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1 Introduction

1.1 Infinite-dimensional stochastic differential equations

An interacting Brownian motion in infinite dimension is a dynamics for infinitely many
Brownian particles moving on Rd which has free potential Φ and interaction potential
Ψ. The dynamics is described by the infinite-dimensional stochastic differential equation
(ISDE)

dXi
t = dBi

t −
β

2
∇xΦ(X

i
t)dt−

β

2

∑
j ̸=i

∇xΨ(Xi
t , X

j
t )dt, i ∈ N. (1.1)

Here (Bi
t)i∈N is (Rd)N-valued Brownian motion and β > 0 is an inverse temperature.

Lang began to study (1.1) using Itô’s calculus [37, 38]. His work was followed by Fritz
[15], Tanemura [70], and others. In these work, interaction potential Ψ is restricted to C3

0

or exponentially decaying. Thus their results do not work when Ψ is long-range potential,
for example, logarithmic potential. However, interacting Brownian motions arising from
random matrices has the logarithmic interaction potential.

On the other hand, a Dirichlet form approach also provides a method to solve the
ISDE (1.1) [44, 47]. The Dirichlet form approach works under mild assumptions including
long-range potential. In fact, Osada constructed an unlabeled diffusion of (1.1) whenever
Ψ is logarithmic potential by Dirichlet form techniques [44]. Then, using this unlabeled
diffusion, (1.1) was solved by Dirichlet form techniques again [47]. We exposit examples
of ISDEs related to random matrices.

Sineβ interacting Brownian motion (the Dyson Brownian motion in infinite
dimension)

Let d = 1. Sineβ interacting Brownian motion is given by the following ISDE:

dXi
t = dBi

t +
β

2
lim
r→∞

∑
j ̸=i, |Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt, i ∈ N. (1.2)

This is also known as the Dyson Brownian motion in infinite dimensions. When β ∈
{1, 2, 4}, (1.2) was solved by the Dirichlet form approach [47]. For β ≥ 1, Tsai solved (1.2)
by another method [76]. Although he constructed only the Dyson Brownian motion, and
his method cannot extend to the high-dimensional case d ≥ 2, this result can be applied to
out-of-equilibrium initial conditions, which is stronger than outcomes from the Dirichlet
form approach.

Airyβ interacting Brownian motion
Let d = 1. Airyβ interacting Brownian motion is given by the following ISDE:

dXi
t = dBi

t +
β

2
lim
r→∞

{ ∑
|Xj

t |<r,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<r

ϱ(x)

−x
dx
}
dt, i ∈ N. (1.3)

Here ϱ(x) = 1(−∞,0)(x)
√
−x, which is the shifted and rescaled semicircle function at the

right edge. The ISDE (1.3) was solved by the Dirichlet form approach for β ∈ {1, 2, 4}
[54].
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Besselα,β interacting Brownian motion
Let d = 1. For α ∈ [1,∞), the Besselα,β interacting Brownian motion is defined as the

following:

dXi
t = dBi

t +
β

2

{ α

2Xi
t

+
∞∑
j ̸=i

1

Xi
t −Xj

t

}
dt, i ∈ N. (1.4)

Here particles move on (0,∞), and each particle especially does not hit the origin. For
β = 2, the ISDE (1.4) was solved by the Dirichlet form approach [17]. When β ∈ {1, 2, 4},
equilibrium states for sineβ, Airyβ and Besselα,β interacting Brownian motions arise from
random matrices with symmetry.

Ginibre interacting Brownian motion
Let d = 2 and β = 2. Ginibre interaction Brownian motion is given by

dXi
t =dB

i
t + lim

r→∞

∑
|Xi

t−Xj
t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt, i ∈ N, (1.5)

and also

dXi
t =dB

i
t −Xi

tdt+ lim
r→∞

∑
|Xj

t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt, i ∈ N. (1.6)

Actually, (1.5) and (1.6) have the same solution [47]. A equilibrium state of Ginibre
interaction Brownian motion is Ginibre random point field, arising from non-Hermitian
random matrices.

1.2 First finite particle approximation theorem and SDE gap for the
Dyson Brownian motion

We begin by introducing random matrix models (see [2, 14, 43] for details). Gaussian
orthogonal/unitary/symplectic ensembles (GOE/GUE/GSE) are Gaussian ensembles de-
fined on the space of symmetric/Hermitian/self-dual matrices MN (N ∈ N) with inde-
pendent random variables respectively. By definition, the GUE MN = [MN

i,j ]1≤i,j≤N is an
N ×N Hermite matrix having the form

MN
i,j =

{
ξi√
2
, if i = j,

τi,j
2 +

√
−1τ̃i,j
2 , if i < j,

where {ξi, τi,j , ζi,j}∞i<j are i.i.d. Gaussian random variables with mean zero and unit vari-
ance. Similarly the GOE (GSE) is defined as symmetric matrix whose entries are real
(quaternion) i.i.d. Gaussian random variables up to symmetry respectively.

The eigenvalues x1, . . . , xN of G(O/U/S)E are real from symmetry and have distribu-
tion such that

µ̌Nβ (dxN ) =
1

Z

N∏
i<j

|xi − xj |β
N∏
k=1

e−
β
2
|xk|2 dxN , (1.7)

4



where β = 1, 2, 4 for G(O/U/S)E respectively. Here xN = (x1, . . . , xN ) ∈ RN and Z =
Zβ,N is a normalizing constant. Remark that (1.7) shows eigenvalues repel each other by
the logarithmic potential, which is long-range potential. Wigner’s celebrated semicircle
convergence theorem asserts that the empirical measure of eigenvalues converges to the
semicircle distribution: for a scaled empirical measure xN =

∑
1≤i≤N δ xi√

N
,

lim
N→∞

Eµ̌N
β

[
1

N
xN (−∞, s)

]
=

∫ s

−∞
ρsc(x) dx, (1.8)

for β ∈ {1.2.4}, where ρsc is the Wigner semicircle law (with radius
√
2)

ρsc(x) =
1

π

√
2− x21(−

√
2,
√
2)(x).

The Wigner semicircle law shows macroscopic statistics (global statistics).
Consider microscopic statistics (local statistics) of Gaussian ensembles. Depending on

a centre of a scaling limit on the Wigner semicircle law, two different microscopic statistics
appear: the first one is sine random point field, which a bulk scaling limit yields, and the
second one is Airy random point field, which a soft-edge scaling limit yields. Hereafter we
focus on the case β = 2 for simplicity: the case in β ∈ {1, 4} is almost the same.

Choose a bulk position θ in the Wigner semicircle, that is, fix θ such that

θ ∈ (−
√
2,
√
2). (1.9)

Take the bulk scaling x 7→ y such that

x =
y√
N

+ θ
√
N. (1.10)

Substituting (1.10) to (1.7), we get the scaled eigenvalue distribution µ̌Nsin,2,θ as follows:

µ̌Nsin,2,θ(dxN ) =
1

Z

N∏
i<j

|xi − xj |2
N∏
k=1

exp
(
−
( yk√

N
+ θ

√
N
)2)

dxN . (1.11)

Here the normalize constant Z differs from that in (1.7), but we abuse the notation.
Define µNsin,2,θ as the random point field whose labeled density is given by µ̌Nsin,2,θ. Let

ρN,n
sin,2,θ be the n-correlation function for µNsin,2,θ. Then for any n ∈ N we have

lim
N→∞

ρN,n
sin,2,θ = ρnsin,2,θ compact uniformly, (1.12)

where ρnsin,2,θ is the n-correlation function for the sine2 random point field µsin,2,θ. The
sine2 random point field is a determinantal random point field on R with the sine kernel

Ksin,θ(x, y) =
sin{

√
2− θ2(x− y)}
π(x− y)

.

Then by definition,

ρnsin,2,θ(x1, . . . , xn) = det[Ksin,θ(xi, xj)]
n
i,j=1.

5



Compact uniform convergence of the correlation functions (1.12) immediately yields

lim
N→∞

µNsin,2,θ = µsin,2,θ weakly. (1.13)

The convergence (1.13) shows that the bulk scaling limit has the universal random point
field limit up to the density.

Once universality for random point fields is established, it is natural to ask what is a
dynamical counterpart to it: a natural N -particle dynamics associated with µ̌Nsin,2,θ is the
following SDE.

dXN,i
t = dBi

t +
N∑
j ̸=i

1

XN,i
t −XN,j

t

dt− 1

N
XN,i

t dt− θ dt, 1 ≤ i ≤ N. (1.14)

Actually, the relation between (1.11) and (1.14) is as follows. We first consider the Dirichlet
form on L2(RN , µ̌Nsin,2,θ) such that

E µ̌N
sin,2,θ(f, g) =

∫
RN

1

2

N∑
i=1

∂f

∂xi

∂g

∂xi
µ̌Nsin,2,θ(dxN ).

Integration by parts and (1.11) yield a representation of the generator Lµ̌N
sin,2,θ of E µ̌N

as
follows:

Lµ̌N
sin,2,θ =

1

2
∆ +

N∑
i=1

{ N∑
j; j ̸=i

1

xi − xj

} ∂

∂xi
−

N∑
i=1

{xi
N

+ θ
} ∂

∂xi
,

which corresponds the SDE (1.14). In other words, a distorted Brownian motion with
respect to µ̌Nsin,2,θ is described as (1.14).

Taking the limit N → ∞ in (1.14), we intuitively expect that a limit ISDE is given by

dXi
t = dBi

t +
∞∑
j ̸=i

1

Xi
t −Xj

t

dt− θ dt, i ∈ N. (1.15)

However, this intuition fails when θ ̸= 0. In fact, a limit ISDE is not (1.15) but the Dyson
Brownian motion in infinite dimension for β = 2, which is described as

dXi
t = dBi

t + lim
r→∞

∑
j ̸=i, |Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt, i ∈ N. (1.16)

Therefore the intuitive limit (1.15) and the correct limit (1.16) are different (SDE gap).
We expect this SDE gap from the fact that the ISDE (1.16) is the distorted Brownian
motion with respect to the sine2 random point field.

This phenomena is special to long-range correlated systems. Because of the logarithmic
interaction, the summation in the drift term in (1.14) does not converge absolutely when N
goes to infinity. The limit transition for logarithmic correlated systems is thus a sensitive
problem, and we have to consider cancellation for interaction to control the interaction
term. A fine estimate shows that the tail part of the interaction term is exactly θ.
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Precisely we obtain the above SDE gap as follows. Let lN and l be labeling maps. We
write lN,m and lm as the first m-components of lN and l respectively. We assume that for
each m ∈ N

lim
N→∞

µNsin,2,θ ◦ l−1
N,m = µsin,2,θ ◦ l−1

m weakly. (1.17)

Let Xθ,N = (Xθ,N,i)Ni=1 be a solution of the SDE (1.14) and X = (Xi)i∈N be a solution of

the ISDE (1.16). Assume that Xθ,N
0 = µNsin,2,θ ◦ l

−1
N and X0 = µsin,2,θ ◦ l−1 in distribution

in addition to (1.9) and (1.17). Then we have for each m ∈ N

lim
N→∞

(Xθ,N,1, Xθ,N,2, . . . , Xθ,N,m) = (X1, X2, . . . , Xm) (1.18)

weakly in C([0,∞);Rm).
Motivated by (1.18), we established a general theorem of finite particle approximation,

which we call the first approximation theorem. An essential assumption for the first
theorem is the uniqueness of a solution for an ISDE. The uniqueness was proved for
typical ISDEs [53, 76]. Another main assumption is convergence of a drift term in finite-
dimensional SDEs. In particular, uniform control of a tail part of an interaction term is
crucial.

The first approximation theorem does not depend on the dimension which particles are
moving on, inverse temperature, and integrable structure. Thus it is applicable to many
other examples related to random matrices, one of which we explain below.

Consider a soft-edge scaling limit rather than the bulk scaling limit, which yields the
other microscopic statistics of Gaussian ensembles. The soft-edge scaling x 7→ y is given
by

x =
y

√
2N

1
6

+
√
2N. (1.19)

The scaling (1.19) means the centre point for the scaling limit is the right edge of the
semicircle. Substituting (1.19) to (1.7), we have

µ̌NAiry,2(dxN ) =
1

Z

N∏
i<j

|xi − xj |2 exp
{
−

N∑
k=1

∣∣∣ xk√
2N1/6

+
√
2N
∣∣∣2}dxN .

The soft-edge scaling (1.19) means that we focus on the right edge of the semicircle law.
Let µNAiry,2 be the random point field with N -particles whose labeled density is µ̌NAiry,2,

and ρN,n
Airy,2 be the n-correlation function for µNAiry,2. Let Airy2 random point field µAiry,2

be the determinantal random point field with the Airy kernel

KAiry(x, y) =
Ai′(x)Ai(y)−Ai(x)Ai′(y)

x− y
, (1.20)

where Ai(x) is the Airy function such that

Ai(x) =
1

2π

∫
R
exp

{
i

(
xk +

k3

3

)}
dk
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and Ai′(x) = dAi(x)/dx. We set n-correlation function ρnAiry,2 for µAiry,2, then by definition

ρnAiry,2 = det[KAiry(xi, xj)]
n
i,j=1.

Then for any n

lim
N→∞

ρN,n
Airy,2 = ρnAiry,2 compact uniformly. (1.21)

From (1.21) we obtain

lim
N→∞

µNAiry,2 = µAiry,2 weakly.

Airy2-random point field has only finite particles on the positive line in R and the most
right particle is Tracy-Widom distributed.

Observe an ISDE associated with Airy2 random point field. Using the same argument
which derives (1.14), we obtain an N -particle dynamics associated with µ̌NAiry,2 as follows:

dXN,i
t = dBi

t +
N∑

j=1, j ̸=i

1

XN,i
t −XN,j

t

dt−
{
N1/3 +

1

2N1/3
XN,i

t

}
dt. (1.22)

By taking a limit of (1.22) as N to infinity, we may obtain a form of an ISDE associated
with Airy2 random point field. However, we cannot easily do the limit transition because
the SDE (1.22) has the divergence term.

It is known that an ISDE associated with Airy2 random point field is the following:

dXi
t = dBi

t + lim
r→∞

{ ∑
|Xj

t |<r,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<r

ϱ(x)

−x
dx
}
dt, i ∈ N, (1.23)

where we recall ϱ(x) = 1(−∞,0)(x)
√
−x. Once the ISDE related to Airy2 random point

field is founded, then it is natural to ask a relation between (1.22) and (1.23). The first
approximation theorem also gives a proof of the limit transition from (1.22) to (1.23).

We shall construct the first approximation theorem in Section 2 building upon [28].
Combining this general theorem and concrete calculation using determinantal structure,
we prove the SDE gap in Section 3, which is based on [29].

1.3 Second finite particle approximation theorem and dynamical uni-
versality for random matrices

The convergence (1.13) is weak universality result in the sense that the limit random point
field is sine random point field, which is independent of a bulk position θ in the semicircle.
More strongly, it is believed as a universality conjecture for random matrices that sine
and Airy random point field are universal and appear as scaling limits for wide class of
models more than Gaussian ensembles. Universality for random matrices has been studied
intensively in the last two decades.

An N ×N Hermitian matrix MN is called Wigner (Hermitian) ensemble if MN is of
the form

MN
i,j =

{
ξi if i = j

τi,j/
√
2 +

√
−1τ̃i,j/

√
2 if i < j,
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where {ξi, τi,j , τ̃i,j}∞i<j , each of which is called atom distribution, are i.i.d. random variables
with mean zero and unit variance. When MN is real symmetric, it is called Wigner
symmetric ensemble. In particular, Wigner Hermite ensemble is nothing but the GUE
when atom distribution is Gaussian. Consider eigenvalue distribution of MN . Unlike
Gaussian ensembles, eigenvalue distribution does not have explicit formulae generally.
However, it is known as a classical result that the Wigner semicircle convergence (1.8)
holds for any Wigner ensemble.

Hereafter we focus only on Hermitian ensemble for simplicity. The Wigner semicircle
convergence shows that macroscopic statistics of Wigner ensembles is the same as that of
Gaussian ensembles. Then it is a natural question to ask what about microscopic statistics
of Wigner ensembles. Universality for Wigner Hermite ensembles asserts that microscopic
statistics is independent of details of atom distributions, that is, bulk scaling limit and
soft-edge scaling limit for Wigner Hermite ensemble gives sine2 and Airy2 random point
field respectively under some moment condition for atom distributions. More precisely, let
ρN,n be the n-correlation function for eigenvalue distribution of N ×N Wigner ensemble.
Take the bulk scaling same as (1.9) and (1.10), and define the bulk scaled correlation
function ρN,n

sin,2,θ as

ρN,n
sin,2,θ(x1, . . . , xn) =

1

(
√
Nρsc(θ))n

ρN,n

(
x1√

Nρsc(θ)
+
√
Nθ, . . . ,

xn√
Nρsc(θ)

+
√
Nθ

)
.

The bulk universality for Wigner ensembles was conjectured in the sense that if θ ∈
(−

√
2,
√
2) the following holds:

lim
N→∞

ρN,n
sin,2,θ = ρnsin,2 (1.24)

for any n ∈ N, where

ρnsin,2(x1, . . . , xn) = det[Ksin(xi, xj)]
n
i,j=1 (1.25)

and Ksin is the sine kernel

Ksin(x, y) =
sin(π(x− y))

π(x− y)
.

Here ρnsin,2 does not depend on atom distribution and a bulk position θ.
Edge universality for Wigner ensembles is formulated in a similar way. Recalling edge

scaling (1.19), define the edge scaled correlation function ρN,n
Airy,2 as

ρN,n
Airy,2(x1, . . . , xn) =

1

(
√
2N

1
6 )n

ρN,n
( x1√

2N
1
6

+
√
2N, . . . ,

xn√
2N

1
6

+
√
2N
)
. (1.26)

Then the edge universality conjecture asserts that for any n ∈ N

lim
N→∞

ρN,n
Airy,2(x1, . . . , xn) = det[KAiry(xi, xj)]

n
i,j=1, (1.27)

where the Airy kernel KAiry is defined by (1.20).
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In summary the universality conjecture for Wigner ensembles is that microscopic statis-
tics for Wigner ensembles is described as the sine or Airy kernel (equivalently sine2 or Airy2
random point field) in the sense of (1.24) and (1.27) according to scaling. As we see (1.12)
and (1.21), (1.24) and (1.27) in compact uniform sense hold for Gaussian ensembles. How-
ever, (1.24) and (1.27) in compact uniform sense are nonsense generally. The reason is
that unlike in the case of Gaussian ensembles, correlation functions may be not functions
but distributions as atom distributions are allowed to be discrete random variables. Then
unless otherwise noted, universality means that weak convergence of correlation functions
holds in this section.

