. For the GGO tumor (Case 9), the
DSC obtained by the ANN-based framework was lower than the
other frameworks. The GTV region of the part solid GGO tumor
(Case 16) was well segmented by the FCM-based framework. The
ANN- and SVM-based frameworks were not able to segment the
blurry region on the part solid GGO tumor for Case 16.

Table 2 shows a comparison of the DSCs among the FCM-, ANN-,
and SVM-based frameworks for the sixteen cases. The average 3D
DSC between the GTV ground truths contoured by the radiation
oncologists and the GTV regions obtained by using the FCM-
based framework was 0.79 ± 0.06. On the other hand, the average
3D DSC was 0.76 ± 0.14 obtained by the ANN-based framework
and 0.73 ± 0.14 obtained by the SVM-based framework. The aver-
age 3D DSC by the FCM-based framework was higher than the
average 3D DSCs by SVM-based and ANN-based frameworks
ramework in terms of tumor CT imaging characteristics.

l-based machine-learning techniques (FCM-based framework, ANN-based framework

ANN-based framework SVM-based framework

0.88 0.85
0.80 0.84
0.81 0.81
0.86 0.90
0.82 0.87
0.84 0.79
0.79 0.83
0.75 0.77
0.30 0.70
0.77 0.81
0.77 0.44
0.84 0.66
0.70 0.68
0.80 0.54
0.76 0.72
0.67 0.45

0.76 ± 0.14 0.73 ± 0.14
0.14 0.03
0.002 0.94 � 10�3
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(p > 0.05). The SD of DSCs obtained by the FCM-based framework
was significantly smaller, compared with those obtained by the
SVM-based and ANN-based frameworks (p < 0.05).

Table 3 shows a comparison of the DSCs of the FCM-, ANN-, and
SVM-based frameworks for the three tumor types. The highest
DSCs for solid, GGO, and part-solid GGO types were obtained by
the SVM-, FCM-, and FCM-based frameworks, respectively. There-
fore, the suitable ML technique differed for each tumor type. The
SDs of the 3D DSCs of the GGO and the part-solid GGO tumor types
obtained by the FCM-based framework were significantly smaller
(p < 0.05) compared with that of the GGO tumor type obtained
Table 3
Comparisons of three dimensional DSCs (mean ± SD) for three tumor types obtained
by three frameworks.

Tumor type FCM-based
framework

ANN-based
framework

SVM-based
framework

Solid 0.83 ± 0.03 0.83 ± 0.03 0.84 ± 0.04
GGO 0.79 ± 0.06 0.65 ± 0.24 0.77 ± 0.06
Part solid GGO 0.76 ± 0.06 0.76 ± 0.07 0.58 ± 0.12

Table 4
Comparisons of computational time by three frameworks.

Tumor type FCM-based framework ANN-

Learning (sec) Test (sec) Learn

Solid 0 2.3 365.6
GGO 0 1.2 98.4
Part solid GGO 0 1.5 187.8
Mean (16 cases) 0 1.7 232.1
P value with FCM – – 3.0 �

Fig. 6. Relationships between DSC and the threshold value for determining GTV region
by the ANN-based framework and that of the part-solid GGO tumor
type obtained by the SVM-based framework.
4. Discussion

In this study, we strived to develop an automated framework
for delineation of GTV regions, and we compared DSCs of the
GTV regions estimated by three pixel-based ML techniques, i.e.,
FCM, ANN and SVM. As a result, the 3D average DSC by using the
FCM-based framework was highest for 16 patients. Table 4 shows
a comparison of the computational times for the learning step and
test step by the pixel-based ML techniques for the sixteen cases.
The computational time by each pixel-based ML framework was
measured on a computer (CPU: Intel(R) Core(TM) i7-6700 3.4-
GHz quad core; 32 GB of RAM). The average computational time
of the FCM-based framework was significantly less than those of
the SVM-based and ANN-based framework (p < 0.05).

Fig. 6 indicates the relationship between the DSC and the
threshold value used for extraction of the GTV regions, for FCM
cluster numbers of 2, 3, and 4. The cluster number and threshold
value on each tumor type were determined for the highest DSCs.
based framework SVM-based framework

ing (sec) Test (sec) Learning (sec) Test (sec)

3.4 4838.0 46.5
1.4 30.9 7.2
1.6 867.2 12.7
2.2 2147.2 24.0

10�7 0.02 8.0 � 10�4 1.0 � 10�4

s of solid, GGO, and part-solid GGO types, for FCM cluster numbers of 2, 3, and 4.



