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1 Introduction

For mathematical objects (such as graphs, Riemannian manifolds), it is impor-
tant to study the relationship between shapes (such as geometric properties) and
invariants of these objects. These studies have many applications to not only
mathematics but also physics. One of the fascinated object of these studies is a
graph. Graphs are discrete and simple objects in mathematics. Therefore, they
frequently appear in many settings. At least from this stand point, it is impor-
tant to study the relationship between properties of graphs and their invariants.

All graphs in this thesis are assumed to be connected, countable and simple.
Spectral analysis of graphs focuses on the relationship between properties of
graphs and the spectrums of operators which are related to graphs. In this thesis,
we focus on investigating the relationship between paths and the spectrum of the
Laplacian from the view point of number theory.

To explain more precisely, let X be a graph and ∆X be the Laplacian of X.
Especially for a finite graph X, it is well-known that closed geodesics are deeply
related to the spectrum of ∆X . The relationship describes as the so-called Ihara
formula explicitly. The Ihara zeta function of X is defined by

ZX(u) = exp

( ∞∑
m=1

Nm

m
um

)
.

Here, Nm stands for the number of closed geodesics of length m in X. Then, the
Ihara formula is described as follows (cf. [31]).

ZX(u)
−1 = (1− u2)−χ(X) det

(
I − u(DX −∆X) + u2(DX − I)

)
.

Here, χ(X) stands for the Euler number of X and DX stands for the valency
operator of X. The above formula was originally established by Y. Ihara in the p-
adic setting. Then, it has been generalized in stages by T. Sunada, K. Hashimoto
and H. Bass ([2], [14], [15], [16], [17], [18], [21], [27], [28], [29]). If X is a regular
graph, this formula describes the relationship between closed geodesics and the
spectrum of ∆X . In this thesis, we call a formula of this type an Ihara type
formula.

In 1999, L. Bartholdi introduced the Bartholdi zeta function for finite graphs
and established a determinant expression of it ([1]). The Bartholdi zeta function
is defined by

ZX(u, t) = exp

(∑
C∈C

1

ℓ(C)
tcbc(C)uℓ(C)

)
.

Here, we denote by C the set of closed paths in X, by ℓ(C) the length of C and by
cbc(C) the cyclic bump count of a closed path C. This is a generalization of the
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Ihara zeta function by adding a variable t which plays a role of counting back-
trackings of a closed path. Indeed, if t is equal to 0, this zeta function coincides
with the Ihara zeta function. The determinant expression of ZX(u, t, x0) is as
follows ([1]).

ZX(u, t)
−1 =

(
1− (1− t)2u2

)−χ(X)

× det
(
I − u(DX −∆X) + (1− t)u2(DX − (1− t)I)

)
.

For a finite regular graph, this formula gives an explicit relationship between the
number of closed paths and the spectrum of ∆X . In this thesis, we call a formula
of this type a Bartholdi type formula.

Recently, several authors have considered generalizations of the Ihara zeta
function from finite graphs to infinite graphs (cf. [4], [5], [6], [8], [11], [12], [13],
[26]). In this thesis, we follow [4] essentially. For a vertex-transitive graph X
(not necessarily finite) and a fixed vertex x0, the Ihara zeta function for X was
introduced as follows in [4].

ZX(u, x0) =

( ∞∑
m=1

Nm(x0)

m
um

)
.

Here, Nm(x0) stands for the number of closed geodesics of length m starting at
x0. We remark that this zeta function does not depend on x0 since X is a vertex-
transitive graph. In [4], the definition of the Ihara zeta function for a regular
graph X is given (p. 185 in [4]). The definition is a little complicated because
we have to introduce another terminology to define the Ihara zeta function for
a regular graph besides closed geodesics. Therefore, we do not introduce it (see
p. 185 in [4]). G. Chinta, J. Jorgenson and A. Karlsson established the Ihara
type formula for the Ihara zeta function for a vertex-transitive graph by giving
a new expression of the heat kernel ([4]). This definition works well in the point
of studying deeply the relationship between closed geodesics and the spectrum
of ∆X and also as an analogy with heat kernel analysis of rank one symmetric
spaces.

This thesis is divided into four parts. In the first part, we give an introduction
of our research. In the second part, we survey some basic facts in graph theory
which are mainly used in this thesis. In the third part, we introduce an Ihara
zeta function for a graph with bounded degree in the third part. This zeta
function is a natural generalization of the zeta function which was introduced
by G. Chinta, J. Jorgenson and A. Karlsson. Then, we present an Ihara type
formula of this zeta function for a graph with bounded degree. Our proof also
gives an alternative proof of the proof in [4]. In the final part, we introduce a
Bartholdi zeta function for a graph with bounded degree. This zeta function is
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a generalization of both the Ihara zeta function which is introduced in the third
part and the Bartholdi zeta function which was introduced by L. Bartholdi.
Then, we present a Bartholdi type formula of this zeta function for a graph
with bounded degree. This formula is a generalization of the Bartholdi-Ihara
formula from a finite graph to a simple graph with bounded degree. Moreover, we
establish a new expression of the heat kernel by using modified Bessel functions.
This expression can be regarded as a one-parameter deformation of the expression
obtained by G. Chinta, J. Jorgenson and A. Karlsson in [4]. Then, especially for a
regular graph (not necessarily finite), we give an alternative proof of the Bartholdi
type formula which is presented in this part by using this new expression of the
heat kernel. This is an important application of our heat kernel expression. We
believe that there should be other applications of our heat kernel expression
because it is well-known that there are many applications of the heat kernel at
least in the finite graph case such as the distribution of the spectrum of regular
graphs.

The author would like to express gratitude to his supervisor, Prof. Hiroyuki
Ochiai, for his encouragement and many helpful comments.

Taichi Kousaka

Graduate School of Mathematics,
Kyushu University,
Fukuoka, Japan
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2 Preliminaries

In this part, we introduce terminologies which are mainly used throughout in
this thesis. We remark that there are other terminologies which are introduced
in each part.

2.1 Graphs and Paths

In this section, we give terminologies of graphs and paths used throughout this
paper (cf. [1], [27], [30]). A graph X is an ordered pair (VX,EX) of disjoint sets
VX and EX with two maps,

EX → VX × VX, e 7→ (o(e), t(e)), EX → EX, e 7→ ē

such that for each e ∈ EX, ē ̸= e, ¯̄e = e, o(e) = t(ē). For a graph X = (VX,EX),
two sets VX and EX are called vertex set and edge set respectively. A graph X
is simple if X has no loops and multiple edges. For a vertex x ∈ VX, the degree
of x is the cardinality of the set Ex, where Ex = {e ∈ EX|o(e) = x}. We denote
the degree of x by deg(x). A graph X is countable if the vertex set is countable.
A graph X has bounded degree if the supremum of the set of all degrees is not
infinite. For a graph X, a path of length n is a sequence of edges

C = (e1, . . . , en)

such that t(ei) = o(ei+1) for each i. We denote o(e1) by o(C), t(en) by t(C) and
the length of C by ℓ(C). A path C is closed if o(C) = t(C). We regard a vertex
as a path of length 0. A path C = (e1, . . . , en) has a back-tracking or bump if
there exist i such that ei+1 = ēi. A path C = (e1, . . . , en) has a tail if en = ē1.
A path C is a geodesic if c has no back-tracking. A closed path C = (e1, . . . , en)
is a geodesic loop if C is a geodesic. A closed path C = (e1, . . . , en) is a closed
geodesic if C is a geodesic loop and has no tail. For a path C = (e1, . . . , en), we
define the bump count of C as follows.

bc(C) = ♯{i ∈ {1, . . . , n− 1} | ei = ei+1}.

For a closed path C = (e1, . . . , en), we define the cyclic bump count of C as
follows.

cbc(C) = ♯{i ∈ Z /mZ | ei = ei+1}.

For a closed path x0, we define bc(x0) = cbc(x0) = 0. For a path C =
(e1, . . . , em), we denote ei by ei(C).

4



2.2 The Laplacian of a graph

For the vertex set VX of a graph X, we define the ℓ2-space on the vertex set VX
by

ℓ2(VX) =

{
f : VX → C

∣∣∣∣ ∑
x∈VX

|f(x)|2 < +∞
}
.

For a function f ∈ ℓ2(VX) and a vertex x ∈ VX, we define the adjacency operator
AX on X and the valency operator DX on X as follows respectively.

(AXf)(x) =
∑
e∈Ex

f(t(e)),

(DXf)(x) = deg(x)f(x).

Then, we define the Laplacian DX on X by ∆X = DX − AX . The Laplacian is
a semipositive and self-adjoint bounded operator under our assumption.

2.3 The heat kernel of a graph

For a graph X with bounded degree and a fixed vertex x0, the heat kernel
KX(τ, x0, x) : R≥0×VX → R on X is the solution of the heat equation{ (

∆X + ∂
∂τ

)
f(τ, x) = 0,

f(0, x) = δx0(x).

Here, the function f(τ, x) is in the class C1 on R×VX for each x ∈ VX and
the function δx0(x) is the Kronecker delta. The heat kernel on X uniquely exists
among functions which are bounded on [0, τ ]× VX for each τ ∈ R≥0 under our
assumptions ([9]). By the uniqueness of the solution of the heat equation, it turns
out that the heat kernel KX(τ, x0, x) is an invariant under the automorphism
group Aut(X).

2.4 The modified Bessel function

In this section, we define the modified Bessel function and introduce some well-
known properties of them. For n ∈ Z≥0 and τ ∈ R, we define the modified Bessel
function of the first kind by the following power series.

In(τ) =
∞∑

m=0

(
τ/2

)n+2m

m!(m+ n)!
.

For −n ∈ Z<0, we define I−n(τ) as follows.

I−n(τ) = In(τ).
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It is well-known that In(τ) is the power series solution of the following differential
equation.

τ 2
d2w

dτ 2
+ τ

dw

dτ
− (τ 2 + n2)w = 0.

Moreover, it is also well-known that In(τ) satisfies the following formula.

2
d

dτ
In(τ) = In−1(τ) + In+1(τ). (2.1)

In addition, for n ≥ 0 and τ ∈ R≥0, In(τ) has the following trivial bound.

In(τ) ≤
(
τ

2

)n
eτ

n!
. (2.2)

2.5 G(t)-transform

For a real valued function f(τ)(0 < τ < ∞) which is integrable in every finite
interval, we define G(t)f as follows.

G(t)f(u) = (u−2 − (q + t)(1− t))

∫ ∞

0

e−
(
(q+t)(1−t)u+ 1

u
−(q+1)

)
τ f(τ)dτ.

