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Abstract

We study time fractional linear and nonlinear evolution systems with variable coefficients
via Lie symmetry analysis. For both classes of the system, we give complete group
classification and for linear time fractional evolutions systems, we give exact solutions
corresponding to infinitesimal symmetries of optimal systems of Lie algebras generated
by infinitesimal symmetries. For fractional nonlinear evolution system, we give explicit
invariant solutions in some particular cases. The group invariant solutions are expressed
in terms of special functions. More concretely, with the help of the infinitesimal
symmetries we reduce the system of time fractional partial differential equations into
a system of fractional ordinary differential equations which have Euler-type integer
order differential operator up to second order. Even though finding exact solutions to
fractional differential equations is not easy, we are able to give solutions to fractional
differential equations with Euler-type integer order differential operator up to arbitrary
high order.
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Summary

A symmetry of differential equation is a transformation that preserves the form of
the equation. Although determining symmetries can be computationally intensive,
Lie symmetry analysis is an efficient, algorithmic method for solving various types
of differential equations. For example through Lie symmetry analysis, we can find
invariant solutions to two dimensional partial differential equations by reducing them
into the ordinary differential equations. Lie symmetry analysis is well developed for
partial and ordinary differential equations. In last few decades, fractional differential
equations have emerged in applications. The fractional derivatives are also known as
integro-differential operators, and they characterize and model processes with long
term memory rather than integer order derivatives which characterize local properties.
Gazizov R. K. et. al. [Vest. UGATU 9 3(21): 125-135 (2007)] presented formulas for
extended infinitesimals of fractional ordinary and partial differential equations, and
developed Lie symmetry analysis for fractional differential equations. Huang Q. et. al.
[J. Math. Phys. 56 123504 (2015)] first generalized Lie symmetry analysis of fractional
differential equation into a system of fractional differential equations. Then, Singla K.
et. al. [J. Math. Phys. 57 101504 (2016)] tried to correct the formula for extended
infinitesimals which were obtained in Huang’s work.

We study time fractional linear and nonlinear evolution systems with variable
coefficients via Lie symmetry analysis. To study the fractional systems we have obtained
formulas for extended infinitesimals that match with the ones obtained neither by
Huang nor by Singla. The linear time fractional evolution systems of our interest
were studied before by Huang. Huang obtained only elementary monomial solutions
and determined that there are three types of functions for the variable coefficient of
time fractional linear evolution systems, so that the fractional linear evolution system
admits symmetries. Here, we not only give complete group classification of invariant
solutions but also exact solutions corresponding to infinitesimal symmetries of optimal
systems of Lie algebras of infinitesimal symmetries. The group invariant solutions are
expressed in terms of three kinds of special functions: the Mittag-Leffler functions, the
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generalized Wright functions and the Fox H-functions. Which of these special functions
we use in any given case depends on order of the fractional derivative and right hand
sides of the equations in the fractional linear system. For fractional nonlinear evolution
system, we give complete group classification along with explicit invariant solutions in
some particular cases.

In briefly, our method to study fractional evolution systems is as follows: We reduce
the system of time fractional partial differential equations into a system of fractional
ordinary differential equations with the help of the infinitesimal symmetries, which
were obtained by solving the equation of invariance surface condition. Then, we obtain
group invariant solutions to the original system by finding solutions to the reduced
systems. The reduced systems of fractional linear evolution systems become systems
of fractional differential equations with Euler-type integer order differential operator.
Even though finding exact solutions to fractional differential equations is not easy, we
are able to give solutions to these reduced systems by showing some contiguity relations
of special functions. More concretely, we reduce the problem of finding non-trivial
solutions to Euler-type, linear fractional differential equations with higher order integer
derivatives into a problem of finding roots of algebraic polynomials.

The linear and nonlinear fractional systems of our interest correspond to generalized
time fractional diffusion-wave equations. In other words, for special values of order of
fractional derivative the time fractional evolution systems correspond to the well-known
diffusion or wave equations. Moreover, we show that the invariant solutions correspond
to known solutions of diffusion and wave equations after applying some transformations.
Also, Buckwar E. et. al. [J. Math. Anal. Appl. 227 (1998) etc.] studied time fractional
diffusion-wave equations with constant coefficient via scaling symmetry and when α

is between 0 and 1, Metzler R. et. al. [Physica A 211 (1994)] gave solutions to time
fractional diffusion-wave equations with variable coefficient using fractional Laplacian
transformations. For particular values of parameters, the solutions that we obtained
correspond to these solutions as well.



Chapter 1

Introduction

1.1 Fractional derivative
Here we explain the derivatives of arbitrary real order, which unify and generalize
the notions of integer order differentiation. Fractional derivatives provide an excellent
instrument for the description of memory and hereditary properties of various materials
and processes [24].

The following definitions and elementary properties are taken from [20]. The
functions f(t) that we can take fractional derivatives are defined on the closed interval
0 ≤ t ≤ T, bounded everywhere in the half open interval 0 < t ≤ T and have better
behavior at the lower limit 0 than has t−1, which means:

lim
t→0

tf(t) = 0.

We can also take fractional derivatives from so-called differintegrable series:

f(t) = tp
∞∑
j=0

ajt
j
n , a0 ̸= 0, p > −1, n ∈ Z+.

Notice that p has been chosen to ensure that the leading coefficient is nonzero. Most
of the special functions of mathematical physics are differintegrable series according to
this definition.

1.1.1 Definitions of fractional derivatives

In the literature, there exist many approaches and various definitions. But the most
common ones are: the Grünwald-Letnikov derivative, the Caputo derivative and the
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Riemann-Liouville derivative [24]. From here on, the value of n ∈ N0 = {0, 1, 2, . . .} is
determined by

n− 1 < α < n.

The Grünwald-Letnikov derivative:

We know the higher order integer derivatives are determined as

dn

dtn
f(t) = lim

h→0

1
hn

n∑
k=0

(−1)k
(
n

k

)
f(t− kh).

So, we generalize the order n to positive real α :

dα

dtαGL
f(t) := lim

h→0

1
hα

n∑
k=0

(−1)k
(
α

k

)
f(t− kh)

=
n−1∑
k=0

f (k)(0)tk−α

Γ(k − α + 1) + 1
Γ(n− α)

∫ t

0
(t− τ)n−α−1f (n)(τ)dτ,

where f (k)(t) ∈ C[0, t] for k = 1, 2, . . . , n and
(
α

k

)
= Γ(α + k)

Γ(α)

The Riemann-Liouville derivative:

dα

dtαRL
f(t) :=


dn

dtn
f(t), for α = n ∈ N,
1

Γ(n−α)
dn

dtn

∫ t
0(t− τ)n−α−1f(τ)dτ, for α ∈ (n− 1, n) with n ∈ N.

(1.1)

The Caputo derivative:
dα

dtαC
f(t) := 1

Γ(n− α)

∫ t

0
(t− τ)n−α−1f (n)(τ)dτ.

These definitions correspond to each other in certain cases. We can see that if
f (k)(0) = 0 for k = 0, . . . , n − 1 then the Grünwald-Letnikov derivative corresponds
to the Caputo derivative. Also, if we take an assumption that the function f(t) is n
times continuously differentiable, then integrating by parts and differentiating (1.1) we
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come at the definition of Grünwald-Letnikov derivative:

dα

dtαRL
f(t) = 1

Γ(n− α)
dn

dtn

∫ t

0
f(τ)(t− τ)n−α−1dτ

= 1
Γ(n− α + 1)

dn

dtn

∫ t

0
−f(τ)d(t− τ)n−α

= 1
Γ(n− α + 1)

dn

dtn

−f(τ)(t− τ)n−α
∣∣∣∣∣
t

0
+
∫ t

0
f ′(τ)(t− τ)n−αdτ


= f(0)

Γ(n− α + 1)
dn

dtn
tn−α + 1

Γ(n− α + 1)
dn

dtn

∫ t

0
f ′(τ)(t− τ)n−αdτ

= f(0)t−α
Γ(1 − α) + 1

Γ(n− α + 1)
dn

dtn

∫ t

0
f ′(τ)(t− τ)n−αdτ. (1.2)

Interchanging the order of differentiation and integration [24]

d

dt

∫ t

0
F (t, τ)dτ =

∫ t

0

∂F (t, τ)
∂t

dτ + F (t, t− 0)

in (1.2), it equals to

dα

dtαRL
f(t) = f(0)t−α

Γ(1 − α) + 1
Γ(n− α)

dn−1

dtn−1

∫ t

0
f ′(τ)(t− τ)n−α−1dτ

= f(0)t−α
Γ(1 − α) + f ′(0)

Γ(n− α + 1)
dn−1

dtn−1 t
n−α

+ 1
Γ(n− α + 1)

dn−1

dtn−1

∫ t

0
f ′(τ)(t− τ)n−αdτ

= f(0)t−α
Γ(1 − α) + f ′(0)t1−α

Γ(2 − α) + 1
Γ(n− α)

dn−2

dtn−2

∫ t

0
f ′′(τ)(t− τ)n−α−1dτ

...

=
n−1∑
k=0

f (k)(0)tk−α

Γ(k − α + 1) + 1
Γ(n− α)

∫ t

0
(t− τ)n−α−1f (n)(τ)dτ

= dα

dtαGL
f(t),

since limτ→t−0(t− τ)n−α = 0.
In this work, we adopt the Riemann-Liouville derivative

dα

dtα
≡ dα

dtαRL
.
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A major difference between the Riemann-Liouville derivative and the Caputo derivative
is that the Caputo derivative of a constant is 0, whereas the Riemann-Liouville derivative
of a constant is non-zero, as will be seen in the next section.

1.1.2 Fractional derivative of power functions

Let us take fractional derivative of function tp :

dα

dtα
tp = 1

Γ(n− α)
dn

dtn

∫ t

0
(t− τ)n−α−1τ pdτ.

Substituting τ = tu into the above expression, we obtain

dα

dtα
tp = 1

Γ(n− α)
dn

dtn

∫ 1

0
(t− tu)n−α−1tp+1updu

= 1
Γ(n− α)

dn

dtn

[
tn−α−1+p+1

∫ 1

0
(1 − u)n−α−1updu

]
.

We can use the beta function formula for p > −1:

dα

dtα
tp = 1

Γ(n− α)
dn

dtn

[
tn−α+pB(p+ 1, n− α)

]
= dn

dtn
tn−α+p

Γ(n− α)
Γ(p+ 1)Γ(n− α)
Γ(n− α + p+ 1)

= Γ(p+ 1)
Γ(n− α + p+ 1)

dn

dtn
tn−α+p

= Γ(p+ 1)
Γ(p+ 1 − α)t

p−α. (1.3)

As a corollary, for p = 0, we have a fractional derivative of the unit function:

dα

dtα
1 = t−α

Γ(1 − α) ,

then for any constant function including zero, we have:

dα

dtα
C = C

t−α

Γ(1 − α) .

1.1.3 Elementary properties of fractional derivative

The following properties are useful in our calculation.
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Linearity

The linearity of the fractional derivative follows directly from the definition:

dα

dtα

N∑
j=0

Cjfj(t) =
N∑
j=0

Cj
dα

dtα
fj(t) for N ∈ N.

Taking derivative from a series

If the series ∑ fj(t) as well as the series ∑ dα

dtα
fj(t) converge uniformly in 0 < t < T,

then
dα

dtα

∞∑
j=0

fj(t) =
∞∑
j=0

dα

dtα
fj(t) for 0 < t < T.

Scale change of the Riemann-Liouville derivative

For β ∈ R, we have the following property:

dα

dtα
f(βt) = 1

Γ(n− α)
dn

dtn

∫ t

0
(t− τ)n−α−1f(βτ)dτ

= 1
Γ(n− α)

dn

dtn

∫ βt

0

(
t− T

β

)n−α−1

f(T ) 1
β
dT

= βα−n

Γ(n− α)
dn

dtn

∫ βt

0
(βt− T )n−α−1f(T )dT

= βα

Γ(n− α)
dn

d(βt)n
∫ βt

0
(βt− T )n−α−1f(T )dT

= βα
dα

d(βt)αf(βt).

Generalized Leibniz’s rule

The fractional differentiation rule for product of two functions is

dα

dtα
(f(t)g(t)) =

∞∑
j=0

(
α

j

)
dα−j

dtα−j f(t) d
j

dtj
g(t). (1.4)

Composition rule or Sequential derivative

∂α

∂tβ
∂β

∂tβ
f(t) = ∂α+β

∂tα+β f(t) −
n∑
j=1

[
∂β−j

∂tβ−j f(t)
]∣∣∣∣∣
t=0

tm−α−j

Γ(1 +m− α− j) (1.5)

here m− 1 ≤ α < m, n− 1 ≤ β < n.
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1.2 Special functions
The calculus of Newton and Leibniz and the analytic functions that solve the differ-
ential equations were seen necessary and sufficient to provide a proper and complete
mechanical description of the physical world. However the increased sensitivity of
experimental tools, vast amount of data and high computational capabilities lead to
complex systems which are not fully described by classical mathematical models [31].
To describe and study those models we need the so-called special functions, some of
which are introduced below.

The Mittag-Leffler function

Eα,β(z) =
∞∑
i=0

zi

Γ(αi+ β)

is defined for z ∈ C and for α ∈ R+ and β ∈ R [8]. The fractional derivative of product
of Mittag-Leffler function and power function is

dα

dtα
tβ−1Eµ,β(λtµ) = tβ−α−1Eµ,β−α(λtµ)

for β > 0 and µ > 0 [24]. Furthermore, the fractional derivative of exponential function
is expressed in Mittag-Leffler function

dα

dtα
eλt = t−αE1,1−α(λt), for λ ∈ R.

The Gauss hypergeometric function

2F1

 α, β

γ
; z
 =

∞∑
k=0

Γ(α + k)Γ(β + k)Γ(γ)
Γ(α)Γ(β)Γ(γ + k)

zk

k!

is defined for |z| < 1. The fractional derivative of product of Gauss hypergeometric
function and power function is

dα

dtα
tγ−12F1

 µ, β

γ
;λt

 = Γ(γ)tγ−α+1

Γ(γ − α) 2F1

 µ, β

γ − α
;λt


for ℜ(γ) > 0.



1.2 Special functions 9

The Wright function

Ψ(z;α, β) =
∞∑
i=0

zi

i!Γ(αi+ β)

is defined for z ∈ C and for real α satisfying α > −1 and β ∈ C [9].

The generalized Wright function

pΨq

z
∣∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 =
∞∑
k=0

p∏
i=1

Γ(Ai + αik)
q∏
j=1

Γ(Bj + βjk)

zk

k!

is defined for z ∈ C, p, q ∈ N0 = {0, 1, 2, . . .}, Ai, Bj ∈ C and αi, βj ∈ R \ {0}
(i = 1, . . . , p; j = 1, . . . , q). The generalized Wright function is absolutely convergent,
and thus it is an entire function for ∆ =

q∑
j=1

βj −
p∑
i=1

αi > −1 [15].

The Fox H-function

Hm,l
p,q

z∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 = 1
2πi

∫
L

m∏
j=1

Γ(Bj − βjs)
l∏

i=1
Γ(1 − Ai + αis)

p∏
i=l+1

Γ(Ai − αis)
q∏

j=m+1
Γ(1 −Bj + βjs)

zsds,

is defined for z ∈ C\{0}, m, l, p, q ∈ N0 with (m, l) ̸= (0, 0), αi, βj ∈ R+ and Ai, Bj ∈ R
(i = 1, . . . , p; j = 1, . . . , q). If there exists any empty product in the above expression,
then it is taken to be 1. The contour L separates the poles of the gamma functions
Γ(Bj − βjs) (j = 1, . . . ,m) from the poles of the gamma functions Γ(1 − Ai + αis)
(i = 1, . . . , l). In this work, we take L as Lγ+i∞, a contour that extends from the point
γ − i∞ to the point γ + i∞, where γ is chosen such that L separates the poles as
stated above (see Figure 1.1). The above integral converges under the conditions [18]

µ =
l∑

i=1
αi −

p∑
i=l+1

αi +
m∑
j=1

βj −
q∑

j=m+1
βj > 0 and |arg z| < πµ

2 .

With regard to expressions for solutions of fractional differential equations, we are
particularly interested in the case l = 0 of the H-function. In this case, the H-function
vanishes exponentially for large z as [17]

Hm,0
p,q [z] ≈ O

(
exp

(
−νz

1
ν ϵ

1
ν

)
z

2δ+1
2ν

)
, (1.6)
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Fig. 1.1 The Fox H-function contour

where
ϵ =

p∏
i=1

(αi)αi

q∏
j=1

(βj)−βj , δ =
q∑
j=1

Bj −
p∑
i=1

Ai + p− q

2

and
ν =

q∑
j=1

βj −
p∑
i=1

αi > 0. (1.7)

The following identities for H-functions are known to hold for z > 0 [18]:

Hm,l
p,q

z∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 = H l,m
q,p

1
z

∣∣∣∣∣ (1 −Bj, βj)1,q

(1 − Ai, αi)1,p

 , (1.8)

Hm,l
p,q

z∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 = kHm,l
p,q

zk∣∣∣∣∣ (Ai, kαi)1,p

(Bj, kβj)1,q

 for k > 0, (1.9)

zσHm,l
p,q

z∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 = Hm,l
p,q

z∣∣∣∣∣ (Ai + σαi, αi)1,p

(Bj + σβj, βj)1,q

 for σ ∈ C. (1.10)
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The higher order derivative of product of power and H-function is also known [18]:

dN

dzN

zρ−1Hm,l
p,q

azσ∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q


= zρ−N−1Hm,l+1

p+1,q+1

azσ∣∣∣∣∣ (1 − ρ, σ), (Ai, αi)1,p

(Bj, βj)1,q, (1 − ρ+N, σ)

 , (1.11)

where N ∈ N, a, ρ, σ ∈ C and ℜ(σ) > 0.
Moreover, the following relations hold among the above special functions:

E1,1(z) = ez, (1.12)

2F1

 a, 1
1

; z
 = (1 − z)−a, for |z| < 1, (1.13)

Eα,β(z) = 1Ψ1

z
∣∣∣∣∣∣ (1, 1)

(β, α)

 , (1.14)

E2,1(z2) = ez + e−z

2 (1.15)

E2,2(z2) = ez − e−z

2z (1.16)

Ψ (z;α, β) = 0Ψ1

z
∣∣∣∣∣∣ −

(β, α)

 , (1.17)

2Ψ1

z
∣∣∣∣∣∣ (A1, 1), (A2, 1)

(B1, 1)

 = Γ(A1)Γ(A2)
Γ(B1) 2F1

 A1, A2

B1
; z
 for |z| < 1, (1.18)

3Ψ1

z∣∣∣∣∣ (A1, 1), (A2, 1), (1, 1)
(1, 2)

 = Γ(A1)Γ(A2)2F1

 A1, A2
1
2

; z4

 , for |z| < 4 (1.19)

3Ψ1

z∣∣∣∣∣ (A1, 1), (A2, 1), (1, 1)
(2, 2)

 = Γ(A1)Γ(A2)2F1

 A1, A2
3
2

; z4

 , for |z| < 4 (1.20)

Also, the generalized Wright functions can be expressed in terms of Fox H-functions as

pΨq

z∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 =



H1,p
p,q+1

−z
∣∣∣∣∣ (1 − Ai, αi)1,p

(0, 1), (1 −B1, β1), (1 −Bj, βj)2,q

 , for β1 > 0

H1,p
p+1,q

−z
∣∣∣∣∣ (1 − Ai, αi)1,p, (B1,−β1)

(0, 1), (1 −Bj, βj)2,q

 , for − 1 < β1 < 0,

(1.21)
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where αi (i = 1, . . . , p) and βj (j = 2, . . . , q) are positive real numbers [16].
Note: Here we use conventional notations for Wright functions and generalized

Wright functions, without considering the consistency of this work.

1.3 Basics of Lie symmetry analysis for differential
equations

In last five decades, there appear many works using Lie point symmetry methods to
exploit the invariance property of differential equations. The Lie symmetry method
is algorithmic and can be used to various types of differential equations. Here we
briefly present some main points about the Lie symmetry analysis for partial differential
equations (PDEs) [12, 13, 22], then generalize it to analyze fractional partial differential
equations (FPDEs) [6, 7] and systems thereof [10, 26, 27].

1.3.1 Main concepts of Lie symmetry analysis of PDE

The transformation group G is a collection of invertible transformations ȳ = T (y),
y ∈ Rn, satisfying the following conditions:

1. G contains an identity transformation I : I(y) = y.

2. G contains the inverse transformation of any transformation T ∈ G.

3. G contains the product T2T1 of any T1, T2 ∈ G.

Let us consider a one-parameter transformation group G of transformations Ta :

x̄ = T 1(x, t, u, a), t̄ = T 2(x, t, u, a), ū = T 3(x, t, u, a),

where the functions T i(x, t, u, a) are defined in a neighborhood of a = 0 and satisfy
the conditions

T 1(x, t, u, 0) = x, T 2(x, t, u, 0) = t, T 3(x, t, u, 0) = u.