The bulk universality for Wigner ensembles was solved for Gaussian divisible ensembles
first. For t > 0 an Hermite ensemble Mt which is of the form

MN
t = e−

t
2MN +

√
1− e−tM̃N

is called a Gaussian divisible ensemble, where MN is the Wigner ensemble and M̃N is
the GUE independent of MN . Johansson proved the bulk universality (1.24) for Gaussian
divisible ensembles for fixed t [20]. His work was followed by Erdős, Péché, Ramı́rez,
Schlein, and Yau [12]. They extended Johansson’s result to Gaussian divisible ensembles
for small t depending on N . These works heavily rely on explicit formula of the correlation
function for eigenvalue distribution of Gaussian divisible ensembles, which is followed from
the Harish-Chandra-Itzykson-Zuber formula.

Simultaneously the soft-edge universality for Wigner ensembles has been studied. The
first breakthrough in this area was done by Soshnikov. He proved the soft-edge universality
for the Wigner ensembles with symmetric atom distributions [66], and followed by Péché
and Soshnikov [57].

One of recent progress has developed by Erdős, Schlein, Yau, Yin, and others. Their
idea is reduction from universality problem to analysis of the Dyson Brownian motion (in
finite dimensions), and their approach is called a dynamical approach. They proved the
bulk and soft-edge universality if atom distributions satisfy subexponential decay [5, 7]
(actually their results are stronger and show universality for generalized Wigner ensembles;
see for example [5, 7, 13] for the details). An important fact is that eigenvalue distribution
of Gaussian divisible ensembles Mt corresponds the distribution of the Dyson Brownian
motion with N -particles at time t whose initial distribution is the eigenvalue distribution
ofMN . An equilibrium distribution with respect to the Dyson Brownian motion is clearly
the eigenvalue distribution for Gaussian ensemble given by (1.7). One of the key steps
of the dynamical approach is to estimate how fast the Dyson Brownian motion reaches
the equilibrium state. They showed that the dynamics reaches equilibrium for sufficiently
short time. After the relaxation time, microscopic statistics of eigenvalue distribution for
MN

t is close to that of the GUE. Furthermore we can see that microscopic statistics of
eigenvalue distribution for MN

t and MN are the same for large N around the relaxation
time, using the relaxation time is sufficiently short. Therefore microscopic statistics for
MN is the same as that of the GUE for large N . See [13] and references therein for more
details and history.

Tao and Vu proved the universality for the Wigner ensembles under some moment
conditions by a different method. The key result of their approach is four moment theorem,
which asserts that for two Wigner matrices, if their atom distributions have same moment
up to fourth, then their microscopic statistics correspond. As a result of the theorem, the
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bulk universality for the Wigner ensembles holds when atom distributions are exponential
decay and have at least three points as the support [73], and the result was improved in
[74]. Additionally four moment theorem yields the soft-edge universality when the atom
distributions are exponential decay and the third moment of the atom distribution is vanish
[72]. The main idea to prove four moment theorem is the Lindeberg swapping strategy.
Some quantities which we have to estimate for carrying out the swapping strategy are
sensitive to eigenvalues being close. Thus it is important to estimate for gap probability
between consecutive eigenvalues. Combining gap probability with Hadamard variation
formula, eigenvector delocalisation, and so on, they established four moment theorem.

Universality for log-gases has been also studied. Let V : R → R and consider the
following log-gas with inverse temperature β > 0 with N -particles:

µ̌Nβ,V (dxN ) =
1

Z

N∏
i<j

|xi − xj |β
N∏
k=1

e−
β
2
NV (xk) dxN . (1.28)

We can recognize V as free potential. When β ∈ {1, 2, 4}, µNβ,V corresponds eigenvalue dis-
tribution for some invariant random matrix ensemble, and additionally for V is quadratic,
µNβ,V corresponds eigenvalue distribution for Gaussian ensembles. However, we remark
that we put N factor in the exponential in (1.28) for convenience, although there is no N
factor in (1.7). Then if β ∈ {1, 2, 4}, we call β classical value, and µNβ,V classical ensem-

ble. There is no natural matrix model corresponding µNβ,V for non-classical β except for
Gaussian case, that is, V is quadratic.

Assuming a suitable condition for V , there exists a probability density function ρV
with compact support such that for empirical measure xN =

∑N
i=1 δxi

lim
N→∞

EµN
V,β

[ 1
N

xN ((−∞, s])
]
=

∫ s

−∞
ρV (x) dx.

For example, it is enough for analytic V satisfying

lim
|x|→∞

V (x)

log |x|
= ∞, (1.29)

and we assume these conditions for simplicity in this section. We call ρV an equilibrium
measure with respect to µNβ,V . When V is quadratic, ρV is nothing but the Wigner
semicircle distribution.

Unlike Wigner ensembles, macroscopic statistics ρV is not universal and depends on free
potential V . However, it is believed that microscopic statistics for log-gases is universal and
depends only on β, especially independent of V . Then to consider microscopic statistics
take a bulk scaling limit in ρV . Fix θ ∈ R satisfying

ρV (θ) > 0 (1.30)

and take a bulk scaling such that

x =
y

NρV(θ)
+ θ. (1.31)
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A bulk scaled measure of (1.28) with respect to (1.31) is the following:

µ̌Nsin,β,V,θ(dxN ) =
1

Z

N∏
i<j

|xi − xj |β
N∏
k=1

exp
(
− β

2
NV

(
xk

NρV(θ)
+ θ

))
dxN .

Define µNsin,β,V,θ as the random point field whose density is given by µ̌Nsin,β,V,θ. Let ρ
N,n
sin,β,V,θ

be the n-correlation function with respect to µNsin,β,V,θ, that is,

ρN,n
sin,β,V,θ(x1, . . . , xn) =

1

(NρV (θ))n
ρN,n
β,V

( x1
NρV (θ)

+ θ, . . . ,
xn

NρV (θ)
+ θ
)
,

where ρN,n
β,V is the n-correlation function with respect to µNβ,V . The bulk universality for

log-gases asserts that for any free potential V in a wide class and any θ satisfying (1.30),

lim
N→∞

ρN,n
sin,β,V,θ = ρnsin,β. (1.32)

Here ρnsin,β is given by the same determinant of the sine kernel as in (1.25) when β = 2.
When β ∈ {1, 4}, ρnsin,β is given by some (quaternion) determinant using the sine kernel,
but more complicated. For general β, ρnsin,β is described in terms of some stochastic
process, which was introduced in [77], but there is no explicit formula. In any case, the
limit {ρnsin,β}n∈N is universal in the sense that it depends only on β and independent of V
and θ.

Soft-edge universality is formulated through correlation functions like (1.32):

lim
N→∞

ρN,n
Airy,β,V = ρnAiry,β (1.33)

We omit precise definition for the soft-edge scaled correlation function ρN,n
Airy,β,V because

it is similar to (1.26).
Studies on the universality for log-gases were begun for classical ensemble β ∈ {1, 2, 4}.

In the case of classical ensembles, correlation functions have explicit expression in terms of
orthogonal polynomials. Therefore universality results boil down to asymptotic analysis
of orthogonal polynomials, where we can use helpful tools, for example the Christoffel-
Darboux formula, Riemann-Hilbert approach, and so on. Pastur and Shcherbina proved
bulk universality for β = 2 [55]. Deift and his collaborators showed bulk universality
when β ∈ {1, 2, 4} [10, 11]. Soft-edge universality was also proven for β ∈ {1, 2, 4} in
[9]. Other than this, there are a lot of results for classical ensembles, for example see
[3, 39, 40, 41, 56, 62, 63]. We should remark that although it is restricted to classical
ensembles, these approach gives strong convergence in the sense that (1.32) or (1.33) hold
compact uniformly rather than weak convergence.

For non-classical β /∈ {1, 2, 4}, it is difficult to address universality problems because
there is no explicit formula of correlation function. Regardless of the lack of explicit
formula, the universality for general β log-gases were rapidly established recently.

The dynamical approach, which was used to prove the universality for the Wigner
ensembles mentioned above, was improved so that it can apply to log-gases. Because the
dynamical approach does not rely on explicit formulae, then we can analyse log-gases for
general β. Actually Bourgade, Erdős, and Yau proved the bulk and soft-edge universality
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for wide class of V for general β [4, 5, 6]. Shcherbina also showed bulk universality for
general β log-gases by a different method [64]. Furthermore, Krishnapur, Rider, and Virág
proved the soft-edge universality for general β by using random operator [32].

Other than this, universality for non-Hermitian random matrices has been studied. In
this case, one of universal microscopic statistics is Ginibre random point field, which is
an equilibrium state for Ginibre interacting ISDE. We will skip details for this model, see
[1, 75].

Our goal is to establish dynamical universality as the same motivation in Section 1.2.
Consider dynamical universality corresponding to (1.32) which is based on bulk universal-
ity results in [10, 11]. Let β ∈ {1, 2, 4}. Assume V is analytic and satisfy (1.29) for β = 2
and V is even polynomial for β = 1, 4. Then (1.32) holds compact uniformly.

Doing the same procedure as in Section 1.2, the N -particle dynamics associated with
µNβ,V,θ is given by the following:

dXN,i
t = dBi

t +
β

2

∑
1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt− β

4ρV (θ)
V ′
( XN,i

t

NρV (θ)
+ θ
)
dt, 1 ≤ i ≤ N.

(1.34)

For the very same reason as in Section 1.2, we expect that a solution for (1.34) converges
as N to infinity to not an informal limit ISDE given by

dXi
t = dBi

t +
β

2

∑
1≤j ̸=i≤∞

1

XN,i
t −XN,j

t

dt− β

4ρV (θ)
V ′(θ)dt, i ∈ N, (1.35)

but the Dyson Brownian motion given by

dXi
t = dBi

t +
β

2
lim
r→∞

∑
j ̸=i, |Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt, i ∈ N. (1.2)

We see that (1.2) does not depend on V and θ, and depend only on β. Thus we can say that
the Dyson Brownian motion is a universal dynamical object. From the relation between
random point field and dynamics, we believe the dynamics inherit universal property from
the universality for random matrices.

In fact, we can prove it rigorously. LetXβ,V,θ,N = (Xβ,V,θ,N,1, Xβ,V,θ,N,2, . . . , Xβ,V,θ,N,N )

be a solution for (1.34) satisfying Xβ,V,θ,N
0 = µNβ,V,θ ◦ l−1

N in distribution and Xβ =

(Xβ,1, Xβ,2, . . . , ) be a solution for (1.2) satisfying Xβ
0 = µsin,β ◦ l−1 in distribution. Sup-

pose that labeling maps lN and l satisfy for each m ∈ N

lim
N→∞

µNβ,V,θ ◦ l−1
N,m = µsin,β ◦ l−1

m weakly.

Then we obtain the following dynamical universality for β ∈ {1, 2, 4}: for each m ∈ N

lim
N→∞

(Xβ,V,θ,N,1, Xβ,V,θ,N,2, . . . , Xβ,V,θ,N,m) = (Xβ,1, Xβ,2, . . . , Xβ,m) (1.36)

weakly in C([0,∞);Rm).
One may prove (1.36) by the first approximation theorem, but it is troublesome because

we have to estimate the drift term in (1.34). This control of the drift term is sensitive
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because of logarithmic correlated, and we have to calculate exact cancellation between
the interaction term and the second drift term in (1.35) involving V ′. Therefore to prove
(1.36) in this way requires model dependent argument.

To avoid the problem, we constructed the second approximation theorem, which can
prove (1.36) easily. Although it works only for symmetric dynamics whereas the first
approximation theorem can be applied to non-symmetric one, the second approximation
theorem does not require sensitive estimates. Furthermore once universality of random
point field is established, the second approximation theorem accordingly deduces dynam-
ical universality automatically under mild conditions, and model dependent argument is
not needed. Therefore, the second approximation theorem yields dynamical universality
for the Dyson Brownian motion (1.36). As the second approximation theorem is based
on the Dirichlet form approach, then it applicable to Airy2 interacting ISDE, Ginibre
interacting ISDE, and others.

The second approximation theorem essentially needs two conditions. The first essen-
tial assumption is the uniqueness of Dirichlet forms associated with µ. There exist two
natural Dirichlet forms associated with µ, the upper Dirichlet form and the lower Dirichlet
form. Correspondence of such two Dirichlet forms is one of the main assumptions for the
second finite particle approximation theorem. We prove that a sufficient condition for the
uniqueness of Dirichlet forms is the uniqueness of a solution of the ISDE associated with
µ.

The second main assumption is compact uniform convergence of correlation functions
for random point field, which is stronger than only weak convergence. As stated, there
are a lot of compact uniform convergence results of log-gases for classical values, then
we can lift their geometrical universality to dynamical one. Universality results for the
Wigner ensembles and general β log-gases is establish in weak convergence, but there
are no results of compact uniform convergence yet. Then once their results improve to
compact uniform convergence, it immediately derives dynamical universality when the
uniqueness of a solution for a corresponding ISDE is established.

Uniqueness of Dirichlet forms is proven in Section 5, based on [31]. Section 6 follows
from [30], where we construct the second approximation theorem, and show examples of
dynamical universality .

1.4 Density preservation property for interacting Brownian motions

We are interested in the tail preservation property for interacting Brownian motions in
infinite dimension. Recall that one of main assumptions for both the first and second
approximation theorem is the uniqueness of a solution for ISDEs. Osada and Tanemura
established a general framework for the uniqueness of a solution for ISDEs using a property
in terms of the tail σ-field, and they revealed that the tail preservation property plays an
essential role [53].

Let S be all of configurations on Rd without accumulation point (configuration space).
Let µ be a random point field on Rd with infinitely many particles, that is, µ is a probability
measure on (S,B(S)), where the Borel σ-field B(S) is induced by the vague topology. A
sub σ-field of B(S) which contains only global information about configurations is called
the tail σ-field. A random point field µ is called tail trivial if µ is an trivial probability
measure with respect to the tail σ-field. Consider a µ-reversible diffusion (X,P) with state
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space S. Here X = {Xt} is of the form Xt =
∑

i∈N δXi
t
and P = {Ps}s∈S is the diffusion

measure.
Suppose (X,P) has an ISDE representation in the sense that labeled dynamics (X1, X2, . . .)

solves an ISDE. Then under mild conditions the ISDE has a unique solution if µ is tail
trivial. It is also known that determinantal random point fields are tail trivial, which
implies that sine2, Airy2, and Ginibre random point field are tail trivial [50]. Therefore
the uniqueness holds for sine2, Airy2, and Ginibre interacting Brownian motion.

In addition, they also discussed the uniqueness of a solution of an ISDE when a random
point field is not tail trivial. In this case, the random point field has multiple tails. They
proved that a sufficient condition for the uniqueness for an ISDE with respect to µ with
multiple tails is the tail preservation property: an unlabeled diffusion which starts on an
element of the tail σ-field, stays on the set permanently. However, they could not prove
unlabeled diffusion having such property. The tail σ-field is not topologically well behaved:
for example, it is not countably determined in general even if the state space is countably
determined. Consequently, it is hard to treat the tail σ-field. Is was offered as an open
question whether an unlabeled diffusion has the tail preservation property in [53].

We solve this problem in part. Suppose that for µ-a.s. s ∈ S, there exists a limit
limr→∞ s(Sr)/r

d, where Sr = {x ∈ Rd ; |x| < r}, and let

Φ(s) = lim
r→∞

s(Sr)

rd
.

As s(Sr) is the number of particles on Sr, Φ(s) describes the density of particles. The
limit exists, for example, for a translation invariant random point field like sine or Ginibre
random point field. For a fixed positive constant θ, we set Aθ = {s ; Φ(s) = θ}. Note that
the set Aθ is an element of the tail σ-field of S.

From the reversibility of (X,P), we immediately obtain

Pµ

(
lim
r→∞

Xt(Sr)

rd
= θ
)
= µ(Aθ) for any t. (1.37)

We refined (1.37) such that for q.e. s ∈ Aθ,

Ps

(
lim
r→∞

Xt(Sr)

rd
= θ for any t

)
= 1.

In other words, we prove that an unlabeled diffusion starting on a set that is specified in
terms of density does not change the density over the course of its time evolution. If the
tail σ-field is identified by particle densities, we can discuss the behaviour of an unlabeled
diffusion by studying the density instead of the field itself. Then, in some cases the tail
preservation property follows from the preservation of density.

This result is intimately related to an ergodic decomposition of unlabeled diffusions.
We believe that the ergodic components is given by the tail σ-field. However, because the
space of an unlabeled diffusion is huge, it is difficult problem to specify the topological
support when infinitely many particles are in motion. Our result is a first step toward
addressing this problem.

In Section 4 we prove the density preservation property, based on [27].
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2 Finite-particle approximations for interacting Brownian
particles with logarithmic potentials

2.1 Introduction

Interacting Brownian motion in infinite dimensions is prototypical of diffusion processes
of infinitely many particle systems, initiated by Lang [37, 38], followed by Fritz [15],
Tanemura [70], and others. Typically, interacting Brownian motion X = (Xi)i∈N with
Ruelle-class (translation invariant) interaction Ψ and inverse temperature β ≥ 0 is given
by

dXi
t = dBi

t −
β

2

∞∑
j;j ̸=i

∇Ψ(Xi
t −Xj

t )dt (i ∈ N). (2.1)

Here an interaction Ψ is called Ruelle-class if Ψ is super stable in the sense of Ruelle, and
integrable at infinity [61].

The system X is a diffusion process with state space S0 ⊂ (Rd)N, and has no natural
invariant measures. Indeed, such a measure µ̌, if exists, is informally given by

µ̌ =
1

Z
e−β

∑∞
(i,j); i<j Ψ(xi−xj)

∏
k∈N

dxk, (2.2)

which cannot be justified as it is because of the presence of an infinite product of Lebesgue
measures. To rigorize the expression (2.2), the Dobrushin–Lanford–Ruelle (DLR) frame-
work introduces the notion of a Gibbs measure. A point process µ is called a Ψ-canonical
Gibbs measure if it satisfies the DLR equation: for each m ∈ N and µ-a.s. ξ =

∑
i δξi

µmr,ξ(ds) =
1

Zm
r,ξ

e
−β{

∑m
i<j, si,sj∈Sr

Ψ(si−sj)+
∑m

si∈Sr,ξj∈Sc
r
Ψ(si−ξj)}

m∏
k=1

dsk, (2.3)

where s =
∑

i δsi , Sr = {|x| ≤ r}, πr(s) = s(· ∩ Sr), and ξ is the outer condition.
Furthermore, µmr,ξ denotes the regular conditional probability:

µmr,ξ(ds) = µ(πr(s) ∈ ds| s(Sr) = m, πcr(s) = πcr(ξ)).