We call this transform G(t)-transform. The following formula holds (cf. [24]). If
0 < u < 1√

(q+t)(1−t)
, then, for k ≥ 0, we have

G(t)
(
e−(q+1)τ

(
(q + t)(1− t)

)− k
2 Ik

(
2
√
(q + t)(1− t)τ

))
(u) = uk−1. (2.3)

3 An Ihara type formula for graphs with bounded

degree

In this part, we establish a generalized Ihara zeta function formula for a simple
graph with bounded degree. This is a generalization of the formula obtained by
G. Chinta, J. Jorgenson and A. Karlsson from a vertex-transitive graph.

3.1 Introduction

Let X be a connected graph with bounded degree whose vertex set is count-
able and ∆X be the combinatorial Laplacian on X. In this paper, a graph with
bounded degree means a graph which has the above properties. The relationship
between geometric properties of X and the spectrum of ∆X has been widely
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studied. Especially, for a finite regular graph, it is well-known that the distribu-
tion of the spectrum of ∆X is deeply related to the number of closed geodesics
(cf. [31]). The Ihara zeta function for a finite graph is defined by

ZX(u) = exp

( ∞∑
m=1

Nm

m
um

)
.

Here, we denote by Nm the number of closed geodesics of length m in X. This
function is directly related to the number of closed geodesics. The original Ihara
zeta function was first defined by Y. Ihara in [20] as a Selberg-type zeta function
in the p-adic setting. It can be interpreted in terms of finite regular graphs and
has been generalized by T. Sunada, K. Hashimoto and H. Bass ([2], [14], [15],
[16], [17], [18], [21], [27], [28], [29]). There are various studies for the Ihara zeta
function for a finite graph. The most famous and important formula for the
Ihara zeta function for a finite graph is the Ihara determinant formula described
as

ZX(u)
−1 = (1− u2)−χ(X) det

(
I − u(DX −∆X) + u2(DX − I)

)
.

Here, we denote by χ(X) the Euler number of X and by DX the valency operator
on X. The above formula for a finite regular graph was originally established
by Y. Ihara in the p-adic setting ([20]). Various proofs of this formula are well-
known (cf. [2], [21]). This formula can be interpreted as a formula describing
a relationship between the number of closed geodesics and the spectrum of the
Laplacian on a finite graph.

Recently, several authors have considered generalizations of the Ihara zeta
function and the Ihara determinant formula from finite graphs to infinite graphs
(cf. [4], [5], [6], [8], [11], [12], [13], [26]). Among them, we follow [4] essentially.
In [4], for a regular graph, the Ihara zeta function is defined. The definition is
complicated because we have to introduce another terminology besides closed
geodesics (cf. p. 185 in [4]). However, if a graph X is a vertex-transitive graph,
the Ihara zeta function defined in [4] has a natural form. Namely, for a vertex-
transitive graph X, the Ihara zeta function of X defined in [4] is

ζX(u) = exp

( ∞∑
m=1

Nm(x0)

m
um

)
.

Here, we denote by Nm(x0) the number of closed geodesics of length m starting
at a given vertex x0. We remark that the above zeta function does not depend
on the given vertex since X is a vertex-transitive graph. We also remark that
if a regular graph X is not a vertex-transitive graph, the zeta function of X
defined in [4] does not always coincide with the above. The idea of giving a
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generalization of the Ihara zeta function from finite graphs to infinite graphs in
[4] is to count not all closed geodesics but only count through a fixed starting
vertex. The Ihara’s formula for the zeta function defined in [4] is proved by
giving a new expression of the heat kernel on a regular graph by using modified
Bessel functions. The approach through heat kernel analysis is considered to be
successful also from the view point of giving an analogy with quotients of rank
one symmetric spaces. Therefore, we define the zeta function for a graph with
bounded degree following [4].

The aim of this paper is to continue the study about the relationship between
the number of closed geodesics and the spectrum of the Laplacian on a graph.
From this standpoint, for a graph X with bounded degree and a vertex x0 ∈ VX,
we define the Ihara zeta function as follows in this paper.

ZX(u, x0) = exp

( ∞∑
m=1

Nm(x0)

m
um

)
.

We remark that the above zeta function depends on the vertex x0. As mentioned
in [4], this generalization of the Ihara zeta function can be considered as corre-
sponding to the Hurwitz zeta function which is generalized from the Riemann
zeta function. Moreover, as we mentioned above, the Ihara zeta function for a
graph X with bounded degree is equal to the Ihara zeta function defined in [4]
if X is a vertex-transitive graph. However, our zeta function does not always
coincide with the zeta function defined in [4] for a regular graph which is not a
vertex-transitive graph.

In this paper, we establish a generalized Ihara zeta function formula for con-
nected simple graphs with bounded degree by using an algebraic method. Here,
a simple graph means a graph which have no loops and multiple edges. This is a
generalization of the formula for vertex-transitive graphs obtained by G. Chinta,
J. Jorgenson and A. Kerlsson in [4]. We remark that we establish the formula
for connected simple graphs with bounded degree whereas G. Chinta, J. Jorgen-
son and A. Karlsson establish the formula for connected vertex-transitive graphs
which are not always simple graphs ([4]). Moreover, our proof also gives an alter-
native proof of the formula obtained by G. Chinta, J. Jorgenson and A. Karlsson
for simple vertex-transitive graphs. For finite simple regular graphs, we also de-
rive a generalized Ihara zeta function formula which is regarded as a local version
of the original Ihara determinant formula.

3.2 A path counting formula

In this section, we give an explicit formula between the number of geodesic loops
and the number of closed geodesics. We remark that a graph which is considered
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in this section is allowed to have multiple edges and loops. This is a general-
ization of the path counting formula obtained in [4]. We fix a vertex x0 ∈ VX.
For a vertex x ∈ VX and a nonnegative integer m, we denote by cm(x0, x) the
number of geodesic paths of length m from x0 to x, by cm(x) = cm(x, x) the
number of geodesic loops of length m starting at x and by Nm(x0) the number of
closed geodesics of length m starting at x0. For a vertex x ∈ VX and a nonneg-
ative integer m, we denote deg(x)cm(x) −

∑
e∈Ex

cm(t(e))(resp. deg(x)Nm(x) −∑
e∈Ex

Nm(t(e))) by (∆Xcm)(x)(resp. (∆XNm)(x)) formally by regarding cm and
Nm as functions on VX. Here, we note that functions cm and Nm are not in
ℓ2(VX) in general. Moreover, we define the following formal power series.

C(u : x0) =
∞∑

m=1

cm(x0)u
m,

N(u : x0) =
∞∑

m=1

Nm(x0)u
m.

Our goal in this section is to give the following theorem.

Theorem 3.2.1. The following formula holds:

N(u : x0) = (1− u2)−2{1− (deg(x0)−∆X)u
2 + (deg(x0)− 1)u4}C(u : ·)(x0).

First of all, we give the following proposition.

Proposition 3.2.2. For an integer m greater than 2, the following identity holds:

Nm(x0) = cm(x0)− (deg(x0)− 2)

⌈m
2
⌉−1∑

i=1

cm−2i(x0) +

⌈m
2
⌉−1∑

i=1

i(∆Xcm−2i)(x0).

Here, the symbol ⌈·⌉ stands for the ceiling function.

Proof. First of all, we define several symbols. For a non-negative integer m, a
vertex x ∈ VX and an edge e ∈ EX such that o(e) = x or t(e) = x, we denote
by cm(x, e)(resp. Nm(x, e)) the number of geodesic loops (resp. closed geodesics)
of length m starting at x through e. Let m be an integer which is greater than 2
and e ∈ EX be an edge such that o(e) = x0. The number cm(x0, e)−Nm(x0, e)
is equal to the number of geodesic loops of length m starting at x0 through e,
which are not closed geodesics. Therefore, we have

cm(x0, e)−Nm(x0, e) = cm−2(t(e))− cm−2(t(e), ē)− cm−2(t(e), e) + cwtm−2(t(e), ē).

Here, we denote by cwtm−2(t(e), ē) the number of geodesic loops of length m− 2
starting at t(e) with tail ē. By this, we have

cm(x0)−Nm(x0)

9



=
∑
e∈Ex0

{cm−2(t(e))− cm−2(t(e), ē)− cm−2(t(e), e) + cwtm−2(t(e), ē)}

= deg(x0)cm−2(x0)− (∆Xcm−2)(x0)

−
∑
e∈Ex0

{cm−2(t(e), ē)−Nm−2(t(e), ē)} −
∑
e∈Ex0

{cm−2(t(e), e)−Nm−2(t(e), e)}

−
∑
e∈Ex0

{Nm−2(t(e), ē) +Nm−2(t(e), e)}+
∑
e∈Ex0

cwtm−2(t(e), ē).

Further, ∑
e∈Ex0

{cm−2(t(e), ē)−Nm−2(t(e), ē)}

=
∑
e∈Ex0

{cm−2(t(e), e)−Nm−2(t(e), e)}

= cwtm−2(t(e), ē)

and∑
e∈Ex0

Nm−2(t(e), ē) =
∑
e∈Ex0

Nm−2(t(e), e) =
∑
e∈Ex0

Nm−2(x0, e) = Nm−2(x0).

Then, we have

cm(x0)−Nm(x0)

= deg(x0)cm−2(x0)− (∆Xcm−2)(x0)− 2Nm−2(x0)−
∑
e∈Ex0

cwtm−2(t(e), ē).

(3.1)

Putting m = 3 in (3.1), since cwt1(t(e), ē) = 0, we have

c3(x0)−N3(x0) = deg(x0)c1(x0)− (∆Xc1)(x0)− 2N1(x0).

Therefore,

N3(x0) = c3(x0)− (deg(x)− 2)c1(x0) + (∆Xc1)(x0). (3.2)

By the same argument, we have

N4(x0) = c4(x0)− (deg(x0)− 2)c2(x0) + (∆Xc2)(x0).

In the case m ≥ 5, by (3.1), we have

cm(x0)−Nm(x0)
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= deg(x0)cm−2(x0)− (∆Xcm−2)(x0)− 2Nm−2(x0)

− {Nm−4(x0) deg(x0)− 2) + (cm−4 −Nm−4(x0))(deg(x0)− 1)}
= deg(x0)cm−2(x0)− (∆Xcm−2)(x0)

− 2Nm−2(x0)− (deg(x0)− 1)cm−4(x0) +Nm−4(x0).

Therefore, we have the following recursive formula.