Expanding the functions T i(x, t, u, a) into the Taylor series in the group parameter a
in a neighborhood of a = 0 and neglecting the terms of order O(a2) then using the
above initial condition, we arrive at the following infinitesimal transformation of the
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group G :

x̄ ≈ x+ aξ(x, t, u), t̄ ≈ t+ aτ(x, t, u), ū ≈ u+ aη(x, t, u), (1.22)

where

ξ(x, t, u) = ∂T 1(x, t, u, a)
∂a

∣∣∣∣∣
a=0

,

τ(x, t, u) = ∂T 2(x, t, u, a)
∂a

∣∣∣∣∣
a=0

,

η(x, t, u) = ∂T 3(x, t, u, a)
∂a

∣∣∣∣∣
a=0

.

The functions ξ(x, t, u), τ(x, t, u) and η(x, t, u) are called infinitesimals and can serve
as tangent vector field of the group G. This tangent vector field is often written as a
first-order linear differential operator

X = ξ(x, t, u) ∂
∂x

+ τ(x, t, u) ∂
∂t

+ η(x, t, u) ∂
∂u
.

The operator X is called the infinitesimal generator of the one-parameter group G.

The transformations (1.22) of the group G generated by X are found by solving
the Lie equations

dx̄

da
= ξ(x̄, t̄, ū), dt̄

da
= τ(x̄, t̄, ū), dū

da
= η(x̄, t̄, ū),

with the initial conditions

x̄|a=0 = x, t̄|a=0 = t, ū|a=0 = u.

Definition 1 ([12]). A function F (x, t, u) is an invariant of the group G of transfor-
mations Ta if F (x̄, t̄, ū) = F (x, t, u).

Theorem 1 ([12]). A function F (x, t, u) is an invariant of the group G generated by
infinitesimal X if and only if it solves the following first-order linear PDE:

XF ≡ ξ(x, t, u)∂F
∂x

+ τ(x, t, u)∂F
∂t

+ η(x, t, u)∂F
∂u

= 0.
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We can also talk about the transformation of derivatives

ūt̄ ≈ ut + ϵµ(0)(x, t, u, ut, ux),
ūx̄ ≈ ux + ϵµ(1)(x, t, u, ut, ux),
ūx̄x̄ ≈ uxx + ϵµ(2)(x, t, u, ut, ux, uxt, uxx), (1.23)

...

where subscripts denote partial derivatives. The µ(i) (i = 0, 1, . . . ) are extended
infinitesimals and are well known

µ(0) = Dt(η) − uxDt(ξ) − utDt(τ),
µ(1) = Dx(η) − uxDx(ξ) − utDx(τ),
µ(2) = Dx(µ(1)) − uxxDx(ξ) − uxtDx(τ), (1.24)

...

Here Dx and Dt are the total derivative operators defined as

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ . . .

Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ . . . .

Starting from the group G of transformations (1.22) and then adding the transforma-
tions (1.23), one obtains the prolonged group G(n), which acts on the space of n+ 4
variables (x, t, u, ut, ux, uxx, . . . , uxn). The generators of prolonged groups are

X(1) = X + µ(0) ∂

∂ut
+ µ(1) ∂

∂ux
,

X(2) = X(1) + µ(2) ∂

∂uxx
,

...

Definition 2 ([12]). A group G(n) of transformations (1.22), (1.23) is a symmetry
group of n-th order PDE

ut = F (x, t, u, ux, uxx, . . . , uxn), (1.25)

if it conserves the form of the equation (1.25).
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From this definition we can see that the transformations of the symmetry group G
map every solution of (1.25) into a solution of the same equation. To determine the
infinitesimals, we need to solve the following determining equation

X(n)(ut − F (x, t, u, ux, . . . , uxn))|(1.25) = 0, (1.26)

which is derived from

ūt̄ − F (x̄, t̄, ū, ūx̄, . . . , ūx̄n) = ut − F (x, t, u, ux, . . . , uxn).

Since the equation (1.26) contains the derivatives ut, ux, . . . , uxn of function u(x, t)
considered as an independent variable along with x and t, the determining equation
is split into several independent equations becoming an overdetermined system of
differential equations for the infinitesimals and extended infinitesimals. The set of all
solutions to the determining equation is a Lie algebra, i.e., it is closed with respect to
the commutator. In other words, if X, X ′ are solutions to the determining equation,
then the commutator

[X,X ′] = X(X ′) −X ′(X)

is also a solution to (1.26).
If a group transformation maps a solution into itself, we arrive at group invariant

solutions. Given a group that leaves a PDE invariant, one desires to minimize the
search for group-invariant solutions to that of finding inequivalent branches of solutions,
that is to say to give them a classification, which leads to the concept of the optimal
systems. Consequently, the problem of determining the optimal system of subgroups is
reduced to the corresponding problem for subalgebras. In applications, one usually
constructs the optimal system of subalgebras, from which the optimal systems of
subgroup and group invariant solutions are reconstructed. The invariant solutions of
(1.25) corresponding to any infinitesimal symmetry can be obtained using Lie symmetry
transformations applied to the invariant solutions corresponding to the infinitesimal
symmetries of any optimal system of one-dimensional subalgebras of infinitesimal
symmetries [22]. The optimal systems of low-dimensional Lie algebras are determined
in [23]. For this reason, we are only interested in the invariant solutions corresponding
to the infinitesimal symmetries of the optimal system.

One can find more information on Lie methods and its application to differential
equation in [2, 12, 13, 22].
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1.3.2 Lie symmetry analysis of FPDE

In [5–7] were generalized Lie symmetry analysis methods to fractional differential
equations. Here we carry out the basic formulas for Lie symmetry analysis of FPDEs
analogously to the original work of [6].

The time fractional PDE with two independent variables in a general form is

∂αu(x, t)
∂tα

= F (x, t, u, ux, uxx, . . .), α > 0. (1.27)

Consider a one-parameter Lie group of infinitesimal transformations (1.22) along with

∂αū

∂t̄α
= ∂αu

∂tα
+ ϵµ(α) +O(ϵ2), (1.28)

where µ(α) is also an extended infinitesimal. The transformation (1.22), (1.23) with
(1.28) conserves the structure of (1.27), hence the invariance condition is

τ(x, t, u)|t=0 = 0. (1.29)

In the following calculation we use the notation

ūt̄n ≈ utn + ϵµ
(n)
t .

The formula of αth order extended infinitesimal µ(α) was obtained in [6] for FODEs
in detail and the formula for FPDEs was presented. Here, we show the detailed
computation of the αth order extended infinitesimal for FPDE in detail. Using the
generalized Leibniz rule (1.4), we have

∂αū(x̄, t̄)
∂t̄α

=
∞∑
n=0

(
α

n

)
t̄n−α

Γ(n− α + 1) ūt̄n(x̄, t̄).

We get the αth order extended infinitesimal in the following manner

µ(α) = d

dϵ

(
∂αū(x̄, t̄)
∂t̄α

)∣∣∣∣∣
ϵ=0

=
∞∑
n=0

(
α

n

)
tn−α

Γ(n− α + 1)µ
(n)
t +

∞∑
n=0

(
α

n

)
n− α

Γ(n− α + 1)t
n−α−1τutn .

Substituting the formula (8.25) of [11]

µ
(n)
t = Dn

t (η − ξux − τut) + τutn+1 + ξuxtn
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into the last expression, we get

µ(α) =
∞∑
n=0

(
α

n

)
tn−αDn

t (η − ξux − τut)
Γ(n− α + 1) +

∞∑
n=0

(
α

n

)
tn−ατutn+1

Γ(n− α + 1)

+
∞∑
n=0

(
α

n

)
tn−αξuxtn

Γ(n− α + 1) +
∞∑
n=0

(
α

n

)
(n− α)tn−α−1τutn

Γ(n− α + 1)

= Dα
t (η − ξux − τut) +

∞∑
n=1

(
α

n− 1

)
tn−α−1τutn

Γ(n− α)

+
∞∑
n=0

(
α

n

)
tn−αξuxtn

Γ(n− α + 1) +
∞∑
n=1

(
α

n

)
(n− α)tn−α−1τutn

Γ(n− α + 1) − αt−α−1τu

Γ(1 − α) .

Using the identity (
α

n− 1

)
+
(
α

n

)
=
(
α + 1
n

)

into the last expression, we get

µ(α) = Dα
t (η − ξux − τut) +

∞∑
n=0

(
α

n

)
tn−αξuxtn

Γ(n− α + 1) +
∞∑
n=1

(
α + 1
n

)
tn−α−1τutn

Γ(n− α + 1)
= Dα

t (η − ξux − τut) + ξDα
t (ux) + τDα+1

t (u)
= Dα

t (η) −Dα
t (ξux) −Dα

t (τut) + ξDα
t (ux) + τDα+1

t (u).

Hence, the αth order extended infinitesimal µ(α) has the following form [5–7]

µ(α) = Dα
t (η) + ξDα

t (ux) −Dα
t (ξux) +Dα

t (Dt(τ)u) −Dα+1
t (τu) + τDα+1

t (u), (1.30)

where Dα
t is the total fractional derivative operator. By using the generalized Leibniz

rule (1.4) as following

Dα
t (ξux) = ξDα

t (ux) +
∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux),

Dα
t (Dt(τ)u) = Dt(τ)Dα

t (u) +
∞∑
n=1

(
α

n

)
Dn
t (Dt(τ))Dα−n

t (u),

Dα+1
t (τu) = τDα+1

t (u) +
∞∑
n=1

(
α + 1
n

)
Dα+1−n
t (u)Dn

t (τ),
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the infinitesimal (1.30) can be rewritten as [25]

µ(α) = Dα
t (η) −αDt(τ)∂

αu

∂tα
−

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux) −
∞∑
n=1

(
α

n+ 1

)
Dn+1
t (τ)Dα−n

t (u).

(1.31)
In a view of the generalization of chain rule for composite functions we have

dmg(y(t))
dtm

=
m∑
k=0

k∑
r=0

(
k

r

)
1
k! [−y(t)]r d

m

dtm
[(y(t))k−r]d

kg(y)
dyk

(1.32)

and using the generalized Leibniz rule (1.4), we get the following explicit expression
for µ(α) [5–7, 25, 29]

µ(α) = ∂αη

∂tα
+ (ηu − αDt(τ))∂

αu

∂tα
− u

∂αηu
∂tα

−
∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux)

+
∞∑
n=1

[(
α

n

)
∂nηu
∂tn

−
(

α

n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (u) + µ, (1.33)

where

µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1
k!

tn−α

Γ(n+ 1 − α) [−u]r ∂
m

∂tm
(uk−r) ∂

n−m+kη

∂tn−m∂uk
.

It should be noted that we get µ = 0 when the infinitesimal η is linear on u.
According to the Lie symmetry theory, the infinitesimal generator of (1.22), (1.23)

and (1.28) is given by

X = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ µ(α) ∂

∂utα
+ µ(1) ∂

∂ux
+ µ(2) ∂

∂uxx
+ · · · . (1.34)

The infinitesimal invariance criterion for (1.27) or determining equation can be written
as

X(utα − F (t, x, u, ux, uxx, · · · ))| ∂αu
∂tα =F = 0. (1.35)

1.3.3 Lie symmetry analysis of the system of FPDE

In [10, 26] Lie symmetry analysis was generalized to study the systems of FPDEs. But
we found that the extended infinitesimals derived in both of these two papers do not
match with the ones that we obtained below.

So, we carry out the derivation of extended infinitesimals for a system of FPDEs.
The general form of a system of time fractional PDEs with two independent variables
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x and t is as follows:
∂αu(x,t)
∂tα

= F1(x, t, u, ux, uxx, . . . , v, vx, vxx, . . .),
∂αv(x,t)
∂tα

= F2(x, t, u, ux, uxx, . . . , v, vx, vxx, . . .).
(1.36)

The infinitesimal generator of (1.36) is given by

X = ξ
∂

∂x
+ τ

∂

∂t
+ µ

∂

∂u
+ ϕ

∂

∂v
,

and the corresponding extended infinitesimal generator is

X̃ = X + µ(α) ∂

∂utα
+ µ(1) ∂

∂ux
+ · · · + ϕ(α) ∂

∂vtα
+ ϕ(1) ∂

∂vx
+ · · · , (1.37)

where τ, ξ, µ and ϕ are infinitesimals and µ(α), µ(n), ϕ(α) and ϕ(n) (n = 1, 2, . . .) are
extended infinitesimals. Explicitly, µ(n) and ϕ(n) are given by

µ(1) = Dx(µ) − uxDx(ξ) − utDx(τ), ϕ(1) = Dx(ϕ) − vxDx(ξ) − vtDx(τ),
µ(2) = Dx(µ(1)) − uxxDx(ξ) − uxtDx(τ), ϕ(2) = Dx(ϕ(1)) − vxxDx(ξ) − vxtDx(τ),

... ... (1.38)

where Dx is now the total derivative operator defined as

Dx := ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · · + vx

∂

∂v
+ vxx

∂

∂vx
+ · · · .

The αth order extended infinitesimals have the following forms [10, 26]:

µ(α) = Dα
t (µ) − αDt(τ)∂

αu

∂tα
−

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux) −
∞∑
n=1

(
α

n+ 1

)
Dn+1
t (τ)Dα−n

t (u),

ϕ(α) = Dα
t (ϕ) − αDt(τ)∂

αv

∂tα
−

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (vx) −
∞∑
n=1

(
α

n+ 1

)
Dn+1
t (τ)Dα−n

t (v),

(1.39)

which are derived analogously to the case of FPDE. Here, Dt is the total derivative
operator defined as

Dt := ∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · · + vt

∂

∂v
+ vxt

∂

∂vx
+ · · · .
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Because the lower limit of the integral in (1.1) is fixed, it should be invariant with
respect to point transformations. We thus arrive at the following initial condition

τ(x, t, u, v)|t=0 = 0. (1.40)

We should note that the last three terms on the right-hand side of each equation in
(1.39) are already in factored forms with respect to the partial derivatives of u and v.
Hence, we only need to consider the first terms, Dα

t (µ) and Dα
t (ϕ).

In the following lemma, we present explicit forms of the extended infinitesimals
µ(α), ϕ(α) that are readily computed.

Lemma 2. The extended infinitesimals µ(α) and ϕ(α) in (1.39) can be re-written as

µ(α) = ∂αµ

∂tα
− u

∂αµu
∂tα

− v
∂αµv
∂tα

+ (µu − αDt(τ)) ∂
αu

∂tα
+ µv

∂αv

∂tα

−
∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux) +
∞∑
n=1

[(
α

n

)
∂nµu
∂tn

−
(

α

n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (u)

+
∞∑
n=1

(
α

n

)
∂nµv
∂tn

Dα−n
t (v) + µ1, (1.41)

ϕ(α) = ∂αϕ

∂tα
− v

∂αϕv
∂tα

− u
∂αϕu
∂tα

+ (ϕv − αDt(τ))∂
αv

∂tα
+ ϕu

∂αu

∂tα

−
∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (vx) +
∞∑
n=1

[(
α

n

)
∂nϕv
∂tn

−
(

α

n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (v)

+
∞∑
n=1

(
α

n

)
∂nϕu
∂tn

Dα−n
t (u) + ϕ1, (1.42)

where

µ1 =
∞∑
n=2

n∑
m1+m2=2

∑
k1=0,..,m1
k2=0,..,m2
k1+k2≥2

k1∑
r1=0

k2∑
r2=0

(
α

n

)(
n

m1

)(
n−m1

m2

)(
k1

r1

)(
k2

r2

)
1

k1!k2!

× tn−α

Γ(n+ 1 − α)(−u)r1(−v)r2
∂m1uk1−r1

∂tm1

∂m2vk2−r2

∂tm2

∂n−m1−m2+k1+k2µ

∂tn−m1−m2∂uk1∂vk2
,
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and

ϕ1 =
∞∑
n=2

n∑
m1+m2=2

∑
k1=0,..,m1
k2=0,..,m2
k1+k2≥2

k1∑
r1=0

k2∑
r2=0

(
α

n

)(
n

m1

)(
n−m1

m2

)(
k1

r1

)(
k2

r2

)
1

k1!k2!

× tn−α

Γ(n+ 1 − α)(−u)r1(−v)r2
∂m1uk1−r1

∂tm1

∂m2vk2−r2

∂tm2

∂m−m1−m2+k1+k2ϕ

∂tn−m1−m2∂uk1∂vk2
.

Proof. It is sufficient to prove the formula for µ(α). This can be done by carrying out
an expansion of the first term Dα

t (µ) in (1.39) by applying a generalized Leibniz rule
(1.4) and a generalized chain rule (1.32) [20, 24], as follows:

Dα
t (µ) =

∞∑
n=0

(
α

n

)
tn−α

Γ(n+ 1 − α)D
n
t (µ)

=
∞∑
n=0

n∑
m1+m2=0

(
α

n

)
tn−α

Γ(n+ 1 − α)

(
n

m1

)(
n−m1

m2

)

×
[
∂n−m1−m2∂m1∂m2µ(x, t, u(x, t1), v(x, t2))

∂tn−m1−m2∂tm1
1 ∂tm2

2

]∣∣∣∣∣t1=t
t2=t

=
∞∑
n=0

n∑
m1+m2=0

m1∑
k1=0

k1∑
r1=0

m2∑
k2=0

k2∑
r2=0

(
α

n

)
tn−α

Γ(n+ 1 − α)

(
n

m1

)(
n−m1

m2

)(
k1

r1

)(
k2

r2

)

× 1
k1!k2!

(−u)r1(−v)r2
∂m1uk1−r1

∂tm1

∂m2vk2−r2

∂tm2

∂n−m1−m2+k1+k2µ

∂tn−m1−m2∂uk1∂vk2
. (1.43)

Because µ1 is equal to the partial sum obtained from (1.43) by retaining the terms for
which the sum of k1 and k2 is greater than 1, we need to examine only the case in which
k1 + k2 ≤ 1. All possible summations over values of (m1,m2, k1, k2, r1, r2) satisfying
this inequality can be divided into five cases, which we index by i. We write the
resulting sum Dα

t (µ)i). These quantities are listed in the following table. The explicit

Subcase i (m1,m2, k1, k2, r1, r2) Dα
t (µ)i)

1) (0, 0, 0, 0, 0, 0) Dα
t (µ)1) =

∞∑
n=0

(
α
n

)
Dα−n
t 1 · ∂nµ

∂tn
= ∂αµ

∂tα

2) (0, 0, 1, 0, 1, 0) Dα
t (µ)2) =

∞∑
n=0

(
α
n

)
Dα−n
t 1(−u)∂n+1µ

∂tn∂u
= −u∂αµu

∂tα

3) (0, 0, 0, 1, 0, 1) Dα
t (µ)3) = −v ∂αµv

∂tα

4) (m1, 0, 1, 0, 0, 0) Dα
t (µ)4) = µu

∂αu
∂tα

+
∞∑
n=1

(
α
n

)
∂nµu

∂tn
Dα−n
t u

5) (0,m2, 0, 1, 0, 0) Dα
t (µ)5) = µv

∂αv
∂tα

+
∞∑
n=1

(
α
n

)
∂nµv

∂tn
Dα−n
t v

form of µ(α) given in the statement of the lemma can be obtained by substituting the
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sum of Dα
t (µ)i) in the above five cases and µ1 into (1.39). The formula for φ(α) can be

obtained similarly.

Note: If µ(α) or ϕ(α) is linear in u and v, then µ1 = 0 and ϕ1 = 0, respectively.
The infinitesimal invariance criterion in the Lie symmetry analysis for the system

given in (1.27) is

X̃(utα − F1(x, t, u, ux, uxx, . . . , v, vx, vxx, . . .))

∣∣∣
(1.27)

= 0,

X̃(vtα − F2(x, t, u, ux, uxx, . . . , v, vx, vxx, . . .))
∣∣∣
(1.27)

= 0,
(1.44)

where X̃ is given by (1.37), (1.38), (1.41) and (1.42).



Chapter 2

Solutions of linear fractional
differential equations

As the applications of fractional ordinary differential equations (FODEs) emerge
in diverse fields, various methods for studying the FODEs are appearing rapidly,
such as power series method, method of integral transformations, Green’s function
method, Adomian decomposition method and variety of numerical methods. Among
these methods, the indicial polynomial method has a similar idea to one that we are
introducing in this chapter. But in [28], the indicial polynomial method is only applied
to constant coefficient fractional ordinary differential equation with rational order of
fractional derivative and the solutions are expressed in Mittag-Leffler functions.