Then µ is a reversible measure of the delabeled dynamics X such that Xt =
∑

i∈N δXi
t
.

If the number of particles is finite, N say, then SDE (2.1) becomes

dXN, i
t = dBi

t −
β

2
{∇ΦN (XN, i

t ) +

N∑
j;j ̸=i

∇Ψ(XN, i
t −XN, j

t )}dt (1 ≤ i ≤ N), (2.4)

where ΦN is a confining free potential vanishing zero as N goes to infinity. The associated
labeled measure is then given by

µ̌N =
1

Z
e−β{

∑N
i=1 Φ

N (xi)+
∑N

(i,j); i<j Ψ(xi−xj)}
N∏
k=1

dxk. (2.5)

16



The relation between (2.4) and (2.5) is as follows. We first consider the diffusion process

associated with the Dirichlet form with domain Dµ̌N
on L2((Rd)N , µ̌N ), called the distorted

Brownian motion, such that

E µ̌N
(f, g) =

∫
(Rd)N

1

2

N∑
i=1

∇if · ∇ig µ̌
N (dxN ),

where ∇i = ( ∂
∂xij

)dj=1, xN = (x1, . . . , xN ) ∈ (Rd)N , and · denotes the inner product in Rd.

The generator Lµ̌N
of E µ̌N

is then given by

E µ̌N
(f, g) = (−Lµ̌N

f, g)L2((Rd)N ,µ̌N ).

Integration by parts yields the representation of the generator of the diffusion process such
that

Lµ̌N
=

1

2
∆− β

2

N∑
i=1

{∇ΦN (xi) +
N∑

j; j ̸=i

∇Ψ(xi − xj)} · ∇i,

which together with Itô formula yields SDE (2.4).
For a finite or infinite sequence x = (xi), we set u(x) =

∑
i δxi and call u a delabeling

map. For a point process µ, we say a measurable map ℓ = ℓ(s) defined for µ-a.s. s with
value S∞ ∪{

∪∞
N=1 S

N} is called a label with respect to µ if u ◦ ℓ(s) = s. Let ℓN be a label
with respect to µN . We denote by ℓm and ℓN,m the first m-components of these labels,
respectively. We take ΦN such that the associated point process µN = µ̌N ◦ u−1 converges
weakly to µ:

lim
N→∞

µN = µ weakly. (2.6)

The associated delabeling XN =
∑N

i=1 δXN, i is reversible with respect to µN . The labeled
process X = (Xi) and XN = (XN, i) can be recovered from X and XN by taking suitable
initial labels ℓ and ℓN , respectively. Choosing the labels in such a way that for each m ∈ N

lim
N→∞

µN ◦ ℓ−1
N,m = µ ◦ ℓ−1

m weakly, (2.7)

we have the convergence of labeled dynamics XN to X such that for each m

lim
N→∞

(XN,1, . . . , XN,m) = (X1, . . . , Xm) in law in C([0,∞); (Rd)m). (2.8)

We expect this convergence because of the absolute convergence of the drift terms in (2.1)
and energy in the DLR equation (2.3) for well-behaved initial distributions although it
still requires some work to justify this rigorously even if Ψ ∈ C3

0 (Rd) [37].
If we take logarithmic functions as interaction potentials, then the situation changes

drastically. Consider the soft-edge scaling limit of Gaussian (orthogonal/unitary/symplectic)
ensembles. Then the N -labeled density is given by

µ̌NAiry,β(dxN ) =
1

Z
{

N∏
i<j

|xi − xj |β} exp
{
− β

4

N∑
k=1

|2
√
N +N−1/6xk|2

}
dxN (2.9)
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and the associated N -particle dynamics described by SDE

dXN,i
t = dBi

t +
β

2

N∑
j=1, j ̸=i

1

XN,i
t −XN,j

t

dt− β

2
{N1/3 +

1

2N1/3
XN,i

t }dt. (2.10)

The correspondence between (2.9) and (2.10) is transparent and same as above. Indeed,
we first consider distorted Brownian motion (Dirichlet spaces with µ̌NAiry,β as a common
time change and energy measure), then we obtain the generator of the associated diffusion
process by integration by parts. SDE (2.10) thus follows from the generator immediately.

It is known that the thermodynamic limit µAiry,β of the associated point process µNAiry,β

exists for each β > 0 [59]. Its m-point correlation function is explicitly given as a determi-
nant of certain kernels if β = 1, 2, 4 [2, 43]. Indeed, if β = 2, then the m-point correlation
function of the limit point process µAiry,2 is

ρmAi,2(xm) = det[KAi,2(xi, xj)]
m
i,j=1,

where KAi,2 is the continuous kernel such that, for x ̸= y,

KAi,2(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

We set here Ai′(x) = dAi(x)/dx and denote by Ai(·) the Airy function given by

Ai(z) =
1

2π

∫
R
dk ei(zk+k3/3), z ∈ R.

For β = 1, 4 similar expressions in terms of the quaternion determinant are known [2, 43].
From the convergence of equilibrium states, we may expect the convergence of solutions

of SDEs (2.10). The divergence of the coefficients in (2.10) and the very long-range
nature of the logarithmic interaction however prove to be problematic. Even an informal
representation of the limit coefficients is nontrivial but has been obtained in [54]. Indeed,
the limit ISDEs are given by

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

|Xj
t |<r,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<r

ϱ(x)

−x
dx}dt (i ∈ N). (2.11)

Here ϱ(x) = 1(−∞,0)(x)
√
−x, which is the shifted and rescaled semicircle function at the

right edge.
As an application of our main theorem (Theorem 2.7), we prove the convergence (2.8)

of solutions from (2.10) to (2.11) for {µNAiry,β} with β = 2. We also prove that the limit
points of solutions of (2.10) satisfy ISDE (2.11) with β = 1, 2, 4.

For general β ̸= 1, 2, 4, the existence and uniqueness of solutions of (2.11) is still an
open problem. Indeed, the proof in [54] relies on a general theory developed in [46, 47, 48,
49, 53], which reduces the problem to the quasi-Gibbs property and the existence of the
logarithmic derivative of the equilibrium state. These key properties are proved only for
β = 1, 2, 4 at present. We refer to [48, 49] for the definition of the quasi-Gibbs property
and Definition 5.4 for the logarithmic derivative.
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Another typical example is the Ginibre interacting Brownian motion, which is an
infinite-particle system in R2 (naturally regarded as C), whose equilibrium state is the
Ginibre point process µgin. The m-point correlation function ρmgin with respect to Gaussian

measure (1/π)e−|x|2dx on C is then given by

ρmgin(xm) = det[exix̄j ]mi,j=1.

The Ginibre point process µgin is the thermodynamic limit of N -particle point process
µNgin whose labeled measure is given by

µ̌Ngin(dxN ) =
1

Z

N∏
i<j

|xi − xj |2e−
∑N

i=1 |xi|2dxN .

The associated N -particle SDE is then given by

dXN,i
t = dBi

t −XN,i
t dt+

N∑
j=1,j ̸=i

XN,i
t −XN,j

t

|XN,i
t −XN,j

t |2
dt (1 ≤ i ≤ N). (2.12)

We shall prove that the limit ISDEs are

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N) (2.13)

and

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N). (2.14)

In [47, 53], it is proved that these ISDEs have the same pathwise unique strong solution for
µgin ◦ ℓ−1-a.s. s, where ℓ is a label and s is an initial point. As an example of applications
of our second main theorem (Theorem 2.7), we prove the convergence of solutions of
(2.12) to those of (2.13) and (2.14). This example indicates again the sensitivity of the
representation of the limit ISDE. Such varieties of the limit ISDEs are a result of the
long-range nature of the logarithmic potential.

The main purpose of the present paper is to develop a general theory for finite-particle
convergence applicable to logarithmic potentials, and in particular, the Airy and Ginibre
point processes. Our theory is also applicable to essentially all Gibbs measures with
Ruelle-class potentials such as the Lennard-Jones 6-12 potential and Riesz potentials.

In the first main theorem (Theorem 2.2), we present a sufficient condition for a kind of
tightness of solutions of stochastic differential equations (SDE) describing finite-particle
systems, and prove that the limit points solve the corresponding ISDE. This implies, if in
addition the limit ISDE enjoy uniqueness of solutions, then the full sequence converges.
We treat non-reversible case in the first main theorem.

In the second main theorem (Theorem 2.7), we restrict to the case of reversible par-
ticle systems and simplify the sufficient condition. Because of reversibility, the sufficient
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condition is reduced to the convergence of logarithmic derivative of µN with marginal
assumptions. We shall deduce Theorem 2.7 from Theorem 2.2 and apply Theorem 2.7 to
all examples in the present paper.

If Ψ(x) = − log |x|, β = 2 and d = 1, there exists an algebraic method to con-
struct the associated stochastic processes [21, 22, 23, 25], and to prove the convergence of
finite-particle systems [52, 51]. This method requires that interaction Ψ is the logarith-
mic function with β = 2 and depends crucially on an explicit calculation of space-time
determinantal kernels. It is thus not applicable to β ̸= 2 even if d = 1.

As for Sineβ point processes, Tsai proved the convergence of finite-particle systems for
all β ≥ 1 [76]. His method relies on a coupling method based on monotonicity of SDEs,
which is very specific to this model.

The organization of the paper is as follows: In Section 2.2, we state the main theorems
(Theorem 2.2 and Theorem 2.7). In Section 2.3, we prove Theorem 2.2. In Section 2.4,
we prove Theorem 2.7 using Theorem 2.2. In Section 2.5, we present examples.

2.2 Set up and the main theorems

2.2.1 Configuration spaces and Campbell measures

Let S be a closed set in Rd whose interior Sint is a connected open set satisfying Sint = S
and the boundary ∂S having Lebesgue measure zero. A configuration s =

∑
i δsi on S is

a Radon measure on S consisting of delta masses. We set Sr = {s ∈ S ; |s| ≤ r}. Let S be
the set consisting of all configurations of S. By definition, S is given by

S = {s =
∑
i

δsi ; s(Sr) <∞ for each r ∈ N}.

By convention, we regard the zero measure as an element of S. We endow S with the
vague topology, which makes S a Polish space. S is called the configuration space over S
and a probability measure µ on (S,B(S)) is called a point process on S.

A symmetric and locally integrable function ρn : Sn → [0,∞) is called the n-point
correlation function of a point process µ on S with respect to the Lebesgue measure if ρn

satisfies ∫
A

k1
1 ×···×Akm

m

ρn(x1, . . . , xn)dx1 · · · dxn =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any sequence of disjoint bounded measurable sets A1, . . . , Am ∈ B(S) and a sequence of
natural numbers k1, . . . , km satisfying k1+ · · ·+km = n. When s(Ai)−ki < 0, according to
our interpretation, s(Ai)!/(s(Ai)− ki)! = 0 by convention. Hereafter, we always consider
correlation functions with respect to Lebesgue measures.

A point process µx is called the reduced Palm measure of µ conditioned at x ∈ S if µx
is the regular conditional probability defined as

µx = µ(· − δx|s({x}) ≥ 1).

A Radon measure µ[1] on S × S is called the 1-Campbell measure of µ if µ[1] is given by

µ[1](dxds) = ρ1(x)µx(ds)dx. (2.15)
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2.2.2 Finite-particle approximations (general case)

Let {µN} be a sequence of point processes on S such that µN ({s(S) = N}) = 1. We
assume:
(H1) Each µN has a correlation function {ρN,n} satisfying for each r ∈ N

lim
N→∞

ρN,n(x) = ρn(x) uniformly on Sn
r for all n ∈ N, (2.16)

sup
N∈N

sup
x∈Sn

r

ρN,n(x) ≤ cn1n
c2n, (2.17)

where 0 < c1(r) <∞ and 0 < c2(r) < 1 are constants independent of n ∈ N.
It is known that (2.16) and (2.17) imply weak convergence (2.6) [48, Lemma A.1]. As

in Section 2.1, let ℓ and ℓN be labels of µ and µN , respectively. We assume:

(H2) For each m ∈ N, (2.7) holds. That is,

lim
N→∞

µN ◦ ℓ−1
N,m = µ ◦ ℓ−1

m weakly in Sm. (2.7)

We shall later take µN ◦ ℓ−1
N as an initial distribution of a labeled finite-particle sys-

tem. Hence (H2) means convergence of the initial distribution of the labeled dynamics.
There exist infinitely many different labels ℓ, and we choose a label such that the initial
distribution of the labeled dynamics converges. (H2) will be used in Theorem 2.7 and
Theorem 2.2.

For X = (Xi)∞i=1 and XN = (XN,i)Ni=1, we set

X⋄i
t =

∞∑
j ̸=i

δ
Xj

t
, and XN,⋄i

t =
N∑
j ̸=i

δ
XN,j

t
,

where XN,⋄i
t denotes the zero measure for N = 1. Let σN , σ : S × S → Rd2 and bN , b :

S × S → Rd be measurable functions. We introduce the finite-dimensional SDE of XN =
(XN,i)Ni=1 with these coefficients such that for 1 ≤ i ≤ N

dXN,i
t = σN (XN,i

t ,XN,⋄i
t )dBi

t + bN (XN,i
t ,XN,⋄i

t )dt (2.18)

XN
0 = s. (2.19)

We assume:

(H3) SDE (2.18) and (2.19) has a unique solution for µN ◦ ℓ−1
N -a.s. s for each N : this

solution does not explode. Furthermore, when ∂S is non-void, particles never hit the
boundary.

We set aN = σNtσN and assume:

(H4) σN are bounded and continuous on S × S, and converge uniformly to σ on Sr × S
for each r ∈ N. Furthermore, aN are uniformly elliptic on Sr×S for each r ∈ N and ∇xa

N

are uniformly bounded on S × S.
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From (H4) we see that aN converge uniformly to a := σtσ on each compact set Sr×S,
and that aN and a are bounded and continuous on S × S. There thus exists a positive
constant c3 such that

||a||S×S, ||∇xa||S×S, sup
N∈N

||aN ||S×S, sup
N∈N

||∇xa
N ||S×S ≤ c3. (2.20)

Here ∥ · ∥S×S denotes the uniform norm on S×S. Furthermore, we see that a is uniformly
elliptic on each Sr × S. From these, we expect that SDEs (2.18) have a sub-sequential
limit.

lim
N→∞

{XN,i
t −XN,i

0 } = lim
N→∞

∫ t

0
σN (XN,i

t ,XN,⋄i
t )dBi

u + lim
N→∞

∫ t

0
bN (XN,i

t ,XN,⋄i
t )du

=

∫ t

0
σ(XN,i

t ,XN,⋄i
t )dBi

u + lim
N→∞

∫ t

0
bN (XN,i

t ,XN,⋄i
t )du.

To identify the second term on the right-hand side and to justify the convergence, we
make further assumptions. As the examples in Section 2.1 suggest, the identification of
the limit is a sensitive problem, which is at the heart of the present paper.

We set the maximal module variable X
N,m

of the first m-particles by

X
N,m

=
m

max
i=1

sup
t∈[0,T ]

|XN,i
t |.

and by LN
r the maximal label with which the particle intersects Sr; that is,

LN
r = max{i ∈ N ∪ {∞} ; |XN,i

t | ≤ r for some 0 ≤ t ≤ T}.

We assume the following.
(I1) For each m ∈ N

lim
a→∞

lim inf
N→∞

PµN◦ℓ−1
N (X

N,m ≤ a) = 1 (2.21)

and there exists a constant c4 = c4(m, a) such that for 0 ≤ t, u ≤ T

sup
N∈N

m∑
i=1

EµN◦ℓ−1
N [|XN,i

t −XN,i
u |4;XN,m ≤ a] ≤ c4|t− u|2. (2.22)

Furthermore, for each r ∈ N

lim
L→∞

lim inf
N→∞

PµN◦ℓ−1
N (LN

r ≤ L) = 1. (2.23)

Let µN,[1] be the one-Campbell measure of µN defined as (2.15). Set c5(r,N) =
µN,[1](Sr × S). Then by (2.17) supN c5(r,N) < ∞ for each r ∈ N. Without loss of

generality, we can assume that c5 > 0 for all r,N . Let µ
N,[1]
r = µN,[1](· ∩ {Sr × S}). Let

µ̄
N,[1]
r be the probability measure defined as µ̄

N,[1]
r (·) = µN,[1](· ∩ {Sr ×S})/c5. Let ϖr,s be

a map from Sr × S to itself such that ϖr,s(x, s) = (x,
∑

|x−si|<s δsi), where s =
∑

i δsi . Let
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Fr,s = σ[ϖr,s] be the sub-σ-field of B(Sr × S) generated by ϖr,s. Because Sr is a subset of
S, we can and do regard Fr,s as a σ-field on S × S, which is trivial outside Sr × S.

We set a tail-truncated coefficient bNr,s of bN and their tail parts bN,tail
r,s by

bNr,s = Eµ̄
N,[1]
r [bN |Fr,s], bN = bNr,s + bN,tail

r,s . (2.24)

We can and do take a version of bNr,s such that

bNr,s(x, y) = 0 for x ̸∈ Sr, (2.25)

bNr,s(x, y) = bNr+1,s(x, y) for x ∈ Sr. (2.26)

We next introduce a cut-off coefficient bNr,s,p of bNr,s. Let bNr,s,p be a continuous and
Fr,s-measurable function on S × S such that

bNr,s,p(x, y) = 0 for x ̸∈ Sr

bNr,s,p(x, y) = bNr+1,s,p(x, y), for x ∈ Sr−1

and that, for (S × S)r,p = {(x, y) ∈ Sr × S; |x− yi| ≤ 1/2p for some yi}, where y =
∑

i δyi ,

bNr,s,p(x, y) = 0 for (x, y) ∈ (S × S)r,p+1, (2.27)

bNr,s,p(x, y) = bNr,s(x, y) for (x, y) ̸∈ (S × S)r,p. (2.28)

The main requirements for bN and bNr,s,p are the following:

(I2) There exists a p̂ such that 1 < p̂ and that for each r ∈ N

lim sup
N→∞

∫
Sr×S

|bN |p̂dµN,[1] <∞. (2.29)

Furthermore, for each r, i ∈ N, there exists a constant c6 such that

sup
p∈N

sup
N∈N

EµN◦ℓ−1
N [

∫ T

0
|bNr,s,p(X

N,i
t ,XN,⋄i

t )|p̂dt] ≤ c6. (2.30)

We set Smr = {s ; s(Sr) = m}. Let ∥·∥S×Smr denote the uniform norm on S×Smr and set

Lp̂(µ
N,[1]
r ) = Lp̂(Sr×S, µN,[1]). For a function f on S×Smr we denote by∇f = (∇xf̌ ,∇yi f̌),

where f̌ is a function on Sr × Sm
r such that f̌(x, (yi)

m
i=1) is symmetric in (yi)

m
i=1 for each

x and f(x,
∑

i δyi) = f̌(x, (yi)
m
i=1). We decompose bNr,s as

bNr,s = bNr,s,p + bNr,s − bNr,s,p (2.31)

and we assume:

(I3) For each m, p, r, s ∈ N such that r < s, there exists br,s,p such that

lim
N→∞

∥bNr,s,p − br,s,p∥S×Smr = 0. (2.32)
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Moreover, bNr,s,p are differentiable in x and satisfying the bounds:

sup
N∈N

∥∇bNr,s,p∥S×Smr <∞, (2.33)

lim
p→∞

sup
N∈N

∥bNr,s,p − bNr,s∥Lp̂(µ
N,[1]
r )

= 0. (2.34)

Furthermore, we assume for each i, r < s ∈ N

lim
p→∞

lim sup
N→∞

EµN◦ℓ−1
N [

∫ T

0
|{bNr,s,p − bNr,s}(X

N,i
t ,XN,⋄i

t )|p̂dt] = 0, (2.35)

lim
p→∞

Eµ◦ℓ−1
[

∫ T

0
|{br,s,p − br,s}(Xi

t ,X
⋄i
t )|p̂dt] = 0, (2.36)

where br,s is such that

br,s(x, y) = lim
N→∞

bNr,s(x, y) for each (x, y) ∈
∪
p∈N

(S × S)cr,p. (2.37)

Remark 2.1. We see that
∪

p∈N(S×S)cr,p = {Sc
r×S}∪{(x, y);x ̸= yi for all i} by definition

and br,s(x, y) = 0 for x ̸∈ Sr by (2.25). The limit in (2.37) exists because of (2.27), (2.28),
and (2.32).