{Nm(x0)−Nm−2(x0)} − {Nm−2(x0)−Nm−4(x0)}
= {cm(x0)− cm−2(x0)} − (deg(x0)− 1){cm−2(x0)− cm−4(x0)}+ (∆Xcm−2)(x0).

For m ≥ 5 which is an odd integer, we have

Nm(x0)−Nm−2(x0)

= cm(x0)− (deg(x0)− 1)cm−2(x0) + (N3(x0)− c3(x0))

+ (deg(x0)− 1)c1(x0)−N1(x0) +

m−3
2∑

i=1

(∆Xcm−2i)(x0).

Here, we used the above recursive formula in the above equation. By this and
(3.2), we have

Nm(x0) = cm(x0)− (deg(x0)− 2)

m−1
2∑

i=1

cm−2i(x0) +

m−1
2∑

i=1

i(∆Xcm−2i)(x0).

For m ≥ 6 which is an even integer, by the same argument, we have

Nm(x0) = cm(x0)− (deg(x0)− 2)

m−2
2∑

i=1

cm−2i(x0) +

m−2
2∑

i=1

i(∆Xcm−2i)(x0).

In the rest of this section, we give the proof of Theorem 3.2.1. We define
Rm(x0) and R̃m(x0) as follows.

Rm(x0) =

⌈m
2
⌉−1∑

i=1

i(∆Xcm−2i)(x0),

R̃m(x0) =


R1(x0) if m = 1,

R2(x0) if m = 2,

Rm(x0)−Rm−2(x0) if m ≥ 3.
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We define the corresponding formal power series as follows.

R(u : x0) =
∞∑

m=1

Rm(x0)u
m,

R̃(u : x0) =
∞∑

m=1

R̃m(x0)u
m.

By the definition of Rm(x0) and Rm(x0), we have

R(u : x0) = u2(1− u2)−2∆XC(u : x0). (3.3)

Moreover, for vertices x0, x ∈ VX, we define bm(x0) as follows.

bm(x) =


c0(x0, x) if m = 0,

c1(x0, x) if m = 1,

c2(x0, x) if m = 2,

cm(x0, x)− (deg(x)− 2)
∑⌈m

2
⌉−1

j=1 cm−2j(x0, x) if m ≥ 3.

By the definition of this symbol, we have

B(u : x0) = (1− u2)−1{1− (deg(x0)− 1)u2}C(u : x0). (3.4)

By Proposition 3.2.2, we have

N(u : x0) = C(u : x0)− (C(u : x0)−B(u : x0)) +R(u : x0) = B(u : x0) +R(u : x0).

By (3.3) and (3.4), we have

N(u : x0) = (1− u2)−1{1− (deg(x0)− 1)u2}C(u : x0) + u2(1− u2)−2∆XC(u : ·)(x0)

= (1− u2)−2{1− (deg(x0)−∆X)u
2 + (deg(x0)− 1)u4}C(u : ·)(x0).

Therefore, we get Theorem 3.2.1.

3.3 An Ihara type formula for simple graphs with bounded
degree

In this section, we give a generalized Ihara zeta function formula for a simple
graph with bounded degree. Let X be a connected simple graph with bounded
degree. We denote the supremum of all degrees of X by M . We remark that M
is greater than 1 by our assumption. We denote the set of all bounded operators
on ℓ2(VX) equipped with the usual operator norm ∥·∥ by B(ℓ2(VX)).
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First of all, we introduce several bounded operators on ℓ2(VX). For f ∈
ℓ2(VX) and m ∈ Z≥0, we define Cm as follows.

Cmf(x) =
∑

c∈Cx,ℓ(c)=m

f(t(c)).

Here, the symbol Cx stands for the set of all geodesic paths of length m starting
at x. We define QX by DX − I and Bm as follows.

Bm =

{
Cm − (Q− I)

∑⌊m
2
⌋

j=1 Cm−2j if m ≥ 3,

Cm if m = 0, 1, 2.

For f ∈ ℓ2(VX), we define Rm as follows.

(Rmf)(x) =

{∑⌈m
2
⌉−1

j=1 j(∆Xcm−2j)(x)f(x) if m ≥ 3,

0 if m = 0, 1, 2.

Moreover, we define R+
m and NX,m as follows.

R+
m =

{
(QX − I)δ2Z(m) +Rm if m ≥ 3,

0 if m = 0, 1, 2,

NX,m = Bm +R+
m.

We remark that the above operators are in B(ℓ2(VX)) since X has a bounded
degree. For B ∈ B(ℓ2(VX)) and for x0, x ∈ VX, we define B(x0, x) as follows.

B(x0, x) = Bδx0(x).

Here, the symbol δx0 stands for the Kronecker delta. We remark that B(x0, x)
is in C by the Cauchy-Schwarz inequality since B is in B(ℓ2(VX)).

Then, we have the following proposition.

Proposition 3.3.1. ([12]) We have the following equation:

Cm =

{
C2

1 −Q− I if m = 2,

Cm−1C1 − Cm−2Q if m ≥ 3.

Let α = M+
√
M2+4M
2

. Then, for m ∈ Z≥0, we have

∥Cm∥ ≤ αm.

Moreover, for |u| < 1
α
, we have the following equations:

13



(1)

(∑∞
m=0Cmu

m

)(
I − uAX + u2QX

)
= (1− u2)I.

(2)

(∑∞
m=0

(∑⌊m
2
⌋

k=0 Cm−2k

)
um

)(
I − uAX + u2QX

)
= I.

By Proposition 3.3.1, we have the following proposition.

Proposition 3.3.2. (1) For |u| < 1
α
, we have( ∞∑

m=1

Bmu
m

)(
I − uAX + u2QX

)
= AXu− 2QXu

2

+
(
Q− I

)(
I − uAX + u2QX

)
u2.

(2) For |u| < 1
α
, we have

∞∑
m=1

NX,mu
m = u(AX − 2QXu)

(
I − uAX + u2QX

)−1

+ (QX − I)
u2

1− u2
+

∞∑
m=3

Rmu
m.

It is easy to check by Proposition 3.3.1. Therefore, we omit the proof of
Proposition 3.3.2

Let f be a C1-function on Bϵ = {u ∈ C
∣∣ |u| < ϵ} which takes the value to

bounded operators on a Hilbert space and satisfies f(0) = 0, ∥f(u)∥ < 1 for any
u ∈ Bϵ. Here, ∥·∥ stands for the operator norm on this Hilbert space. Then, for
u ∈ Bϵ, we have

− log(I − f(u)) =
∞∑
n=1

1

n
f(u)n.

Here, the above series converges in operator norm, uniformly on compact subsets
of Bϵ. By this, we have

− d

du
log(I − f(u)) =

∞∑
n=1

1

n

n−1∑
j=0

f(u)jf ′(u)f(u)n−j−1.

Let f(u) = AXu−QXu
2. We remark that |u| < 1

α
implies ∥f(u)∥ < 1. Then,

we have the following proposition.
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Proposition 3.3.3. For |u| < 1
α
, we have

f ′(u)(I − f(u))−1 = − d

du
log(I − f(u)) + u2

∞∑
n=1

1

n

n−1∑
j=1

jf(u)n−1−j[AX , QX ]f(u)
j−1.

Here, [AX , QX ] = AXQX −QXAX .

Proof. By the previous remark, for |u| < 1
α
, we have

− d

du
log(I − f(u)) =

∞∑
n=1

1

n

n−1∑
j=0

f(u)jf ′(u)f(u)n−j−1.

By straightforward calculation, we have

[f(u), f ′(u)] = (QXAX − AXQX)u
2.

Therefore, we get

f(u)f ′(u) = f ′(u)f(u) + [QX , AX ]u
2.

By this equation, we have

n−1∑
j=0

f(u)jf ′(u)f(u)n−1−j = nf ′(u)f(u)n−1 + u2

n−1∑
j=1

jf(u)n−1−j[QX , AX ]f(u)
j−1.

Then, we have

− d

du
log(I − f(u)) =

∞∑
n=1

1

n

(
nf ′(u)f(u)n−1 + u2

n−1∑
j=1

jf(u)n−1−j[QX , AX ]f(u)
j−1

)
= f ′(u)

∞∑
n=1

f(u)n−1 + u2

∞∑
n=1

1

n

n−1∑
j=1

jf(u)n−1−j[QX , AX ]f(u)
j−1

= f ′(u)(I − f(u))−1 + u2

∞∑
n=1

1

n

n−1∑
j=1

jf(u)n−1−j[QX , AX ]f(u)
j−1.

By Proposition 3.3.2 and Proposition 4.3.4, for |u| < 1
α
, we have

u
d

du

∞∑
m=1

NX,m

m
um = −u

d

du
log(I − f(u)) + u3

∞∑
n=1

1

n

n−1∑
j=1

jf(u)n−1−j[AX , QX ]f(u)
j−1
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+ (QX − I)
u2

1− u2
+ u

d

du

∞∑
m=3

Rm

m
um.

Dividing by u and integrating from u = 0 to u, we have

∞∑
m=1

NX,m

m
um = − log(I − f(u))− QX − I

2
log(1− u2)

+

∫ u

0

z2
∞∑
n=1

1

n

n−1∑
j=1

jf(z)n−1−j[AX , QX ]f(z)
j−1dz +

∞∑
m=3

Rm

m
um.

Therefore, for x0, x ∈ VX, we have

∞∑
m=1

NX,m(x0, x)

m
um

= −[log(I − AXu+QXu
2)](x0, x)−

deg(x0)− 2

2
δx0(x) log(1− u2)

+

∫ u

0

z2
∞∑
n=1

1

n

n−1∑
j=1

j
[
f(z)n−1−j[AX , QX ]f(z)

j−1
]
(x0, x)dz +

∞∑
m=3

Rm(x0, x)

m
um.

(3.5)

We define ZX(u, x0, x) as follows.

ZX(u, x0, x) = exp

( ∞∑
m=1

NX,m(x0, x)

m
um

)
We remark that ZX(u, x0, x0) = ZX(u, x0) by Proposition 3.2.2. Then, we have
the following theorem by (3.5).

Theorem 3.3.4. For |u| < 1
α
, we have

ZX(u, x0, x) = (1− u2)−
deg(x0)−2

2
δx0 (x)

× exp
(
− [log(I − (DX −∆X)u+ (DX − I)u2)](x0, x)

)
× exp

(∫ u

0

z2
∞∑
n=1

1

n

n−1∑
j=1

j
[
f(z)n−1−j[AX , DX ]f(z)

j−1
]
(x0, x)dz

)

× exp

( ∞∑
m=3

Rm(x0, x)

m
um

)
.