In this chapter, we derive exact solutions expressed in terms of well-known special
functions for FODEs of the form:

dα

dzα
φ(z) = am

αm
zm

dm

dzm
φ(z)+ am−1

αm−1 z
m−1 d

m−1

dzm−1φ(z)+ · · ·+ a1

α
z
d

dz
φ(z)+a0φ(z), (2.1)

where α ∈ R+, ai ∈ R (i = 0, . . . ,m) and am ̸= 0, and for systems of the form:
dα

dzαφ(z) = am1
αm1 z

m1 dm1
dzm1ψ(z) + am1−1

αm1−1 zm1−1 dm1−1

dzm1−1ψ(z) + · · · + a1
α
z d
dz
ψ(z) + a0ψ(z),

dα

dzαψ(z) = bm2
αm2 z

m2 dm2
dzm2φ(z) + bm2−1

αm2−1 zm2−1 dm2−1

dzm2−1φ(z) + · · · + b1
α
z d
dz
φ(z) + b0φ(z),

(2.2)
where α ∈ R+, ai, bj ∈ R (i = 0, . . . ,m1; j = 0, . . . ,m2) and am1bm2 ̸= 0.

It is interesting to consider the forms taken by (2.1) and (2.2) in the particular
cases that m = 2 and m1 = m2 = 1, because these are the cases most commonly
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considered in scientific and engineering fields. In these cases, we obtain the FODE

dα

dzα
φ(z) = aφ(z) + b

α
z
d

dz
φ(z) + c

α2 z
2 d

2

dz2φ(z), where a, b, c ∈ R (2.3)

and the system of FODEs
dα

dzαφ(z) = a1ψ(z) + b1
α
z d
dz
ψ(z),

dα

dzαψ(z) = a2φ(z) + b2
α
z d
dz
φ(z),

where a1, a2, b1, b2 ∈ R. (2.4)

In the case that α = 1 and φ(z) takes the form φ(z) = zre− 1
czϕ( 1

cz
), (2.3) reduces to

Kummer’s equation,

z2 d
2

dz2ϕ(z) +
(

2r − b

c
+ 2 − z

)
d

dz
ϕ(z) +

(
b

c
− r − 2

)
ϕ(z) = 0,

where r = − b−c+
√

(b−c)2−4ac
2c . Further, in the case that α = 2 and φ(z) takes the form

φ(z) = (cz2 − 1)− b−2c
4c ϕ(

√
cz), (2.3) reduces to the associated Legendre differential

equation,

(1 − z2) d
2

dz2ϕ(z) − 2z d
dz
ϕ(z) +

(
l(l + 1) − s2

1 − z2

)
ϕ(z) = 0,

where l = −c+
√
b2+c2−4ac−2bc

2c and s = b
2c − 1. The solutions of the above equations

can be expressed in terms of Kummer’s function and associated Legendre functions,
respectively.

2.1 Construction of exact solutions
We express solutions to (2.3) and (2.4) using three kinds of special functions: Mittag-
Leffler functions, generalized Wright functions and Fox H-functions. Which of these
functions we use in any given case depends on the right-hand side and order of the
fractional derivative of (2.3) or (2.4).

2.1.1 Solutions expressed in terms of Mittag-Leffler functions

The following lemma concerns fractional derivatives of products of Mittag-Leffler
functions and power functions.
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Lemma 3. For arbitrary positive values of α, β and B, and for any real a, the following
equality holds:

dα

dzα

(
zB−1Eβ,B(azβ)

)
= amzB+mβ−α−1Eβ,B+mβ−α(azβ).

Here, m is the smallest non-negative integer such that B+mβ−α− 1 is not a negative
integer.

Proof. This lemma can be proven straightforwardly by taking the fractional derivative
term by term in a series representation of the Mittag-Leffler function via (1.3) as
following

dα

dzα

(
zB−1Eβ,B(azβ)

)
= dα

dzα

∞∑
i=0

aizB−1+βi

Γ(B + βi)

=
∑
i=0

aizB−1+βi−α

Γ(B + βi− α)

=
∑
i=0

ai+mzB−1+βi+βm−α

Γ(B + βi+ βm− α) .

The last equality follows from considering the condition on m, ensuring the definition
of gamma function.

For the cases specified below, we construct solutions of (2.3) and (2.4) in terms of
Mittag-Leffler functions.

Proposition 1. For arbitrary α > 0, we have the following solutions expressed in
terms of Mittag-Leffler functions.

1. For a ∈ R, the equation
dαφ

dzα
= aφ, z ∈ R (2.5)

has a solution φ(z) =
n∑
k=1

ckz
α−kEα,1+α−k(azα), where ck (k = 1, . . . , n) are

constants.

2. For a1, a2 ∈ R, the system 
dαφ
dzα = a1ψ,

dαψ
dzα = a2φ,

z ∈ R (2.6)
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has a solution
φ(z) =

n∑
k=1

ck,1z
α−kE2α,1+α−k(a1a2z

2α) + a1
n∑
k=1

ck,2z
2α−kE2α,1+2α−k(a1a2z

2α),

ψ(z) = a2
n∑
k=1

ck,1z
2α−kE2α,1+2α−k(a1a2z

2α) +
n∑
k=1

ck,2z
α−kE2α,1+α−k(a1a2z

2α),

where ck,1, ck,2 (k = 1, . . . , n) are constants.

Proof. From the linearity of (2.5) and (2.6), it is sufficient to show that the single
terms

φk(z) = ckz
α−kEα,1+α−k(azα)

and φk(z) = zα−kE2α,1+α−k(a1a2z
2α)

ψk(z) = a2z
2α−kE2α,1+2α−k(a1a2z

2α)

satisfy (2.5) and (2.6), respectively, for k = 1, . . . , n. This is easily done using
Lemma 3.

Although the first assertion of Proposition 1 was demonsrated in [24], we included
it here for completeness.

2.1.2 Solutions expressed in terms of generalized Wright func-
tions

Let us formulate the following contiguous relations for the generalized Wright functions.
These are used below to obtain solutions of (2.3) and (2.4).

Lemma 4. Let us assume that the generalized Wright function is absolutely convergent,
i.e., that ∆ = ∑q

j=1 Bj −∑p
i=1 Ai > −1. Then the following equalities hold for α ∈ R+

and a ∈ R.

1. If β1 > 0 and B1 > 0, then we have

dα

dzα

zB1−1
pΨq

azβ1

∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 = amzB1+mβ1−1−α

×p+1Ψq+1

azβ1

∣∣∣∣∣ (1, 1), (Ai +mαi, αi)1,p

(1 +m, 1), (B1 +mβ1 − α, β1), (Bj +mβj, βj)2,q

 , z ∈ R,

where m is the smallest non-negative integer such that B1 +mβ1 − α− 1 is not
a negative integer.
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2. For σ ∈ R \ {0} and R ∈ R, the following equality holds

(
1
α
z
d

dz
+R

)z A1σ

α1
−αR

pΨq

azσ∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q


= σ

α1α
z

A1σ

α1
−αR

pΨq

azσ∣∣∣∣∣ (A1 + 1, α1), (Ai, αi)2,p

(Bj, βj)1,q

 .
Proof. To prove the first assertion, let us write the function whose fractional derivative
we are taking, φ(z), as

φ(z) = zB1−1
pΨq

azβ1

∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q

 .
Then, taking the Riemann-Liouville derivative (1.1), we obtain

dαφ

dzα
=

∞∑
i=0

Γ(A1 + α1i) · · · Γ(Ap + αpi)ai
Γ(B1 − α + β1i)Γ(B2 + β2i) · · · Γ(Bq + βqi)i!

zB1−1+β1i−α,

which equals

dαφ

dzα
=

∞∑
i=0

Γ(A1 + α1(i+m)) · · · Γ(Ap + αp(i+m))ai+mzB1−1+β1i+β1m−α

Γ(B1 − α + β1m+ β1i)Γ(B2 + β2m+ β2i) · · · Γ(Bq + βqm+ βqi)(i+m)! ,

where we have employed the condition on the integer m. The first assertion of the
lemma can be proved through multiplying both the numerator and the denominator of
the last expression by i!.

The second assertion of the lemma can be proved through straightforward calculation
with the help of the identity (A1 +α1i)Γ(A1 +α1i) = Γ(A1 + 1 +α1i) for i = 0, 1, 2, . . .
as following

(
1
α
z
d

dz
+R

)z A1σ

α1
−αR

pΨq

azσ∣∣∣∣∣ (Ai, αi)1,p

(Bj, βj)1,q


=
(

1
α
z
d

dz
+R

) ∞∑
i=0

∏p
k=1 Γ(Ak + αki)ai∏q
j=1 Γ(Bj + βji)

z
A1σ

α1
−αR+σi

=
∞∑
i=0

∏p
k=1 Γ(Ak + αki)ai∏q
j=1 Γ(Bj + βji)

( 1
α

(
A1

α1
σ − αR + σi

)
+R

)
z

A1σ

α1
−αR

.
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We obtain the following corollary from the first assertion of Lemma 4 in the case
A1 = α1 = 1.

Corollary 1. When B1 > 0, β1 > 0 and A1 = α1 = 1, the fractional derivative of
product of power function and generalized Wright function pΨq is

dα

dzα

zB1−1
pΨq

azβ1

∣∣∣∣∣ (1, 1), (Ai, αi)2,p

(Bj, βj)1,q


= amzB1+mβ1−1−α

pΨq

azβ1

∣∣∣∣∣ (1, 1), (Ai +mαi, αi)2,p

(B1 +mβ1 − α, β1), (Bj +mβj, βj)2,q

 ,
where m is the smallest non-negative integer such that B1 + mβ1 − α − 1 is not a
negative integer.

Before moving on to the formulation of exact solutions of (2.3) and (2.4), we
introduce the following notation.

Let us consider the case that c = 0 and b ̸= 0 in (2.3). Then writing −a
b

as s̄, we
can rewrite the right-hand side of (2.3) as

aφ+ b

α
z
dφ

dz
= b

(
1
α
z
d

dz
− s̄

)
φ.

Then, in the case of (2.4), assuming b1b2 ̸= 0 and introducing the quantities

s̃1 = −a1

b1
, s̃2 = −a2

b2
,

we rewrite the right-hand side of (2.4) as follows:

a1ψ + b1

α
z
dψ

dz
= b1

(
1
α
z
d

dz
− s̃1

)
ψ,

a2φ+ b2

α
z
dφ

dz
= b2

(
1
α
z
d

dz
− s̃2

)
φ.

Now, let us assume c ̸= 0. Then the characteristic equation of the right-hand side of
(2.3) is

s2 +
(
b

c
− 1
α

)
s+ a

c
= 0. (2.7)

We write the determinant and roots of (2.7) as D = 1
α2 − 2b

αc
+ b2

c2 − 4a
c

and s1,2 =
1
2

(
1
α

− b
c

±
√
D
)
, respectively. Then we can rewrite the right-hand side of (2.3) in the
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factorized differential form

aφ+ b

α
z
dφ

dz
+ c

α2 z
2d

2φ

dz2 = c

(
1
α
z
d

dz
− s1

)(
1
α
z
d

dz
− s2

)
φ. (2.8)

This notation is useful for at least two reasons. First, it reveals the uniformity in
given solutions of (2.3) and (2.4) with different orders of fractional derivatives. In
particular, in the case c ̸= 0, we can avoid a tedious computation by simply rewriting
the right-hand side of (2.3) in factorized operator form. Second, using this notation,
we can easily generalize (2.3) and (2.4) into cases with higher-order derivatives and
obtain solutions thereof. We will discuss this generalization in the next section.

We now formulate the solutions of (2.3) and (2.4) expressed in terms of generalized
Wright function as follows.

Proposition 2. We have the following solutions expressed in terms of the generalized
Wright function.

1. For α > 1 and a, b ∈ R with b ̸= 0, the equation

dαφ

dzα
= aφ+ b

α
z
dφ

dz
, z ∈ R (2.9)

has as a solution

φ(z) =
n∑
k=1

ckz
α−k

2Ψ1

bzα
∣∣∣∣∣∣
(
1 − k

α
− s̄, 1

)
, (1, 1)

(1 + α− k, α)

 ,
where s̄ = −a

b
, and ck (k = 1, . . . , n) are constants.

2. For α > 2 and a, b, c ∈ R with c ̸= 0, the equation

dαφ

dzα
= aφ+ b

α
z
dφ

dz
+ c

α2 z
2d

2φ

dz2 , z ∈ R (2.10)

has as a solution

φ(z) =
n∑
k=1

ckz
α−k

3Ψ1

czα
∣∣∣∣∣∣
(
1 − k

α
− s1, 1

)
,
(
1 − k

α
− s2, 1

)
, (1, 1)

(1 + α− k, α)

 ,
where D = 1

α2 − 2b
αc

+ b2

c2 − 4a
c
, s1,2 = 1

2

(
1
α

− b
c

±
√
D
)
, and ck (k = 1, . . . , n) are

constants.
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3. For α > 1 and a1, a2, b1, b2 ∈ R with b1b2 ̸= 0, the system
dαφ
dzα = a1ψ + b1

α
z dψ
dz
,

dαψ
dzα = a2φ+ b2

α
z dφ
dz
,

z ∈ R (2.11)

has as a solution

φ(z) =
n∑
k=1

ck,1z
α−k

3Ψ1

4b1b2z
2α
∣∣∣∣∣
(
1 − k

2α − s̃1
2 , 1

)
,
(

1
2 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + α− k, 2α)


+ 2b1

n∑
k=1

ck,2z
2α−k

3Ψ1

4b1b2z
2α
∣∣∣∣∣
(

3
2 − k

2α − s̃1
2 , 1

)
,
(
1 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)

 ,

ψ(z) = 2b2

n∑
k=1

ck,1z
2α−k

3Ψ1

4b1b2z
2α
∣∣∣∣∣
(
1 − k

2α − s̃1
2 , 1

)
,
(

3
2 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)


+

n∑
k=1

ck,2z
α−k

3Ψ1

4b1b2z
2α
∣∣∣∣∣
(

1
2 − k

2α − s̃1
2 , 1

)
,
(
1 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + α− k, 2α)

 ,
where s̃1 = −a1

b1
, s̃2 = −a2

b2
, and ck,1, ck,2 (k = 1, . . . , n) are constants.

Proof. The proof can be carried out similarly in all three cases using Lemma 4 and
Corollary 1. For this reason, we present proofs only for the second and third cases.
As in Proposition 1, from the linearity of (2.10), it is sufficient to show that a single
summand,

φk(z) = zα−k
3Ψ1

czα
∣∣∣∣∣∣
(
1 − k

α
− s1, 1

)
,
(
1 − k

α
− s2, 1

)
, (1, 1)

(1 + α− k, α)

 , where 1 ≤ k ≤ n,

of the solution φ(z) satisfies (2.10). Because 1 + α− k > 0 for any k, by Corollary 1,
we have the following identity for the left-hand side of (2.10):

dαφk
dzα

= czα−k
3Ψ1

czα∣∣∣∣∣ (2 − k
α

− s1, 1), (2 − k
α

− s2, 1), (1, 1)
(1 + α− k, α)

 . (2.12)
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Then, by virtue of (2.8) and the second assertion of Lemma 4, the right-hand side of
(2.10) becomes

c

(
1
α
z
d

dz
− s1

)(
1
α
z
d

dz
− s2

)
φk

= c

(
1
α
z
d

dz
− s1

)zα−k
3Ψ1

czα
∣∣∣∣∣∣
(
1 − k

α
− s1, 1

)
,
(
2 − k

α
− s2, 1

)
, (1, 1)

(1 + α− k, α)

 ,
which is equal to the left-hand side of (2.12).

In the third assertion, we only need to show that the summands

φk,1(z) = zα−k
3Ψ1

4b1b2z
2α
∣∣∣∣∣
(
1 − k

2α − s̃1
2 , 1

)
,
(

1
2 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + α− k, 2α)

 ,
ψk,1(z) = 2b2z

2α−k
3Ψ1

4b1b2z
2α
∣∣∣∣∣
(
1 − k

2α − s̃1
2 , 1

)
,
(

3
2 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)


and

φk,2(z) = 2b1z
2α−k

3Ψ1

4b1b2z
2α
∣∣∣∣∣
(

3
2 − k

2α − s̃1
2 , 1

)
,
(
1 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)

 ,
ψk,2(z) = zα−k

3Ψ1

4b1b2z
2α
∣∣∣∣∣
(

1
2 − k

2α − s̃1
2 , 1

)
,
(
1 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + α− k, 2α)


satisfy (2.11) for k = 1, . . . , n. For this purpose, it is sufficient to show that (φk,1(z), ψk,1(z))
satisfies (2.11). Then, the proof that (φk,2(z), ψk,2(z)) satisfies (2.11) follows from the
symmetry property of the system. After applying Corollary 1 with m = 1 for φk,1 and
m = 0 for ψk,1, we obtain the following expressions for the left-hand side of (2.11):


dαφk,1
dzα

= 4b1b2z
2α−k

3Ψ1

4b1b2z
α−k

∣∣∣∣∣ (1, 1),
(
2 − k

2α − s̃1
2 , 1

)
,
(

3
2 − k

2α − s̃2
2 , 1

)
(1 + 2α− k, 2α)

 ,
dαψk,1
dzα

= 2b2z
2α−k

3Ψ1

4b1b2z
α−k

∣∣∣∣∣ (1, 1),
(
1 − k

2α − s̃1
2 , 1

)
,
(

3
2 − k

2α − s̃2
2 , 1

)
(1 + 2α− k, 2α)

 .
(2.13)

Finally, applying the second assertion of Lemma 4 to the right-hand side of (2.11),
with R = a1

b1
and σ = 2α for the first equation and R = a2

b2
and σ = 2α for the second

equation, we obtain identically (2.13).
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2.1.3 Solutions expressed in terms of Fox H-functions

Let us first present the following technical lemma on the fractional differentiation of
Fox H-functions with an argument raised to negative power.

Lemma 5. Let ν = ∑q
j=1 βj − ∑p

i=1 αi > 0 and µ =
m∑
j=1

βj −
q∑

j=m+1
βj −

p∑
i=1

αi > 0.

Then the following equalities hold.

1. For a > 0,

dα

dzα
Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q


= z−αHm,0

p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1 − α, αp)
(Bj, βj)1,q

 , z > 0.

2. If m ≥ 1 then for a ∈ R \ {0}

(
β1

αp
z
d

dz
+B1

)
Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q


= Hm,0

p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(B1 + 1, β1), (Bj, βj)2,q

 .
Proof. By virtue of the asymptotic expression (1.6), the fractional derivative of the
function

φ(z) = Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q


is well defined. Substituting s = zu into the definition of the Riemann-Liouville
derivative (1.1), we obtain

dαφ(z)
dzα

= dn

dzn
zn−α

Γ(n− α)

∫ 1

0
(1 − u)n−α−1 1

2πi

×
∫
Lγ+i∞

m∏
j=1

Γ(Bj − βjs)
p−1∏
i=1

Γ(Ai − αis)Γ(1 − αps)
q∏

j=m+1
Γ(1 −Bj + βjs)

(
a(zu)−αp

)s
dsdu. (2.14)
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The well-known formula for the beta function expressed in terms of the gamma function
∫ 1

0
xa−1(1 − x)b−1dx = Γ(a)Γ(b)

Γ(a+ b) , where ℜ(a),ℜ(b) > 0,

applies to our case, in which it becomes
∫ 1

0
(1 − u)n−α−1u−αpsdu = Γ(n− α)Γ(1 − αps)

Γ(n− α− αps+ 1) , (2.15)

choosing suitable γ < 0 for the contour Lγ+i∞ in (2.14). Next, interchanging the order
of the integrals in (2.14) and using (2.15) we obtain as following

dαφ(z)
dzα

= dn

dzn
zn−α

Γ(n− α)

∫
Lγ+i∞

m∏
j=1

Γ(Bj − βjs)asz−αps

p−1∏
i=1

Γ(Ai − αis)Γ(1 − αps)
q∏

j=m+1
Γ(1 −Bj + βjs)

× 1
2πi

∫ 1

0
(1 − u)n−α−1 (u)−αps duds

= dn

dzn
zn−α

∫
Lγ+i∞

m∏
j=1

Γ(Bj − βjs)asz−αps

p−1∏
i=1

Γ(Ai − αis)Γ(n− α + 1 − αps)
q∏

j=m+1
Γ(1 −Bj + βjs)

= dn

dzn
zn−αHm,0

p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (n− α + 1, αp)
(Bj, βj)1,q

 . (2.16)

The first assertion is then proved by applying (1.8) and (1.11) to (2.16).
To prove the second assertion, let us take the derivative of the H-function using

(1.11) with N = 1. This yields

d

dz
Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q

 = z
d

dz
H0,m
q,p

zαp

a

∣∣∣∣∣ (1 −Bj, βj)1,q

(1 − Ai, αi)1,p−1, (0, αp)


= H0,m+1

q+1,p+1

zαp

a

∣∣∣∣∣ (0, αp), (1 −Bj, βj)1,q

(1 − Ai, αi)1,p−1, (0, αp), (1, αp)

 .
Here, note that the common term (0, αp) is canceled out in the last expression, and
thus, by virtue of (1.8), we have

z
d

dz
Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q

 = Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (0, αp)
(Bj, βj)1,q

 .
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The quantity in the second assertion is calculated as follows:

(
β1

αp
z
d

dz
+B1

)
Hm,0
p,q

az−αp

∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q



= 1
2πi

∫
Lγ+i∞

[
β1

Γ(−αps)αp
+ B1

Γ(1 − αps)

] Γ (B1 − β1s)
m∏
j=2

Γ(Bj − βjs)
p−1∏
j=1

Γ(Aj − αjs)
q∏

j=m+1
Γ(1 −Bj + βjs)

×(az−αp)sds

= 1
2πi

∫
Lγ+i∞

(B1 − β1s)Γ (B1 − β1s)
m∏
j=2

Γ(Bj − βjs)
p−1∏
j=1

Γ(Aj − αjs)Γ(1 − αps)
q∏

j=m+1
Γ(1 −Bj + βjs)

(az−αp)sds,

which completes the proof.
An alternative proof of the second assertion can be obtained by using the formulas

for particular derivatives of Fox-H functions given in [18].