(I4) There exists a btail ∈ C(S;Rd) independent of r ∈ N and s ∈ S such that

lim
s→∞

lim sup
N→∞

∥bN,tail
r,s − btail∥

Lp̂(µ
N,[1]
r )

= 0. (2.38)

Furthermore, for each r, i ∈ N:

lim
s→∞

lim sup
N→∞

EµN◦ℓ−1
N [

∫ T

0
|(bN,tail

r,s − btail)(XN,i
t ,XN,⋄i

t )|p̂dt] = 0. (2.39)

We remark that btail is automatically independent of r for consistency (2.28). By
assumption, btail = btail(x) is a function of x. From (2.24) and (2.31) we have

bN = bNr,s,p + btail + {bNr,s − bNr,s,p}+ {bN,tail
r,s − btail}. (2.40)

In (I3) and (I4), we have assumed that the last two terms {bNr,s−bNr,s,p} and {bN,tail
r,s −btail}

in (2.40) are asymptotically negligible.
Under these assumptions, we prove in Lemma 2.11 that there exists b such that for

each r ∈ N

lim
s→∞

∥br,s − b∥
Lp̂(µ

N,[1]
r )

= 0. (2.41)

We assume:
(I5) For each i, r ∈ N

lim
s→∞

Eµ◦ℓ−1
[

∫ T

0
|(br,s − b)(Xi

t ,X
⋄i
t )|p̂dt] = 0. (2.42)

We say a sequence {XN} of C([0, T ];SN )-valued random variables is tight if for
any subsequence we can choose a subsequence denoted by the same symbol such that
{XN,m}N≥m is convergent in law in C([0, T ];Sm) for each m ∈ N. With these prepara-
tions, we state the main theorem in this section.
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Theorem 2.2. Assume (H1)–(H4) and (I1)–(I5). Then, {XN}N∈N is tight in C([0, T ];SN)
and, any limit point X = (Xi)i∈N of {XN}N∈N is a solution of the ISDE

dXi
t = σ(Xi

t ,X
⋄i
t )dB

i
t + {b(Xi

t ,X
⋄i
t ) + btail(Xi

t)}dt. (2.43)

Remark 2.3. If diffusion processes are symmetric, we can dispense with (2.22), (2.30),
(2.35), (2.36), (2.39), and (2.42) as we see in Subsection 2.2.3. Indeed, using the Lyons-
Zheng decomposition we can derive these from static conditions (H4), (2.29), (2.32),
(2.34), (2.38), and (2.41). We remark that we can apply Theorem 2.2 to non-symmetric
diffusion processes by assuming these dynamical conditions.

2.2.3 Finite-particle approximations (reversible case)

For a subset A, we set πA : S → S by πA(s) = s(· ∩ A). We say a function f on S
is local if f is σ[πK ]-measurable for some compact set K in S. For a local function
f on S, we say f is smooth if f̌ is smooth, where f̌(x1, . . .) is a symmetric function
such that f̌(x1, . . .) = f(x) for x =

∑
i δxi . Let D◦ be the set of all bounded, local

smooth functions on S. We write f ∈ Lp
loc(µ

[1]) if f ∈ Lp(Sr × S, µ[1]) for all r ∈ N.
Let C∞

0 (S) ⊗ D◦ = {
∑N

i=1 fi(x)gi(y) ; fi ∈ C∞
0 (S), gi ∈ D◦, N ∈ N} denote the algebraic

tensor product of C∞
0 (S) and D◦.

Definition 2.4. A Rd-valued function dµ ∈ L1
loc(µ

[1]) is called the logarithmic derivative
of µ if, for all φ ∈ C∞

0 (S)⊗D◦,∫
S×S

dµ(x, y)φ(x, y)µ[1](dxdy) = −
∫
S×S

∇xφ(x, y)µ
[1](dxdy).

Remark 2.5. (1) The logarithmic derivative dµ is determined uniquely (if exists).
(2) If the boundary ∂S is nonempty and particles hit the boundary, then dµ would contain
a term arising from the boundary condition. For example, if the Neumann boundary
condition is imposed on the boundary, then there would be local time-type drifts. We
shall later assume that particles never hit the boundary, and the above formulation is thus
sufficient in the present situation.
(3) A sufficient condition for the explicit expression of the logarithmic derivative of point
processes is given in [47, Theorem 45]. Using this, one can obtain the logarithmic derivative
of point processes appearing in random matrix theory such as sineβ, Airyβ, (β = 1, 2, 4),
Bessel2,α (1 ≤ α), and the Ginibre point process (see Examples in Section 2.5). For
canonical Gibbs measures with Ruelle-class interaction potentials, one can easily calculate
the logarithmic derivative employing DLR equation [53, Lemma 10.10].

We assume:

(J1) Each µN has a logarithmic derivative dN , and the coefficient bN is given as

bN =
1

2
{∇xa

N + aNdN}. (2.44)

Furthermore, the vector-valued functions {∇xa
N}N are continuous and converge to ∇xa

uniformly on each Sr × S, where ∇xa
N is the d-dimensional column vector such that

∇xa
N (x, y) = t

( d∑
i=1

∂

∂xi
aN1i(x, y), . . . ,

d∑
i=1

∂

∂xi
aNdi(x, y)

)
. (2.45)
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Remark 2.6. From (J1) we see that the delabeled dynamics XN =
∑N

i=1 δXi of XN

is reversible with respect to µN . Thus (J1) relates the measure µN with the labeled
dynamicsXN . For eachN <∞, XN has a reversible measure. Indeed, the symmetrization
(µN ◦ ℓ−1

N )sym of µN ◦ ℓ−1
N is a reversible measure of XN as we see for µ̌N in Introduction,

where (µN ◦ ℓ−1
N )sym = 1

N !

∑
σ∈SN

(µN ◦ ℓ−1
N )◦σ−1 and SN is the symmetric group of order

N . When N = ∞, X does not have any reversible measure in general. For example,
infinite-dimensional Brownian motion B = (Bi)i∈N on (Rd)N has no reversible measures.
We also remark that the Airyβ (β = 1, 2, 4) interacting Brownian motion defined by (2.11)
has a reversible measure given by µAiry,β ◦ ℓ−1 with label ℓ(s) = (s1, s2, . . .) such that
si > si+1 for all i ∈ N because ℓ gives a bijection from (a subset of) S to RN defined for
µAiry,β-a.s. s, and thus the relation Xt = ℓ(Xt) holds for all t.

We prove that convergence of the logarithmic derivative implies weak convergence of
the solutions of the associated SDEs. Each logarithmic derivative dN belongs to a different
Lp-space Lp(µN,[1]), and µN,[1] are mutually singular. Hence we decompose dN to define
a kind of Lp-convergence.

Let u, uN , w : S → Rd and g, gN , v, vN : S2 → Rd be measurable functions. We set

gs(x, y) =

∫
S
χs(x− y)v(x, y)dy +

∑
i

χs(x− yi)g(x, yi), (2.46)

gNs (x, y) =

∫
S
χs(x− y)vN (x, y)dy +

∑
i

χs(x− yi)g
N (x, yi),

wN
s (x, y) =

∫
S
{1− χs(x− y)}vN (x, y)dy +

∑
i

(1− χs(x− yi))g
N (x, yi),

where y =
∑

i δyi and χs ∈ C∞
0 (S) is a cut-off function such that 0 ≤ χs ≤ 1, χs(x) = 0

for |x| ≥ s+ 1, and χs(x) = 1 for |x| ≤ s. We assume the following.

(J2) Each µN has a logarithmic derivative dN such that

dN (x, y) = uN (x) + gNs (x, y) + wN
s (x, y). (2.47)

Furthermore, we assume that

(1) uN are in C1(S). Furthermore, uN and ∇uN converge uniformly to u and ∇u,
respectively, on each compact set in S.

(2) For each s ∈ N,
∫
S χs(x − y)vN (x, y)dy are in C1(S). Furthermore, functions∫

S χs(x−y)vN (x, y)dy and∇x

∫
S χs(x−y)vN (x, y)dy converge uniformly to

∫
S χs(x−

y)v(x, y)dy and ∇x

∫
S χs(x− y)v(x, y)dy, respectively, on each compact set in S.

(3) gN are in C1(S2 ∩ {x ̸= y}). Furthermore, gN and ∇xg
N converge uniformly to g

and ∇xg, respectively, on S
2 ∩ {|x− y| ≥ 2−p} for each p > 0. In addition, for each

r ∈ N,

lim
p→∞

lim sup
N→∞

∫
x∈Sr,|x−y|≤2−p

χs(x− y)|gN (x, y)|p̂ ρN,1
x (y)dxdy = 0, (2.48)

where ρN,1
x is a one-correlation function of the reduced Palm measure µNx .
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(4) There exists a continuous function w : S → R such that

lim
s→∞

lim sup
N→∞

∫
Sr×S

|wN
s (x, y)− w(x)|p̂dµN,[1] = 0, w ∈ Lp̂

loc(S, dx). (2.49)

Let p be such that 1 < p < p̂. Assume (H1) and (J2). Then from [47, Theorem 45]
we see that the logarithmic derivative dµ of µ exists in Lp

loc(µ
[1]) and is given by

dµ(x, y) = u(x) + g(x, y) + w(x). (2.50)

Here g(x, y) = lims→∞ gs(x, y) and the convergence of lim gs takes place in Lp
loc(µ

[1]). We
now introduce the ISDE of X = (Xi)i∈N:

dXi
t = σ(Xi

t ,X
⋄i
t )dB

i
t +

1

2
{∇xa(X

i
t ,X

⋄i
t ) + a(Xi

t ,X
⋄i
t )d

µ(Xi
t ,X

⋄i
t )}dt (2.51)

X0 = s. (2.52)

Here ∇xa is defined similarly as (2.45). If σ is the unit matrix and (J2) is satisfied, we
have

dXi
t = dBi

t +
1

2
{u(Xi

t) + w(Xi
t) + g(Xi

t ,X
⋄i
t )}dt. (2.53)

In the sequel, we give a sufficient condition for solving ISDE (2.51) (and (2.53)).
Let D be the standard square field on S such that for any f, g ∈ D◦ and s =

∑
i δsi

D[f, g](s) =
1

2
{
∑
i

∇if̌ · ∇iǧ} (s),

where · is the inner product in Rd. Since the function
∑

i∇if̌(s) · ∇iǧ(s), where s = (si)i
and s =

∑
i δsi , is symmetric in (si)i, we regard it as a function of s. We set L2(µ) =

L2(S, µ) and let

Eµ(f, g) =

∫
S
D[f, g](s)µ(ds),

Dµ
◦ = {f ∈ D◦ ∩ L2(µ) ; Eµ(f, f) <∞}.

We assume:

(J3) (Eµ,Dµ
◦ ) is closable on L2(µ).

From (J3) and the local boundedness of correlation functions given by (H1), we
deduce that the closure (Eµ,Dµ) of (Eµ,Dµ

◦ ) becomes a quasi-regular Dirichlet form [44,
Theorem 1]. Hence, using a general theory of quasi-regular Dirichlet forms, we deduce
the existence of the associated S-valued diffusion (P,X) [42]. By construction, (P,X) is
µ-reversible.

If one takes µ as Poisson point process with Lebesgue intensity, then the diffusion
(P,X) thus obtained is the standard S-valued Brownian motion B such that Bt =

∑
i∈N δBi

t
,

where {Bi}i∈N are independent copies of the standard Brownian motions on Rd. This is
the reason why we call D the standard square field.
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Let Capµ denote the capacity given by the Dirichlet space (Eµ,Dµ, L2(µ)) [16]. Let

Ss.i. = {s ∈ S ; s(x) ≤ 1 for all x ∈ S, s(S) = ∞}

and assume:

(J4) Capµ({Ss.i.}c) = 0.

Let Erf(t) = 1√
2π

∫∞
t e−|x|2/2 dx be the error function. Let Sr = {|x| < r} as before. We

assume:

(J5) There exists a Q > 0 such that for each R > 0

lim inf
r→∞

sup
N∈N

{∫
Sr+R

ρN,1(x) dx
}
Erf
( r√

(r +R)Q

)
= 0. (2.54)

We write si = ℓN (s)i and assume for each r ∈ N

lim
L→∞

lim sup
N→∞

∑
i>L

∫
S
Erf(

|si| − r
√
c3T

)µN (ds) = 0. (2.55)

We remark that (2.55) is easy to check. Indeed, we prove in Lemma 2.22 that, if
si = ℓN (s)i is taken such that

|s1| ≤ |s2| ≤ · · · , (2.56)

then (2.55) follows from (H1) and (2.57) below.

lim
q→∞

lim sup
N→∞

∫
S\Sq

Erf(
|x| − r
√
c3T

)ρN,1(x)dx = 0. (2.57)

Let ℓ be the label as before. Let X = (Xi)i∈N be a family of solution of (2.51) satisfying
X0 = s for µ ◦ ℓ−1-a.s. s. We call X satisfies µ-absolute continuity condition if

µt ≺ µ for all t ≥ 0, (2.58)

where µt is the distribution of Xt and µt ≺ µ means µt is absolutely continuous with
respect to µ. Here Xt =

∑
i∈N δXi

t
, for Xt = (Xi

t)i∈N. By definition X = {Xt} is the
delabeled dynamics of X and by construction X0 = µ in distribution.

We say ISDE (2.51) has µ-uniqueness of solutions in law if X and X′ are solutions with
the same initial distributions satisfying the µ-absolute continuity condition, then they are
equivalent in law. We assume:

(J6) ISDE (2.51) has µ-uniqueness of solutions in law.

Let XN be a solution of (2.18). From (2.44) we can rewrite (2.18) as

dXN,i
t = σN (XN,i

t ,XN,⋄i
t )dBi

t +
1

2
{∇xa

N + aNdN}(XN,i
t ,XN,⋄i

t )dt. (2.59)

We set XN,m = (XN,1, XN,2, . . . , XN,m) 1 ≤ m ≤ N and Xm = (X1, X2, . . . , Xm). We
say {XN} is tight in C([0,∞);SN) if each subsequence {XN ′} contains a subsequence
{XN ′′} such that {XN ′′,m} is convergent weakly in C([0,∞);Sm) for each m ∈ N.
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Theorem 2.7. Assume (H1)–(H4) and (J1)–(J5). Assume that XN
0 = µN ◦ ℓ−1

N in
distribution. Then {XN} is tight in C([0,∞);SN) and each limit point X of {XN} is
a solution of (2.51) with initial distribution µ ◦ ℓ−1. Furthermore, if we assume (J6) in
addition, then for any m ∈ N

lim
N→∞

XN,m = Xm weakly in C([0,∞), Sm). (2.60)

Remark 2.8. To prove (2.60) it is sufficient to prove the convergence in C([0, T ];Sm) for
each T ∈ N. We do this in the following sections.

Remark 2.9. (1) A sufficient condition for (J3) is obtained in [48, 49]. Indeed, if µ is
a (Φ,Ψ)-quasi-Gibbs measure with upper semi-continuous potential (Φ,Ψ), then (J3) is
satisfied. This condition is mild and is satisfied by all examples in the present paper. We
refer to [48, 49] for the definition of quasi-Gibbs property.
(2) From the general theory of Dirichlet forms, we see that (J4) is equivalent to the non-
collision of particles [16]. We refer to [19] for a necessary and sufficient condition of this
non-collision property of interacting Brownian motions in finite-dimensions, which gives
a sufficient condition of non-collision in infinite dimensions. We also refer to [45] for a
sufficient condition for non-collision property of interacting Brownian motions in infinite-
dimensions applicable to, in particular, determinantal point processes.
(3) From (2.54) of (J5), we deduce that each tagged particle Xi does not explode [16, 46].
We remark that the delabeled dynamics X =

∑
i δXi are µ-reversible, and they thus never

explode. Indeed, as for configuration-valued diffusions, explosion occurs if and only if
infinitely many particles gather in a compact domain, so the explosion of tagged particle
does not imply that of the configuration-valued process.
(4) It is known that, if we suppose (H1), (J1)–(J5), then ISDE (2.51) has a solution
for µ ◦ ℓ−1-a.s. s satisfying the non-collision and non-explosion property [47]. Indeed, let
X = (Xi) be the SN-valued continuous process consisting of tagged particles Xi of the
delabeled diffusion process X =

∑
i∈N δXi given by the Dirichlet form of (J3). Then from

(J4) and (J5) (2.54) we see X is uniquely determined by its initial starting point. It was
proved that X is a solution of (2.51) in [47].

Remark 2.10. Assumption (J6) follows from tail triviality of µ [53], where tail triviality
of µmeans that the tail σ-field T =

∩∞
r=1 σ[πSc

r
] is µ-trivial. Indeed, from tail triviality of µ

and marginal assumptions ((E1), (F1), and (F2) in [53]), we obtain (J6). Tail triviality
holds for all determinantal point processes [50] and grand canonical Gibbs measures with
sufficiently small inverse temperature β > 0.