In particular, if X is a (q + 1)-regular graph, we have

I − (DX −∆X)u+QXu
2 = I −

(
(q + 1)I −∆X

)
u+ qIu2.
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Since ∆X is a self-adjoint bounded operator, there exists a unique spectral mea-
sure such that

∆X =

∫
σ(∆X)

λdE(λ).

Here, σ(∆X) stands for the spectram of ∆X . For x0, x ∈ VX, we denote the
measure ⟨E(·)δx0 , δx⟩ by µx0,x(·). Then, by the property of the spectral integral,
we have the following corollary by Theorem 4.3.5.

Corollary 3.3.5. For |u| < 1
α
, we have

ZX(u, x0, x) = (1− u2)−
q−1
2

δx0 (x)

× exp

(
−

∫
σ(∆X)

log(1−
(
(q + 1)− λ

)
u+ qu2)dµx0,x(λ)

)
× exp

( ∞∑
m=3

Rm(x0, x)

m
um

)
.

Before we consider the case that X is a finite (q + 1)-regular graph, we
introduce the notion of the local spectrum ([10]). For a vertex x ∈ VX, we
denote x-local multiplicity of λi by mx(λi). Here, the x-local multiplicity of λi

is the xx-entry of the primitive idempotent Eλi
. Let {µ0 = λ0, µ1, . . . , µdx} be

the set of eigenvalues whose local multiplicities are positive. For each vertex
x ∈ VX, we denote the x-local spectrum by σx(X). Here, the x-local spectrum is

σx(X) = {λmx(λ0)
0 , µ

mx(µ1)
1 , . . . , µ

mx(µdx )
dx

}. Then, we have the following corollary
immediately by Corollary 4.3.6.

Corollary 3.3.6. For |u| < 1
α
, we have

ZX(u, x0) = (1− u2)−
q−1
2

∏
λ∈σx0 (∆X)

(
1− (q + 1− λ)u+ qu2

)−mx0 (λ)

× exp

( ∞∑
m=3

Rm(x0)

m
um

)
.

We remark that this formula holds for a regular graph which is not always a
simple graph by Proposition 3.2.2 and the formula obtained in p. 188 in [4]. This
formula is regarded as a local version of the original Ihara determinant formula
since the above equation gives the explicit relationship between the number of
closed geodesics starting at x0 and the x0-local spectrum of the Laplacian of X.
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4 A Bartholdi type formula for graphs with bounded

degree

In this part, we introduce a generalized Bartholdi zeta function for simple graphs
with bounded degree. This zeta function is a generalization of both the Bartholdi
zeta function which was introduced by L. Bartholdi and the Ihara zeta function
which was introduced by G. Chinta, J. Jorgenson and A. Karlsson. Furthermore,
we establish a Bartholdi type formula of this Bartholdi zeta function for simple
graphs with bounded degree. Moreover, for regular graphs, we give a new expres-
sion of the heat kernel which is regarded as a one-parameter deformation of the
expression obtained by G. Chinta, J. Jorgenson and A. Karlsson. By applying
this formula, we give an alternative proof of the Bartholdi zeta function formula
for regular graphs.

4.1 Introduction

All graphs in this paper are assumed to be connected, countable and simple.
Let X be a graph with bounded degree and ∆X be the combinatorial Laplacian
of X. It is well-known that the spectrum of ∆X is closely related to geometric
properties and combinatorial properties of X at least from the view point of
graph theory, number theory and probability theory. Classically, it is important
to study the relationship between closed paths in X and the spectrum of ∆X .
In this paper, we study the relationship from the view point of number theory.

Especially for a finite graph X, it is well-known that closed geodesics of X
are deeply related to the spectrum of ∆X (cf. [31]). The relationship is described
as the Ihara formula explicitly. The Ihara zeta function for a finite graph X is
defined by

ZX(u) = exp

( ∞∑
m=1

Nm

m
um

)
.

Here, Nm stands for the number of closed geodesics of length m in X. Then, the
Ihara formula is described as follows (cf. [31]).

ZX(u)
−1 = (1− u2)−χ(X) det

(
I − u(DX −∆X) + u2(DX − I)

)
.

Here, χ(X) stands for the Euler characteristic of X and DX stands for the
valency operator ofX. For finite regular graphs, the above formula was originally
established by Y. Ihara in the p-adic setting ([20]). Then, it has been generalized
by T. Sunada, K. Hashimoto and H. Bass ([2], [14], [15], [16], [17], [18], [21], [27],
[28], [29]). When X is regular, this formula gives an explicit relationship between
the number of closed geodesic and the spectrum of ∆X .
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In 1999, L. Bartholdi introduced the Bartholdi zeta function for finite graphs
and established a determinant expression of it ([1]). The Bartholdi zeta function
is defined by

ZX(u, t) = exp

(∑
C∈C

1

ℓ(C)
tcbc(C)uℓ(C)

)
.

Here, we denote by C the set of closed paths in X, by ℓ(C) the length of C and
by cbc(C) the cyclic bump count of a closed path C. This is a generalization
of the Ihara zeta function by adding a variable t which plays a role of counting
back-trackings of a closed path. Indeed, if t is equal to 0, this zeta function
coincides with the Ihara zeta function ZX(u). The determinant expression of
ZX(u, t) is described as follows ([1]).

ZX(u, t)
−1 =

(
1− (1− t)2u2

)−χ(X)

× det
(
I − u(DX −∆X) + (1− t)u2(DX − (1− t)I)

)
.

As in the case of the Ihara formula, when X is regular, this formula gives the
explicit relationship between the number of closed paths and the spectrum of
∆X .

Recently, several generalizations of the Ihara zeta function from finite graphs
to infinite graphs have been considered (cf. [4], [5], [6], [8], [11], [12], [13], [26]).
In this paper, we follow [4] essentially. In 2017, the author introduced the Ihara
zeta function for a graph X with bounded degree as follows ([22]).

ZX(u, x0) =

( ∞∑
m=1

Nm(x0)

m
um

)
.

Here, Nm(x0) stands for the number of closed geodesics of length m starting at
x0. If X is vertex-transitive, this zeta function coincides with the Ihara zeta
function which was introduced in [4]. In [4], the definition of the Ihara zeta
function for regular graphs is given (p. 185 in [4]). In general, however, when
X is regular, the Ihara zeta function in [4] does not always coincide with our
Ihara zeta function. In [4], G. Chinta, J. Jorgenson and A. Karlsson established
the Ihara type formula for the Ihara zeta function for vertex-transitive graphs
by giving a new expression of the heat kernel ([4]). This definition works well in
the point of studying deeply the relationship between closed geodesics and the
spectrum of ∆X and also as an analogy with heat kernel analysis of rank one
symmetric spaces. After that, the author established the Ihara type formula for
the Ihara zeta function for graphs with bounded degree ([22]). His proof also
gives an alternative proof of the formula for vertex-transitive graphs.
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In this paper, we study the relationship between closed paths and the spec-
trum of ∆X by introducing a Bartholdi zeta function for graphs with bounded
degree. For a graph X with bounded degree and a vertex x0, a Bartholdi zeta
function is defined by as follows in this paper.

ZX(u, t, x0) = exp

( ∑
C∈Cx0

1

ℓ(C)
tcbc(C)uℓ(C)

)
.

Here, we denote by Cx0 the set of closed paths starting at x0. We remark that
we introduce a Bartholdi zeta function which is a generalization of the above.
However, we do not introduce the definition in Introduction because the defini-
tion is a little technical in the sense of being based on a path counting formula.
If t is equal to 0, this Bartholdi zeta function coincides with ZX(u, x0). If X is
a finite graph, by the definition of ZX(u, t, x0), the following equality holds.∏

x0∈VX

ZX(u, t, x0) = ZX(u, t).

In this sense, this Bartholdi zeta function is a generalization of the original
one. Furthermore, we present a Bartholdi type formula for this Bartholdi zeta
function. Especially for regular graphs, this formula describes the relationship
between the number of closed paths and the spectrum of ∆X . We remark that
for finite graphs, this formula can be regarded as a refined version of the original
Bartholdi zeta function formula.

Moreover, for (possibly infinite) regular graphs, we give a new expression of
the heat kernel which is regarded as a one-parameter deformation of the expres-
sion obtained in [4]. By applying this formula, we give an alternative proof of
the Bartholdi formula for regular graphs. We note that our heat kernel approach
to the Bartholdi formula is new even for finite regular graphs. This is an im-
portant application of our new heat kernel expression. Many applications of the
heat kernel are well-known. Therefore, in addition to the above application, we
believe that there should be more applications by using our new expression of
the heat kernel.

4.2 A generalized path counting formula

In this section, we give a generalization of the path counting formula obtained by
T. Kousaka ([22]). First of all, we introduce several symbols. We take a vertex
x0 and e ∈ Ex0 . We denote by Cx0 the set of closed paths starting at x0 and by
Cnotail
x0

the set of closed paths starting at x0 which has no tail. For a complex
variable t, we define Cm(t, x0), Nm(t, x0, e) as follows.

Cm(t, x0) =
∑
C

tcbc(C),
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Nm(t, x0, e) =
∑
C

tcbc(C).

Here, C runs through Cx0 such that ℓ(C) = m in the first equality and C runs
through Cnotail

x0
such that e1(C) = e, ℓ(C) = m in the second equality. For

m ∈ Z≥0, f ∈ ℓ2(VX) and x ∈ VX, we define Cm(t) by

Cm(t)f(x) =
∑

C∈Bx,ℓ(C)=m

tbc(C)f(t(C)).

Here, we denote by Bx the set of paths starting at x. We define Cm(t)(x0, e) as
follows.

Cm(t)(x0, e) =
∑
C

tbc(C).

Here, C runs through Cx0 such that e1(C) = e, ℓ(C) = m in the above equality.
Moreover, we define Cm(t)(x0, ·, ē), Nm(t, x0, ·, ē) and Cm(t)(x0, e, ē) as follows.

Cm(t)(x0, ·, ē) =
∑
C

tbc(C),

Nm(t, x0, ·, ē) =
∑
C

tbc(C),

Cm(t)(x0, e, ē) =
∑
C

tbc(C).

Here, C runs through Cx0 such that em(C) = ē, ℓ(C) = m in the first equality, C
runs through Cnotail

x0
such that em(C) = ē, ℓ(C) = m in the second equality and C

runs through Cx0 such that e1(C) = e, em(C) = ē, ℓ(C) = m in the third equality.
We denote by B(ℓ2(VX)) the set of bounded operators on ℓ2(VX). We remark
that Cm(t) is in B(ℓ2(VX)) for each t. For B ∈ B(ℓ2(VX)) and x1, x2 ∈ VX, we
define B(x1, x2) as follows.