Unlike the previously presented solutions expressed in terms of Mittag-Leffler
functions and generalized Wright functions, we present the solutions expressed in terms
of Fox-H functions for z > 0.

Henceforth, we use sign function for x ∈ R defined as

sgn(x) =

1, x > 0,
−1, x < 0.

Proposition 3. For the following cases, we have solutions expressed in terms of Fox
H-functions.

1. For 0 < α < 1 and a, b ∈ R with b > 0, the equation

dαφ

dzα
= aφ+ b

α
z
dφ

dz
, z > 0 (2.17)

has as a solution

φ(z) = c1H
1,0
1,1

z−α

b

∣∣∣∣∣ (1, α)
(−s̄, 1)

 ,
where s̄ = −a

b
, and c1 is a constant.
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2. For 0 < α < 2 and a, b, c ∈ R with c > 0, the equation

dαφ

dzα
= aφ+ b

α
z
dφ

dz
+ c

α2 z
2d

2φ

dz2 , z > 0 (2.18)

has as a solution

φ(z) = c1H
2,0
1,2

z−α

c

∣∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

 ,
where s1,2 = 1

2

(
1
α

− b
c

±
√
D
)
, D = 1

α2 − 2b
αc

+ b2

c2 − 4a
c
, and c1 is a constant.

3. For 0 < α < 1 and a1, a2, b1, b2 ∈ R with b1b2 > 0, the system
dαφ
dzα = a1ψ + b1

α
z dψ
dz
,

dαψ
dzα = a2φ+ b2

α
z dφ
dz
,

z > 0 (2.19)

has as a solution

φ(z) = c1 sgn(b1)H2,0
1,2

 z−2α

4b1b2

∣∣∣∣∣ (1, 2α)(
1
2 − s̃1

2 , 1
)
,
(
− s̃2

2 , 1
)
 ,

ψ(z) = c1
√

b2
b1
H2,0

1,2

 z−2α

4b1b2

∣∣∣∣∣ (1, 2α)(
− s̃1

2 , 1
)
,
(

1
2 − s̃2

2 , 1
)
 ,

where s̃1 = −a1
b1
, s̃2 = −a2

b2
, and c1 is a constant.

Proof. Analogously to the proof of Proposition 2, the three assertions of this proposition
can be proved in a similar manner by using Lemma 5. For this reason, we consider
only the second and third assertions with c1 = 1, without loss of generality.

Let us consider the second assertion of the proposition. Because the convergence
condition of H-functions holds (i.e. µ = 2 − α > 0), we can apply the first assertion of
Lemma 5. We thereby obtain

dα

dzα
H2,0

1,2

z−α

c

∣∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

 = z−αH2,0
1,2

z−α

c

∣∣∣∣∣ (1 − α, α)
(−s1, 1) , (−s2, 1)





36 Solutions of linear fractional differential equations

for the left-hand side of (2.18), which is further simplified by virtue of (1.9) into the
form

dα

dzα
H2,0

1,2

z−α

c

∣∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

 = cH2,0
1,2

z−α

c

∣∣∣∣∣ (1, α)
(−s1 + 1, 1) , (−s2 + 1, 1)

 .
The right-hand side of (2.18) is obtained in analogy to the second assertion of Proposi-
tion 2, by using (2.8) and interchanging the parameters (−s1, 1) and (−s2, 1) in the
solution φ(z) in accordance with the second assertion of Lemma 5 as following

aφ+ b

α
z
dφ

dz
+ c

α2 z
2d

2φ

dz2

= c

(
1
α
z
d

dz
− s1

)(
1
α
z
d

dz
− s2

)
H2,0

1,2

z−α

c

∣∣∣∣∣∣ (1, α)
(−s2, 1), (−s1, 1)


= c

(
1
α
z
d

dz
− s1

)
H2,0

1,2

z−α

c

∣∣∣∣∣∣ (1, α)
(−s1, 1), (−s2 + 1, 1)


= cH2,0

1,2

z−α

c

∣∣∣∣∣∣ (1, α)
(−s1 + 1, 1), (−s2 + 1, 1)

 .
Next, considering the third assertion, for the sake of compatibility with the second

assertion of Lemma 5, we rewrite the right-hand side of (2.19) as follows:a1ψ + b1
α
z dψ
dz

= 2b1
(

1
2αz

d
dz

+ a1
2b1

)
ψ,

a2φ+ b2
α
z dφ
dz

= 2b2
(

1
2αz

d
dz

+ a2
2b2

)
φ.

Because the convergence condition µ = 1 − α > 0 holds for both φ(z) and ψ(z), we
can apply the first assertion of Lemma 5 and (1.9). We thereby obtain

dαφ

dzα
= 2 sgn(b1)

√
b1b2H

2,0
1,2

 z−2α

4b1b2

∣∣∣∣∣ (1, 2α)(
1 − s̃1

2 , 1
)
,
(

1
2 − s̃2

2 , 1
)
 ,

dαψ

dzα
= 2 sgn(b2)b2H

2,0
1,2

 z−2α

4b1b2

∣∣∣∣∣ (1, 2α)(
1
2 − s̃1

2 , 1
)
,
(
1 − s̃2

2 , 1
)
 .

Applying the second assertion of Lemma 5 with B1 = − s̃1
2 for the first equation and

B1 = − s̃2
2 for the second equation, we obtain the desired form.
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We now show that for a special case of (2.18), we have solutions expressed in terms
of Wright functions.

Corollary 2. Let the determinant of (2.7) be D = 1
α2 − 2b

αc
+ b2

c2 − 4a
c

= 1
4 , and suppose

c ̸= 0.

1. For 0 < α < 2 and c > 0, (2.18) has a solution of the following form:

φ(z) = c1z
1
2( 1

α
− b

c
+ 1

2)αΨ
(

−2z− α
2

√
c

; −α

2 ,
1
2

(
3
α

− b

c
+ 1

2

)
α

)
.

2. For α > 2, (2.10) has a solution of the following form:

φ(z) =
n∑
k=1

ckz
α−k

2Ψ1

czα
4

∣∣∣∣∣∣
(

3
2 − 2k+1

α
+ b

c
, 2
)
, (1, 1)

(1 + α− k, α)

 .

Proof. To prove the first assertion, we need to show that φ(z) corresponds to the
solution given in the second assertion of Proposition 3. When D = 1

4 and 0 < α < 2,
the roots of the characteristic equation (2.7) become s1 = 1

2

(
1
α

− b
c

+ 1
2

)
and s2 = s1− 1

2 .

In this case, the solution given in the second assertion of Proposition 3 is

φ̃(z) = c1H
2,0
1,2

z−α

c

∣∣∣∣∣ (1, α)
(−s1, 1) ,

(
−s1 − 1

2 , 1
)  .

Then, applying the duplication formula for the gamma function

Γ (−s1 − s) Γ
(

−s1 − s+ 1
2

)
=

√
π21+2(s1+s)Γ (−2s1 − 2s)
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to φ̃(z), it becomes

φ̃(z) = c1
√
π21+2s1H1,0

1,1

4z−α

c

∣∣∣∣∣ (1, α)
(−2s1, 2)


= c1

√
π4s1H1,0

1,1

2z− α
2

√
c

∣∣∣∣∣
(
1, α2

)
(−2s1, 1)


= c1

√
πcs1z

α
2 ( 1

α
− b

c
+ 1

2)H1,0
1,1

2z− α
2

√
c

∣∣∣∣∣
(
α
2

(
3
α

− b
c

+ 1
2

)
, α2

)
(0, 1)


= c1

√
πcs1z

α
2 ( 1

α
− b

c
+ 1

2)
0Ψ1

−2z− α
2

√
c

∣∣∣∣∣ −(
α
2

(
3
α

− b
c

+ 1
2

)
,−α

2

) 
= c1

√
πcs1z

α
2 ( 1

α
− b

c
+ 1

2)Ψ
[
−2z− α

2
√
c

; −α

2 ,
α

2

(
3
α

− b

c
+ 1

2

)]
.

The second through fifth equalities here follow from (1.9), (1.10), (1.21) and (1.17),
respectively. It is thus seen that φ̃(z) = φ(z).

We can prove the second assertion by applying the duplication formula for the
gamma function

Γ
(

1 − k

α
− s1 + i

)
Γ
(

1 − k

α
− s1 + i+ 1

2

)
=

√
π2

2k+1
α

− 1
2 −iΓ

(
2 − 2k

α
− 2s1 + 2i

)

to the solution given in the second assertion of Proposition 2 as following

φ(z) =
n∑
k=1

ckz
α−k

3Ψ1

czα
∣∣∣∣∣∣
(
1 − k

α
− s1, 1

)
,
(
1 − k

α
− s2, 1

)
, (1, 1)

(1 + α− k, α)


=

n∑
k=1

ck
∞∑
i=0

cizα−k+αiΓ
(
1 − k

α
− s1 + i

)
Γ
(
1 − k

α
− s2 + i

)
Γ(1 + i)

Γ (1 + α− k + αi) i!

=
n∑
k=1

ck
∞∑
i=0

√
π2 2k+1

α
− 1

2 −icizα−k+αiΓ
(
2 − 2k

α
− 2s1 + 2i

)
Γ(1 + i)

Γ (1 + α− k + αi) i!

=
n∑
k=1

c̄kz
α−k

2Ψ1

czα
2

∣∣∣∣∣∣
(
2 − 2k

α
− 2s1, 2

)
, (1, 1)

(1 + α− k, α)

 .

To this point, we have presented several exact solutions of (2.3) and (2.4). These
solutions are classified according to the kind of special functions used to express them.
Now, we discuss the second advantage of rewriting the right-hand sides of (2.3) and
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(2.4) in factorized differential operator form. Specifically, we show that utilizing this
form, we are able to generalize our treatment of (2.3) and (2.4) to the cases of (2.1) and
(2.2) with arbitrary integers m, m1 and m2. As a result, we find that the solutions to
(2.3) and (2.4) of Proposition 2 and the solutions to (2.17) and (2.18) of Proposition 3
can all be represented in a unified manner by a single general formula.

2.2 Solutions of FODE with higher order deriva-
tives

We seek a solution of the following FODE with an mth-order Cauchy-Euler differential
operator on the right-hand side:

dαφ

dzα
= am
αm

zm
dmφ

dzm
+ am−1

αm−1 z
m−1d

m−1φ

dzm−1 + · · · + a1

α
z
dφ

dz
+ a0φ, z > 0, (2.20)

where ai (i = 0, . . . ,m) are real numbers and am ̸= 0. We represent the right-hand side
of (2.20) by P (φ). Then, from

P (zs) =
a0 +

m∑
i=1

ai
i−1∏
j=0

(
s

α
− j

α

) zs,
we see that the characteristic polynomial of P is

P̃ (s) = a0 +
m∑
i=1

ai
i−1∏
j=0

(
s− j

α

)
.

Let s1, s2, . . . , sm be the roots of the characteristic polynomial P̃ (s). Then, we can
rewrite the right-hand side of (2.20) as

P (φ) = am
m∏
i=1

(
1
α
z
d

dz
− si

)
φ. (2.21)

Now, generalizing the results of the previous section, we formulate the following
theorem.

Theorem 6. The equation (2.20) has the following solutions:
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1. For 0 < α < m and am > 0,

φ(z) = c1H
m,0
1,m

z−α

am

∣∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1) , . . . , (−sm, 1)

 ;

2. For α > m,

φ(z) =
n∑
k=1

ckz
α−k

m+1Ψ1

amzα
∣∣∣∣∣
(
1 − k

α
− s1, 1

)
, . . . ,

(
1 − k

α
− sm, 1

)
, (1, 1)

(1 + α− k, α)

 ,
where ck (k = 1, . . . , n) are arbitrary constants.

Proof. Similarly to the proof of Proposition 3, by applying the first assertion of Lemma 5
and the relationship (1.10) with σ = 1, we obtain

dαφ(z)
dzα

= z−αHm,0
1,m

z−α

am

∣∣∣∣∣ (1 − α, α)
(−s1, 1), . . . , (−sm, 1)


= amH

m,0
1,m

z−α

am

∣∣∣∣∣ (1 − α + α, α)
(1 − s1, 1), . . . , (1 − sm, 1)

 (2.22)

for the left-hand side of (2.20). Using the second assertion of Lemma 5 repetitively, we
obtain the right hand side of (2.21) as

am
m∏
i=1

(
1
α
z
d

dz
− si

)
φ = amH

m,0
1,m

z−α

am

∣∣∣∣∣ (1, α)
(1 − s1, 1), . . . , (1 − sm, 1)

 ,
which equals to (2.22).

Now let us prove the second assertion. From the linearity of (2.20), it is sufficient
to show that a single summand

φk(z) = zα−k
m+1Ψ1

amzα
∣∣∣∣∣ (1 − k

α
− s1, 1), . . . , (1 − k

α
− sm, 1), (1, 1)

(1 + α− k, α)

 for 1 ≤ k ≤ n

of the solution φ(z) satisfies (2.20). By Corollary 1 with m = 1, we have the following
identity for the left-hand side of (2.20):

dαφk
dzα

= amz
α−k

m+1Ψ1

amzα
∣∣∣∣∣ (1, 1), (2 − k

α
− s1, 1), . . . , (2 − k

α
− sm, 1)

(1 + α− k, α)

 . (2.23)
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Then, by virtue of (2.21) and the second assertion of Lemma 4 with σ = α, R = −si,
the right-hand side of (2.20) becomes

am
m∏
i=1

(
1
α
z
d

dz
− si

)
φk

= amz
α−k

m+1Ψ1

amzα
∣∣∣∣∣ (1, 1), (2 − k

α
− s1, 1), . . . , (2 − k

α
− sm, 1)

(1 − k + α, α)

 ,
which equals to the corresponding left-hand side (2.23).

It is now clear that the solutions given in the first and second assertions of Proposi-
tion 2 can be expressed by using only the first assertion of Theorem 6 and that the
solutions of the first and second assertion of Proposition 3 can be expressed by using
only the second assertion of Theorem 6 by taking m = 1 and m = 2, respectively.

In a similar manner, we can generalize the system (2.4) as
dαφ
dzα = am1

αm1 z
m1 d

m1ψ
dzm1 + am1−1

αm1−1 zm1−1 dm1−1ψ
dzm1−1 + · · · + a1

α
z dψ
dz

+ a0ψ,

dαψ
dzα = bm2

αm2 z
m2 d

m2φ
dzm2 + bm2−1

αm2−1 zm2−1 dm2−1φ
dzm2−1 + · · · + b1

α
z dφ
dz

+ b0φ,
z > 0, (2.24)

where ai (i = 1, . . . ,m1) and bj (j = 1, . . . ,m2) are real numbers and am1bm2 ̸= 0. The
characteristic polynomials of the right-hand sides of the first and second equations of
this system are

P1(s) = a0 +
m1∑
i=1

ai
i−1∏
j=0

(
s− j

α

)
, P2(s) = b0 +

m2∑
i=1

bi
i−1∏
j=0

(
s− j

α

)
. (2.25)

We write the roots of the characteristic polynomials P1(s) and P2(s) as s1, s2, . . . , sm1

and sm1+1, sm1+2, . . . , sm1+m2 , respectively. Then, we can rewrite the right-hand sides
of the equations in (2.24) as

m1∑
i=0

ai
αi
zi
diψ

dzi
= 2m1am1

m1∏
i=1

(
1

2αz
d

dz
− si

2

)
ψ(z)

and
m2∑
i=0

bi
αi
zi
diφ

dzi
= 2m2bm2

m1+m2∏
i=m1+1

(
1

2αz
d

dz
− si

2

)
φ(z).

The following result concerns solutions of (2.24).
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Theorem 7. The system (2.24) has the following solutions. Here, we use m to
represent m1 +m2 and A to represent 2m1+m2am1bm2 .

1. For 0 < α < m
2 and am1bm2 > 0,

φ(z) = c1 sgn(bm2)Hm,0
1,m

z−2α

A

∣∣∣∣∣ (1, 2α)(
− si

2 + 1
2 , 1

)
1,m1

,
(
− si

2 , 1
)
m1+1,m

 ,
ψ(z) = c12

m2−m1
2

√
bm2

am1

Hm,0
1,m

z−2α

A

∣∣∣∣∣ (1, 2α)(
− si

2 , 1
)

1,m1
,
(
− si

2 + 1
2 , 1

)
m1+1,m

 .
2. For α > m

2 ,

φ(z) =
n∑
k=1

ck,1z
α−kφk1(z) + 2m1am1

n∑
k=1

ck,2z
2α−kφk2(z),

ψ(z) = 2m2bm2

n∑
k=1

ck,1z
2α−kψk1(z) +

n∑
k=1

ck,2z
α−m2ψk2(z),

where

φk1(z) = m+1Ψ1

Az2α
∣∣∣∣∣
(
1 − k

2α − si

2 , 1
)

1,m1
,
(

1
2 − k

2α − si

2 , 1
)
m1+1,m

, (1, 1)
(1 + α− k, 2α)

 ,
φk2(z) = m+1Ψ1

Az2α
∣∣∣∣∣
(

3
2 − k

2α − si

2 , 1
)

1,m1
,
(
1 − k

2α − si

2 , 1
)
m1+1,m

, (1, 1)
(1 + 2α− k, 2α)

 ,
ψk1(z) = m+1Ψ1

Az2α
∣∣∣∣∣
(
1 − k

2α − si

2 , 1
)

1,m1
,
(

3
2 − k

2α − si

2 , 1
)
m1+1,m

, (1, 1)
(1 + 2α− k, 2α)

 ,
ψk2(z) = m+1Ψ1

Az2α
∣∣∣∣∣
(

1
2 − k

2α − si

2 , 1
)

1,m1
,
(
1 − k

2α − si

2 , 1
)
m1+1,m

, (1, 1)
(1 + α− k, 2α)

 ,
and c1, ck,1 and ck,2 (k = 1, . . . , n) are constants.

Proof. Let us prove the first assertion. The left-hand side of the first equation in (2.24)
is obtained as following using first assertion of Lemma 5

dαφ

dzα
= sgn(bk)z−αHm+k,0

1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1 − α, 2α)
(− si

2 + 1
2 , 1)1,m, (− si

2 , 1)m+1,m+k


= sgn(bk)

√
2m+kambkH

m+k,0
1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1, 2α)
(− si

2 + 1, 1)1,m, (− si

2 + 1
2 , 1)m+1,m+k
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and by the second assertion of Lemma 5 the right-hand side is

2mam
m∏
i=1

(
1

2αz
d

dz
− si

2

)
ψ = sgn(am)

√
2m+kambk ×

Hm+k,0
1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1, 2α)
(− si

2 + 1, 1)1,m, (− si

2 + 1
2 , 1)m+1,m+k

 .
Since sgn(bk) = sgn(am), the above two quantities are equal. Now let us check the
second equation. By the first assertion of Lemma 5 and (1.10), the left hand side is

dαψ

dzα
= 2

k−m
2

√
bk
am

z−αHm+k,0
1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1 − α, 2α)
(− si

2 , 1)1,m, (− si

2 + 1
2 , 1)m+1,m+k


=

√
2k−mbk
am

√
2m+kambkH

m+k,0
1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1, 2α)
(− si

2 + 1
2 , 1)1,m, (− si

2 + 1, 1)m+1,m+k


= 2k|bk|Hm+k,0

1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1, 2α)
(− si

2 + 1
2 , 1)1,m, (− si

2 + 1, 1)m+1,m+k


and by the second assertion of Lemma 5 the right-hand side is

2kbk
m+k∏
i=m+1

(
1

2αz
d

dz
− si

2

)
φ = 2k sgn(bk) ×

Hm+k,0
1,m+k

 z−2α

2m+kambk

∣∣∣∣∣ (1, 2α)
(− si

2 + 1
2 , 1)1,m, (− si

2 + 1, 1)m+1,m+k

 .
Since |bk| = sgn(bk)bk, the above two quantities are equal to each other.