Table 5
Comparison of three-dimensional DSC obtained by FCM-based framework and
combinational framework.

Case No. Tumor type FCM-based
framework

Combinational
framework

1 Solid 0.83 0.85
2 Solid 0.82 0.84
3 Solid 0.81 0.81
4 Solid 0.82 0.90
5 Solid 0.90 0.87
6 Solid 0.83 0.79
7 GGO 0.80 0.80
8 GGO 0.84 0.84
9 GGO 0.70 0.70
10 GGO 0.80 0.80
11 Part solid GGO 0.73 0.73
12 Part solid GGO 0.74 0.74
13 Part solid GGO 0.76 0.76
14 Part solid GGO 0.74 0.74
15 Part solid GGO 0.71 0.71
16 Part solid GGO 0.87 0.87

Mean ± SD 0.79 ± 0.06 0.80 ± 0.06
P (t-test) 0.30
P (F-test) 0.78
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As a result, the cluster number was determined to be three, and the
threshold value for the smoothed initial GTVs was determined to
be 70% for the solid type, 65% for the GGO type, and 75% for the
part-solid GGO type.

The suitable pixel-based ML differed depending on the tumor
type. The GTV region of the solid tumor type was well extracted
by the SVM-based framework compared to the other pixel-based
ML approaches. The GTV regions of the GGO tumor type had the
highest DSC when using the FCM-based framework. The part-
solid tumor type had the highest DSC, which was extracted by
the ANN-based framework. Therefore, as a combined framework,
we applied the SVM-based framework to the solid tumor type,
the FCM-based framework to the GGO tumor type, and the
ANN-based framework to the part-solid tumor type, as shown
in Fig. 7. Table 5 shows the results of the FCM-based and the
combined frameworks. The average DSCs obtained by the FCM-
based framework and the combined approach were 0.79 ± 0.06
and 0.80 ± 0.06, respectively. There were no significant differences
in the mean and SD of the average 3D DSCs. However, the com-
putational time of the FCM-based framework was significantly
shorter than that of the combined framework (p < 0.05). There-
fore, the FCM-based framework can be considered more useful
for clinical practice because of its robustness and shorter compu-
tational time.

The planning CT images used in this study were acquired
under a free-breathing condition due to small tumor motion or
patient’s performance status. Patients’ breathing motions or
tumor motion may influence the accuracy at all steps of the treat-
ment process due to image blurring, dose blurring, interplay
effects [33,34]. In particular, the image blurring effect, which
causes ambiguous outlines of tumors, could affect the segmenta-
tion accuracy of the automated frameworks. In fact, the FCM-
based framework provided an average DSC of 0.79 ± 0.06 for all
cases, but 0.80 ± 0.06 for upper lobe tumors and 0.77 ± 0.06 for
lower lobe tumors. Therefore, as a future work, we should
Fig. 7. An algorithm of the
improve the framework to be robust for mitigating the impact
of the breathing motion or tumor motion on the segmentation
accuracy of the frameworks.

In future work, other image features should be considered to
improve the segmentation accuracy. However, it will be important
to select the useful image features depending on the tumor type. In
addition, the proposed approach should be applied to large data-
bases with various types of tumors to improve the performance.
Furthermore, the proposed approach should be evaluated by obser-
ver tests to further improve its robustness.
combined framework.
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5. Conclusions

We proposed an automated framework using pixel-based ML,
i.e., FCM, ANN, SVM, and a combined framework for extracting
GTV regions of lung cancer using datasets for planning CT and
FDG-PET/CT images. The highest average DSC and its SD were
obtained by the FCM-based framework. The DSC obtained by the
FCM-based framework was 0.79 ± 0.06, whereas DSCs of the
ANN- and SVM-based frameworks were 0.76 ± 0.14 and
0.73 ± 0.14, respectively. The FCM-based framework showed the
significant robustness, and the computational time was signifi-
cantly reduced to 77% for ANN-based framework and 7.1% for
SVM-based framework. Therefore, the FCM-based framework can
be useful for radiation oncologists to delineate tumor regions dur-
ing radiation treatment planning.
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