B(x1, x2) = Bδx1(x2).

Here, the symbol δx0 stands for the Kronecker delta. We define the following
formal power series.

Ccbc(t, x0 : u) =
∞∑

m=1

Cm(t, x0)u
m,

C(t, x0 : u) =
∞∑

m=1

Cm(t)(x0, x0)u
m,
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N(t, x0 : u) =
∞∑

m=1

Nm(t, x0)u
m.

Here, we denote
∑

e∈Ex0
Nm(t, x0, e) byNm(t, x0). In addition to this, for a vertex

x ∈ VX, we denote deg(x)C(t, x : u) −
∑

e∈Ex
C(t, t(e) : u) by ∆XC(t, · : u)(x)

by regarding as an element of ℓ2(VX) formally and for m ≥ 1, x ∈ VX, we define
Rm(t)(x) as follows.

Rm(t)(x) =

⌈m
2
⌉−1∑

j=1

j∑
i=1

(1− t)2(j−i)(1− t2)i−1[∆XCm−2j(t)](x, x).

First of all, we prove the following proposition.

Proposition 4.2.1. For a vertex x0, we have the following equality:(
1− (1− t)2u2

)
N(t, x0 : u) =

(
1− (deg(x0)− (1− t2))u2

)
C(t, x0 : u)

− deg(x0)tu
2 +

u2

1− (1− t2)u2
∆XC(t, · : u)(x0).

Moreover, for m ≥ 3, we have

Nm(t, x0) = Cm(t)(x0, x0)− (deg(x0)− 2(1− t))

⌈m
2
⌉−1∑

j=1

(1− t)2(j−1)Cm−2j(t)(x0, x0)

+Rm(t)(x0)− δ2Z(m)(1− t)m−2t deg(x0).

Here, we denote the ceiling function by ⌈·⌉.

Proof. First of all, we prove the first identity. For m ≥ 3, x0 ∈ VX and e ∈ Ex0 ,
we have

Cm(t)(x0, e, ē) =
∑

C=(e,e2,...,em−1,ē),e2=ē,em−1 ̸=e

tbc(C) +
∑

C=(e,e2,...,em−1,ē),e2=ē,em−1=e

tbc(c)

+
∑

C=(e,e2,...,em−1,ē),e2 ̸=ē,em−1 ̸=e

tbc(C) +
∑

C=(e,e2,...,em−1,ē),e2 ̸=ē,em−1=e

tbc(C).

Then, we have

Cm(t)(x0, e, ē)

= t
(
Cm−2(t)(t(e), ē)− Cm−2(t)(t(e), ē, e)

)
+ t2Cm−2(t)(t(e), ē, e)

+
(
Cm−2(t)(t(e))− Cm−2(t)(t(e), ē)− Cm−2(t)(t(e), ·, e) + Cm−2(t)(t(e), ē, e)

)
+ t

(
Cm−2(t)(t(e), ·, e)− Cm−2(t)(t(e), ē, e)

)
22



= Cm−2(t)(t(e), t(e)) + (t− 1)Cm−2(t)(t(e), ē)

+ (t− 1)Cm−2(t)(t(e), ·, e) + (t− 1)2Cm−2(t)(t(e), ē, e).

By this, we have

Cm(t)(x0, e, ē)

= Cm−2(t)(t(e), t(e)) + (t− 1)
(
Cm−2(t)(t(e), ē)−Nm−2(t, t(e), ē)

)
+ (t− 1)

(
Cm−2(t)(t(e), ·, e)−Nm−2(t, t(e), ·, e)

)
+ (t− 1)

(
Nm−2(t, t(e), ē) +Nm−2(t, t(e), ·, e)

)
+ (t− 1)2Cm−2(t)(t(e), ē, e)

= Cm−2(t)(t(e), t(e)) + 2(t− 1)Nm−2(t, t(e), ē) + (t2 − 1)Cm−2(t)(t(e), ē, e).

Therefore, we get

Cm(t)(x0, e, ē) = Cm−2(t)(t(e), t(e)) + 2(t− 1)Nm−2(t, t(e), ē)

+ (t2 − 1)Cm−2(t)(t(e), ē, e). (4.1)

In the case that m ≥ 5, by (4.1), we have

Cm(t)(x0, e, ē)

= Cm−2(t)(t(e), t(e)) + 2(t− 1)Nm−2(t, t(e), ē)

+ (t2 − 1)

{
Cm−4(t)(x0, x0) + 2(t− 1)Nm−4(t, x0, e) + (t2 − 1)Cm−4(t)(x0, e, ē)

}
.

Then, we have

Cm(t)(x0, x0)−Nm(t, x0)

=
(
deg(x0)Cm−2(t)(x0, x0)−∆XCm−2(t)(x0, x0)

)
+ 2(t− 1)Nm−2(t, x0) + (t2 − 1) deg(x0)Cm−4(t)(x0, x0) + (t2 − 1)2(t− 1)Nm−4(t, x0)

+ (t2 − 1)2
(
Cm−4(t)(x0, x0)−Nm−4(t, x0)

)
. (4.2)

Hence, for m ≥ 1, we have the following.

Nm+4(t, x0)− 2(1− t)Nm+2(t, x0) + (1− t2)(1− t)2Nm(t, x0)

= Cm+4(t)(x0, x0)− deg(x0)Cm+2(t)(x0, x0)− (1− t2)2Cm(t)(x0, x0)

+ deg(x0)(1− t2)Cm(t)(x0, x0) + ∆XCm+2(t)(x0, x0).

It is easy to check that this implies the following desired identity:(
1− (1− t)2u2

)
N(t, x0 : u) =

(
1− (deg(x0)− (1− t2))u2

)
C(t, x0 : u)

− deg(x0)tu
2 +

u2

1− (1− t2)u2
∆XC(t, · : u)(x0).
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Next, we prove the second identity. For m = 3, by (4.1), we have

N3(t, x0)− (1− t)2N1(t, x0)

= C3(t)(x0, x0)−
(
deg(x0)− (1− t2)

)
C1(t)(x0, x0) + ∆XC1(t)(x0, x0).

Then, we have

N3(t, x0) = C3(t)(x0, x0)−
(
deg(x0)− 2(1− t)

)
C1(t)(x0, x0) + ∆XC1(t)(x0, x0).

For m = 4, by (4.1), we have

N4(t, x0) = C4(t)(x0, x0)− (deg(x0)− (1− t2))C2(t)(x0, x0)

+ ∆XC2(t)(x0, x0) + (1− t)2N2(t, x0)

= C4(t)(x0, x0)− (deg(x0)− (1− t2))C2(t)(x0, x0)

+ ∆XC2(t)(x0, x0) + (1− t)2(C2(t)(x0, x0)− t deg(x0))

= C4(t)(x0, x0)− (deg(x0)− 2(1− t))C2(t)(x0, x0)

+ ∆XC2(t)(x0, x0)− (1− t)2t deg(x0).

Therefore, the second identity holds for m = 3, 4. In the case m ≥ 5, the identity
(4.2) is equivalent to the following identity.

Nm(t, x0)− (1− t)2Nm−2(t, x0)− (1− t2)
(
Nm−2(t, x0)− (1− t)2Nm−4(t, x0)

)
= Cm(t)(x0, x0)− (1− t2)Cm−2(t)(x0, x0)

−
(
deg(x0 − (1− t2)

)(
Cm−2(t)(x0, x0)− (1− t2)Cm−4(t)(x0, x0)

)
+∆XCm−2(t)(x0, x0). (4.3)

By summing the both sides of (4.3), we have the desired identity.

Next, we prove the following theorem that is our goal in this section.

Theorem 4.2.2. For a vertex x0, we have the following identity:(
1− (1− t2)u2

)(
1− (1− t)2u2

)
Ccbc(t, x0 : u)

=
{
1− (1− t)(deg(x0)−∆X + 2t)u2 + (1− t2)(1− t)

(
deg(x0)− (1− t)

)
u4
}
C(t, · : u)(x0)

−
(
1− (1− t2)

)
t deg(x0)(1− t)u2.

Moreover, for m ≥ 3, we have the following identity:

Cm(t, x0) = Cm(t)(x0, x0)−
deg(x0)− 2(1− t)

1− t

⌈m
2
⌉−1∑

j=1

(1− t)2jCm−2j(t)(x0, x0)

+ (1− t)Rm(t)(x0)− δ2Z(m)(1− t)m−1t deg(x0).
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Proof. For m ≥ 1, Cm(t, x0)−Nm(t, x0) ( resp. Cm(t)(x0, x0)−Nm(t, x0) ) rep-
resents the number of closed paths with weight tcbc(·) ( resp. tbc(·) ) of length m
starting at x0, which have no tail. Hence, we have

Cm(t, x0)−Nm(t, x0) = t
(
Cm(t)(x0, x0)−Nm(t, x0)

)
.

Then, we have

Ccbc(t, x0 : u) = tC(t, c0 : u) + (1− t)N(t, x0 : u).

By this and Proposition 4.2.1, we have(
1− (1− t)2u2

)
Ccbc(t, x0 : u)

=

(
(1− t)(1−

(
deg(x0)− (1− t2)

)
u2) + t(1− (1− t)2u2)

)
C(t, x0 : u)

− (1− t)t deg(x0)u
2 +

(1− t)u2

1− (1− t2)u2
∆XC(t, · : u)(x0).

By simple calculation, this implies the first equality. Next, we verify the second
equality. By Proposition 4.2.1, for m ≥ 3, we have

Cm(t, x0) = t
(
Cm(t)(x0, x0)−Nm(t, x0)

)
+
(
Nm(t, x0)− Cm(t)(x0, x0)

)
+ Cm(t)(x0, x0)

= Cm(t)(x0, x0)− (1− t)
(
Cm(t)(x0, x0)−Nm(t, x0)

)
= Cm(t)(x0, x0)

− (1− t)(deg(x0)− 2(1− t))

⌈m
2
⌉−1∑

j=1

(1− t)2(j−1)Cm−2j(t)(x0, x0)

+ (1− t)Rm(t)(x0)− δ2Z(m)(1− t)m−1t deg(x0).

In the end of this section, we note that generating functions which we defined
in this section are expressed by C(t, x0 : u). We define the generating function
of Rm(t)(x0) as follows.

R(t, x0 : u) =
∞∑

m=1

Rm(t)(x0)u
m.

It is straightforward to check that the following holds. If |t| < 1, |t| ̸= 0 and
|u| < 1

2
, then, we have

R(t, x0 : u) =
u2(

1− (1− t)2u2
)(
1− (1− t2)u2

)∆XC(t, · : u)(x0).