2.3 Proof of Theorem 2.2

The purpose of this section is to prove Theorem 2.2. We assume the same assumptions as
Theorem 2.2 throughout this section. We begin by proving (2.41).

Lemma 2.11. (2.41) holds.

Proof. From (H1) and (2.32), we obtain

lim
N→∞

bNr,s,p = br,s,p for µ̄[1]r -a.s. and in Lp̂(µ̄[1]r ). (2.61)
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We next prove the convergence of {br,s,p} as p → ∞. Note that

∥br,s,p − br,s,q∥Lp̂(µ̄
[1]
r )

(2.62)

≤∥br,s,p − bNr,s,p∥Lp̂(µ̄
[1]
r )

+ ∥bNr,s,p − bNr,s,q∥Lp̂(µ̄
[1]
r )

+ ∥bNr,s,q − br,s,q∥Lp̂(µ̄
[1]
r )
.

From (2.34) for each ϵ there exists a p0 such that for all p, q ≥ p0

sup
N∈N

∥bNr,s,p − bNr,s,q∥Lp̂(µ
N,[1]
r )

< ϵ (2.63)

By (2.61) there exists an N = Np,q such that

∥br,s,p − bNr,s,p∥Lp̂(µ̄
[1]
r )

< ϵ, ∥br,s,q − bNr,s,q∥Lp̂(µ̄
[1]
r )

< ϵ. (2.64)

Putting (2.63) and (2.64) into (2.62), we deduce that {br,s,p}p∈N is a Cauchy sequence in

Lp̂(µ̄
[1]
r ). Hence from (2.28), (2.34), and (2.37) we see

lim
p→∞

br,s,p = br,s in Lp̂(µ̄[1]r ). (2.65)

Recall that bNr,s = Eµ̄
N,[1]
r [bN |Fr,s] by (2.24). Then, because Fr,s ⊂ Fr,s+1, we have

bNr,s = Eµ̄
N,[1]
r [bNr,s+1|Fr,s]. (2.66)

From bNr,s = Eµ̄
N,[1]
r [bN |Fr,s] we have

∥bNr,s∥Lp̂(µ̄
N,[1]
r )

≤ ∥bN∥
Lp̂(µ̄

N,[1]
r )

From this and (2.29) we obtain

sup
r<s

lim sup
N→∞

∥bNr,s∥Lp̂(µ̄
N,[1]
r )

≤ lim sup
N→∞

∥bN∥
Lp̂(µ̄

N,[1]
r )

<∞. (2.67)

Combining (2.37), (2.66) and (2.67), we have

br,s = lim
N→∞

bNr,s = lim
N→∞

Eµ̄
N,[1]
r [bNr,s+1|Fr,s] = Eµ̄

[1]
r [br,s+1|Fr,s]. (2.68)

From (H1), (2.37), (2.67), and Fatou’s lemma, we see that

sup
r<s

∥br,s∥Lp̂(µ̄
[1]
r )

≤ sup
r<s

lim inf
N→∞

∥bNr,s∥Lp̂(µ̄
N,[1]
r )

<∞. (2.69)

From (2.68) we deduce that {br,s}∞s=r+1 is martingale in s. Applying the martingale
convergence theorem to {br,s}∞s=r+1 and using (2.69), we deduce that there exists a br
such that

br,s = Eµ̄
[1]
r [br|Fr,s] (2.70)

and that

lim
s→∞

br,s = br for µ̄[1]r -a.s. and in Lp̂(µ̄[1]r ).

By the consistency of {µ̄[1]r }r∈N in r, the function br in (2.70) can be taken to be indepen-
dent of r. This together with (2.65) completes the proof of (2.41).
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We proceed with the proof of the latter half of Theorem 2.2. Recall SDE (2.18). Then

XN,i
t −XN,i

0 =

∫ t

0
σN (XN,i

u ,XN,⋄i
u )dBi

u +

∫ t

0
bN (XN,i

u ,XN,⋄i
u )du. (2.71)

Using the decomposition in (2.40), we see from (2.71) that

XN,i
t −XN,i

0 =

∫ t

0
σN (XN,i

u ,XN,⋄i
u )dBi

u +

∫ t

0
{bNr,s,p + btail}(XN,i

u ,XN,⋄i
u )du (2.72)

+

∫ t

0

[
{bNr,s − bNr,s,p}+ {bN,tail

r,s − btail}
]
(XN,i

u ,XN,⋄i
u )du.

Let ∂i,j = ∂
∂xi,j

, xi = (xi,j)
d
j=1 ∈ Rd, and xm = (xi)

m
i=1 ∈ (Rd)m. Set ∇i = (∂i,j)

d
j=1.

Let ψ ∈ C∞
0 (Sm) and aNi ∇i∇iψ(xm) =

∑d
k,l=1 a

N
kl(xi)∂i,k∂i,lψ(xm). Applying the Itô

formula to ψ and (2.72), and putting XN,m
t = (XN,1

t , . . . , XN,m
t ), we deduce that

ψ(XN,m
t )− ψ(XN,m

0 ) =

m∑
i=1

(∫ t

0
∇iψ(X

N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u (2.73)

+

∫ t

0

1

2
aNi ∇i∇iψ(X

N,m
u ) + {bNr,s,p + btail}(XN,i

u ,XN,⋄i
u ) · ∇iψ(X

N,m
u )du

)
+

m∑
i=1

∫ t

0
∇iψ(X

N,m
u ) · {bNr,s − bNr,s,p}(XN,i

u ,XN,⋄i
u )du

+
m∑
i=1

∫ t

0
∇iψ(X

N,m
u ) · {bN,tail

r,s − btail}(XN,i
u ,XN,⋄i

u )du.

We set

QN
r,s,p =

m∑
i=1

∫ T

0

∣∣∣{bNr,s − bNr,s,p}(XN,i
u ,XN,⋄i

u )
∣∣∣du,

RN
r,s =

m∑
i=1

∫ T

0

∣∣∣{bN,tail
r,s − btail}(XN,i

u ,XN,⋄i
u )

∣∣∣du.
Lemma 2.12. For each m, r < s ∈ N

lim
p→∞

lim sup
N→∞

EµN◦ℓ−1
N
[
(QN

r,s,p)
p̂
]
= 0,

lim
s→∞

lim sup
N→∞

EµN◦ℓ−1
N
[
(RN

r,s)
p̂
]
= 0.

Proof. Lemma 2.12 follows from (2.35) and (2.39) immediately.

Let Ξ = Sm × (Rd2)m × (Rd)m and ψ ∈ C∞
0 (Sm). Let F : C([0, T ]; Ξ) → C([0, T ];R)

such that

F (ξ, η, ζ)(t) = ψ(ξ(t))− ψ(ξ(0))−
∫ t

0

m∑
i=1

ζi(u) · ∇iψ(ξ(u))du (2.74)

−
∫ t

0

m∑
i=1

(1
2
ηi(u)∆iψ(ξ(u)) + btail(ξi(u)) · ∇iψ(ξ(u))

)
du,
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where ξ = (ξi)
m
i=1, η = (ηi)

m
i=1, ηi = (ηi,kl)

d
k,l=1, ζ = (ζi)

m
i=1, and ∆i =

∑d
j=1 ∂

2
i,j .

As ψ ∈ C∞
0 (Sm) and btail ∈ C(Sm) by definition, we see that F satisfies the following.

(1) F is continuous.
(2) F (ξ, η, ζ) is bounded in (ξ, η) for each ζ, and linear in ζ for each (ξ, η).

Let AN,m = (AN,i)mi=1 and BN,m
r,s,p = (BN,i

r,s,p)
m
i=1 such that

AN,i(t) = aN (XN,i
t ,XN,⋄i

t ), BN,i
r,s,p(t) = bNr,s,p(X

N,i
t ,XN,⋄i

t ). (2.75)

Then we see from (2.73)–(2.75) that for each m ∈ N∣∣∣F (XN,m,AN,m,BN,m
r,s,p)−

m∑
i=1

∫ ·

0
∇iψ(X

N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u

∣∣∣ (2.76)

≤ c7{QN
r,s,p + RN

r,s},

where c7 = c7(ψ) is the constant such that c7 = maxmi=1 ∥∇iψ∥Sm (∥ · ∥A is the uniform
norm over A as before). We take the limit of each term in (2.76) in the sequel.

Lemma 2.13. {XN,i}N∈N, {AN,i}N∈N and {BN,i
r,s,p}N∈N are tight for each i, r, s, p ∈ N.

Proof. The tightness of {XN,i}N∈N is clear from (I1).
We note that {∇xa

N}N is uniformly bounded on Sr × S for each r ∈ N by (H4).
Hence from this and (I1) there exists a constant c8 independent of N such that for all
0 ≤ u, v ≤ T

EµN◦ℓ−1
N [|AN,i(u)− AN,i(v)|4; sup

t∈[0,T ]
|XN,i

t | ≤ a] ≤ c8|u− v|2.

By (I1) we see that {AN,i(0)}N∈N is tight. Combining these deduces the tightness of
{AN,i}N∈N.

Recall that BN,i
r,s,p(t) = bNr,s,p(X

N,i
t ,XN,⋄i

t ) and that bNr,s,p is Fr,s-measurable by assump-
tion. By construction

PµN◦ℓ−1
N (XN,j

t ∈ Sr for all 1 ≤ j ≤ m, 0 ≤ t ≤ T | LN
r+s ≤ m) = 1. (2.77)

Let c9 = supN∈N ∥∇bNr,s,p∥S×Sm−1
s

. From (2.75), (2.33), (2.77), and (2.22) we see

EµN◦ℓ−1
N [|BN,i

r,s,p(u)− BN,i
r,s,p(v)|4; sup

t∈[0,T ]
|XN,i

t | ≤ a, LN
r+s ≤ m]

=EµN◦ℓ−1
N [|bNr,s,p(XN,i

u ,XN,⋄i
u )− bNr,s,p(X

N,i
v ,XN,⋄i

v )|4; sup
t∈[0,T ]

|XN,i
t | ≤ a, LN

r+s ≤ m]

≤EµN◦ℓ−1
N [

m∑
j=1

c49|XN,j
u −XN,j

v |4; sup
t∈[0,T ]

|XN,i
t | ≤ a, LN

r+s ≤ m]

≤ c49c6|u− v|2 for all 0 ≤ u, v ≤ T .

From this, (2.21), and (2.23), we deduce the tightness of {BN,i
r,s,p}N∈N.

Lemma 2.14. {((XN,i,AN,i,BN,i
r,s,p))

m
i=1}N∈N is tight in C([0, T ],Ξm) for each m, r, s, p ∈

N.
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Proof. Lemma 2.14 is obvious from Lemma 2.13. Indeed, the tightness of the probabil-
ity measures on a countable product space follows from that of the distribution of each
component.

Assumption (I1) and Lemma 2.14 combined with the diagonal argument imply that for
any subsequence of {((XN,i,AN,i,BN,i

r,s,p))
m
i=1}N, p∈N, r<s<∞, there exists a convergent-in-law

subsequence, denoted by the same symbol. That is, for each p, s, r,m ∈ N,

lim
N→∞

(XN,i,AN,i,BN,i
r,s,p)

m
i=1 = (Xi,Ai,Bi

r,s,p)
m
i=1 in law. (2.78)

We thus assume (2.78) in the rest of this section.
Let Am = (Ai)mi=1, B

N,m
r,s,p = (BN,i

r,s,p)
m
i=1, and Xm = (Xi)mi=1 for X = (Xi)i∈N in Theo-

rem 2.2.

Lemma 2.15. For each m ∈ N

lim
N→∞

F (XN,m,AN,m,BN,m
r,s,p) = F (Xm,Am,Bm

r,s,p) in law. (2.79)

Moreover, Ai and Bi
r,s,p are given by

Ai(t) = a(Xi
t ,X

⋄i
t ), Bi

r,s,p(t) = br,s,p(X
i
t ,X

⋄i
t ). (2.80)

Proof. Recall that F (ξ, η, ζ) is continuous. Hence (2.79) follows from (2.78). By (H4) we
see {aN} converges to a uniformly on each Sr × S. Then, from this, (2.32), and (2.75) we
obtain (2.80).

Lemma 2.16. For each m ∈ N

lim
N→∞

m∑
i=1

∫ ·

0
∇iψ(X

N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u =
m∑
i=1

∫ ·

0
∇iψ(X

m
u ) · σ(Xi

u,X
⋄i
u )dB̂

i
u in law,

where (B̂i)mi=1 is the first m-components of a (Rd)N-valued Brownian motion (B̂i)i∈N.

Proof. By the calculation of quadratic variation, we see

⟨
∫ ·

0
∂i,kψ(X

N,m
u )

d∑
n=1

σNkn(X
N,i
u ,XN,⋄i

u )dBi,n
u ,

∫ ·

0
∂j,lψ(X

N,m
u )

d∑
n=1

σNln(X
N,j
u ,XN,⋄j

u )dBj,n
u ⟩u

= δij

∫ ·

0
aNkl(X

N,i
u ,XN,⋄i

u )∂i,kψ(X
N,m
u )∂i,lψ(X

N,m
u )du.

From (H4), we see that aN converges to a uniformly on Sr for each r ∈ N. Hence we
deduce from (I1) and ψ ∈ C∞

0 (Sm) the convergence in law such that

lim
N→∞

m∑
i=1

∫ ·

0
aNkl(X

N,i
u ,XN,⋄i

u )∂i,kψ(X
N,m
u )∂i,lψ(X

N,m
u )du

=
m∑
i=1

∫ ·

0
akl(X

i
u,X

⋄i
u )∂i,kψ(X

m
u )∂i,lψ(X

m
u )du.

Then the right-hand side gives the quadratic variation of
∑m

i=1

∫ ·
0 ∇iψ(X

m
u )·σ(Xi

u,X
⋄i
u )dB̂

i
u.

This completes the proof.
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We are now ready for the proof of Theorem 2.2.
Proof of Theorem 2.2. From Lemma 2.12 and (2.76) we deduce that

lim sup
N→∞

EµN◦ℓ−1
N

[
sup

0≤t≤T

∣∣∣F (XN,m,AN,m,BN,m
r,s,p)(t)

−
m∑
i=1

∫ t

0
∇iψ(X

N,m
u ) · σN (XN,i

u ,XN,⋄i
u )dBi

u

∣∣∣p̂]
≤ lim sup

N→∞
EµN◦ℓ−1

N
[
(QN

r,s,p)
p̂ + (RN

r,s)
p̂
]
=: c10(s, p),

where 0 ≤ c10(s, p) = c10(s, p, ψ) ≤ ∞ is a constant depending on s, p, ψ. Applying
Lemma 2.15 and Lemma 2.16 to (2.76), we then deduce that

Eµ◦ℓ−1[
sup

0≤t≤T

∣∣F (Xm,Am,Bm
r,s,p)(t)−

m∑
i=1

∫ t

0
∇iψ(X

m
u ) · σ(Xi

u,X
⋄i
u )dB̂

i
u

∣∣p̂] ≤ c10(s, p).

From this and (2.74), we obtain that

Eµ◦ℓ−1[
sup

0≤t≤T

∣∣ψ(Xm
t )− ψ(Xm

0 )−
m∑
i=1

∫ t

0
∇iψ(X

m
u ) · σ(Xi

u,X
⋄i
u )dB̂

i
u (2.81)

−
m∑
i=1

∫ t

0

1

2
a(Xi

u,X
⋄i
u )∇i∇iψ(X

m
u ) + btail(Xi

u) · ∇iψ(X
m
u )du

−
m∑
i=1

∫ t

0
br,s,p(X

i
u,X

⋄i
u ) · ∇iψ(X

m
u )du

∣∣p̂]
≤ c10(s, p).

Take ψ = ψR ∈ C0(S
m) such that ψ(x1, . . . , xm) = xi for {|xj | ≤ R; j = 1, . . . ,m}

while keeping |∇iψ| bounded in such a way that

c10(p, s) = sup
R
c10(p, s, R) = o(p, s).

Then we deduce from (2.81) that

Eµ◦ℓ−1[
sup

0≤t≤T

∣∣Xi
t∧τR −Xi

0 −
∫ t∧τR

0
σ(Xi

u,X
⋄i
u )dB̂

i
u (2.82)

−
∫ t∧τR

0
{br,s,p(Xi

u,X
⋄i
u ) + btail(Xi

u)}du
∣∣p̂] ≤ c10(s, p),

where τR is a stopping time such that, for Xm = (Xi,X⋄i)mi=1 ∈ C([0, T ]; (S × S)m),

τR = inf{t > 0; |Xi
t | ≥ R for some i = 1, . . . ,m}.
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As R > 0 is arbitrary, (2.82) holds for all R > 0. Taking R→ ∞, we thus obtain

Eµ◦ℓ−1[
sup

0≤t≤T

∣∣Xi
t −Xi

0 −
∫ t

0
σ(Xi

u,X
⋄i
u )dB̂

i
u (2.83)

−
∫ t

0
{br,s,p(Xi

u,X
⋄i
u ) + btail(Xi

u)}du
∣∣]

≤ lim inf
R→∞

Eµ◦ℓ−1[
sup

0≤t≤T

∣∣Xi
t∧τR −Xi

0 −
∫ t∧τR

0
σ(Xi

u,X
⋄i
u )dB̂

i
u

−
∫ t∧τR

0
{br,s,p(Xi

u,X
⋄i
u ) + btail(Xi

u)}du
∣∣]

≤ c10(s, p)
1/p̂.

We note here that the integrands in the first and second lines of (2.83) are uniformly
integrable because of (2.82). Taking p → ∞, then s→ ∞ in (2.83), and using assumptions
(2.36) and (2.42) we thus obtain

Eµ◦ℓ−1[
sup

0≤t≤T

∣∣Xi
t −Xi

0 −
∫ t

0
σ(Xi

u,X
⋄i
u )dB̂

i
u −

∫ t

0
{b(Xi

u,X
⋄i
u ) + btail(Xi

u)}du
∣∣] = 0.

This implies for all 0 ≤ t ≤ T

Xi
t −Xi

0 −
∫ t

0
σ(Xi

u,X
⋄i
u )dB̂

i
u −

∫ t

0
{b(Xi

u,X
⋄i
u ) + btail(Xi

u)}du = 0. (2.84)

We deduce (2.43) from (2.84), which completes the proof of Theorem 2.2.

2.4 Proof of Theorem 2.7

Is this section we prove Theorem 2.7 using Theorem 2.2. (H1)–(H4) are commonly
assumed in Theorem 2.7 and Theorem 2.2. Hence our task is to derive condition (I1)–
(I5) from conditions stated in Theorem 2.7. From (J2) we easily deduce that

lim
N→∞

uN = u in Lp̂
loc(S, dx), (2.85)

lim
N→∞

gNs = gs in Lp̂
loc(µ

[1]) for all s. (2.86)

Lemma 2.17. µ has a logarithmic derivative dµ in Lp
loc(µ

[1]), where 1 ≤ p < p̂.