Now let α ≥ m
2 . Then, we only need to check that the summand

φ1,j(z) = zα−j

× m+k+1Ψ1

2m+kambkz
2α
∣∣∣∣∣
(
1 − j

2α − si

2 , 1
)

1,m
,
(

1
2 − j

2α − si

2 , 1
)
m+1,m+k

, (1, 1)
(1 + α− j, 2α)

 ,

ψ1,j(z) = 2kbkz2α−j

× m+k+1Ψ1

2m+kambkz
2α
∣∣∣∣∣
(
1 − j

2α − si

2 , 1
)

1,m
,
(

3
2 − j

2α − si

2 , 1
)
m+1,m+k

, (1, 1)
(1 + 2α− j, 2α)
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of the solution satisfies (2.21). Let us check the first equation. The left hand side
follows from Corollary 1 by taking 1 + α− j +m2α− α− 1 ≥ 0 ⇒ m = 1

dαφ1,j

dzα
= 2m+kambk

× z2α−j
m+k+1Ψ1

2m+kambkz
2α
∣∣∣∣∣ (1, 1), (2 − j

2α − si

2 )1,m, (3
2 − j

2α − si

2 , 1)m+1,m+k

(1 + 2α− j, 2α)

 .
For the right hand side, we use the second assertion of Lemma 4 with R = − si

2 and
σ = 2α

2mam
m∏
i=1

(
1

2αz
d

dz
− si

2

)
ψ1,j(z) = 2m+kambkz

2α−j

× m+k+1Ψ1

2m+kambkz
2α
∣∣∣∣∣ (2 − j

2α − si

2 , 1)1,m, (3
2 − j

2α − si

2 , 1)m+1,m+k, (1, 1)
(1 + 2α− j, 2α)

 ,
which equals to the corresponding left hand side of the first equation in the system.
For the left-hand side of the second equation in (2.21), we use Corollary 1 with
1 + 2α− j +m2α− α− 1 ≥ 0 ⇒ m = 0

dαψ1,j

dzα
= 2kbkzα−j

× m+k+1Ψ1

2m+kambkz
2α
∣∣∣∣∣ (1, 1), (1 − j

2α − si

2 , 1)1,m, (3
2 − j

2α − si

2 , 1)m+1,m+k

(1 + α− j, 2α)

 .
For the right hand side, we use the second assertion of Lemma 4 with R = − si

2 , σ = 2α

2kbk
m+k∏
i=m+1

(
1

2αz
d

dz
− si

2

)
φ1,j(z) = 2kbkzα−j

× m+k+1Ψ1

2m+kambkz
2α
∣∣∣∣∣ (3

2 − j
2α − si

2 , 1)m+1,m+k, (1 − j
2α − si

2 , 1)1,m, (1, 1)
(1 + α− j, 2α)

 ,
which equals to the left hand side.

We, thus, see that the third assertion of Proposition 2 and the third assertion of
Proposition 3 correspond to a particular case m1 = m2 = 1 of Theorem 7.



Chapter 3

Lie symmetry analysis of a class of
time fractional diffusion-wave
systems

In 1987, G.W. Bluman et al. [3] gave a complete group classification and some invariant
solutions of variable coefficient wave equation utt = c2(x)uxx and its corresponding
system ut = c2(x)vx, vt = ux. In 2015, Q. Huang et al. [10] studied Lie symmetries of
the systems of the following form:

∂αu
∂tα

= c2(x)vx,
∂αv
∂tα

= ux,
(3.1)

which can be considered as a time fractional generalization of the corresponding systems
of wave equations. Here, the fractional derivative is defined in Riemann-Liouville’s
manner and c(x) is a sufficiently differentiable function.

In [10], the admitted symmetries of (3.1) are determined and the reduced systems
of fractional ordinary differential equations (FODEs), even some explicit invariant
solutions, are presented for non-constant case of c(x). In [27], the Lie symmetries of
(3.1) are found for the case c(x) ≡ const. In both [10] and [27], there were studied
Lie symmetries and reduced systems, but the invariant solutions were not obtained
explicitly. Here, we explicitly give invariant solutions corresponding to each symmetries
in the optimal system in terms of special functions that were introduced in Chapter 1.
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The importance of finding group invariant solutions of (3.1) lies in the fact that if
(u(x, t), v(x, t)) solves (3.1), then u(x, t) solves the sequential equation:

∂α

∂tα
∂α

∂tα
u = c2(x)uxx, (3.2)

and v(x, t) solves
∂α

∂tα
∂α

∂tα
v = (c2(x)vx)x. (3.3)

However, it should be noted that, in general, the Lie group of point transformations that
leaves the system in (3.1) invariant, does not necessarily correspond to a Lie group of
point transformations that leaves the sequential equations invariant. These sequential
equations can be considered as generalizations of wave equations into time fractional
case. Another generalization of the wave equation into time fractional equation with
the Riemann-Liouville derivative was studied via Lie symmetry analysis by R. Gorenflo
et al. [9] for the case c(x) ≡ c, where c is a constant. From this discussion, we can see
that (3.1) interpolates between the corresponding systems of heat equations and wave
equations when α varies from 1

2 to 1 by virtue of the formula (1.5). The behavior of
invariant solutions corresponding to the order of fractional derivative is seen from the
graphs of the solutions.

3.1 Classification of group invariant solutions
In [10], there were obtained classification of group invariant solutions with regard to
the function c(x). It was determined that there are three types of function c(x) so
that the system (3.1) admits infinitesimal symmetries. In the following subsections, we
determine the optimal systems and corresponding reduced systems for three cases of
the function c(x).

3.1.1 Invariant solutions of (3.1) with c(x) = m1(x+m2)m3

If c(x) = m1(x+m2)m3 , here m1, m2, m3 are constants and m3 ̸= 0, then the symmetries
of (3.1) are known [10]:

X1 = u
∂

∂u
+ v

∂

∂v
, X2 = (x+m2)

∂

∂x
+ 1 −m3

α
t
∂

∂t
+m3u

∂

∂u
.
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We assume, without loss of generality, that c(x) = xm, where m is a non-zero constant.
Then, the symmetries become

X1 = u
∂

∂u
+ v

∂

∂v
and X2 = x

∂

∂x
+ 1 −m

α
t
∂

∂t
+mu

∂

∂u
.

The Lie algebra generated by X1 and X2 is Abelian, thus the optimal system consists
of

U1 = X1,

U2 = X2 + aX1 = x
∂

∂x
+ 1 −m

α
t
∂

∂t
+ (a+m)u ∂

∂u
+ av

∂

∂v
, here a ∈ R.

The element U1 does not yield any invariant solutions. The characteristic equation of
U2 reads

dx

x
= αdt

(1 −m)t = du

(a+m)u = dv

av
,

which gives the similarity variable z = x
m−1

α t. The similarity transformation, in some
fields known as ansatz, is u = xa+mφ(z),

v = xaψ(z).
(3.4)

Let us substitute (3.4) into (3.1) with c(x) = xm. Then the left hand side the first
equation becomes

∂αu

∂tα
= 1

Γ(n− α)
dn

dtn

∫ t

0
(t− τ)n−α−1xa+mφ(x

m−1
α τ)dτ

=
 τ̄ = x

m−1
α τ, dτ̄ = x

m−1
α dτ

t = x
1−m

α z, dtn = x
1−m

α
ndzn


= x

m−1
α

n+ 1−m
α

(n−α−1)+a+m+ 1−m
α

1
Γ(n− α)

∫ z

0
(z − τ̄)n−α−1φ(τ̄)dτ̄

= x2m+a−1∂
αφ

∂zα
,

and the right hand side of the first equation in the system becomes

x2mvx = x2m
(
axa−1ψ + xa

m− 1
α

x
m−1

α
−1tψ

)
= x2m+a−1

(
aψ + m− 1

α
zψ′

)
.
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Then the right and left hand sides of the second equation are calculated as

∂αv

∂tα
= 1

Γ(n− α)
dn

dtn

∫ t

0
(t− τ)n−α−1xaψ(xm−1

α τ)dτ

=
 τ̄ = x

m−1
α τ, dτ̄ = x

m−1
α dτ

t = x
1−m

α z, dtn = x
1−m

α
ndzn


= x

m−1
α

n+ 1−m
α

(n−α−1)+a+ 1−m
α

1
Γ(n− α)

∫ z

0
(z − τ̄)n−α−1ψ(τ̄)dτ̄

= xa+m−1∂
αφ

∂zα
ψ and

ux = (a+m)xa+m−1φ+ x(a+1)mφ′(z)
(
m− 1
α

)
x

m−1
α

−1t

= xa+m−1
[
(a+m)φ+ m− 1

α
zφ′

]
.

Thus, the reduced system becomes
dαφ

dzα
= amψ + m− 1

α
zψ′,

dαψ

dzα
= (a+ 1)mφ+ m− 1

α
zφ′.

(3.5)

The problem of finding invariant solutions of (3.1) with c(x) = xm is, thus, reduced
into the problem of finding the solutions of (2.4).

Hence, we give invariant solutions of (3.1) with c(x) = xm as follows:

1. If m = 1, then using the second assertion of Proposition 1 with a1 = a and
a2 = a+ 1 we obtain the following via (3.4):

u(x, t) = xa+1
(

n∑
k=1

ck,1t
α−kE2α,1+α−k(a(a+ 1)t2α)

+ a
n∑
k=1

ck,2t
2α−kE2α,1+2α−k(a(a+ 1)t2α)

)
,

v(x, t) = xa
(

(a+ 1)
n∑
k=1

ck,1t
2α−kE2α,1+2α−k(a(a+ 1)t2α)

+
n∑
k=1

ck,2t
α−kE2α,1+α−k(a(a+ 1)t2α)

)
. (3.6)

In [10], there were explicitly obtained two solutions of (3.1) with c(x) = x:

i) u(x, t) = µxtα−1, v(x, t) ≡ v(t) = µ Γ(α)
Γ(2α)t

2α−1,

ii) u(x, t) ≡ u(t) = −µ Γ(α)
Γ(2α)t

2α−1, v(x, t) = µ t
α−1

x
,
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where µ is an arbitrary constant. These solutions can be obtained from (3.6) for
suitably chosen parameters. If we set a = 0, c1,1 = µΓ(α) and ci,1 = ck,2 = 0
(i = 2, . . . , n; k = 1, . . . , n) in (3.6), then it equals to the solution i), and if
a = −1, c1,2 = µΓ(α) and ck,1 = ci,2 = 0 (k = 1, . . . , n; i = 2, . . . , n), then (3.6)
equals to the solution ii).

2. If m ̸= 1 and 0 < α < 1, then using the third assertion of Proposition 3 with
a1 = a, a2 = a+m, b1 = b2 = m− 1, we obtain the following via (3.4):

u(x, t) = c sgn(m− 1)xa+mH2,0
1,2

 1
4(m− 1)2

x2(1−m)

t2α

∣∣∣∣∣ (1, 2α)
(a+m−1

2(m−1) , 1), ( a+m
2(m−1) , 1)

 ,
v(x, t) = cxaH2,0

1,2

 1
4(m− 1)2

x2(1−m)

t2α

∣∣∣∣∣ (1, 2α)
( a

2(m−1) , 1), (a+2m−1
2(m−1) , 1)

 , (3.7)

here x > 0, t > 0.

3. If m ̸= 1 and α > 1, then using the third assertion of Proposition 2 with a1 = a,

a2 = a+m, b1 = b2 = m− 1, we obtain the following via (3.4):

u(x, t) = xa+2m−1tα

×
n∑
k=1

ck,1
x(1−m) k

α

tk
3Ψ1

ω2x2(m−1)t2α
∣∣∣∣∣
(
ω1 − k

2α , 1
)
,
(
ω2 − k

2α , 1
)
, (1, 1)

(1 + α− k, 2α)


+ ωxa+3m−2t2α

×
n∑
k=1

ck,2
x(1−m) k

α

tk
3Ψ1

ω2x2(m−1)t2α
∣∣∣∣∣
(
ω1 + 1

2 − k
2α , 1

)
,
(
ω2 + 1

2 − k
2α , 1

)
, (1, 1)

(1 + 2α− k, 2α)

 ,
v(x, t) = ωxa+2m−2t2α

n∑
k=1

ck,1
x(1−m) k

α

tk
3Ψ1

ω2x2(m−1)t2α
∣∣∣∣∣
(
ω1 − k

2α , 1
)
,
(
ω2 + 1 − k

2α , 1
)
, (1, 1)

(1 + 2α− k, 2α)


+ xa+m−1tα

×
n∑
k=1

ck,2
x(1−m) k

α

tk
3Ψ1

ω2x2(m−1)t2α
∣∣∣∣∣
(
ω1 − 1

2 − k
2α , 1

)
,
(
ω2 + 1

2 − k
2α , 1

)
, (1, 1)

(1 + α− k, 2α)


(3.8)

here ω = 2(m− 1), ω1 = a
2(m−1) + 1, ω2 = a+1

2(m−1) + 1, and ck,1, ck,2 (k = 1, . . . , n)
are constants.
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3.1.2 Invariant solutions of (3.1) with c(x) = m1e
m2x

If c(x) = m1e
m2x, here m1, m2 are nonzero constants, then the symmetries are [10]:

X1 = u
∂

∂u
+ v

∂

∂v
, X2 = 1

m2

∂

∂x
− 1
α
t
∂

∂t
+ u

∂

∂u
.

We assume, without loss of generality, that c(x) = e− x
2 . Then, the Lie symmetries

become
X1 = u

∂

∂u
+ v

∂

∂v
and X2 = −2 ∂

∂x
− 1
α
t
∂

∂t
+ u

∂

∂u
.

As in Case 1, the commutator of symmetries is zero, i.e. [X1, X2] = 0, thus the
one-dimensional optimal system is

U1 = X1, U2 = X2 − aX1, here a ∈ R.

Following the characteristic method, we get the invariant solutions:u = e
a−1

2 xφ(z),
v = e

a
2xψ(z)

(3.9)

with the similarity variable z = e− x
2α t. Consequently, the reduced system is obtained

as 
dαφ

dzα
= a

2ψ − 1
2αzψ

′,

dαψ

dzα
= a− 1

2 φ− 1
2αzφ

′.
(3.10)

Similarly solving the reduced system (3.10), the invariant solutions of (3.1) with
c(x) = e− x

2 are obtained as follows:

1. For 0 < α < 1, if we apply the third assertion of Proposition 3 with a1 = a
2 ,

a2 = a−1
2 and b1 = b2 = −1

2 , we obtain the following via (3.9):

u(x, t) = ce
a−1

2 xH2,0
1,2

 ex
t2α

∣∣∣∣∣ (1, 2α)
(1−a

2 , 1), (1−a
2 , 1)

 ,
v(x, t) = −ce

a
2xH2,0

1,2

 ex
t2α

∣∣∣∣∣ (1, 2α)
(−a

2 , 1), (2−a
2 , 1)

 (3.11)

here x > 0, t > 0.
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2. For α > 1, applying the third assertion of Proposition 2 with the same parameters
as in item 1, we obtain the following via (3.9):

u(x, t) = e
a−2

2 xtα
n∑
k=1

ck,1

(
e

x
2α

t

)k
3Ψ1

t2α
ex

∣∣∣∣∣
(
1 − a

2 − k
2α , 1

)
,
(
1 − a

2 − k
2α , 1

)
, (1, 1)

(1 + α− k, 2α)


+ e

a−3
2 xt2α

n∑
k=1

ck,2

(
e

x
2α

t

)k
3Ψ1

t2α
ex

∣∣∣∣∣
(

3
2 − a

2 − k
2α , 1

)
,
(

3
2 − a

2 − k
2α , 1

)
, (1, 1)

(1 + 2α− k, 2α)

 ,
v(x, t) = −e

a−2
2 xt2α

n∑
k=1

ck,1

(
e

x
2α

t

)k
3Ψ1

t2α
ex

∣∣∣∣∣
(
1 − a

2 − k
2α , 1

)
,
(
2 − a

2 − k
2α , 1

)
, (1, 1)

(1 + 2α− k, 2α)


− e

a−1
2 xtα

n∑
k=1

ck,2

(
e

x
2α

t

)k
3Ψ1

t2α
ex

∣∣∣∣∣
(

1
2 − a

2 − k
2α , 1

)
,
(

3
2 − a

2 − k
2α , 1

)
, (1, 1)

(1 + α− k, 2α)

 ,
(3.12)

here ck,1 and ck,2 (k = 1, . . . , n) are constants.

3.1.3 Invariant solutions of (3.1) with c(x) ≡ c

If c(x) ≡ c, here c is a constant, then the symmetries of (3.1) are [27]:

X1 = −x ∂
∂x

− t

α

∂

∂t
, X2 = − ∂

∂x
, X3 = u

∂

∂u
+ v

∂

∂v
, X4 = c2v

∂

∂u
+ u

∂

∂v
.

We can assume, without loss of generality, that c(x) ≡ 1, then the Lie symmetries
become

X1 = −x ∂
∂x

− t

α

∂

∂t
, X2 = − ∂

∂x
, X3 = u

∂

∂u
+ v

∂

∂v
and X4 = v

∂

∂u
+ u

∂

∂v
.

The commutator table, where i and j index the row and column, for the Lie algebra
generated by these infinitesimal symmetries is given by the Lie bracket operation
[Xi, Xj] = Xi(Xj) −Xj(Xi).

[Xi, Xj] X1 X2 X3 X4
X1 0 X2 0 0
X2 −X2 0 0 0
X3 0 0 0 0
X4 0 0 0 0

Table 3.1 Commutator table for case c(x) ≡ c.
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We see from this table that the Lie algebra is identical to the Lie algebra A2 ⊕ 2A1

given in [23]. The one-dimensional optimal system of the Lie algebra generated by X1,

X2, X3 and X4 is , thus, obtained in [23] as

U1 = X1 − a1X3 − a2X4, here a1, a2 ∈ R,

U2 = X2 − a1X3 − a2X4, here (a1, a2) ∈ {(±1, a), (0,±1), (0, 0)|a ∈ R},
U3 = X3 + a1X4, here a1 ∈ R,

U4 = X4.

We tabulate the invariant solutions (uj(x, t), vj(x, t)) expressed as solutions (φj(z), ψj(z))
of the reduced system and the reduced system of FODEs corresponding to the symme-
try Uj in Table 3.2. Unlike the case of non-constant c(x), the invariant solutions of

OS Invariant solutions (uj(x, t), vj(x, t)) Reduced systems of ODEj

U1

{
u(x, t) = xa1+a2φ(z) + xa1−a2ψ(z),
v(x, t) = xa1+a2φ(z) − xa1−a2ψ(z),

with z = x− 1
α t


dαφ

dzα
= (a1 + a2)φ− 1

α
zφ′,

dαψ

dzα
= −(a1 − a2)ψ + 1

α
zψ′,

here a1, a2 ∈ R

U2

u(x, t) = e(a1+a2)xφ(t) + e(a1−a2)xψ(t),
v(x, t) = e(a1+a2)xφ(t) − e(a1−a2)xψ(t),


dαφ(t)
dtα

= (a1 + a2)φ(t),
dαψ(t)
dtα

= −(a1 − a2)ψ(t),
here

(a1, a2) ∈ {(±1, a), (0,±1), (0, 0)|a ∈ R}

Table 3.2 The invariant solutions and reduced systems of FODEs of (3.1) with c(x) ≡ 1.