Therefore, all generating functions which we defined in this section are expressed
by C(t, x0 : u). We note that the above formula holds for t = 0.
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4.3 A Bartholdi type formula for simple graphs with bounded
degree

In this section, we introduce a Bartholdi zeta function for a graph with bounded
degree. This zeta function is a generalization of the Bartholdi zeta function from
a finite graph to a graph with bounded degree ([1]).

First of all, we define a Bartholdi zeta function for a graph with bounded
degree. For a graph X with bounded degree, a vertex x0 and complex variables
t, u, we define a Barholdi zeta function as follows.

ZX(u, t, x0) = exp

( ∑
C∈Cx0

1

ℓ(C)
tcbc(C)uℓ(C)

)
.

This is a natural generalization of the Ihara zeta function for a graph with
bounded degree which was introduced in [4] in the spirit of L. Bartholdi although
he introduced by using the Euler product expression. Before we give an Ihara
type formula for this zeta function, we define several operators and give several
properties of Cm(t). We define I(t), QX and QX(t) as follows.

I(t) = (1− t)I,

QX = DX − I,

QX(t) = DX − I(t).

Then, we have the following proposition.

Proposition 4.3.1. For m ≥ 2, we have

Cm(t) =

{
C1(t)

2 − (1− t)(QX + I) if m = 2,
Cm−1(t)C1(t)− (1− t)Cm−2(t)QX(t) if m ≥ 3.

We give the proof of this proposition although this proposition was proved in
[25] because our proof is a little different from [25].

Proof. It is enough to show that for x0, x ∈ VX,

Cm(t)(x0, x) =

{ (
C1(t)

2 − (1− t)(QX + I)
)
(x0, x) if m = 2,(

Cm−1(t)C1(t)− (1− t)Cm−2(t)QX(t)
)
(x0, x) if m ≥ 3.

For m = 2, it is obvious. In the case m ≥ 3, for x0, x ∈ VX, we have

Cm−1(t)C1(t)(x0, x) = Cm−1(t)C1(t)δx0(x) =
∑

C∈Bx,ℓ(C)=m−1

∑
e∈Ex0

t(C)

tbc(C).
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By considering whether a path has backtracking at the last step and comparing
Cm−1(t)C1(t)(x0, x) to Cm(t)(x0, x), we have

Cm−1(t)C1(t)(x0, x)− Cm−2(t)(x0, x)t− Cm−2(t)(x0, x)(deg(x0)− 1)

+ Cm−2(t)(x0, x)t
2 + Cm−2(t)(x0, x)(deg(x0)− 1)t

= Cm(t)(x0, x).

Therefore, we have

Cm(t) = Cm−1(t)C1(t)− Cm−2(t)t− Cm−2(t)QX + Cm−2(t)t
2 + Cm−2(t)QXt

= Cm−1(t)C1(t)− (1− t)Cm−2(t)QX(t).

For a complex valuable t, we define α(t) by

α(t) =
M +

√
M2 + 4(|t|+ 1)M

2
.

Here, we denote the maximum of all degrees of X by M . Then, we have the
following Lemma.

Lemma 4.3.2. For |t| < 1, then for m ≥ 0, we have

∥Cm(t)∥ ≤ α(t)m.

Proof. We prove this by induction on m. For m = 0, 1, there is nothing to do.
We suppose that our assertion holds for m− 1. Then, we have

∥Cm(t)∥ = ∥Cm−1(t)C1(t)− (1− t)Cm−2(t)QX(t)∥
≤ Mα(t)m−1 + (1 + |t|)α(t)m−2(M − 1 + |t|)
= α(t)m−2

{
α(t)M + (1 + |t|)(M − 1 + |t|)

}
= α(t)m−2(α(t)2 + |t|2 − 1) < α(t)m.

By Proposition 4.3.1 and Lemma 4.3.2, we have the following proposition.

Proposition 4.3.3. For |u| < 1
α(t)

, |t| < 1, we have( ∞∑
m=0

Cm(t)u
m

)(
I − uAX + (1− t)QX(t)u

2

)
= (1− (1− t)2u2)I,

( ∞∑
m=0

( ⌊m
2
⌋∑

j=0

Cm−2j(t)(1− t)2j
)
um

)(
I − uAX + (1− t)QX(t)u

2

)
= I.
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Next, for m ≤ 0, t, x ∈ VX and f ∈ ℓ2(VX), we define an operator Rm(t) by

Rm(t)f(x) = Rm(t)(x)f(x).

Then, we define an operator Ccbc
m (t) like the operator NX,m introduced in [22] by

Ccbc
m (t) =


Cm(t) if m = 0, 1,
tC2(t) if m = 2,

Cm(t)− QX(t)−I(t)
1−t

∑⌈m
2
⌉−1

j=1 (1− t)2jCm−2j(t)

+(1− t)Rm(t)− δ2Z(m)(1− t)m−1tDX if m ≥ 3.

We remark that this operator is also a bounded operator by our assumption. We
also remark that Ccbc

m (t)(x0, x0) = Cm(t, x0) and the following identity holds by
Theorem 4.2.2.

ZX(u, t, x0) = exp

( ∞∑
m=1

1

m
Cm(t, x0)u

m

)
.

Therefore, for x0, x ∈ VX, we define ZX(u, t, x0, x) as follows.

ZX(u, t, x0, x) = exp

( ∞∑
m=1

Ccbc
m (t)(x0, x)

m
um

)
.

Moreover, we define f(z) as follows.

f(z) = zAX − z2(1− t)QX(t).

Then, we have the following Proposition ([22]).

Proposition 4.3.4. For |u| < 1
α(t)

, we have

f ′(u)(I − f(u))−1 = − d

du
log(I − f(u))

+ (1− t)u2

∞∑
n=1

1

n

n−1∑
j=1

jf(u)n−1−j(AXQX(t)−QX(t)AX)f(u)
j−1.

Under the above preparation, we give the following theorem.

Theorem 4.3.5. For |u| < 1
α(t)

, |t| < 1 and x0, x ∈ VX, we have

ZX(u, t, x0, x)

= (1− (1− t)2u2)−
deg(x0)−2

2
δx0 (x)
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× exp

(
−

[
log(I − u(DX −∆X) + (1− t)QX(t)u

2)
]
(x0, x)

)
× exp

(∫ u

0

(1− t)z2
∞∑
n=2

1

n

n−1∑
j=1

j
[
f(z)n−1−j(AXDX −DXAX)f(z)

j−1
]
(x0, x)dz

)

× exp

([
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

)
exp

( ∞∑
m=3

(1− t)Rm(t)(x0, x)

m
um

)
.

Proof. We consider the following power series that converges in |u| < 1
α(t)

, |t| < 1.

∞∑
m=0

Ccbc
m (t)um.

By the definition of Ccbc
m (t), we have

∞∑
m=0

Ccbc
m (t)um =

QX(t)

1− t

∞∑
m=0

Cm(t)u
m − QX(t)− I(t)

1− t

∞∑
m=0

⌊m
2
⌋∑

j=0

Cm−2j(t)(1− t)2jum

+
(
QX(t)− I(t)

) (1− t)u2

1− (1− t)2u2
+ (1− t)

∞∑
m=3

Rm(t)u
m

+ C2(t)(t− 1)u2 − t(1− t)3u4

1− (1− t)2u2
DX .

Here, we denote the floor function by ⌊·⌋. In the right hand side of the above
equation, the following equality holds.

(
QX(t)− I(t)

) (1− t)u2

1− (1− t)2u2
− t(1− t)3u4

1− (1− t)2u2
DX

= t(1− t)u2DX +
(1− t)2u2

1− (1− t)2u2
(QX − I).

Hence, we have

∞∑
m=0

Ccbc
m (t)um =

QX(t)

1− t

∞∑
m=0

Cm(t)u
m − QX(t)− I(t)

1− t

∞∑
m=0

⌊m
2
⌋∑

j=0

Cm−2j(t)(1− t)2jum

+ (QX − I)
(1− t)2u2

1− (1− t)2u2
+ (1− t)u2

(
tDX − C2(t)

)
+ (1− t)

∞∑
m=3

Rm(t)u
m.
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Then, we have

∞∑
m=1

Ccbc
m (t)um =

QX(t)

1− t

∞∑
m=0

Cm(t)u
m − I − QX(t)− I(t)

1− t

∞∑
m=0

⌊m
2
⌋∑

j=0

Cm−2j(t)(1− t)2jum

+ (QX − I)
(1− t)2u2

1− (1− t)2u2
+ (1− t)u2

(
tDX − C2(t)

)
+ (1− t)

∞∑
m=3

Rm(t)u
m.

By Proposition 4.3.3, we have

QX(t)

1− t

∞∑
m=0

Cm(t)u
m − I − QX(t)− I(t)

1− t

∞∑
m=0

⌊m
2
⌋∑

j=0

Cm−2j(t)(1− t)2jum

=
QX(t)

1− t

(
1− (1− t)2u2

)
(I − f(u))−1 − I − QX(t)− I(t)

1− t
(I − f(u))−1

= uf ′(u)(I − f(u))−1.

By Proposition 4.3.4, we have

QX(t)

1− t

∞∑
m=0

Cm(t)u
m − I − QX(t)− I(t)

1− t

∞∑
m=0

⌊m
2
⌋∑

j=0

Cm−2j(t)(1− t)2jum

= −u
d

du
log(I − f(u))

+ (1− t)u3

∞∑
n=1

1

n

n−1∑
j=1

jf(u)n−1−j
(
AXQX(t)−QX(t)AX

)
f(u)j−1.

Therefore, for x0, x ∈ VX, we have

u
d

du

∞∑
m=1

Ccbc
m (t)(x0, x)

m
um

= −
[
u
d

du
log(I − f(u))

]
(x0, x)

+ (1− t)u3

∞∑
m=1

1

n

n−1∑
j=1

j
[
f(u)n−1−j

(
AXQX(t)−QX(t)AX

)
f(u)j−1

]
(x0, x)

− deg(x0)− 2

2
δx0(x)u

d

du

[
log(1− (1− t)2u2)

]
+

[
tDX − C2(t)

]
(x0, x)

2
u
d

du

[
(1− t)u2

]
+ u

d

du

∞∑
m=3

(1− t)Rm(t)(x0, x)

m
um.
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Dividing by u and integrating from 0 to u, we have

∞∑
m=1

Ccbc
m (t)(x0, x)

m
um

= −
[
log(I − f(u))

]
(x0, x0)

+

∫ u

0

(1− t)z2
∞∑

m=1

1

n

n−1∑
j=1

j
[
f(z)n−1−j

(
AXQX(t)−QX(t)AX

)
f(z)j−1

]
(x0, x)dz

− deg(x0)− 2

2
δx0(x) log(1− (1− t)2u2) +

[
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

+
∞∑

m=3

(1− t)Rm(t)(x0, x)

m
um.