Proof. We use a general theory developed in [47]. (H1) corresponds to (4.1) and (4.2)
in [47]. (2.85), (2.86), (2.47), and (2.49) correspond to (4.15), (4.30), (4.29), and (4.31)
in [47]. Then all the assumptions of [47, Theorem 45] are satisfied. We thus deduce
Lemma 2.17 from [47, Theorem 45].

Let {XN}N∈N be a sequence of solutions in (2.18) and (2.19). We set the m-labeling

XN,[m] = (XN,1, . . . , XN,m,
N∑

j=1+m

δXN,j ). (2.87)
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It is known [46, 47] that XN,[m] is a diffusion process associated with the Dirichlet form

EµN,[m]
on L2(Sm × S, µN,[m]) such that

EµN,[m]
(f, g) =

∫
Sm×S

1

2
{

m∑
i=1

∇if · ∇ig}+ D[f, g]dµN,[m], (2.88)

where the domain D[m] is taken as the closure of D[m]
0 = C∞

0 (Sm) ⊗ D◦. Note that the

coordinate function xi = xi ⊗ 1 is locally in D[m]. From this we can regard {XN,i
t } as

a Dirichlet process of the m-labeled diffusion XN associated with the Dirichlet space as
above. In other words, we can write

XN,i
t −XN,i

0 = fi(X
N
t )− fi(X

N
0 ) =: A

[fi]
t ,

where fi(x, s) = xi ⊗ 1, xi ∈ Rd, and x = (xj)
m
j=1 ∈ (Rd)m. By the Fukushima de-

composition of XN,i
t , there exist a unique continuous local martingale additive functional

MN,i = {MN,i
t } and an additive functional of zero energy NN,i = {NN,i

t } such that

XN,i
t −XN,i

0 = MN,i
t + NN,i

t .

We refer to [16, Chapter 5] for the Fukushima decomposition. Because of (2.18), we then
have

MN,i
t =

∫ t

0
σN (XN,i

u ,XN,⋄i
u )dBi

u, NN,i
t =

∫ t

0
bN (XN,i

u ,XN,⋄i
u )du.

Lemma 2.18. Let rT : C([0, T ];S) → C([0, T ];S) be such that rT (X)t = XT−t. Suppose

that X
N,[m]
0 = µN,[m] in law. Then

XN,i
t −XN,i

0 =
1

2
MN,i

t +
1

2
(MN,i

T−t(rT )−MN,i
T (rT )) a.s.. (2.89)

Proof. Applying the Lyons-Zheng decomposition [16, Theorem 5.7.1] to additive function-
als A[fi] for 1 ≤ i ≤ m, we obtain (2.89).

Lemma 2.19. (I1) holds.

Proof. Although MN,i is a d-dimensional martingale by definition, we assume d = 1 here
and prove only this case for simplicity. The general case d ≥ 1 can be proved in a similar
fashion. Let c3 be the constant in (2.20) (under the assumption d = 1). Then we note
that for u ≥ v

0 ≤ ⟨MN,i⟩u − ⟨MN,i⟩v =

∫ u

v
AN,i(t)dt ≤ c3(u− v) (2.90)

We begin by proving (2.22). From a standard calculation of martingales and (2.90),
we obtain

EµN◦ℓ−1
N [|MN,i

u −MN,i
v |4] = EµN◦ℓ−1

N [|B⟨MN,i⟩u −B⟨MN,i⟩v |
4]

= 3EµN◦ℓ−1
N
[
|⟨MN,i⟩u − ⟨MN,i⟩v|2

]
≤ c11|u− v|2,
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where c11 = 3c23 and {Bt} is a one-dimensional Brownian motion. Applying the same

calculation to MN,i
T−t(rT )−MN,i

T (rT ), we have

EµN◦ℓ−1
N [|MN,i

T−t(rT )−MN,i
T−u(rT )|

4] ≤ c11|t− u|2 for each 0 ≤ t, u ≤ T . (2.91)

Combining (2.89) and (2.91) with the Lyons-Zheng decomposition (2.89), we thus obtain

EµN◦ℓ−1
N [|XN,i

t −XN,i
u |4] ≤ 2c11|t− u|2 for each 0 ≤ t, u ≤ T . (2.92)

Taking a sum over i = 1, . . . ,m in (2.92), we deduce (2.22).
We next prove (2.21). From (2.89) we have

2|XN,i
t −XN,i

0 | ≤ |MN,i
t |+ |MN,i

T−t(rT )−MN,i
T (rT )| a.s..

From this and a representation theorem of martingales, we obtain

PµN◦ℓ−1
N ( sup

t∈[0,T ]
|XN,i

t −XN,i
0 | ≥ a) (2.93)

≤PµN◦ℓ−1
N ( sup

t∈[0,T ]
|MN,i

t | ≥ a) + PµN◦ℓ−1
N ( sup

t∈[0,T ]
|MN,i

T−t(rT )−MN,i
T (rT )| ≥ a)

=2PµN◦ℓ−1
N ( sup

t∈[0,T ]
|MN,i

t | ≥ a)

=2PµN◦ℓ−1
N ( sup

t∈[0,T ]
|B⟨MN,i⟩t | ≥ a).

A direct calculation shows

PµN◦ℓ−1
N ( sup

t∈[0,T ]
|B⟨MN,i⟩t | ≥ a) ≤ PµN◦ℓ−1

N ( sup
t∈[0,√c3T ]

|Bt| ≥ a) ≤ Erf(
a

√
c3T

) (2.94)

From (2.93), (2.94), and (H2), we obtain (2.21).
We proceed with the proof of (2.23). Similarly as (2.93) and (2.94), we deduce

PµN◦ℓ−1
N ( inf

t∈[0,T ]
|XN,i

t | ≤ r) ≤PµN◦ℓ−1
N ( sup

t∈[0,T ]
|XN,i

t −XN,i
0 | ≥ |XN,i

0 | − r) (2.95)

≤2PµN◦ℓ−1
N ( sup

t∈[0,T ]
|MN,i

t | ≥ |XN,i
0 | − r)

≤2

∫
S
Erf(

|si| − r
√
c3T

)µN (ds),

where si = ℓN (s)i. We note that XN,i
0 = si by construction. From (2.95) and (2.55), we

deduce

lim sup
N→∞

PµN◦ℓ−1
N (LN

r > L) ≤ lim sup
N→∞

∑
i>L

PµN◦ℓ−1
N ( inf

t∈[0,T ]
|XN,i

t | ≤ r)

≤ 2 lim sup
N→∞

∑
i>L

∫
S
Erf(

|si| − r
√
c3T

)µN (ds)

→ 0 (L→ ∞).

This completes the proof.
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Lemma 2.20. (I2) holds.

Proof. (2.29) follows from (2.85), (2.86), and (2.49). For each i ∈ N we deduce that

EµN◦ℓ−1
N [

∫ T

0
|bNr,s,p(X

N,i
t ,XN,⋄i

t )|p̂dt] ≤
N∑
i=1

EµN◦ℓ−1
N [

∫ T

0
|bNr,s,p(X

N,i
t ,XN,⋄i

t )|p̂dt] (2.96)

=EµN◦ℓ−1
N [

N∑
i=1

∫ T

0
|bNr,s,p(X

N,i
t ,XN,⋄i

t )|p̂dt]

=EµN,[1]
[

∫ T

0
|bNr,s,p(X

N,[1]
t )|p̂dt].

Diffusion process XN,[1] in (2.87) with m = 1 given by the Dirichlet form EµN,[1]
in (2.88)

is µN,[1]-symmetric. Hence we see that for all 0 ≤ t ≤ T

EµN,[1]
[|bNr,s,p(X

N,[1]
t )|p̂] ≤

∫
S×S

|bNr,s,p|p̂dµN,[1].

This yields ∫ T

0
dtEµN,[1]

[|bNr,s,p(X
N,[1]
t )|p̂] ≤ T

∫
S×S

|bNr,s,p|p̂dµN,[1]. (2.97)

From (2.96) and (2.97) we obtain (2.30).

Lemma 2.21. (I3)–(I5) hold.

Proof. Conditions (2.32), (2.33), and (2.34) follow from (J1), (J2), (I1), (I2), and (2.46).
Similarly, as Lemma 2.20, we obtain for each i ∈ N

EµN◦ℓ−1
N [

∫ T

0
|(bNr,s − bNr,s,p)(X

N,i
t ,XN,⋄i

t )|p̂dt] ≤ T

∫
S×S

|bNr,s − bNr,s,p|p̂dµN,[1]. (2.98)

Hence (2.35) follows from (2.98) and (2.34). (2.36) follows from (2.65) and an inequality
similar to (2.98). We have thus obtained (I3). Condition (2.38) follows from (J1) and
(J2). Similarly, as Lemma 2.20, we obtain for each i ∈ N

EµN◦ℓ−1
N [

∫ T

0
|(bN,tail

r,s − btail)(XN,i
t ,XN,⋄i

t )|p̂dt] ≤ T

∫
S×S

|bN,tail
r,s − btail|p̂dµN,[1].

This together with (2.38) implies (2.39). Hence we have (I4). Similarly as Lemma 2.20,
we obtain (2.42) from (2.41). We have thus obtained (I5).

Proof of Theorem 2.7. (I1)–(I5) follows from Lemma 2.19–Lemma 2.21. Hence we
deduce Theorem 2.7 from Theorem 2.2.

We finally present a sufficient condition of (2.55).

Lemma 2.22. Assume (H1) and (2.57) for each r ∈ N as Section 2.2. We take the label
ℓN as (2.56). Then (2.55) holds.
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Proof. Let c12 = c12(N) be such that

c12 =

∫
S
Erf(

|x| − r
√
c3T

)ρN,1(x)dx.

Let c13 = lim supN→∞ c12(N). Then from (H1) and (2.57), we see that for each large r

c13 ≤ lim
N→∞

∫
Sr

Erf(
|x| − r
√
c3T

)ρN,1(x)dx+ lim sup
N→∞

∫
S\Sr

Erf(
|x| − r
√
c3T

)ρN,1(x)dx (2.99)

<∞.

From (H1) we see that {µN}N∈N converges to µ weakly. Hence {µN}N∈N is tight.
This implies that there exists a sequence of increasing sequences of natural numbers an =
{an(m)}∞m=1 such that an < an+1 and that for each m

lim
n→∞

lim sup
N→∞

µN (s(Sm) ≥ an(m)) = 0.

Without loss of generality, we can take an(m) > m for all m,n ∈ N. Then from this, we
see that there exists a sequence {p(L)}L∈N converging to ∞ such that p(L) < L for all
L ∈ N and that

lim
L→∞

lim sup
N→∞

µN (s(Sp(L)) ≥ L) = 0. (2.100)

Recall that the label ℓN (s) = (si)i∈N satisfies |s1| ≤ |s2| ≤ · · · . Using this, we divide
the set S as in such a way that

{sL ∈ Sp(L)} and {sL ̸∈ Sp(L)}.

Then s ∈ {sL ∈ Sp(L)} if and only if s(Sp(L)) ≥ L. Hence we easily see that

∑
i>L

∫
S
Erf(

|si| − r
√
c3T

)µN (ds) ≤ c12(N)µN ({s(Sp(L)) ≥ L}) +
∫
S\Sp(L)

Erf(
|x| − r
√
c3T

)ρN,1(x)dx.

Taking the limits on both sides, we obtain

lim
L→∞

lim sup
N→∞

∑
i>L

∫
S
Erf(

|si| − r
√
c3T

)µN (ds) ≤

c13 lim
L→∞

lim sup
N→∞

µN ({s(Sp(L)) ≥ L}) + lim
L→∞

lim sup
N→∞

∫
S\Sp(L)

Erf(
|x| − r
√
c3T

)ρN,1(x)dx.

Applying (2.99) and (2.100) to the second term, and (2.57) to the third, we deduce (2.55).

2.5 Examples

The finite-particle approximation in Theorem 2.7 contains many examples such as Airyβ
point processes (β = 1, 2, 4), Bessel2,α point process, the Ginibre point process, the
Lennard–Jones 6-12 potential, and Riesz potentials.The first three examples are related to
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random matrix theory and the interaction Ψ(x) = − log |x|, the logarithmic function. We
present these in this section. For this we shall confirm the assumptions in Theorem 2.7,
that is, assumptions (H1)–(H4) and (J1)–(J6).

Assumption (H1) is satisfied for the first three examples [43, 67]. As for the last two
examples, we assume (H1). We also assume (H2). (H3) can be proved in the same way
as given in [53]. In all examples, a is always a unit matrix. Hence it holds that (H4) is
satisfied and that (2.44) in (J1) becomes bN = 1

2d
N . From this we see that SDEs (2.59)

and (2.51) become

dXN,i
t = dBN,i

t +
1

2
dN (XN,i

t ,XN,⋄i
t ) dt (1 ≤ i ≤ N), (2.101)

dXi
t = dBi

t +
1

2
dµ(Xi

t ,X
⋄i
t ) dt (i ∈ N), (2.102)

where dµ is the logarithmic derivative of µ given by (2.50). Assumption (J6) for the
first three examples with β = 2 can be proved in the same way as [53] as we explained in
Remark 2.10. Thus, in the rest of this section, our task is to check assumptions (J2)–(J5).

2.5.1 The Airyβ interacting Brownian motion (β = 1, 2, 4)

Let µNAiry,β and µAiry,β be as in Section 2.1. Recall SDEs (2.10) and (2.11) in Section 2.1.

Let XN = (XN,i)Ni=1 and X = (Xi)i∈N be solutions of

dXN,i
t = dBi

t +
β

2

N∑
j=1, j ̸=i

1

XN,i
t −XN,j

t

dt− β

2
{N1/3 +

1

2N1/3
XN,i

t }dt, (2.10)

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

|Xj
t |<r,j ̸=i

1

Xi
t −Xj

t

−
∫
|x|<r

ϱ(x)

−x
dx}dt (i ∈ N). (2.11)

Proposition 2.23. If β = 1, 4, then each sub-sequential limit of solutions XN of (2.10)
satisfies (2.11). If β = 2, then the full sequence converges to (2.11).

Proof. Conditions (J2)–(J5) other than (2.48) can be proved in the same way as given
in [54]. In [54], we take χs(x) = 1Ss(x); its adaptation to the present case is easy.

We consider estimates of correlation functions such that

inf
N∈N

ρN,1
Airy,β(x) ≥ c14 for all x ∈ Sr (2.103)

sup
N∈N

ρN,2
Airy,β(x, y) ≤ c15|x− y| for all x, y ∈ Sr, (2.104)

where c14(r) and c15(r) are positive constants. The first estimate is trivial because ρN,1
Airy,β

converges to ρ1Airy,β uniformly on Sr and, all these correlation functions are continuous and
positive. The second estimate follows from the determinantal expression of the correlation
functions and bounds on derivative of determinantal kernels. Estimates needed for the
proof can be found in [54] and the detail of the proof of (2.104) is left to the reader.

Equation (2.48) follows from (2.103) and (2.104). Indeed, the integral in (2.48) is
taken on the bounded domain and the singularity of integral of gN (x, y) = β/(x− y) near
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{x = y} is logarithmic. Furthermore, the one-point correlation function ρN,1
Airy,β,x of the

reduced Palm measure conditioned at x is controlled by the upper bound of the two-point
correlation function and the lower bound of one-point correlation function because

ρN,1
Airy,β,x(y) =

ρN,2
Airy,β(x, y)

ρN,1
Airy,β(x)

.

Using these facts, we see that (2.103) and (2.104) imply (2.48).

2.5.2 The Bessel2,α interacting Brownian motion

Let S = [0,∞) and α ∈ [1,∞). We consider the Bessel2,α point process µbes,2,α and their
N -particle version. The Bessel2,α point process µbes,2,α is a determinantal point process
with kernel

Kbes,2,α(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)
(2.105)

=

√
xJα+1(

√
x)Jα(

√
y)− Jα(

√
x)
√
yJα+1(

√
y)

2(x− y)
,

where Jα is the Bessel function of order α [67, 17]. The density mN
α (x)dx of the associated

N -particle systems µNbes,2,α is given by

mN
α (x) =

1

ZN
α

e−
∑N

i=1 xi/4N
N∏
j=1

xαj

N∏
k<l

|xk − xl|2. (2.106)

It is known that µNbes,2,α is also determinantal [67, 945p] and [14, 91p] The Bessel2,α
interacting Brownian motion is given by the following [17].

dXN,i
t =dBi

t + {− 1

8N
+

α

2XN,i
t

+
N∑

j=1,j ̸=i

1

XN,i
t −XN,j

t

}dt (1 ≤ i ≤ N), (2.107)

dXi
t =dB

i
t + { α

2Xi
t

+

∞∑
j ̸=i

1

Xi
t −Xj

t

}dt (i ∈ N). (2.108)

This appears at the hard edge of one-dimensional systems.

Proposition 2.24. Assume α > 1. Then (2.60) holds for (2.107) and (2.108).

Proof. (J2)–(J5) except (2.55) are proved in [17]. We easily see that the assumptions of
Lemma 2.22 hold and yield (2.55). We thus obtain (J5).

Remark 2.25. There exist other natural ISDEs and N -particle systems related to the
Bessel point processes. They are the non-colliding square Bessel processes and their
square root. The non-colliding square Bessel processes are reversible to the Bessel2,α
point processes, but the associated Dirichlet forms are different from the Bessel2,α inter-
acting Brownian motion. Indeed, the coefficients aN and a in Section 2.2 are taken to be
aN (x.y) = a(x.y) = 2x. On the other hand, each square root of the non-colliding Bessel
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processes is not reversible to the Bessel2,α point processes, but has the same type of Dirich-
let forms as the Bessel2,α interacting Brownian motion. In particular, the coefficients aN

and a in Section 2.2 are taken to be aN (x.y) = a(x.y) = 1/4. That is, they are constant
time change of distorted Brownian motion with the standard square field.