(3.1) with c(x) ≡ 1 are expressed as sums of solutions of two individual FODEs of the
general form (2.3). The invariant solutions of (3.1) with c(x) ≡ 1 corresponding to U1

are given as follows:

1. If 0 < α < 1, then using the first assertion of Proposition 3 with b = 1 for the
second summand of the u(x, t) and v(x, t), and using the expression (1.17), we
obtain

u(x, t) = ct(a1−a2)αΨ
(

− x

tα
; −α, 1 + (a1 − a2)α

)
,

v(x, t) = −ct(a1−a2)αΨ
(

− x

tα
; −α, 1 + (a1 − a2)α

)
. (3.13)

The above representation can solve (3.1) because of the linearity of (3.1).
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2. If α > 1, then using the first assertion of Proposition 2 with a = a1 + a2, b = −1
for the first summands and a = −a1 + a2, b = 1 for the second summands of
u(x, t) and v(x, t), we obtain

u(x, t) = xa1+a2−1tα
n∑
k=1

ck,1
x

k
α

tk
φk

(
t

x
1
α

)
+ xa1−a2−1tα

n∑
k=1

ck,2
x

k
α

tk
ψk

(
t

x
1
α

)
,

v(x, t) = xa1+a2−1tα
n∑
k=1

ck,1
x

k
α

tk
φk

(
t

x
1
α

)
− xa1−a2−1tα

n∑
k=1

ck,2
x

k
α

tk
ψk

(
t

x
1
α

)
,

(3.14)

where

φk(z) = 2Ψ1

−zα
∣∣∣∣∣
(
−a1 − a2 − k

α
+ 1, 1

)
, (1, 1)

(1 + α− k, α)

 ,
ψk(z) = 2Ψ1

zα∣∣∣∣∣
(
−a1 + a2 − k

α
+ 1, 1

)
, (1, 1)

(1 + α− k, α)

 .
Since b = 0 in both equations of the reduced system corresponding to U2, we obtain the
following invariant solution for arbitrary α by using the first assertion of Proposition 1:

u(x, t) = e(a1+a2)xtα
n∑
k=1

ck,1t
−kφk(t) + e(a1−a2)xtα

n∑
k=1

ck,2t
−kψk(t),

v(x, t) = e(a1+a2)xtα
n∑
k=1

ck,1t
−kφk(t) − e(a1−a2)xtα

n∑
k=1

ck,2t
−kψk(t), (3.15)

where

φk(t) = Eα,1+α−k((a1 + a2)tα), ψk(t) = Eα,1+α−k((a2 − a1)tα)

and (a1, a2) ∈ {(±1, a), (0,±1), (0, 0)|a ∈ R}.
There are no invariant solutions corresponding to U3 and U4.

In this section, we explicitly expressed all invariant solutions corresponding to the
optimal system for three types of function c(x). As mentioned earlier, other invariant
solutions corresponding to any other Lie symmetries can be obtained by symmetry
transformation on invariant solutions corresponding to the optimal system.
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3.2 Some properties of the solutions
Here, we show that the solution (3.7) corresponds to solutions of anomalous diffusion
equation and illustrates some plots of the solutions for various values of parameter α.
To do so, let us formulate the following lemma.

Lemma 8. We have the following formula for composition of fractional derivatives of
Fox H- functions

dα

dzα
dα

dzα
Hm,0
p,q

az−αp

∣∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q

 = d2α

dz2αH
m,0
p,q

az−αp

∣∣∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj, βj)1,q

 .
The proof of lemma can be easily done by virtue of Lemma 5.
Using Lemma 8, (3.2) and putting a instead of am, we get the following u(x, t) of

(3.7):

u(x, t) = cxa+mH2,0
1,2

 1
4(m− 1)2

x2(1−m)

t2α

∣∣∣∣∣∣ (1, 2α)(
a

2(m−1) + 1
2 , 1

)
,
(

a+1
2(m−1) + 1

2 , 1
)  , (3.16)

which solves the anomalous diffusion equation with variable coefficient:

∂2αu

∂t2α
= x2m∂

2u

∂x2 for x > 0, t > 0,

and using Lemma 8, (3.3) and putting a instead of am, we get the following v(x, t) of
(3.7):

v(x, t) = cxaH2,0
1,2

 1
4(m− 1)2

x2(1−m)

t2α

∣∣∣∣∣∣ (1, 2α)(
a

2(m−1) , 1
)
,
(

a+1
2(m−1) + 1, 1

)  , (3.17)

which solves the following one:

∂2αv

∂t2α
= ∂

∂x

(
x2m ∂v

∂x

)
for x > 0, t > 0.

If we take m = 0 in (3.16), then it can be expressed in Wright function and corresponds
to solution (9) of [4]. Also, R. Metzler et al. [19] studied anomalous diffusion equation
via Laplace transformation method and found solutions expressed in Fox H-functions.
If we take D = 1, θ = −2m and D = 1 − 2m, θ = −2m in (14) of [19], then (3.16) and
(3.17) correspond to the solutions obtained in [19], respectively.
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Furthermore, if we put a = m− 1 and a = −1 in (3.16) and (3.17) respectively, we
get

u(x, t) = c sgn(m− 1)x2m−1H2,0
1,2

 1
4(m− 1)2

x2(1−m)

t2α

∣∣∣∣∣∣ (1, 2α)
(1, 1),

(
1 + 1

2(m−1) , 1
) 
(3.18)

v(x, t) = cx−1H2,0
1,2

 1
4(m− 1)2

x2(1−m)

t2α

∣∣∣∣∣∣ (1, 2α)(
− 1

2(m−1) , 1
)
, (1, 1)

 . (3.19)

Furthermore, if we put α = 1
2 in the above solution, then it equals to

u(x, t) = c̄1t
−1− 1

2(m−1) e
− x2(1−m)

4(m−1)2 t (3.20)
(3.21)

v(x, t) = c̄2t
1

2(m−1) e
− x2(1−m)

4(m−1)2 t, (3.22)

where

c̄1 = c sgn(m− 1)(2|m− 1|)−2− 1
m−1 , c̄2 = c (2|m− 1|)−2− 1

m−1 .

The solutions (3.21) and (3.22) are well-known solutions of heat equations ut = x2muxx

and vt = (x2mvx)x, respectively.
If the order α of time fractional derivative is a rational number rather than real, we

can transform the solutions expressed in terms of Fox H-function into representations
expressed in terms of Meijer G-function using Gauss’ multiplication formula for the
gamma function:

Γ(Mz) = (2π)
1−M

2 MMz− 1
2

M−1∏
k=0

Γ
(
z + k

M

)
, (3.23)

where z ∈ R and M ∈ N. For example, we obtain the following invariant solution of
(3.1) with c(x) = xm, if we set α = 7

8 and c = 1 in (3.18) and (3.19):

u(x, t) = sgn(m− 1)x2m−1H2,0
1,2

 1
4(m− 1)2

x2(1−m)

t
7
4

∣∣∣∣∣∣ (1, 7
4)

(1, 1),
(
1 + 1

2(m−1) , 1
)  ,

v(x, t) = x−1H2,0
1,2

 1
4(m− 1)2

x2(1−m)

t
7
4

∣∣∣∣∣∣ (1, 7
4)(

− 1
2(m−1) , 1

)
, (1, 1)
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which becomes

u(x, t) = sgn(m− 1)4x2m−1H2,0
1,2

 1
44(m− 1)8

x8(1−m)

t7

∣∣∣∣∣∣ (1, 7)
(1, 4),

(
1 + 1

2(m−1) , 4
)  ,
(3.24)

v(x, t) = 4x−1H2,0
1,2

 1
44(m− 1)8

x8(1−m)

t7

∣∣∣∣∣∣ (1, 7)(
− 1

2(m−1) , 4
)
, (1, 4)

 (3.25)

by virtue of the formula (1.9). Then, using (3.23) for Γ(4(−z)), Γ (4(1/4 − z)) and
Γ (7(1/7 − z)) , we obtain the following expression of the solutions (3.24) and (3.25):

u(x, t) = 42+ 1
2(m−1)x2m−1

7 1
2

×G8,0
7,8

 77

412(m− 1)8
x8(1−m)

t7

∣∣∣∣∣
1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 , 1

1
4 ,

2
4 ,

3
4 , 1,

1
4 + 1

8(m−1) ,
2
4 + 1

8(m−1) ,
3
4 + 1

8(m−1) , 1 + 1
8(m−1)

 ,

v(x, t) = 41− 1
2(m−1)

7 1
2

x−1

×G8,0
7,8

 77

412(m− 1)8
x8(1−m)

t7

∣∣∣∣∣
1
7 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 , 1

1
4 ,

2
4 ,

3
4 , 1,−

1
8(m−1) ,

1
4 − 1

8(m−1) ,
2
4 − 1

8(m−1) ,
3
4 − 1

8(m−1)

 ,
where Gm,l

p,q [z] is a Meijer G-function. We can see how solutions behave when time
variable t is fixed and the order α of fractional derivative varies in Figures 3.2 and 3.4,
or when α is fixed and t varies in Figures 3.1 and 3.3. Here, we only provide the
illustrations of u(x, t) given in (3.18) by taking c = −1, the illustrations of v(x, t) given
in (3.19) can be plotted in an analogy. The graphs are plotted using the Mathematica
implementation of the special function Meijer G [30]. We can see that the solution
graphs alter visibly when α steps over the value 1

2 . For the constant coefficient case
c(x) ≡ 1, (3.13) behaves more likely to wave-like solution as the fractional order α
approaches to 1, which can be seen in the Figure 3.2.
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Fig. 3.1 Plots of solution u(x, t) of (3.1) with c(x) ≡ 1 with respect to t.
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Fig. 3.2 Plots of solution u(x, t) of (3.1) with c(x) ≡ 1 for various order α of fractional
derivative.
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Fig. 3.3 Plots of solution u(x, t) of (3.1) with c(x) = x
1
4 with respect to t.
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Fig. 3.4 Plots of solution u(x, t) of (3.1) with c(x) = x
1
4 for various order α of fractional

derivative.

3.3 Invariant solutions of the special case α = 1
In the previous sections, we give invariant solutions of (3.1) considering the order α of
fractional derivative satisfying n− 1 < α < n, where n ∈ N. Despite this assumption
on α, the solutions (3.8), (3.12) still solve (3.1) with c(x) = xm (here m ≠ 0, 1) and
c(x) = e− x

2 , respectively, when α = 1. The complete group classification and some
invariant solutions of system (3.1) for α = 1 are found explicitly in G. Bluman, S. Kumei
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[3]. Now, let us show the correspondence between the solutions (3.8), (3.12) and the
ones obtained in [3] for c(x) = xm and c(x) = e− x

2 .

3.3.1 Solutions of (3.1) with c(x) = xm (m ̸= 0, 1) and α = 1
If we set α = 1 and n = 1 in (3.8), then it becomes

u(x, t) = c1x
a+m

3Ψ1

4(m− 1)2z2
∣∣∣∣∣
(
ω1 − 1

2 , 1
)
,
(
ω2 − 1

2 , 1
)
, (1, 1)

(1, 2)


+2c2(m− 1)xa+mz3Ψ1

4(m− 1)2z2
∣∣∣∣∣ (ω1, 1) , (ω2, 1) , (1, 1)

(2, 2)

 ,
v(x, t) = 2c1(m− 1)xaz3Ψ1

4(m− 1)2z2
∣∣∣∣∣
(
ω1 − 1

2 , 1
)
,
(
ω2 + 1

2 , 1
)
, (1, 1)

(2, 2)


+c2x

a
3Ψ1

4(m− 1)2z2
∣∣∣∣∣ (ω1 − 1, 1) , (ω2, 1) , (1, 1)

(1, 2)

 ,
where z = xm−1t, ω1 = a

2(m−1) + 1, ω2 = a+1
2(m−1) + 1, and c1, c2 are constants. By virtue

of (1.19) and (1.20), the above solution equals to

u(x, t) = Γ
(
ω1 − 1

2

)
Γ
(
ω2 − 1

2

)
c1x

a+m
2F1

 ω1 − 1
2 , ω2 − 1

2
1
2

; (m− 1)2z2


+ Γ (ω1 − 1) Γ (ω2) c2ax

a+mz2F1

 ω1, ω2
3
2

; (m− 1)2z2

 ,
v(x, t) = Γ

(
ω1 − 1

2

)
Γ
(
ω2 − 1

2

)
c1(a+m)xaz2F1

 ω1 − 1
2 , ω2 + 1

2
3
2

; (m− 1)2z2


+ Γ (ω1 − 1) Γ (ω2) c2x

a
2F1

 ω1 − 1, ω2
1
2

; (m− 1)2z2

 for |z| < 1
|m− 1|

.

(3.26)
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To show the correspondence of the above expression of the solution (3.26) and the one
obtained in [3], we will need the formula (15.8.27) of [21]

2Γ(1
2)Γ(a+ b+ 1

2)
Γ(a+ 1

2)Γ(b+ 1
2) 2F1

 a, b
1
2

; z2


= 2F1

 2a, 2b
a+ b+ 1

2
; 1 − z

2

+ 2F1

 2a, 2b
a+ b+ 1

2
; 1 + z

2

 (3.27)

and formula (2.3.11) of [1]

2F1

 2a, 2b
a+ b+ 1

2
; 1 − z

2

 =
Γ(a+ b+ 1

2)Γ(1
2 − a− b)

Γ(a− b+ 1
2)Γ(b− a+ 1

2)2F1

 2a, 2b
a+ b+ 1

2
; 1 + z

2


+

Γ(a+ b− 1
2)Γ(a+ b+ 1

2)
Γ(2a)Γ(2b)

(1 + z

2

) 1
2 −a−b

2F1

 a− b+ 1
2 , b− a+ 1

2
3
2 − a− b

; 1 + z

2

 .
(3.28)

If we substitute (3.28) into (3.27), we obtain

2Γ(1
2)Γ(a+ b+ 1

2)
Γ(a+ 1

2)Γ(b+ 1
2) 2F1

 a, b
1
2

; z2


=
(

1 +
Γ(a+ b+ 1

2)Γ(1
2 − a− b)

Γ(a− b+ 1
2)Γ(b− a+ 1

2)

)
2F1

 2a, 2b
a+ b+ 1

2
; 1 + z

2


+

Γ(a+ b− 1
2)Γ(a+ b+ 1

2)
Γ(2a)Γ(2b)

(1 + z

2

) 1
2 −a−b

2F1

 a− b+ 1
2 , b− a+ 1

2
3
2 − a− b

; 1 + z

2

 .
(3.29)

Also, we apply the formulas (15.8.28) of [21]

2Γ(−1
2)Γ(a+ b− 1

2)
Γ(a− 1

2)Γ(b− 1
2) 2F1

 a, b
3
2

; z2


= 2F1

 2a− 1, 2b− 1
a+ b− 1

2
; 1 − z

2

− 2F1

 2a− 1, 2b− 1
a+ b− 1

2
; 1 + z

2

 (3.30)
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and (2.3.11) of [1]

2F1

 2a− 1, 2b− 1
a+ b− 1

2
; 1 − z

2

 =
Γ(a+ b− 1

2)Γ(3
2 − a− b)

Γ(a− b+ 1
2)Γ(b− a+ 1

2) 2F1

 2a− 1, 2b− 1
a+ b− 1

2
; 1 + z

2


+

Γ(a+ b− 3
2)Γ(a+ b− 1

2)
Γ(2a− 1)Γ(2b− 1)

(1 + z

2

) 3
2 −a−b

2F1

 a− b+ 1
2 , b− a+ 1

2
5
2 − a− b

; 1 + z

2


(3.31)

If we substitute (3.31) into (3.30), we have

2Γ(−1
2)Γ(a+ b− 1

2)
Γ(a− 1

2)Γ(b− 1
2) z2F1

 a, b
3
2

; z2


=
(

Γ(a+ b− 1
2)Γ(3

2 − a− b)
Γ(a− b+ 1

2)Γ(b− a+ 1
2) − 1

)
2F1

 2a− 1, 2b− 1
a+ b− 1

2
; 1 + z

2


+

Γ(a+ b− 3
2)Γ(a+ b− 1

2)
Γ(2a− 1)Γ(2b− 1)

(1 + z

2

) 3
2 −a−b

2F1

 a− b+ 1
2 , b− a+ 1

2
5
2 − a− b

; 1 + z

2


(3.32)

We can apply (3.29), (3.32) for the solution (3.26) as follows

2
√
π

Γ( a
2(m−1) + 1)Γ( a+1

2(m−1) + 1)2F1

 a
2(m−1) + 1

2 ,
a+1

2(m−1) + 1
2

1
2

; (m− 1)2z2


=
 1

Γ
(

2a+1
2(m−1) + 3

2

) +
Γ
(
− 2a+1

2(m−1) − 1
2

)
Γ
(
− 1

2(m−1) + 1
2

)
Γ
(

1
2(m−1) + 1

2

)


× 2F1

 a
m−1 + 1, a+1

m−1 + 1
2a+1

2(m−1) + 3
2

; 1 + (m− 1)z
2


+

Γ
(

2a+1
2(m−1) + 1

2

)
Γ
(

a
m−1 + 1

)
Γ
(
a+1
m−1 + 1

) (1 + (m− 1)z
2

)− 2a+1
2(m−1) − 1

2

× 2F1

 − 1
2(m−1) + 1

2 ,
1

2(m−1) + 1
2

1
2 − 2a+1

2(m−1)
; 1 + (m− 1)z

2

 (3.33)
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and

−4
√
π

Γ( a
2(m−1) + 1

2)Γ( a+1
2(m−1) + 1

2)z2F1

 a
2(m−1) + 1, a+1

2(m−1) + 1
3
2

; (m− 1)2z2


=
 Γ

(
− 2a+1

2(m−1) − 1
2

)
Γ
(
− 1

2(m−1) + 1
2

)
Γ
(

1
2(m−1) + 1

2

) − 1
Γ
(

2a+1
2(m−1) + 3

2

)


× 2F1

 a
m−1 + 1, a+1

m−1 + 1
2a+1

2(m−1) + 3
2

; 1 + (m− 1)z
2


+

Γ
(

2a+1
2(m−1) + 1

2

)
Γ
(

a
m−1 + 1

)
Γ
(
a+1
m−1 + 1

) (1 + (m− 1)z
2

)− 2a+1
2(m−1) − 1

2

× 2F1

 − 1
2(m−1) + 1

2 ,
1

2(m−1) + 1
2

1
2 − 2a+1

2(m−1)
; 1 + (m− 1)z

2

 . (3.34)

Substituting (3.33) and (3.34) into u(x, t) of the solution (3.26), we get

u(x, t) =Γ
(

a

2(m− 1) + 1
2

)
Γ
(

a+ 1
2(m− 1) + 1

2

)
c1x

a+m

× 2F1

 a
2(m−1) + 1

2 ,
a+1

2(m−1) + 1
2

1
2

; (m− 1)2z2


+ 2Γ

(
a

2(m− 1) + 1
)

Γ
(

a+ 1
2(m− 1) + 1

)
c2x

a+m(m− 1)z

× 2F1

 a
2(m−1) + 1, a+1

2(m−1) + 1
3
2

; (m− 1)2z2

 ,
= 1

2
√
π

Γ
(

a

2(m− 1) + 1
2

)
Γ
(

a

2(m− 1) + 1
)

Γ
(

a+ 1
2(m− 1) + 1

2

)
Γ
(

a+ 1
2(m− 1) + 1

)

× xa+m

 c1 + c2

Γ( 2a+1
2(m−1) + 3

2) +
Γ
(
− 2a+1

2(m−1) − 1
2

)
(c1 − c2)

Γ
(
− 1

2(m−1) + 1
2

)
Γ
(

1
2(m−1) + 1

2

)


× 2F1

 a
m−1 + 1, a+1

m−1 + 1
2a+1

2(m−1) + 3
2

; 1 + (m− 1)z
2


+

Γ
(

2a+1
2(m−1) + 1

2

)
(c1 − c2)

Γ
(

a
m−1 + 1

)
Γ
(
a+1
m−1 + 1

) (1 + (m− 1)z
2

)− 2a+1
2(m−1) − 1

2

× 2F1

 − 1
2(m−1) + 1

2 ,
1

2(m−1) + 1
2

− 2a+1
2(m−1) + 1

2
; 1 + (m− 1)z

2
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We can apply (3.29), (3.32) for v(x, t) of the solution (3.26) as follows

2
√
π

Γ( a
2(m−1) + 1

2)Γ( a+1
2(m−1) + 3

2)2F1

 a
2(m−1) ,

a+1
2(m−1) + 1
1
2

; (m− 1)2z2


=
 1

Γ
(

2a+1
2(m−1) + 3

2

) +
Γ
(
− 2a+1

2(m−1) − 1
2

)
Γ
(
− 1

2(m−1) − 1
2

)
Γ
(

1
2(m−1) + 3

2

)


× 2F1

 a
m−1 ,

a+1
m−1 + 2

2a+1
2(m−1) + 3

2
; 1 + (m− 1)z

2


+

Γ
(

2a+1
2(m−1) + 1

2

)
Γ
(

a
m−1

)
Γ
(
a+1
m−1 + 2

) (1 + (m− 1)z
2

)− 2a+1
2(m−1) − 1

2

× 2F1

 − 1
2(m−1) − 1

2 ,
1

2(m−1) + 3
2

1
2 − 2a+1

2(m−1)
; 1 + (m− 1)z

2

 (3.35)

and

−4
√
π(m− 1)