This implies the following identity

ZX(u, t, x0, x)

= (1− (1− t)2u2)−
deg(x0)−2

2
δx0 (x)

× exp

(
−

[
log(I − u(DX −∆X) + (1− t)QX(t)u

2)
]
(x0, x)

)
× exp

(∫ u

0

(1− t)z2
∞∑
n=2

1

n

n−1∑
j=1

j
[
f(z)n−1−j(AXDX −DXAX)f(z)

j−1
]
(x0, x)dz

)

× exp

([
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

)
exp

( ∞∑
m=3

(1− t)Rm(t)(x0, x)

m
um

)
.

If X is a (q + 1)-regular graph, we have

I − (DX −∆X)u+ (1− t)QX(t)u
2 = I −

(
(q + 1)I −∆X

)
u+ (1− t)(q + t)u2I.

Since ∆X is a self-adjoint bounded operator, there exists a unique spectral mea-
sure E such that

∆X =

∫
σ(∆X)

λdE(λ).

Here, we denote the spectrum of the Laplacian ∆X by σ(∆X). By Theorem 4.3.5
and the property of the spectral integral, we have

ZX(u, t, x0, x) = (1− (1− t)2u2)−
q−1
2

δx0 (x)
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× exp

(∫
σ(∆X)

− log(1− (q + 1− λ)u+ (1− t)(q + t)u2)dµx0,x(λ)

)
× exp

([
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

)
× exp

( ∞∑
m=3

(1− t)Rm(t)(x0, x)

m
um

)
.

Here, we denote d⟨E(λ)δx0 , δx0⟩ by dµx0,x0(λ). Hence, we get the following corol-
lary.

Corollary 4.3.6. For |u| < 1
α(t)

, |t| < 1, we have

ZX(u, t, x0, x) = (1− (1− t)2u2)−
q−1
2

δx0 (x)

× exp

(∫
σ(∆X)

− log(1− (q + 1− λ)u+ (1− t)(q + t)u2)dµx0,x(λ)

)
× exp

([
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

)
× exp

( ∞∑
m=3

(1− t)Rm(t)(x0)

m
um

)
.

Moreover, we discuss the case that X is a finite (q + 1)-regular graph. We
introduce the notion of the local spectrum ([10]). For a vertex x ∈ VX, we
denote x-local multiplicity of λi by mx(λi). Here, the x-local multiplicity of λi

is the xx-entry of the primitive idempotent Eλi
. Let {µ0 = λ0, µ1, . . . , µdx} be

the set of eigenvalues whose local multiplicities are positive. For each vertex
x ∈ VX, we denote the x-local spectrum by σx(X). Here, the x-local spectrum

is σx(X) = {λmx(λ0)
0 , µ

mx(µ1)
1 , . . . , µ

mx(µdx )
dx

}.
Then, we have the following corollary immediately by Corollary 4.3.6.

Corollary 4.3.7. For |u| < 1
α(t)

, |t| < 1, we have

ZX(t, u, x0, x) = (1− (1− t)2u2)−
q−1
2

δx0 (x)∏
λ∈σx0 (∆X)

(
1− (q + 1− λ)u+ (1− t)(q + t)u2

)−mx0 (λ)

× exp

([
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

)
× exp

( ∞∑
m=3

(1− t)Rm(t)(x0, x)

m
um

)
.
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4.4 The Euler product expression

In this section, we give the Euler product expression of the Bartholdi zeta func-
tion which is introduced in Section 4. We have to introduce several terminologies
to give the Euler product expression. We take a vertex x0. A closed path C start-
ing at x0 is primitive if there is no closed paths starting at x0 whose length is
shorter than ℓ(C) and of which the multiple is C. We denote by PKx0 the set
of primitive closed paths starting at x0. Then, the following theorem holds.

Theorem 4.4.1. For |u| < 1
α(t)

, |t| < 1, we have

ZX(t, u, x0) =
∏

C∈PKx0

(1− tcbc(C)uℓ(C))−
1

ℓ(C) .

Proof. For |u| < 1
α(t)

, |t| < 1 and N ∈ Z≥1, we have

log
∏

C∈PKx0 ,ℓ(C)≤N

(1− tcbc(C)uℓ(C))−
1

ℓ(C) = −
∑

C∈PKx0 ,ℓ(C)≤N

1

ℓ(C)
log(1− tcbc(C)uℓ(C))

=
∑

C∈PKx0 ,ℓ(C)≤N

∞∑
m=1

1

ℓ(C)m
tcbc(C)muℓ(C)m

=
∑

C∈PKx0 ,ℓ(C)≤N

∞∑
m=1

1

ℓ(Cm)
tcbc(C

m)uℓ(Cm)

=
∑
C

1

ℓ(C)
tcbc(C)uℓ(C).

Here, the last sum runs through the set of closed paths starting at x0 such that
the length of primitive paths is less than or equal to N . Therefore, for any N ,
we have,

exp

(∑
C

1

ℓ(C)
tcbc(C)uℓ(C)

)
=

∏
C∈PKx0 ,ℓ(C)≤N

(1− tcbc(C)uℓ(C))−
1

ℓ(C)

Here, the sum runs through the same set as the above. Taking the limit of the
both sides, we have

ZX(t, u, x0) =
∏

C∈PKx0

(1− tcbc(C)uℓ(C))−
1

ℓ(C) .
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4.5 The heat kernels on regular graphs

In this section, for a regular graph, we give a new expression of the heat kernels
on regular graphs by using the modified Bessel function of the first kind. Let X
be a (q+1)-regular graph. We denote the heat kernel of X by KX(τ, x0, x). For
j ∈ Z≥0 and real variable t which satisfies |t| < 1, we define the symbol dj(t) as
follows.

dj(t) =

{
1 if j = 0,
− q−1+2t

1−t
if j ≥ 1.

Then, the following theorem holds.

Theorem 4.5.1. For τ ∈ R≥0, x ∈ VX and |t| < 1, we have

KX(τ, x0, x) =
∞∑
n=0

Cn(t)(x0, x)
∞∑
j=0

dj(t) e
−(q+1)τ

× (1− t)2j
(
(1− t)(q + t)

)−n+2j
2 In+2j

(
2
√
(1− t)(q + t)τ

)
.

Proof. We define g(τ, x) as follows.

g(τ, x) = e(q+1)τ f(τ, x).

Then, it turns out that the heat equation is equivalent to the following equation.{
∂g
∂τ
(τ, x)− C1(t)g(τ, ·)(x) = 0,

g(0, x) = δx0(x).

Here, we remark that C1(t) is equal to AX . It is sufficient to show that the
following is the solution of the above equation.

g(τ, x) =
∞∑
n=0

Cn(t)(x0, x)
∞∑
j=0

dj(t)

× (1− t)2j
(
(1− t)(q + t)

)−n+2j
2 In+2j

(
2
√
(1− t)(q + t)τ

)
.

It is obvious that g(0, x) = δx0(x). Therefore, it remains to check that g(τ, x)
is bounded on [0, T ] × VX for each T and g(τ, x) satisfies the above equation
indeed.

First, we check that g(τ, x) is bounded. By Proposition 4.3.1 and (2.2), we
have

|g(τ, x)| ≤
∞∑
n=0

α(t)n
∞∑
j=0

|dj(t)| |1− t|2j τn+2j e
2
√

(q+t)(1−t)τ

(n+ 2j)!
.
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We denote the maximum of dj(t) by Mt. Then, we have

|g(τ, x)| ≤ Mt e
2
√

(q+t)(1−t)τ

∞∑
n=0

α(t)n
∞∑
j=0

τn(2τ)2j

(n+ 2j)!

≤ Mt e
2
√

(q+t)(1−t)τ

∞∑
n=0

(
α(t)τ

)n
n!

∞∑
j=0

(2τ)2j

(2j)!

= Mt e
(2
√

(q+t)(1−t)+α(t))τ cosh(2τ).

Therefore, g(τ, x) is bounded on [0, T ]× VX for each T .
Second, we check that g(τ, x) satisfies the equation. To prove this, we define

g(τ) as follows.

g(τ) =
∞∑
n=0

Cn(t)
∞∑
j=0

dj(t)

× (1− t)2j
(
(1− t)(q + t)

)−n+2j
2 In+2j

(
2
√
(1− t)(q + t)τ

)
.

Then,

∂g

∂τ
(τ, x)− C1(t)g(τ, ·)(x)

=

{
∂g

∂τ
(τ)− C1(t)g(τ)

}
(x0, x).

Therefore, it is sufficient to check that

∂g

∂τ
(τ)− C1(t)g(τ) = 0.

∂g

∂τ
(τ)− C1(t)g(τ)

=
∞∑
n=0

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n+2j−1
2 In+2j−1

(
2
√
(1− t)(q + t)τ

)
+

∞∑
n=0

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n+2j−1
2 In+2j+1

(
2
√
(1− t)(q + t)τ

)
−

∞∑
n=1

C1(t)Cn−1(t)

×
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n−1+2j
2 In+2j−1

(
2
√
(1− t)(q + t)τ

)
.
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Here, we used (2.1) and we remark that we are allowed to change the order of
the differentiation and power series by (2.2). By Proposition 4.3.1, we have

Cn(t) =

{
C1(t)

2 − (1− t)(q + 1)I if n = 2,
C1(t)Cn−1(t)− (1− t)(q + t)Cn−2(t) if n ≥ 3.

Here, we remark that the operator Cn(t) is a self-adjoint operator. By this
relation, we have

∞∑
n=1

C1(t)Cn−1(t)

×
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n−1+2j
2 In+2j−1

(
2
√
(1− t)(q + t)τ

)
= C1(t)

∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−j
I2j

(
2
√

(1− t)(q + t)τ
)

+ C2(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 1+2j
2 I2j+1

(
2
√

(1− t)(q + t)τ
)

+ (1− t)(q + 1)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 1+2j
2 I2j+1

(
2
√
(1− t)(q + t)τ

)
+

∞∑
n=3

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n−1+2j
2 In+2j−1

(
2
√
(1− t)(q + t)τ

)
+

∞∑
n=1

Cn(t)

×
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n+2j−1
2 In+2j+1

(
2
√
(1− t)(q + t)τ

)
.