We refer to [25, 26, 52] for these processes. For reader’s convenience we provide an
ISDE describing the non-colliding square Bessel processes and their square root. We note
that SDE (2.110) is a constant time change of that in [26, 52]. Let YN = (Y N,i)Ni=1 and
Y = (Y i)i∈N be the non-colliding square Bessel processes. Then

dY N,i
t =

√
Y N,i
t dBi

t + {−Y
N,i
t

8N
+
α+ 1

2
+

N∑
j=1,j ̸=i

Y N,i
t

Y N,i
t − Y N,j

t

}dt (1 ≤ i ≤ N), (2.109)

dY i
t =

√
Y i
t dB

i
t + {α+ 1

2
+

∞∑
j ̸=i

Y i
t

Y i
t − Y j

t

}dt (i ∈ N). (2.110)

Let ZN = (ZN,i)Ni=1 and Z = (Zi)i∈N be square root of the non-colliding square Bessel
processes. Then applying Itô formula we obtain from (2.109) and (2.110)

dZN,i
t =

1

2
dBi

t +
1

4
{−Z

N,i
t

4N
+
α+ 1

2

ZN,i
t

+
N∑

j=1,j ̸=i

2ZN,i
t

(ZN,i
t )2 − (ZN,j

t )2
}dt (1 ≤ i ≤ N), (2.111)

dZi
t =

1

2
dBi

t +
1

4
{
α+ 1

2

Zi
t

+

∞∑
j ̸=i

2ZN,i
t

(Zi
t)

2 − (Zj
t )

2
}dt (i ∈ N). (2.112)

We remark that Theorem 2.7 can be applied to the non-colliding square Bessel processes
because the equilibrium states are the same as the Bessel interacting Brownian motion
and coefficients are well-behaved as aN (x.y) = a(x.y) = 2x.

2.5.3 The Ginibre interacting Brownian motion

Let S = R2. Let µNgin and µgin be as in Section 2.1. Let ΦN = |x|2 and Ψ(x) = − log |x|.
Then the N -particle systems are given by

dXN,i
t =dBi

t −XN,i
t dt+

N∑
j=1,j ̸=i

XN,i
t −XN,j

t

|XN,i
t −XN,j

t |2
dt (1 ≤ i ≤ N). (2.12)

The limit ISDEs are

dXi
t =dB

i
t + lim

r→∞

∑
|Xi

t−Xj
t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N) (2.13)

and

dXi
t =dB

i
t −Xi

tdt+ lim
r→∞

∑
|Xj

t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N). (2.14)
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Proposition 2.26. (2.60) holds for (2.12) and both (2.13) and (2.14).

Proof. (J2)–(J5) except (2.55) are proved in [48, 47]. (2.55) is obvious for a Ginibre
point process because their one-correlation functions with respect to the Lebesgue measure
have a uniform bound such that ρN,1

gin ≤ 1/π. This estimate follows from (6.4) in [47]
immediately. Let d1 and d2 be the logarithmic derivative associated with ISDEs (2.13)
and (2.14). Then d1 = d2 a.s. [47]. Hence we conclude Proposition 2.26

2.5.4 Gibbs measures with Ruelle-class potentials

Let µΨ be Gibbs measures with Ruelle-class potential Ψ(x, y) = Ψ(x− y) that are smooth
outside the origin. Let ΦN ∈ C∞(S) be a confining potential for the N - particle system.

We assume that the correlation functions of µΦ
N ,Ψ satisfy bounds supN ρN,m ≤ cm16 for

some constants c16; see the construction of [61]. Then one can see in the same fashion
as [53] that µΨ satisfy (J2)–(J5) except (2.55). Under the condition supN ρN,m ≤ cm16,
(2.55) is obvious. Moreover, if µΨ is a grand canonical Gibbs measure with sufficiently
small inverse temperature β, then µΨ is tail trivial. Hence we can obtain (J6) in the same
way as [53] in this case. We present two concrete examples below.

2.5.5 Lennard–Jones 6-12 potentials

Let S = R3 and β > 0. Let Ψ6−12(x) = |x|−12 − |x|−6 be the Lennard-Jones potential.
The corresponding ISDEs are given by the following.

dXN,i
t =dBi

t +
β

2
{∇ΦN (XN,i

t ) +
N∑

j=1,
j ̸=i

12(XN,i
t −XN,j

t )

|XN,i
t −XN,j

t |14
− 6(XN,i

t −XN,j
t )

|XN,i
t −XN,j

t |8
}dt (1 ≤ i ≤ N),

dXi
t =dB

i
t +

β

2

∞∑
j=1,j ̸=i

{12(X
i
t −Xj

t )

|Xi
t −Xj

t |14
− 6(Xi

t −Xj
t )

|Xi
t −Xj

t |8
}dt (i ∈ N).

2.5.6 Riesz potentials

Let d < a ∈ N and β > 0. Let Ψa(x) =
β
a |x|

−a the Riesz potential. The corresponding
SDEs are given by

dXN,i
t =dBi

t +
β

2
{∇ΦN (XN,i

t ) +
N∑

j=1,j ̸=i

XN,i
t −XN,j

t

|XN,i
t −XN,j

t |2+a
}dt (1 ≤ i ≤ N),

dXi
t =dB

i
t +

β

2

∞∑
j=1,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2+a
dt (i ∈ N).
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3 Dynamical bulk scaling limit of Gaussian unitary ensem-
bles and stochastic-differential-equation gaps

3.1 Introduction

Gaussian unitary ensembles (GUE) are Gaussian ensembles defined on the space of random
matrices MN (N ∈ N) with independent random variables, the matrices of which are
Hermitian. By definition, MN = [MN

i,j ]
N
i,j=1 is then an N ×N matrix having the form

MN
i,j =

{
ξi if i = j

τi,j/
√
2 +

√
−1ζi,j/

√
2 if i < j,

where {ξi, τi,j , ζi,j}∞i<j are i.i.d. Gaussian random variables with mean zero and a half

variance. Then the eigenvalues λ1, . . . , λN of MN are real and have distribution µ̌N such
that

µ̌N (dxN ) =
1

ZN

N∏
i<j

|xi − xj |2
N∏
k=1

e−|xk|2 dxN , (3.1)

where xN = (x1, . . . , xN ) ∈ RN and ZN is a normalizing constant [2]. Wigner’s cele-
brated semicircle law asserts that their empirical distributions converge in distribution to
a semicircle distribution:

lim
N→∞

1

N
{δλ1/

√
N + · · ·+ δλN/

√
N
} =

1

π
1(−

√
2,
√
2)(x)

√
2− x2dx.

One may regard this convergence as a law of large numbers because the limit distribution
is a non-random probability measure.

We consider the scaling of the next order in such a way that the distribution is sup-
ported on the set of configurations. That is, let θ be the position of the macro scale given
by

−
√
2 < θ <

√
2 (3.2)

and take the scaling x 7→ y such that

x =
y√
N

+ θ
√
N. (3.3)

Let µNθ be the point process for which the labeled density mN
θ dxN is given by

mN
θ (xN ) =

1

ZN

N∏
i<j

|xi − xj |2
N∏
k=1

e−|xk+θN |2/N . (3.4)

The position θ in (3.2) is called the bulk and the scaling in (3.3) the bulk scaling (of the
point processes). It is well known that the rescaled point processes µNθ satisfy

lim
N→∞

µNθ = µθ in distribution, (3.5)
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where µθ is the determinantal point process with sine kernel Kθ:

Kθ(x, y) =
sin{

√
2− θ2(x− y)}
π(x− y)

.

By definition µθ is the point process on R for which the m-point correlation function ρmθ
with respect to the Lebesgue measure is given by

ρmθ (x1, . . . , xm) = det[Kθ(xi, xj)]
m
i,j=1.

We hence see that the limit is universal in the sense that it is the Sine2 point process
and independent of the macro-position θ up to the dilation of determinantal kernels Kθ.
This may be regarded as a first step of the universality of the Sine2 point process, which
has been extensively studied for general inverse temperature β and a wide class of free
potentials (see [5] and references therein).

Once a static universality is established, then it is natural to enquire of its dynam-
ical counter part. Indeed, we shall prove the dynamical version of (3.5) and present a
phenomenon called stochastic-differential-equation (SDE) gaps for θ ̸= 0.

Two natural N -particle dynamics are known for GUE. One is Dyson’s Brownian mo-
tion corresponding to time-inhomogeneous N -particle dynamics given by the time evolu-
tion of eigenvalues of time-dependent Hermitian random matrices MN (t) for which the
coefficients are Brownian motions Bi,j

t [43].

The other is a diffusion process Xθ,N = (Xθ,N,i)Ni=1 = {(Xθ,N,i
t )Ni=1}t given by the SDE

such that for 1 ≤ i ≤ N

dXθ,N,i
t = dBi

t +

N∑
j ̸=i

1

Xθ,N,i
t −Xθ,N,j

t

dt− 1

N
Xθ,N,i

t dt− θ dt, (3.6)

which has a unique strong solution for Xθ,N
0 ∈ RN\N and Xθ,N never hits N , where

N = {x = (xk)
N
k=1; xi = xj for some i ̸= j} [19].

The derivation of (3.6) is as follows: Let µ̌Nθ (dxN ) = mN
θ (xN )dxN be the labeled

symmetric distribution of µNθ . Consider a Dirichlet form on L2(RN , µ̌Nθ ) such that

E µ̌N
θ (f, g) =

∫
RN

1

2

N∑
i=1

∂f

∂xi

∂g

∂xi
µ̌Nθ (dxN ).

Then using (3.4) and integration by parts, we specify the generatorAN of E µ̌N
θ on L2(RN , µ̌Nθ )

such that

AN =
1

2
∆ +

N∑
i=1

{
N∑
j ̸=i

1

xi − xj
} ∂

∂xi
−

N∑
i=1

{xi
N

+ θ} ∂

∂xi
.

From this we deduce that the associated diffusion Xθ,N is given by (3.6).
Taking the limit N → ∞ in (3.6), we intuitively obtain the infinite-dimensional SDE

(ISDE) of Xθ = (Xθ,i)i∈N such that

dXθ,i
t = dBi

t +
∞∑
j ̸=i

1

Xθ,i
t −Xθ,j

t

dt− θ dt, (3.7)
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which was introduced in [68] with θ = 0. For each θ, we have a unique, strong solution
Xθ of (3.7) such that Xθ

0 = s for µθ ◦ l−1-a.s. s, where l is a labeling map. Although only
the θ = 0 ISDE of X0 =: X = (Xi)i∈N is studied in [53, 76], the general θ ̸= 0 ISDE is
nevertheless follows easily using the transformation

Xθ,i
t = Xi

t − θt.

Let Xθ
t =

∑
i δXθ,i

t
be the associated delabeled process. Then Xθ = {Xθ

t} takes µθ as an

invariant probability measure, and is not µθ-symmetric for θ ̸= 0.
The precise meaning of the drift term in (3.7) is the substitution of Xθ

t = (Xθ,i
t )i∈N for

the function b(x, y) given by the conditional sum

b(x, y) = lim
r→∞

{
∑

|x−yi|<r

1

x− yi
} − θ in L1

loc(µ
[1]
θ ), (3.8)

where y =
∑

i δyi and µ
[1]
θ is the one-Campbell measure of µθ (see (3.17)). We do this in

such a way that b(Xθ,i
t ,
∑

j ̸=i δXθ,j
t

). Because µθ is translation invariant, it can be easily

checked that (3.8) is equivalent to (3.9):

b(x, y) = lim
r→∞

{
∑
|yi|<r

1

x− yi
} − θ in L1

loc(µ
[1]
θ ). (3.9)

Let lN and l be labeling maps. We denote by lN,m and lm the first m-components of
lN and l, respectively. We assume that, for each m ∈ N,

lim
N→∞

µNθ ◦ l−1
N,m = µθ ◦ l−1

m weakly . (3.10)

Let Xθ,N = (Xθ,N,i)Ni=1 and X = (Xi)i∈N be solutions of SDEs (3.6) and (3.11), respec-
tively, such that

dXθ,N,i
t = dBi

t +
N∑
j ̸=i

1

Xθ,N,i
t −Xθ,N,j

t

dt− 1

N
Xθ,N,i

t dt− θ dt, (3.6)

dXi
t = dBi

t + lim
r→∞

∞∑
j ̸=i, |Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt. (3.11)

We now state the first main result of the present paper.

Theorem 3.1. Assume (3.2) and (3.10). Assume that Xθ,N
0 = µNθ ◦ l−1

N in distribution
and X0 = µθ ◦ l−1 in distribution. Then, for each m ∈ N,

lim
N→∞

(Xθ,N,1, Xθ,N,2, . . . , Xθ,N,m) = (X1, X2, . . . , Xm) (3.12)

weakly in C([0,∞),Rm). In particular, the limit X = (Xi)i∈N does not satisfy (3.7) for
any θ other than θ = 0.
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We next consider non-reversible initial distributions. Let XN = (XN,i)Ni=1 and Yθ =
(Y θ,i)i∈N be solutions of (3.13) and (3.14), respectively, such that

dXN,i
t = dBi

t +

N∑
j ̸=i

1

XN,i
t −XN,j

t

dt− 1

N
XN,i

t dt, (3.13)

dY θ,i
t = dBi

t + lim
r→∞

∞∑
j ̸=i, |Y θ,i

t −Y θ,j
t |<r

1

Y θ,i
t − Y θ,j

t

dt+ θ dt. (3.14)

Note that XN = X0,N and that XN is not reversible with respect to µNθ ◦ l−1
N for any θ ̸= 0.

We remark that the delabeld process Yθ = {
∑

i∈N δY θ,i
t

} of Yθ has invariant probability

measure µθ and is not symmetric with respect to µθ for θ ̸= 0. We state the second main
theorem.

Theorem 3.2. Assume (3.2) and (3.10). Assume that XN
0 = µNθ ◦ l−1

N in distribution and
Yθ

0 = µθ ◦ l−1 in distribution. Then for each m ∈ N

lim
N→∞

(XN ,1, XN ,2, . . . , XN ,m) = (Y θ,1, Y θ,2, . . . , Y θ,m) (3.15)

weakly in C([0,∞),Rm).

• We refer to the second claim in Theorem 3.1, and (3.15) as the SDE gaps. The
convergence in (3.15) of Theorem 3.2 resembles the “Propagation of Chaos” in the
sense that the limit equation (3.14) depends on the initial distribution, although it
is a linear equation. Because the logarithmic potential is by its nature long-ranged,
the effect of initial distributions µNθ still remains in the limit ISDE, and the rigidity
of the Sine2 point process makes the residual effect a non-random drift term θdt.

Our result is the dynamical universality of Dyson’s Brownian motion in infinite-
dimension. There are similar result of dynamical universality of Dyson’s Brownian
motion in [36], but finite N result, then it is somehow different from ours.

• Let Sθ be a Borel set such that µθ(Sθ) = 1, where −
√
2 < θ <

√
2. In [27], the first

author proves that one can choose Sθ such that Sθ ∩ Sθ′ = ∅ if θ ̸= θ′ and that for
each s ∈ Sθ (3.11) has a strong solution X such that X = l(s) and that

Xt :=
∞∑
i=1

δXi
t
∈ Sθ for all t ∈ [0,∞).

This implies that the state space of solutions of (3.11) can be decomposed into
uncountable disjoint components. We conjecture that the component Sθ is ergodic
for each θ ∈ (−

√
2,
√
2).

• For θ = 0, the convergence (3.12) is also proved in [52]. The proof in [52] is alge-
braic and valid only for dimension d = 1 and inverse temperature β = 2 with the
logarithmic potential. It relies on an explicit calculation of the space-time correla-
tion functions, the strong Markov property of the stochastic dynamics given by the
algebraic construction, the identity of the associated Dirichlet forms constructed by

47



two completely different methods, and the uniqueness of solutions of ISDE (3.7).
Although one may prove (3.10) for θ ̸= 0 using the algebraic method in [52], this
requires a lot of work as mentioned above. We remark that, as a corollary and an
application, Theorem 3.1 proves the weak convergence of finite-dimensional distri-
butions explicitly given by the space-time correlation functions. We refer to [24, 52]
for the representation of these correlation functions.

• Tsai proves the pathwise uniqueness and the existence of strong solutions of

dXi
t = dBi

t +
β

2
lim
r→∞

∞∑
j ̸=i, |Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt (i ∈ N) (3.16)

for general β ∈ [1,∞) in [76]. The proof uses the classical stochastic analysis and
crucially depends on a specific monotonicity of SDEs (3.16). For β = 1, 4, we have
a good control of the correlation functions as for β = 2. Hence our method can be
applied to β = 1, 4 and the same result as for β = 2 in Theorem 3.1 holds. We shall
return to this point in future.

The key point of the proof of Theorem 3.1 is to prove the convergence of the drift
coefficient bN (x, y) of the N -particle system to the drift coefficient b(x, y) of the limit
ISDE even if θ ̸= 0. That is, as N → ∞,

bN (x, y) = {
N∑
i=1

1

x− yi
} − θ =⇒ b(x, y) = lim

r→∞
{
∑
|yi|<r

1

x− yi
}.

Note that support of the coefficients bN (x, y) and b(x, y) are mutually disjoint, and that
the sum in bN is not neutral for any θ ̸= 0. We shall prove uniform bounds of the tail of the
coefficients using fine estimates of the correlation functions, and cancel out the deviation
of the sum in bN with θ. Because of rigidity of the Sine2 point process, we justify this
cancellation not only for static but also dynamical instances.

The organization of the paper is as follows: In Section 3.2, we prepare general theories
for interacting Brownian motion in infinite dimensions. In Section 3.3, we quote estimates
for the oscillator wave functions and determinantal kernels. In Section 3.4, we prove
key estimates (3.37)–(3.40). In Section 3.5, we complete the proof of Theorem 3.1. In
Section 3.6, we prove Theorem 3.2.

3.2 Preliminaries from general theory

In this section we present the general theory described in [47, 48, 53, 28] in a reduced form
sufficient for the current purpose. In particular, we take the space where particles move
in R rather than Rd as in the cited articles.

3.2.1 µ-reversible diffusions

Let Sr = {s ∈ R ; |s| < r}. The configuration space S over R is a Polish space equipped
with the vague topology such that

S = {s =
∑
i

δsi ; s(Sr) <∞ for all r ∈ N}.
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Each element s ∈ S is called a configuration regarded as countable delabeled particles. A
probability measure µ on (S,B(S)) is called a point process (a random point field).

A locally integrable symmetric function ρn : Rn → [0,∞) is called the n-point correla-
tion function of µ with respect to the Lebesgue measure if ρn satisfies

∫
A

k1
1 ×···×Akm

m

ρn(s1, . . . , sn) dsn =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
µ(ds)

for any sequence of disjoint bounded measurable subsets A1, . . . , Am ⊂ R and a se-
quence of natural numbers k1, . . . , km satisfying k1 + · · · + km = n. Here we assume
that s(Ai)!/(s(Ai)− ki)! = 0 for s(Ai)− ki < 0.

Let Φ : R → R and Ψ : R2 → R ∪ {∞} be measurable functions called free and
interaction potentials, respectively. Let Hr be the Hamiltonian on Sr given by

Hr(x) =
∑
xi∈Sr

Φ(xi) +
∑

j ̸=k,xj ,xk∈Sr

Ψ(xj , xk) for x =
∑
i

δxi .