Γ( a
2(m−1) + 1

2)Γ( a+1
2(m−1) + 1

2)z2F1

 a
2(m−1) + 1, a+1

2(m−1) + 1
3
2

; (m− 1)2z2


=
 Γ

(
− 2a+1

2(m−1) − 1
2

)
Γ
(
− 1

2(m−1) + 1
2

)
Γ
(

1
2(m−1) + 1

2

) − 1
Γ
(

2a+1
2(m−1) + 3

2

)


× 2F1

 a
m−1 + 1, a+1

m−1 + 1
2a+1

2(m−1) + 3
2

; 1 + (m− 1)z
2


+

Γ
(

2a+1
2(m−1) + 1

2

)
Γ
(

a
m−1 + 1

)
Γ
(
a+1
m−1 + 1

) (1 + (m− 1)z
2

)− 2a+1
2(m−1) − 1

2

× 2F1

 − 1
2(m−1) + 1

2 ,
1

2(m−1) + 1
2

1
2 − 2a+1

2(m−1)
; 1 + (m− 1)z

2

 . (3.36)
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Substituting (3.35) and (3.36) into v(x, t) of the solution (3.26), we get

v(x, t) =2Γ
(

a

2(m− 1) + 1
2

)
Γ
(

a+ 1
2(m− 1) + 3

2

)
(m− 1)c1x

az

× 2F1

 a
2(m−1) + 1

2 ,
a+1

2(m−1) + 3
2

3
2

; (m− 1)2z2


+ Γ

(
a

2(m− 1)

)
Γ
(

a+ 1
2(m− 1) + 1

)
c2x

a
2F1

 a
2(m−1) ,

a+1
2(m−1) + 1
1
2

; (m− 1)2z2


= 1

2
√
π

Γ
(

a

2(m− 1) + 1
2

)
Γ
(

a

2(m− 1)

)
Γ
(

a+ 1
2(m− 1) + 3

2

)
Γ
(

a+ 1
2(m− 1) + 1

)
xa

×

 c1 + c2

Γ( 2a+1
2(m−1) + 3

2) +
Γ
(
− 2a+1

2(m−1) − 1
2

)
(c1 − c2)

Γ
(
− 1

2(m−1) + 1
2

)
Γ
(

1
2(m−1) + 1

2

)


× 2F1

 a
m−1 ,

a+1
m−1 + 2

2a+1
2(m−1) + 3

2
; 1 + (m− 1)z

2


−

Γ
(

2a+1
2(m−1) + 1

2

)
(c1 − c2)

Γ
(

a
m−1

)
Γ
(
a+1
m−1 + 2

) (
1 + (m− 1)z

2

)− 2a+1
2(m−1) − 1

2

× 2F1

 − 1
2(m−1) − 1

2 ,
1

2(m−1) + 3
2

− 2a+1
2(m−1) + 1

2
; 1 + (m− 1)z

2


At the end, we can re-write the solution (3.26) as

u(x, t) = c̄1x
a+mF1(z) + c̄2x

a+mF2(z),

v(x, t) = c̄1x
aG1(z) − c̄2x

aG2(z) for |z| < 1
|m− 1|

,
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where

c̄1 = 2− 2a+m
m−1

√
πΓ

(
a

m− 1

)
Γ
(
a+m

m− 1

)

×

 c1 + c2

Γ
(

2a+3m−2
2(m−1)

) +
Γ
(

− 2a+1
2(m−1)− 1

2

)
(c1 − c2)

Γ
(

m−2
2(m−1)

)
Γ
(

m
2(m−1)

)
 ,

c̄2 = 2− 2a+m
m−1

√
πΓ

(
2a+m

2(m− 1)

)
,

F1(z) = a+ 2m− 2
m− 1 2F1

 a+m−1
m−1 , a+m

m−1
2a+3m−2
2(m−1)

; 1 + (m− 1)z
2

 ,
F2(z) =

(
1 + (m− 1)z

2

)− 2a+1
2(m−1) − 1

2

2F1

 m−2
2(m−1) ,

m
2(m−1)

− 2a+1
2(m−1) + 1

2
; 1 + (m− 1)z

2

 ,
G1(z) =

(
a+m

m− 1

)
2F1

 a
m−1 ,

a+1
m−1 + 2

2a+3m−2
2(m−1)

; 1 + (m− 1)z
2

 ,
G2(z) =

(
1 + (m− 1)z

2

)− 2a+1
2(m−1) − 1

2

2F1

 − m
2(m−1) ,

3m−2
2(m−1)

− 2a+1
2(m−1) + 1

2
; 1 + (m− 1)z

2

 .
The functions F1(z), F2(z) solve the ODE (2.46) in [3]:

(1 − (c− 1)2z2)F ′′(z) + (1 − c)(2s+ c− 2)zF ′(z) + s(1 − s)F (z) = 0

by substituting c = m and s = a+m. Moreover, the functions F1(z), F2(z), G1(z) and
G2(z) solve (3.13) in [3]:

(s− c)Gi(z) = (1 − (c− 1)2z2)F ′
i (z) + (1 − c)szFi(z) for i = 1, 2.

Hence, we can conclude that (3.26) corresponds to the invariant solutions for Case
III.A.1 in [3].

3.3.2 Solutions of (3.1) with c(x) = x and α = 1
If we set α = 1 in (3.6), then it becomes

u(x, t) = xa+1
(
c1E2,1(a(a+ 1)t2) + c2atE2,2(a(a+ 1)t2)

)
,

v(x, t) = xa
(
c1(a+ 1)tE2,2(a(a+ 1)t2) + c2E2,1(a(a+ 1)t2)

)
. (3.37)
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By virtue of (1.15) and (1.16), the above solution equals to

u(x, t) = c̄1x
a+1e

√
a(a+1)t + c̄2x

a+1e−
√
a(a+1)t,

v(x, t) =

√
a(a+ 1)
a

(
c̄1x

ae
√
a(a+1)t − c̄2x

ae−
√
a(a+1)t

)
for a(a+ 1) > 0,

where

c̄1 = 1
2

c1 + a√
a(a+ 1)

c2

 and c̄2 = 1
2

c1 − a√
a(a+ 1)

c2

 .
If we adopt the following notation in the above solution:

F1(t) = e
√
a(a+1)t, F2(t) = e−

√
a(a+1)t,

G1(t) =

√
a(a+ 1)
a

e
√
a(a+1)t, G2(t) = −

√
a(a+ 1)
a

e−
√
a(a+1)t,

we see that the functions F1(t) and F2(t) solve the ODE (2.59) in [3]:

F ′′(t) + s(1 − s)F (t) = 0

with the substitution s = a+ 1. Also, the functions G1(z) and G2(z) are determined
by (3.29) in [3]:

Gi(t) = (s− 1)−1F ′
i (t) for i = 1, 2.

Thus, (3.37) coincides with the invariant solutions for Case III.A.3 in [3].

3.3.3 Solutions of (3.1) with c(x) = e− x
2 and α = 1

By setting n = 1 and α = 1 in (3.12), it becomes

u(x, t) = c1e
a−1

2 x
3Ψ1

z2
∣∣∣∣∣
(

1
2 − a

2 , 1
)
,
(

1
2 − a

2 , 1
)
, (1, 1)

(1, 2)


+c2e

a−1
2 xz3Ψ1

z2
∣∣∣∣∣
(
1 − a

2 , 1
)
,
(
1 − a

2 , 1
)
, (1, 1)

(2, 2)

 ,
v(x, t) = −c1e

a
2xz3Ψ1

z2
∣∣∣∣∣
(

1
2 − a

2 , 1
)
,
(

3
2 − a

2 , 1
)
, (1, 1)

(2, 2)


−c2e

a
2x3Ψ1

z2
∣∣∣∣∣
(
−a

2 , 1
)
,
(
1 − a

2 , 1
)
, (1, 1)

(1, 2)

 , (3.38)
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where z = e− x
2 t. We can rewrite (3.38) using (1.19) and (1.20) as:

u(x, t) = c̄1e
a−1

2 xF1(z) + c̄2e
a−1

2 xzF2(z),
v(x, t) = c̄1e

a
2xzG1(z) + c̄2e

a
2xG2(z) for |z| < 2,

where

c̄1 = Γ
(1

2 − a

2

)2
c1, c̄2 = −Γ

(
−a

2

)
Γ
(

1 − a

2

)
c2,

F1(z) = 2F1

 1
2 − a

2 ,
1
2 − a

2
1
2

; z
2

4

 , F2(z) = a

2z2F1

 1 − a
2 , 1 − a

2
3
2

; z
2

4

 ,
G1(z) = a− 1

2 z2F1

 1
2 − a

2 ,
3
2 − a

2
3
2

; z
2

4

 , G2(z) = 2F1

 −a
2 , 1 − a

2
1
2

; z
2

4

 .
Using the formulas () and (), we see that F1(z) and F2(z) solve the ODE (2.72) in [3]:

(4 − z2)F ′′(z) + (4s− 1)zF ′(z) − 4s2F (z) = 0

and the functions F1(z), F2(z), G1(z) and G2(z) solve (3.36) in [3]:

Gi(z) = (2s+ 1)−1
(

(2 − z2

2 )F ′
i (z) + szFi(z)

)
− 2 for i = 1, 2

with the substitution s = a−1
2 . As a result, (3.38) coincides with the invariant solutions

for Case III.A.5 in [3].

3.3.4 Solutions of (3.1) with c(x) = 1 and α = 1
If we set α = 1 and n = 1 in (3.14) and (3.15), then they becomes

u(x, t) = c1x
a1+a2

1Ψ0

− t

x

∣∣∣∣∣ (−a1 − a2, 1)
−

+ c2x
a1−a2

1Ψ0

 t
x

∣∣∣∣∣ (−a1 + a2, 1)
−

 ,
v(x, t) = c1x

a1+a2
1Ψ0

− t

x

∣∣∣∣∣ (−a1 − a2, 1)
−

− c2x
a1−a2

1Ψ0

 t
x

∣∣∣∣∣ (−a1 + a2, 1)
−

 ,
and

u(x, t) = c1e
(a1+a2)xE1,1((a1 + a2)t) + c2e

(a1−a2)xE1,1((a1 − a2)t),
v(x, t) = c1e

(a1+a2)xE1,1((a1 + a2)t) − c2e
(a1−a2)xE1,1((a1 − a2)t).
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By virtue of (1.12), (1.13) and (1.17), the above solutions equal to

u(x, t) = c1Γ (−a1 − a2) (x+ t)a1+a2 + c2Γ (a2 − a1) (x− t)a1−a2 ,

v(x, t) = c1Γ (−a1 − a2) (x+ t)a1+a2 − c2Γ (a2 − a1) (x− t)a1−a2 , (3.39)

and

u(x, t) = c1e
(a1+a2)(x+t) + c2e

(a1−a2)(x−t),

v(x, t) = c1e
(a1+a2)(x+t) − c2e

(a1−a2)(x−t). (3.40)

We see that the solutions (3.39) and (3.40) are the well-known traveling wave solutions.
For n = 1, the solution (3.6) reduces to

u(x, t) =
√
ac̄1x

a+1e
√
a(a+1)t +

√
ac̄2x

a+1e−
√
a(a+1)t,

v(x, t) =
√
a+ 1c̄1x

ae
√
a(a+1)t −

√
a+ 1c̄2x

ae−
√
a(a+1)t.

If we adopt the following notation in the above solution:

F1(t) =
√
ae

√
a(a+1)t, F2(t) =

√
ae−

√
a(a+1)t,

G1(t) =
√
a+ 1e

√
a(a+1)t, G2(t) =

√
a+ 1e−

√
a(a+1)t,

then we see that the functions F1(t), F2(t) solve the ODE (2.59) of [3]:

F ′′(t) + s(1 − s)F (t) = 0

with the substitution s = a + 1. The functions F1(z), F2(z), G1(z), G2(z) solve the
ODE (3.29):

Gi(t) = (s− 1)−1F ′
i (t)

of the same work. So, (3.37) coincides with the invariant solutions of Case III.A.3 of
[3].



Chapter 4

Lie symmetry analysis of a class of
time fractional nonlinear
diffusion-wave systems

In this chapter, we consider the class of time fractional nonlinear systems of the
following form: 

∂αu
∂tα

= vx,

∂αv
∂tα

= b2(u)ux,
(4.1)

where α is a positive non-integer number and b(u) is a sufficiently differentiable
non-constant function.

In [14], the nonlinear model of stationary transonic plane-parallel gas flows
∂αu
∂tα

= vx,

∂αv
∂tα

= −uux,
(4.2)

with 0 < α < 1, was studied using Lie symmetry analysis. The Lie symmetries, some
reduced systems of ODEs and some partial solutions of the system (4.2) are obtained
in [14]. Substituting ū(x, t) = −u(x, t) and v̄(x, t) = −v(x, t) into (4.2), we obtain the
following equivalent fractional system:

∂αū
∂tα

= v̄x,

∂αv̄
∂tα

= ūūx.
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This corresponds to the particular case b(u) =
√
u for the system given in (4.1). It

is thus seen that (4.1) can be viewed as a generalization of (4.2) with respect to the
above-mentioned substitution. Hence, the results of this paper generalize the results of
[14].

The importance of finding exact solutions of (4.1) lies in the fact that if (u(x, t), v(x, t))
solves (4.1), then u(x, t) solves the sequential equation

∂α

∂tα
∂α

∂tα
u =

(
b2(u)ux

)
x
. (4.3)

For example, in the case α = 1, the equation (4.3) becomes the well-known nonlinear
wave equation and in the case α = 1

2 , the component u(x, t) of the solutions of (4.1)
with t > 0 is a solution to the nonlinear heat equation with source

ut =
(
b2(u)ux

)
x

+ 1√
π

g(x)√
t
, g(x) = 1√

π

∫ t

0

u(x, τ)√
t− τ

dτ

∣∣∣∣∣
t=0
, t > 0,

by virtue of the formula (1.5).
We study the system given in (4.1) using Lie symmetry analysis. More explicitly,

we present a complete group classification depending on the function b(u) and describe
the structure of Lie algebras generated by the infinitesimal symmetries of (4.1). After
obtaining the group classification of (4.1), we proceed to finding optimal systems of
Lie algebras and the reduced systems of ODEs. Using these optimal systems, we also
classify the group invariant solutions corresponding to the infinitesimal symmetries for
0 < α < 1.

4.1 Lie symmetry analysis of (4.1)
In this section, we study (4.1) using the formulas obtained in Chapter 1. There are
two cases regarding the symmetry group of (4.1), as determined by the form of the
function b(u), one in which b(u) possesses the form of a power function, and one in
which it does not. The only difference between these cases is that in the former case,
the symmetry group of (4.1) possesses an additional symmetry that does not exist in
the latter case. For each cases we obtain the infinitesimal symmetries.

From (1.44), we obtain the following invariance criterion for (4.1):X̃(utα − vx)|(4.1) = 0,
X̃(vtα − b2(u)ux)|(4.1) = 0.
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In explicit form, this is

(
µ(α) − ϕ(1)

)∣∣∣
(4.1)

= 0,

(ϕ(α) − 2µbb′ux − b2µ(1))
∣∣∣
(4.1)

= 0.
(4.4)

If we substitute (1.38) and (1.39) into (4.4), then we get for the first equation

∂αµ

∂tα
− u

∂αµu
∂tα

− v
∂αµv
∂tα

+ (µu − αDt(τ))vx + µvb
2(u)ux −

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux)

∞∑
n=1

[(
α

n

)
∂nµu
∂tn

−
(

α

n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (u) +

∞∑
n=1

(
α

n

)
∂nµv
∂tn

Dα−n
t v + µ1

−
[
φx + φuux + φvvx − τxvt − τuuxvt − τvvxvt − ξxvx − ξuuxvx − ξvv

2
x

]
= 0,

and for the second equation

∂αφ

∂tα
− v

∂αφv
∂tα

− u
∂αφu
∂tα

+ (φv − αDt(τ))b2(u)ux + φuvx −
∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (vx)

∞∑
n=1

[(
α

n

)
∂nφv
∂tn

−
(

α

n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (v)+

∞∑
n=1

(
α

n

)
∂nφu
∂tn

Dα−n
t u+φ1−2b(u)b′(u)µux

− b2(u)
[
φx + φuux + φvvx − τxvt − τuuxvt − τvvxvt − ξxvx − ξuuxvx − ξvv

2
x

]
= 0.

From above, we obtain the following (overdetermined) system of determining equations
by setting the coefficients of the linearly independent partial derivatives Dα−n

t u, Dα−n
t v,

Dα−n
t ux, D

α−n
t vx, vx, ux, vt, uxvt, vxvt, uxvx and v2

x equal to 0:
(
α

n

)
∂nµu
∂tn

−
(

α

n+ 1

)
Dn+1
t τ = 0, n = 1, 2, . . . ,

∂nµv
∂tn

= 0, n = 1, 2, . . . ,
Dn
t (ξ) = 0, n = 1, 2, . . . ,

µu − αDt(τ) − ϕv + ξx = 0,
b2µv − ϕu = 0,
∂αµ

∂tα
− v

∂αµv
∂tα

− u
∂αµu
∂tα

− ϕx + µ1 = 0,
∂nϕu
∂tn

= 0, n = 1, 2, . . . ,
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(
α

n

)
∂nϕv
∂tn

−
(

α

n+ 1

)
Dn+1
t τ = 0, n = 1, 2, . . . ,

b2ϕv − αb2Dt(τ) − 2bb′µ− b2µu + b2ξx = 0,
∂αϕ

∂tα
− v

∂αϕv
∂tα

− u
∂αϕu
∂tα

− b2µx + ϕ1 = 0,
τx = τu = τv = 0,
ξu = ξv = 0.

Analyzing the above overdetermined system with the initial condition (1.29), we are
able to deduce the following infinitesimal symmetries:

Case 1. This is the generic situation, which applies to all forms of b(u), except b(u) = kum

(with k,m ̸= 0). In this case, the infinitesimals are

τ = s1

α
t, ξ = s1x+ s2, µ = 0, ϕ = s(t),

where s1 and s2 are arbitrary constants, and s(t) is a solution of the equa-
tion dαs(t)

dtα
= 0. With these infinitesimals, we have the following infinitesimal

symmetries:

X1 = ∂

∂x
, X2 = s(t) ∂

∂v
, X3 = x

∂

∂x
+ t

α

∂

∂t
.

Case 2. In the special case that b(u) takes the form kum (with k,m ≠ 0), the infinitesimal
are

τ = s1

α
t, ξ = (s1 + s3)x+ s2, µ = s3

m
u, ϕ = (1 +m)s3

m
v + s(t),

where s1, s2 and s3 are arbitrary constants, and s(t) is a solution of the equation
dαs(t)
dtα

= 0. Thus, in this case, along with X1, X2 and X3 given above, there is
the following additional symmetry:

X4 = x
∂

∂x
+ u

m

∂

∂u
+ 1 +m

m
v
∂

∂v
.

The detailed proof of obtaining above two cases has been omitted here.
Because we now have a complete group classification of (4.1), we are in a position

to investigate the one-dimensional optimal systems of Lie algebras of its infinitesimal
symmetries and the classification of group invariant solutions. However, before moving
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on to the next section, we note that the solution of the equation dαs(t)
dtα

= 0 is

s(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n,

where ci are arbitrary constants and n is a positive integer satisfying n− 1 < α < n.

4.2 Classification of invariant solutions of (4.1)
In this section, we classify the group invariant solutions of (4.1) corresponding to
infinitesimal symmetries for the case 0 < α < 1. We choose optimal systems, which
lead us to simpler reduced systems, by using the results given in [23]. In the following
two subsections, we determine the optimal systems and corresponding reduced systems
for Cases 1 and 2 specified above.

4.2.1 Case 1. For arbitrary b(u), but b(u) ̸= kum

From the discussion above, we know that in this case, for α satisfying 0 < α < 1, the
system in (4.1) possesses the following infinitesimal symmetries:

X1 = ∂

∂x
, X2 = tα−1 ∂

∂v
, X3 = x

∂

∂x
+ t

α

∂

∂t
.