To explain our calculation clearly, we put

(n = 1) = C1(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−j
I2j

(
2
√
(1− t)(q + t)τ

)
,

(n = 2− 1) = C2(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 1+2j
2 I2j+1

(
2
√
(1− t)(q + t)τ

)
,

(n = 2− 2) = (1− t)(q + 1)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 1+2j
2 I2j+1

(
2
√
(1− t)(q + t)τ

)
,

(n = 3− 1) =
∞∑
n=3

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n−1+2j
2 In+2j−1

(
2
√
(1− t)(q + t)τ

)
,
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(n = 3− 2) =
∞∑
n=1

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n+2j−1
2 In+2j+1

(
2
√
(1− t)(q + t)τ

)
.

By calculating (n = 1) + (n = 2− 1) + (n = 3− 1),

∞∑
n=1

C1(t)Cn−1(t)

×
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n−1+2j
2 In+2j−1

(
2
√
(1− t)(q + t)τ

)
=

∞∑
n=1

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n−1+2j
2 In+2j−1

(
2
√

(1− t)(q + t)τ
)

+ (n = 2− 2) + (n = 3− 2).

Then, we have

∂g

∂τ
(τ)− C1(t)g(τ)

=
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 2j−1
2 I2j−1

(
2
√
(1− t)(q + t)τ

)
+

∞∑
n=0

Cn(t)
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)−n+2j−1
2 In+2j+1

(
2
√
(1− t)(q + t)τ

)
− (n = 2− 2)− (n = 3− 2)

=
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 2j−1
2 I2j−1

(
2
√
(1− t)(q + t)τ

)
+

∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 2j−1
2 I2j+1

(
2
√

(1− t)(q + t)τ
)
− (n = 2− 2)

=
∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 2j−1
2 I2j−1

(
2
√
(1− t)(q + t)τ

)
+

∞∑
j=0

dj(t)(1− t)2j
(
1− q + 1

q + t

)(
(1− t)(q + t)

)− 2j−1
2 I2j+1

(
2
√
(1− t)(q + t)τ

)
=

∞∑
j=0

dj(t)(1− t)2j
(
(1− t)(q + t)

)− 2j−1
2 I2j−1

(
2
√
(1− t)(q + t)τ

)
−

∞∑
j=0

dj(t)(1− t)2j
(
1− t

q + t

)(
(1− t)(q + t)

)− 2j−1
2 I2j+1

(
2
√
(1− t)(q + t)τ

)
.
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Here, we note that C0(t) = I. Therefore, we have

∂g

∂τ
(τ)− C1(t)g(τ) = 0.

Here, we used I−1(τ) = I1(τ). This completes the proof.

4.6 An alternative proof of the Bartholdi zeta function
formula

In this section, we give an alternative proof of the Bartholdi zeta function formula
for a regular graph obtained in Section 4.

Since ∆X is a self-adjoint bounded operator, there exists a unique spectral
measure E such that

∆X =

∫
σ(∆X)

λdE(λ).

Here, σ(∆X) stands for the spectrum of ∆X . Therefore, for x0, x ∈ VX, we have

KX(τ, x0, x) =

∫
σ(∆)

e−τλ dµx0,x(λ).

Here, we denote d⟨E(λ)δx0 , δx⟩ by dµx0,x(λ). By applying the G(t)-transform
and by easy culculation, for 0 < u < 1

α(t)
, we have

G(t)
(
KX(τ, x0, x)

)
(u) = G(t)

(∫
σ(∆)

e−τλ dµx0,x(λ)

)
(u)

=

∫
σ(∆X)

u−2 − (q + t)(1− t)

(q + t)(1− t)u+ 1
u
− (q + 1− λ)

dµx0,x(λ).

We remark that we are allowed to change the order of integrations in the above
equation by Fubini’s theorem. We also remark that if 0 < u < 1

α(t)
, then we have

(q + t)(1− t)u+
1

u
− (q + 1− λ) > 0.

On the other hand, by Theorem 4.5.1, we have

G(t)
(
KX(τ, x0, x)

)
(u) = G(t)

( ∞∑
n=0

Cn(t)(x0, x)
∞∑
j=0

dj(t) e
−(q+1)τ
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× (1− t)2j
(
(1− t)(q + t)

)−n+2j
2 In+2j

(
2
√
(1− t)(q + t)τ

))
(u)

=
∞∑
n=0

Cn(t)(x0, x)
∞∑
j=0

dj(t)(1− t)2jun+2j−1.

Here, we used (2.3) in the second equation. Therefore, we have

G(t)(KX(τ, x0, x))(u) =
∞∑
n=0

Cn(x0, x)u
n−1

− q − 1 + 2t

1− t

∞∑
n=2

⌊n
2
⌋∑

j=1

Cn−2j(t)(x0, x)(1− t)2jun−1.

We note that the following equality holds.

∞∑
n=2

⌊n
2
⌋∑

j=1

Cn−2j(t)(x0, x)(1− t)2jun =
∞∑
n=3

⌈n
2
⌉−1∑

j=1

(1− t)2jCn−2j(t)(x0, x)u
n

+ C0(t)(x0, x)
(1− t)4u4

1− (1− t)2u2
+ C0(t)(x0, x)(1− t)2u2.

Hence, we have

G(t)(KX(τ, x0, x))(u)

=
∞∑
n=3

Cn(t)(x0, x)u
n−1 − q − 1 + 2t

1− t

∞∑
n=3

⌈n
2
⌉−1∑

j=1

(1− t)2jCn−2j(t)(x0, x)u
n−1

+
1

u

(
C0(t)(x0, x) + C1(t)(x0, x)u+ tC2(t)(x0, x)u

2
)

+ u(1− t)C2(t)(x0, x)− (q − 1 + 2t)
(1− t)u

1− (1− t)2u2
C0(t)(x0, x).

By the definition of Ccbc
m (t), we have

G(t)
(
KX(τ, x0, x)

)
(u)

=
1

u
C0(t)(x0, x) +

1

u

∞∑
n=1

(
Ccbc

n (t)(x0, x)− (1− t)Rm(t)(x0, x)
)
um

+ (1− t)u
(
C2(t)− tDX

)
(x0, x)− (q − 1)

(1− t)2u

1− (1− t)2u2
C0(t)(x0, x).

Therefore, we have∫
σ(∆X)

u−2 − (q + t)(1− t)

(q + t)(1− t)u+ 1
u
− (q + 1− λ)

dµx0,x(λ)
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=
1

u
C0(t)(x0, x) +

1

u

∞∑
n=1

(
Ccbc

n (t)(x0, x)− (1− t)Rm(t)(x0, x)
)
um

+ (1− t)u
(
C2(t)− tDX

)
(x0, x)− (q − 1)

(1− t)2u

1− (1− t)2u2
C0(t)(x0, x).

This is equivalent to the following equation.

d

du

{
q − 1

2
C0(t) log(1− (1− t)2u2) +

∞∑
n=1

Ccbc
n (t)− (1− t)Rn(t)

n
un

+
C2(t)− tDX

2
(1− t)u2

}
(x0, x)

=
d

du

∫
σ(∆X)

− log
(
1− (q + 1− λ)u+ (1− t)(q + t)u2

)
dµx0,x(λ)

By integrating both sides from 0 to u and determining the integrating constant,
we have

(1− (1− t)2)
q−1
2

δx0 (x)ZX(u, t, x0, x) exp

(
−

∞∑
n=3

(1− t)Rm(t)(x0, x)

m

)
× exp

([
C2(t)− tDX

]
(x0, x)

2
(1− t)u2

)
= exp

(∫
σ(∆X)

− log
(
1− (q + 1− λ)u+ (1− t)(q + t)u2

)
dµx0,x(λ)

)
.

Therefore, we have

ZX(u, t, x0, x) = (1− (1− t)2u2)−
q−1
2

δx0 (x)

× exp

(∫
σ(∆X)

− log(1− (q + 1− λ)u+ (1− t)(q + t)u2)dµx0,x(λ)

)
× exp

([
tDX − C2(t)

]
(x0, x)

2
(1− t)u2

)
× exp

( ∞∑
m=3

(1− t)Rm(t)(x0, x)

m
um

)
.

This gives an alternative proof of the Bartholdi zeta function formula obtained
in Section 4.
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Sūrikaisekikenkyūsho Kōkyūroku 840 (1993), 70–81. Algebraic combina-
torics (Kyoto, 1992).

[19] M. D. Horton, D. B. Newland and A. Terras, The contest between the
kernels in the Selberg trace formula for the (q+1)-regular tree. In the ubiq-
uitous heat kernel, vol 398 of Contemp. Math., 265–293. Amer. Math. Soc.,
Providence, RI, 2006.

[20] Y. Ihara, On discrete subgroups of the two by two projective linear group
over p-adic field, J. Math. Soc. Japan 18 (1966), 219–235.

[21] M. Kotani and T. Sunada, Zeta functions of finite graphs,
J. Math. Sci. Univ. Tokyo 7 (2000), 7–25.

[22] T. Kousaka, A generalized Ihara zeta function formula for simple graphs
with bounded degree, preprint, arXiv:1712.06363.

[23] T. Kousaka, A generalized Bartholdi zeta function formula for simple graphs
with bounded degree, preprint, arXiv:1801.00291.

[24] F. Oberhettinger and L. Baddi, Tables of Laplace transforms, Springer-
Verlag, New York (1973).

[25] I. Sato, Bartholdi zeta functions of fractal graphs, Electron. J. Combin. 16
(2009), no. 1, Research Paper 30, 21 pp.

[26] O. Scheja, On zeta functions of arithmetically defined graphs, Finite Fields
Appl. 5 (1999), No. 3, 314–343.

[27] J. P. Serre, Trees, Springer Monographs in Mathematics. Springer-Verlag,
Berlin, 2003.

42



[28] T. Sunada, L-Functions in geometry and some applications, Curvature and
topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math.,
vol. 1201, Springer, Berlin, 1986, pp. 266–284.

[29] T. Sunada, Fundamental groups and Laplacians, Geometry and analysis
on manifolds (Katata/Kyoto, 1987), Lecture Notes in Math., vol. 1339,
Springer, Berlin, 1988, pp. 248–277.

[30] T. Sunada, Topological Crystallography, Surveys and Tutorials in the Ap-
plied Mathematical Sciences volume 6, Springer-Berlin, 2013.

[31] A. Terras, Zeta functions of graphs. A stroll through the garden, Cambridge
Studies in Advanced Mathematics, 128. Cambridge University Press, Cam-
bridge, 2011.

43