The commutator table for the Lie algebra generated by these infinitesimal symmetries
is given below (where i and j index the row and column). We see from this table that

[Xi, Xj] X1 X2 X3
X1 0 0 X1
X2 0 0 1−α

α
X2

X3 −X1 −1−α
α
X2 0

Table 4.1 Commutator table for Case 1.

the Lie algebra in this case is identical to the Lie algebra A3,5 given in [23]. Thus, the
one-dimensional optimal system of the Lie algebra generated by X1, X2 and X3 is that
obtained in [23],

U1 = X1 + aX2 = ∂

∂x
+ atα−1 ∂

∂v
( with a = 0, 1,−1),

U2 = X3, U3 = X2.
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Then, using the standard characteristic method, we obtain the invariant solutions and
reduced systems of ODEs of (4.1) corresponding to each symmetry Uj . These are given
below. We consider the reduced systems of ODEs corresponding to U1 in subsequent

Uj Invariant solutions (uj(x, t), vj(x, t)) Reduced systems of ODEs

U1

u(x, t) = φ(t),
v(x, t) = ψ(t) + atα−1x,


dαφ
dtα

= atα−1,
dαψ
dtα

= 0,
a = 0, 1,−1

U2

u(x, t) = φ(z),
v(x, t) = ψ(z),

with z = tx− 1
α


dαφ
dzα = − z

α
ψ′,

dαψ
dzα = − z

α
b2(φ)φ′,

U3 There are no invariant solutions.
Table 4.2 The optimal systems and reduced systems of (4.1) for Case 1

sections. The reduced system of ODEs corresponding to U2 depends on b(u), and for
this reason, we do not solve it.

4.2.2 Case 2. b(u) = kum

To obtain the optimal systems for this case, here we construct both the commutator
and adjoint tables for the Lie algebras of infinitesimal symmetries. The adjoint table is
given by

Ad(e(εYi))Yj = Yj − ε[Yi, Yj] + ε2

2 [Yi, [Yi, Yj]] − . . . , where ε ∈ R.

In the present case, for α satisfying 0 < α < 1, the system in (4.1) becomes
∂αu
∂tα

= vx,

∂αv
∂tα

= k2u2mux,
(4.5)

and the corresponding infinitesimal symmetries are

X1 = ∂

∂x
, X2 = tα−1 ∂

∂v
, X3 = x

∂

∂x
+ t

α

∂

∂t
, X4 = x

∂

∂x
+ u

m

∂

∂u
+ m+ 1

m
v
∂

∂v
.

The optimal systems of a given Lie algebra depend on the structure of that Lie
algebra. Because the structure of the Lie algebra generated by the above X1, X2,

X3 and X4 depends on the parameters m and α, we study (4.5) in two subcases
characterized by the relations 2mα + α−m ̸= 0 and 2mα + α−m = 0.
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Case 2.1.

Let us consider the case 2mα+ α−m ̸= 0. Then, for the Lie algebra generated by the
symmetries Xi (i = 1, . . . , 4), we choose a new basis Yi (i = 1, . . . , 4) such that the Lie
algebra consists of the direct sum of two subalgebras L1 and L2, where L1 is generated
by Y1 and Y2, and L2 is generated by Y3 and Y4. We choose this new basis as follows:

Y1 = − (m+1)α
2mα+α−mX3 − m(α−1)

2mα+α−mX4, Y2 = −X1,

Y3 = mα
2mα+α−m(X3 −X4), Y4 = −X2.

The commutator and adjoint tables for Yi (i = 1, . . . , 4) are given below (where i and
j index the row and column). We choose the following optimal system for the Lie

[Yi, Yj] Y1 Y2 Y3 Y4
Y1 0 Y2 0 0
Y2 −Y2 0 0 0
Y3 0 0 0 Y4
Y4 0 0 −Y4 0

Table 4.3 Commutator table for Case 2.1.

Ad(e(εYi))Yj Y1 Y2 Y3 Y4
Y1 Y1 e−ϵY2 Y3 Y4
Y2 Y1 + ϵY2 Y2 Y3 Y4
Y3 Y1 Y2 Y3 e−ϵY4

Y4 Y1 Y2 Y3 + ϵY4 Y4

Table 4.4 Adjoint table for Case 2.1.

algebra generated by Yi (i = 1, . . . , 4) to simplify the reduced systems of FODEs:

U1 = Y2 + aY4 = −X1 − aX2, a = 0, 1,−1,
U2 = Y2 + (2mα+α−m)a

mα
Y3 = −X1 + aX3 − aX4, a = 1,−1,

U3 = (2mα + α−m)Y1 + aY4 = −aX2 − (m+ 1)αX3 −m(α− 1)X4, a = 1,−1,
U4 = Y1 + (2mα+α−m)a−mα+m

mα
Y3 = (a− 1)X3 − aX4, a ∈ R,

U5 = 2mα+α−m
mα

Y3 = X3 −X4,

U6 = Y4 = −X2.

Remark 1. We see from Table 4.3 that this Lie algebra is identical to the Lie algebra
2A2 given in [23]. If we act on U2 and U3 with Ad(eϵY1) and Ad(eϵY3), respectively,
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with suitable ϵ, we obtain the equivalences U2 ∼ Y1 + aY3 and U3 ∼ Y1 + aY4 (a = ±1).
This demonstrates the correspondence between the optimal system chosen here and the
optimal system in [23].

In Tables 4.5 and 4.6, we display the similarity variables zj, invariant solutions
(uj(x, t), vj(x, t)) expressed as solutions (φ(z), ψ(z)) of the reduced systems of ODEs,
and the reduced system of ODEs corresponding to Uj in the optimal system. Note that
due to the divergence of the integral in the definition (1.1) of the Riemann-Liouville
derivative, dα

dtα
(tp) is not defined for p ≤ −1 [? ]. For this reason, here we need an

additional assumption, which is expressed in Table 4.5, regarding invariant solutions
corresponding to the symmetry U5.

Uj zj Invariant solutions (uj(x, t), vj(x, t))

U1 t

u(x, t) = φ(t),
v(x, t) = ψ(t) + axtα−1,

a = 0, 1,−1

U2 t exp
(
a
α
x
) u(x, t) = exp

(
a
m
x
)
φ(z),

v(x, t) = a exp
(

(m+1)a
m

x
)
ψ(z),

a = 1,−1

U3 tx− m+1
2mα+α−m

u(x, t) = x
α−1

2mα+α−mφ(z),
v(x, t) = x

(m+1)(α−1)
2mα+α−m ψ(z) + a

2mα+α−mt
α−1 ln(x),

a = 1,−1

U4 tx
a−1

α

u(x, t) = x
a
mφ(z),

v(x, t) = x
(m+1)a

m ψ(z),
a ∈ R

U5 x

u(x, t) = t−
α
mφ(x),

v(x, t) = t−
(m+1)α

m ψ(x),
m < 0 or m > α

1−α

U6 There are no invariant solutions.
Table 4.5 Similarity variables zj and invariant solutions (uj, vj) for Case 2.1.

Case 2.2.

Next, let us consider the case 2mα + α − m = 0. In this case, we obtain m = α
1−2α

with α ̸= 1
2 . Then, for the Lie algebra generated by the symmetries Xi (i = 1, . . . , 4),

we again choose a new basis Yi (i = 1, . . . , 4) such that the Lie algebra consists of the
direct sum of two subalgebras L1 and L2. However, in this case L1 is generated by Y1,

Y2 and Y3, and L2 is generated by Y4. The new basis is

Y1 = X1, Y2 = X2, Y3 = X4, Y4 = X4 −X3.
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Uj Reduced system of ODEs

U1


dαφ(t)
dtα

= atα−1,
dαψ(t)
dtα

= 0,
a = 0, 1,−1

U2


dαφ
dzα =

(
m+1
m
ψ + 1

α
zψ′

)
,

dαψ
dzα = k2φ2m

(
1
m
φ+ 1

α
zφ′

)
,

U3


dαφ
dzα = m+1

2mα+α−m ((α− 1)ψ − zψ′) + a
2mα+α−mz

α−1,
dαψ
dzα = k2

2mα+α−mφ
2m ((α− 1)φ− (m+ 1)zφ′) ,

a = 1,−1

U4


dαφ
dzα = (m+1)a

m
ψ + a−1

α
zψ′,

dαψ
dzα = k2φ2m

(
a
m
φ+ a−1

α
zφ′

)
,

a ∈ R

U5


ψ′(x) = Γ(1− α

m)
Γ(1− (m+1)α

m )φ(x),

k2φ2mφ′(x) = Γ(1− (m+1)α
m )

Γ(1− (2m+1)α
m )ψ(x),

m < 0 or m > α
1−α

Table 4.6 Reduced systems of (4.1) for Case 2.1.

The commutator and adjoint tables for Yi (i = 1, . . . , 4) are given in Tables 4.7 and
4.8: We choose the following optimal system in the new and original bases:

[Yi, Yj] Y1 Y2 Y3 Y4
Y1 0 0 Y1 0
Y2 0 0 1−α

α
Y2 0

Y3 −Y1 −1−α
α
Y2 0 0

Y4 0 0 0 0
Table 4.7 Commutator table for Case 2.2.

Ad(e(εYi))Yj Y1 Y2 Y3 Y4
Y1 Y1 Y2 Y3 − εY1 Y4
Y2 Y1 Y2 Y3 − 1−α

α
εY2 Y4

Y3 eεY1 e
1−α

α
εY2 Y3 Y4

Y4 Y1 Y2 Y3 Y4

Table 4.8 Adjoint table for Case 2.2.
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U1 = Y1 + aY2 = X1 + aX2, a = 0, 1,−1,
U2 = Y1 + a1Y2 + a2Y4

= X1 + a1X2 − a2X3 + a2X4, (a1, a2) ∈ {(a,±1)|a ∈ R},
U3 = Y3 + (a− 1)Y4 = (1 − a)X3 + aX4, a ∈ R,

U4 = aY2 + Y4 = aX2 −X3 +X4, a = 0, 1,−1,
U5 = Y2 = X2.

We see from Table 4.7 that this Lie algebra is identical to the Lie algebra A3,5 ⊕ A1

given in [23]. Hence, considering the following equivalences regarding the actions of
Ad(eϵY3) on U2, it is seen that our optimal system of this Lie algebra corresponds
bijectively to that given in [23].

a) For any a > 0, there exists b > 0 such that Y1 + aY2 + Y4 ∼ Y1 + Y2 + bY4,

b) For any a > 0, there exists b < 0 such that Y1 + aY2 − Y4 ∼ Y1 + Y2 + bY4,

c) For any a < 0, there exists b > 0 such that Y1 + aY2 + Y4 ∼ Y1 − Y2 + bY4,

d) For any a < 0, there exists b < 0 such that Y1 + aY2 − Y4 ∼ Y1 − Y2 + bY4.

In the following Table 4.9, we display the similarity variables zj and invariant
solutions (uj(x, t), vj(x, t)), which are expressed as solutions of reduced systems. Then,
in Table 4.10, we present the reduced systems of ODEs corresponding to the above
optimal system. With the above results for the optimal systems in Cases 2.1 and 2.2,

Uj zj Invariant solutions (uj(x, t), vj(x, t))

U1 t

u(x, t) = φ(t),
v(x, t) = ψ(t) + axtα−1,

a = 0, 1,−1

U2 t exp(a2
α
x)

u(x, t) = exp
(
a2(1−2α)

α
x
)
φ(z),

v(x, t) = a2 exp
(
a2(1−α)

α
x
)
ψ(z) + a1xt

α−1,
(a1, a2) ∈ {(a,±1)|a ∈ R}

U3 tx
a−1

α

u(x, t) = x
a(1−2α)

α φ(z),
v(x, t) = x

a(1−α)
α ψ(z),

a ∈ R

U4 x

u(x, t) = t2α−1φ(x),
v(x, t) = tα−1ψ(x) − aαtα−1 ln(t),

a = 0, 1,−1

U5 There are no invariant solutions.
Table 4.9 Similarity variables zj and invariant solutions (uj, vj) for Case 2.2.

we arrive at the following three conclusions for the case m = α
1−2α .
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Uj Reduced system of ODEs

U1


dαφ(t)
dtα

= atα−1,
dαψ(t)
dtα

= 0,
a = 0, 1,−1

U2


dαφ
dzα = 1

α
((1 − α)ψ + zψ′) + a1z

α−1,
dαψ
dzα = k2

α
φ

2α
1−2α ((1 − 2α)φ+ zφ′) ,

a1 ∈ R

U3


dαφ
dzα = 1

α
(a(1 − α)ψ + (a− 1)zψ′) ,

dαψ
dzα = k2

α
φ

2α
1−2α (a(1 − 2α)φ+ (a− 1)zφ′) ,

a ∈ R

U4

ψ
′(x) = Γ(2α)

Γ(α) φ(x),
k2φ

2α
1−2αφ′(x) = −aΓ(α + 1),

a = 0, 1,−1,

Table 4.10 Reduced systems of (4.1) for Case 2.2.

1. The two invariant solutions corresponding to U1 in Cases 2.1 and 2.2 coincide.

2. The invariant solutions corresponding to U3 in Case 2.1 coincide with the invariant
solutions corresponding to U4 in Case 2.2.

3. The invariant solutions corresponding to U4 in Case 2.1 coincide with the invariant
solutions corresponding to U3 in Case 2.2.

Even though the elements of the optimal systems in Cases 2.1 and 2.2 correspond to
each other, except for the element U2, the reduced systems of ODEs in Cases 2.1 and
2.2 generally differ, possessing a relationship determined by the choice of the similary
variable z.

In the next section, we derive several explicit invariant solutions of the fractional
system in (4.1) by solving the reduced systems of ODEs obtained in this section.

4.3 Invariant solutions of (4.1)
In the general case, solving fractional order nonlinear systems of ODEs is a challenging
problem. However, here we are able to derive several explicit solutions of the reduced
systems of FODEs obtained in the previous section. Then, using these solutions, we
obtain several group invariant solutions of (4.1).
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4.3.1 Invariant solutions of (4.1) corresponding to U1

The reduced systems of ODEs corresponding to U1 are essentially the same in all three
cases. The following is the solution to each of these:φ(t) = a

Γ(α)t
2α−1 + c1t

α−1,

ψ(t) = c2t
α−1,

where c1 and c2 are arbitrary constants. With the above, we obtain the following for
the invariant solution of (4.1):u(x, t) = a

Γ(α)t
2α−1 + c1t

α−1,

v(x, t) = (c2 + ax)tα−1.
(4.6)

4.3.2 Invariant solutions of (4.1) corresponding to U4 in Case
2.1

The reduced system of ODEs corresponding to U4 in Case 2.1 has the general form
dαφ
dzα = a1ψ + a2zψz,

dαψ
dzα = φ2m(b1φ+ b2zφz),

(4.7)

where a1, a2, b1 and b2 are constants. We formulate the following lemma with respect
to a solution of the system given in (4.7).

Lemma 9. Let us assume that the parameter m satisfies m < 0 or m > α
1−α . Then, if

the inequalities

m ̸= α

1 − 2α, a1 − m+ 1
m

a2α ̸= 0, b1 − 1
m
b2α ̸= 0

hold, the system in (4.7) has a solution of the form φ(z) = c1z
λ1 , ψ(z) = c2z

λ2 , where

λ1 = − α

m
, λ2 = −(m+ 1)α

m
,

c2m
1 =

m2Γ
(
1 − α

m

)
(ma1 − (m+ 1)a2α)(mb1 − b2α)Γ

(
1 − (2m+1)α

m

) ,
c2 =

mΓ
(
1 − α

m

)
(ma1 − (m+ 1)a2α) Γ

(
1 − m+1

m
α
)c1.
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Proof. Directly substituting φ(z) = c1z
λ1 and ψ(z) = c2z

λ2 into (4.7) we obtainc1
Γ(1+λ1)

Γ(1+λ1−α)z
λ1−α = c2(a1z

λ2 + a2λ2z
λ2),

c2
Γ(1+λ2)

Γ(1+λ2−α)z
λ2−α = c2m+1

1 z2λ1m(b1z
λ1 + b1λ2z

λ1).
(4.8)

The powers of z appearing here should be equal in the two equations. From this
observation, we have

λ1 = − α

m
, λ2 = −(m+ 1)α

m
.

Next, by the assumption of the lemma, we see that λ1 > −1 and λ2 > −1. From these
results for λ1 and λ2, c1 and c2 are obtained as in the statement of the lemma.

The reduced system of ODEs corresponding to U4 in Case 2.1 satisfies the conditions
of Lemma 9, which implies that there exists a solution (φ(z), ψ(z)) as in the lemma.
Then, from Tables 4.5 and 4.6, we obtain the following explicit invariant solution to
(4.1) with the condition that m satisfies either m < 0 or m > α

1−α :


u(x, t) =

[
m2

k2(m+1)
Γ(1− α

m
)

Γ(1− (2m+1)α
m

)

] 1
2m

x
1
m t−

α
m ,

v(x, t) =
[

m2

k2(m+1)
Γ(1− α

m
)

Γ(1− (2m+1)α
m

)

] 1
2m mΓ(1− α

m)
(m+1)Γ(1− m+1

m
α)x

m+1
m t−

(m+1)α
m .

(4.9)

Finally, note that even though the reduced systems corresponding to U2 in Case 2.1
and U3 in Case 2.2 are of the form (4.7), these systems do not satisfy the conditions of
Lemma 2.

4.3.3 Invariant solutions of (4.1) corresponding to U5 in Case
2.1

By direct integration of the reduced system in this case, we obtain the following implicit
solution with the condition m < 0 or m > α

1−α :


x =

(
k2

(m+1)
Γ(1− (m+1)α

m )2m
Γ(1− (2m+1)α

m )
Γ(1− α

m)2m+1

) 1
2m+2 ∫ ψ

ψ0

dθ

(θ2 + c1)
1

2m+2
+ c2,

φ =
(
m+1
k2

Γ(1− (m+1)α
m )2

Γ(1− α
m)Γ(1− (2m+1)α

m ) (ψ2 + c1)
) 1

2m+2

.

(4.10)

Here ψ0 is an appropriately chosen lower bound, and c1 and c2 are constants. The
invariant solution (u(x, t), v(x, t)) can be obtained from the above implicit solution
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and the form corresponding to U5 given in Table 4.5. Integrating the above solution
explicitly is difficult, but for some particular values of the parameters c1, c2 and m,
explicit invariant solutions can be readily obtained. For example, for c1 = 0, we obtain
the invariant solution

u(x, t) =
(

m2

k2(m+1)(2m+1)
Γ(− α

m)
Γ(− (2m+1)α

m )

) 1
2m

(x− c2)
1
m t−

α
m ,

v(x, t) =
 m2m+2

k2(m+1)4m+1(2m+1)
1

Γ(− (m+1)α
m )2m

Γ(− α
m)2m+1

Γ(− (2m+1)α
m )

 1
2m

(x− c2)
m+1

m t−
(m+1)α

m ,

(4.11)
which is identical to that obtained in [14] for m = 1

2 and k = 1. Note that (4.9) is
invariant under the transformations corresponding to X2 and X4. This implies that
(4.11) is an invariant solution not only of the system of ODEs corresponding to U5 but
also of the system of ODEs corresponding to U4 when c2 = 0. Substituting m = −1

2
and c1 ̸= 0 into (4.10), we obtain another explicit invariant solution,

 u(x, t) = c1
2k2

Γ(1+α)2

Γ(1+2α)t
2α
[
tan2

(√
c1

2k2 Γ(1 + α)(x− c2)
)

+ 1
]
,

v(x, t) = √
c1t

α tan
(√

c1
2k2 Γ(1 + α)(x− c2)

)
.

(4.12)

4.3.4 Invariant solutions of (4.1) corresponding to U2 in Case
2.2

It can be easily shown that the reduced system in this case has the solutionφ(z) = a1
Γ(α)
Γ(2α)z

2α−1,

ψ(z) = czα−1.

Then, we obtain the following invariant solution of (4.1) using the form of U2 given in
Table 4.9: u(x, t) = a1

Γ(α)
Γ(2α)t

2α−1,

v(x, t) = a2ct
α−1 + a1xt

α−1,
(4.13)

where c is a constant.
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4.3.5 Invariant solutions of (4.1) corresponding to U4 in Case
2.2

The solution to the reduced system in this case isφ(x) =
(
− aΓ(α+1)
k2(1−2α)x+ c1

)1−2α
,

ψ(x) = k2(2α−1)
2a(1−α)

Γ(2α)
Γ(α)Γ(α+1)

(
aΓ(α+1)
k2(2α−1)x+ c1

)2(1−α)
+ c2.

With this and the form of U4 given in Table 4.9, we obtain the following explicit
invariant solution:

u(x, t) =
(
− aΓ(α+1)
k2(1−2α)x+ c1

)1−2α
t2α−1,

v(x, t) =
k2(2α−1)

2a(1−α)
Γ(2α)

Γ(α)Γ(α+1)

(
aΓ(α+1)
k2(2α−1)x+ c1

)2(1−α)
− αa ln(t) + c2

)
tα−1.

(4.14)

We have thus found the group invariant solutions in all cases except for those
corresponding to U2 and U3 in Case 2.1 and U3 in Case 2.2.
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