For each m, r ∈ N and µ-a.s. ξ ∈ S, let µmr,ξ denote the regular conditional probability such
that

µmr,ξ = µ(πSr(x) ∈ · |πSc
r
(x) = πSc

r
(ξ), x(Sr) = m).

Here for a subset A, we set πA : S → S by πA(s) = s(· ∩A).
Let Λr denote the Poisson point process with intensity being a Lebesgue measure on

Sr. We set Λm
r (·) = Λr(· ∩ Smr ), where Smr = {s ∈ S ; s(Sr) = m}.

Definition 3.3 ([48], [49]). A point process µ is said to be a (Φ,Ψ)-quasi Gibbs measure
if its regular conditional probabilities µmr,ξ satisfy, for any r,m ∈ N and µ-a.s. ξ,

c−1
17 e

−Hr(x)Λm
r (dx) ≤ µmr,ξ(dx) ≤ c17e

−Hr(x)Λm
r (dx).

Here c17 is a positive constant depending on r,m, ξ.

The significance of the quasi-Gibbs property is to guarantee the existence of µ-reversible
diffusion process {Ps} on S given by the natural Dirichlet form associated with µ, in anal-
ogy with distorted Brownian motion in finite-dimensions.

To introduce the Dirichlet form, we provide some notations. We say a function f on
S is local if f is σ[πK ]-measurable for some compact set K in R. For a local function f
on S, we say f is smooth if f̌ is smooth, where f̌(x1, . . .) is the symmetric function such
that f̌(x1, . . .) = f(x) for x =

∑
i δxi . Let D◦ be the set of all bounded, locally smooth

functions on S.
Let D be the standard square field on S such that for f, g ∈ D◦ and s =

∑
i δsi

D[f, g](s) =
1

2
{
∑
i

(∇if̌)(∇iǧ)} (s).

We write s = (si)i. Because the function
∑

i(∇if̌)(s)(∇iǧ)(s) is symmetric in s = (si)i,
we regard it as a function of s. We set L2(µ) = L2(S, µ) and let

Eµ(f, g) =

∫
S
D[f, g](s)µ(ds), Dµ

◦ = {f ∈ D◦ ∩ L2(µ) ; Eµ(f, f) <∞}.

We quote:
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Lemma 3.4 ([48]). Assume that µ is a (Φ,Ψ)-quasi Gibbs measure with upper semi-
continuous (Φ,Ψ). Assume that the correlation functions {ρn} are locally bounded for
all n ∈ N. Then (Eµ,Dµ

◦ ) is closable on L2(µ). Furthermore, there exists a µ-reversible
diffusion process {Ps} associate with the Dirichlet form (Eµ,Dµ) on L2(µ). Here (Eµ,Dµ)
is the closure of (Eµ,Dµ

◦ ) on L
2(µ).

3.2.2 Infinite-dimensional SDEs

Suppose that diffusion {Ps} in Lemma 3.4 is collision-free and that each tagged particle
does not explode. Then we can construct labeled dynamics X = (Xi)i∈Z by introducing
the initial labeling l = (li)i∈Z such that

X0 = l(X0).

Indeed, once the label l is given at time zero, then each particle retains the tag for all time
because of the collision-free and explosion-free property.

To specify the ISDEs satisfied by X above, we introduce the notion of the logarithmic
derivative of µ, which was introduced in [47].

A point process µx is called the reduced Palm measure of µ conditioned at x ∈ R if µx
is the regular conditional probability defined as

µx = µ(· − δx|s({x}) ≥ 1).

A Radon measure µ[1] on R× S is called the 1-Campbell measure of µ if

µ[1](dxds) = ρ1(x)µx(ds)dx. (3.17)

We write f ∈ Lp
loc(µ

[1]) if f ∈ Lp(Sr × S, µ[1]) for all r ∈ N.

Definition 3.5. A R-valued function dµ ∈ L1
loc(µ

[1]) is called the logarithmic derivative
of µ if, for all φ ∈ C∞

0 (R)⊗D◦,∫
R×S

dµ(x, y)φ(x, y)µ[1](dxdy) = −
∫
R×S

∇xφ(x, y)µ
[1](dxdy).

Under these assumptions, we obtain the following:

Lemma 3.6 ([47]). Assume that X = (Xi)i∈N is the collision-free and explosion-free.
Then X is a solution of the following ISDE:

dXi
t = dBi

t +
1

2
dµ(Xi

t ,X
⋄i
t )dt (i ∈ N) (3.18)

with initial condition X0 = s for µ ◦ l−1-a.s. s, where X⋄i
t =

∑∞
j ̸=i δXj

t
.

3.2.3 Finite-particle approximations

Let µ be a point process with correlaton functions {ρn}n∈N. Let {µN}N∈N be a sequence
of point processes on R such that µN ({s(R) = N}) = 1. We assume:
(A1) Each µN has correlation functions {ρN,n}n∈N satisfying, for each r ∈ N,

lim
N→∞

ρN,n(x) = ρn(x) uniformly on Sn
r for each n ∈ N, (3.19)

sup
N∈N

sup
x∈Sn

r

ρN,n(x) ≤ cn18n
c19n, (3.20)
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where 0 < c18(r) <∞ and 0 < c19(r) < 1 are constants independent of n ∈ N.

It is known that (3.19) and (3.20) imply the weak convergence of {µN} to µ [48, Lemma
A.1]. As in Section 3.1, let l and lN be labels of µ and µN , respectively. We assume:

(A2) For each m ∈ N,

lim
N→∞

µN ◦ l−1
N,m = µ ◦ l−1

m weakly in Rm.

We shall later take µN ◦ l−1
N as an initial distribution of labeled finite particle system.

Therefore, (A2) means the convergence of the initial distribution of the labeled dynamics.
For a labeled process XN = (XN,i)Ni=1, where N ∈ N, we set

XN,⋄i
t =

N∑
j ̸=i

δ
XN,j

t
,

where XN,⋄i
t denotes the zero measure for N = 1. Let bN , b : R × S → R be measur-

able functions. We introduce the finite-dimensional SDE of XN = (XN,i)Ni=1 with these
coefficients such that for 1 ≤ i ≤ N

dXN,i
t = dBi

t + bN (XN,i
t ,XN,⋄i

t )dt. (3.21)

We assume:

(A3) SDE (3.21) with initial condition XN
0 = s has a unique solution for µN ◦ l−1

N -a.s. s
for each N . This solution does not explode.

Let u, uN , w : R → R and g : R2 → R be measurable functions. We set

gr(x, y) =
∑
i

χr(x− yi)g(x, yi), (3.22)

wr(x, y) =
∑
i

(1− χr(x− yi))g(x, yi), (3.23)

where y =
∑

i δyi and χr ∈ C∞
0 (R) is a cut-off function such that 0 ≤ χr ≤ 1, χr(x) = 0

for |x| ≥ r + 1, and χr(x) = 1 for |x| ≤ r. We assume the following.

(A4) Each µN has a logarithmic derivative dN such that

dN (x, y) = uN (x) + gr(x, y) + wr(x, y). (3.24)

Furthermore, we assume that

(1) uN are in C1(R). Furthermore, uN and ∇uN converge uniformly to u and ∇u,
respectively, on each compact set in R.

(2) g ∈ C1(R2 ∩ {x ̸= y}). There exists a p̂ > 1 such that, for each R ∈ N,

lim
p→∞

lim sup
N→∞

∫
x∈SR,|x−y|≤2−p

χr(x− y)|g(x, y)|p̂ ρN,1
x (y)dxdy = 0, (3.25)

where ρN,1
x is a one-correlation function of the reduced Palm measure µNx .
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(3) There exists a continuous function w : R → R such that for each R ∈ N

lim
r→∞

lim sup
N→∞

∫
SR×S

|wr(x, y)− w(x)|p̂dµN,[1] = 0. (3.26)

Let p be such that 1 < p < p̂. Assume (A1) and (A4). Then [47, Theorem 45]
deduces that the logarithmic derivative dµ of µ exists in Lp

loc(µ
[1]) and is given by

dµ(x, y) = u(x) + g(x, y) + w(x). (3.27)

Here g(x, y) = limr→∞ gr(x, y) and the convergence of lim gr takes place in Lp
loc(µ

[1]).
Taking (3.27) into account, we introduce the ISDE of X = (Xi)i∈N:

dXi
t = dBi

t +
1

2
{u(Xi

t) + g(Xi
t ,X

⋄i
t ) + w(Xi

t)}dt. (3.28)

Under the assumptions of Lemma 3.6, ISDE (3.28) with X0 = s has a solution for
µ ◦ l−1-a.s.s. Moreover, the associated delabeled diffusion X = {Xt} is µ-reversible, where
Xt =

∑
i∈N δXi

t
for Xt = (Xi

t)i∈N. As for uniqueness, we recall the notion of µ-absolute
continuity solution introduced in [53].

Let X = (Xi)i∈N be a family of solution of (3.28) satisfying X0 = s for µ ◦ l−1-a.s. s.
Let µt be the distribution of the delabeled process Xt =

∑
i∈N δXi

t
at time t with initial

distribution µ. That is, µt is given by

µt =

∫
S
Ps(Xt ∈ ·)dµ

We say that X satisfies the µ-absolute continuity condition if

µt ≺ µ for all t ≥ 0, (3.29)

where µt ≺ µ means that µt is absolutely continuous with respect to µ. If X is µ-reversible,
then (3.29) is satisfied.

We say ISDE (3.28) has µ-uniqueness in law of solutions if X and X′ are solutions with
the same initial distributions satisfying the µ-absolute continuity condition, then they are
equivalent in law. We assume:

(A5) ISDE (3.28) has µ-uniqueness in law of solutions.

It is proved in [53] that ISDE (3.18) has a µ-pathwise unique strong solution if µ is
tail trivial, the logarithmic derivative dµ has a sort of off-diagonal smoothness, and the
one-correlation function has sub-exponential growth at infinity. This results implies µ-
uniqueness in law. We refer to Theorems 2.1 and 9.3 in [53] for details. The next result is
a special case of [28, Theorem 2.1].

Lemma 3.7 ([28, Theorem 2.1]). Make the same assumptions in Lemma 3.4 and Lemma 3.6.
Assume (A1)–(A4). Assume that XN

0 = µN ◦ l−1
N in distribution. Then {XN}N∈N is tight

in C([0,∞);RN) and each limit point X of {XN}N∈N is a solution of (3.28) with initial
distribution µ ◦ l−1. If, in addition, we assume (A5), then for any m ∈ N

lim
N→∞

(XN,1, . . . , XN,m) = (X1, . . . , Xm).

weakly in C([0,∞),Rm). Here XN = (XN,i)Ni=1 and X = (Xi)i∈N as before.
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3.2.4 Reduction of Theorem 3.1 to (3.26)

In this subsection, we deduce Theorem 3.1 from Lemma 3.7 by assuming (3.26). We take

µNθ and µθ as in Section 3.1. Then the logarithmic derivative dµ
N
θ of µNθ is given by

dµ
N
θ (x, y) =

N∑
i=1

2

x− yi
− 2x

N
− 2θ, (3.30)

where y =
∑

i δyi . From (3.30), we take coefficients in (A4) as follows:

uN (x) = −2x

N
− 2θ, u(x) = −2θ, w(x) = 2θ, (3.31)

g(x, y) =
2

x− y
. (3.32)

Other functions are given by (3.22) and (3.23).

Lemma 3.8. Assume (3.26) holds with p̂ = 2 for the coefficients as above. Then (3.12)
holds.

Proof. To prove Lemma 3.8, we check the assumptions in Lemma 3.7, that is, the assump-
tions in Lemma 3.4, Lemma 3.6, and (A1)–(A5).

The assumptions in Lemma 3.4 are proved in [48]. The assumptions in Lemma 3.6
are checked in [47]. (A1) is well known. (A2) is assumed by (3.10). (A3) is obvious as
the interaction is smooth outside the origin, and the capacity of the colliding set {xi =
xj for some i ̸= j} is zero (see [45, 19]). Furthermore, the one-correlation functions are
bounded, which guarantees explosion-free of tagged particles. We take functions in (A4)
as (3.31) and (3.32). These satisfy (3.24), (3.25), and (1) of (A4). (3.26) is satisfied by
assumption. It is known that µθ is tail trivial [50]. Then (A5) follows from tail triviality
of µθ and [53, Theorem 3.1]. All the assumptions in Lemma 3.7 are thus satisfied, and
hence yields (3.12).

3.2.5 A sufficient condition for (3.26)

The most crucial step to apply Lemma 3.7 is to check (3.26). Indeed, it only remains to
prove (3.26) for Theorem 3.1. We quote then a sufficient condition for (3.26) in terms of
correlation functions from [47]. Lemma 3.10 below is a special case of [47, Lemma 53].

Let µNθ,x be the reduced Palm measure of µNθ conditioned at x. We denote the supre-
mum norm in x over SR by ∥ · ∥R. Let E· and Var· denote the expectation and variance
with resoect to ·, respectively.
Lemma 3.9. Assume |θ| <

√
2. Let wr be as in (3.23) with g(x, y) given by (3.32). Let

w(x) = 2θ as in (3.31). Then (3.26) follows from (3.33)–(3.36).

lim
r→∞

lim sup
N→∞

∥∥∥EµN
θ [wr(x, y)]− 2θ

∥∥∥
R
= 0, (3.33)

lim
r→∞

lim sup
N→∞

∥∥∥EµN
θ [wr(x, y)]− EµN

θ,x [wr(x, y)]
∥∥∥
R
= 0, (3.34)

lim
r→∞

lim sup
N→∞

∥∥∥VarµN
θ [wr(x, y)]

∥∥∥
R
= 0, (3.35)

lim
r→∞

lim sup
N→∞

∥∥∥VarµN
θ [wr(x, y)]−Varµ

N
θ,x [wr(x, y)]

∥∥∥
R
= 0. (3.36)
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Proof. Lemma 3.9 follows from [47, Lemma 52]. Indeed, (3.33), (3.34), (3.35), and (3.36) in
the present paper correspond to (5.4), (5.2), (5.5), and (5.3) in [47], respectively. We note
that in [47] we use 1Sr(x) instead of χr(x). This slight modification yields no difficulty.

Multiplying wr(x, y) by a half, we give a sufficient condition of (3.33)–(3.36) in terms
of correlation functions. Let ρN,m

θ,x and ρN,m
θ be the m-point correlation functions of µNθ,x

and µNθ , respectively. Let

Sr,∞(x) = {y ∈ R ; r < |x− y| <∞}.

Lemma 3.10. Assume |θ| <
√
2. Then (3.33)–(3.36) follow from (3.37)–(3.40).

lim
r→∞

lim sup
N→∞

∥∥∥∫
Sr,∞(x)

ρN,1
θ (y)

x− y
dy − θ

∥∥∥
R
= 0, (3.37)

lim
r→∞

lim sup
N→∞

∥∥∥∫
Sr,∞(x)

ρN,1
θ,x (y)− ρN,1

θ (y)

x− y
dy
∥∥∥
R
= 0, (3.38)

lim
r→∞

lim sup
N→∞

∥∥∥∫
Sr,∞(x)

ρN,1
θ (y)

(x− y)2
dy +

∫
Sr,∞(x)2

ρN,2
θ (y, z)− ρN,1

θ (y)ρN,1
θ (z)

(x− y)(x− z)
dydz

∥∥∥
R
= 0,

(3.39)

lim
r→∞

lim sup
N→∞

∥∥∥∫
Sr,∞(x)

ρN,1
θ,x (y)− ρN,1

θ (y)

(x− y)2
dy (3.40)

+

∫
Sr,∞(x)2

ρN,2
θ,x (y, z)− ρN,1

θ,x (y)ρ
N,1
θ,x (z)− {ρN,2

θ (y, z)− ρN,1
θ (y)ρN,1

θ (z)}
(x− y)(x− z)

dydz
∥∥∥
R
= 0.

Proof. Lemma 3.10 follows immediately from a standard calculation of correlation func-
tions and the definitions of wr and χr.

3.3 Subsidiary estimates

Keeping Lemma 3.10 in mind, our task is to prove (3.37)–(3.40). To control the correla-
tion functions in Lemma 3.10 we prepare in this section estimates of the oscillator wave
functions and determinantal kernels. We shall use these estimates in Section 3.4.

3.3.1 Oscillator wave functions

Let Hn(x) = (−1)nex
2
( d
dx)

ne−x2
be Hermite polynomials. Let ψn(x) denote the oscillator

wave functions defined by

ψn(x) =
1√√
π2nn!

e−
x2

2 Hn(x).

Note that {ψn}∞n=0 is an orthonormal system;
∫
R ψn(x)ψm(x) dx = δnm.

The following estimates for these oscillator wave functions are essentially due to Plancherel-
Rotach [58]. We quote here a version from Katori-Tanemura [25].
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Lemma 3.11 ([25]). Let C1
nm, C2

nm, and D1
nm be the constants introduced in [25] (see

(A.1) in [25, 572 p]). Let l = −1, 0, 1 and N,L ∈ N. Then we have the following.
(1) Let 0 < τ ≤ π

2 . Assume that N sin3 τ ≥ CN ε for some C > 0 and ε > 0. Then

ψN+l(
√
2N cos τ) =

1 +O(N−1)√
π sin τ

(
2

N

) 1
4

×
[L−1∑
n=0

n∑
m=0

C1
nm(N + l, τ) sin

{
N

2
(2τ − sin 2τ) +D1

nm(τ)− (1 + l)τ

}
+O(

1

N sin τ
)

]
.

(2) Let τ > 0. Assume that N sinh3 τ ≥ CN ε for some C > 0 and ε > 0. Then

ψN+l(
√
2N cosh τ) =

1 +O(N−1)√
2π sinh τ

(
1

2N

) 1
4

× exp

[(
N + 1 + l

2

)
(2τ − sinh 2τ) + (1 + l)τ

][L−1∑
n=0

n∑
m=0

C2
nm(τ,N + l) +O

(
cosh3 τ

N sinh τ

)]
.

Proof. (1) and (2) follow from (5.5) and (5.10) in [25], respectively.

We next quote estimates from [25, 54].

Lemma 3.12 ([25], [54]). (1) Let y =
√
2N cos τ with N ∈ N and 0 < τ ≤ π

2 . Assume
that N sin3 τ ≥ CN ε for some C > 0 and ε > 0. Then,

N−1∑
k=0

ψk(y)
2 =

1

π

√
2N − y2 +O

( √
N

2N − y2

)
.

(2) Let y =
√
2N cosh τ with N ∈ N and τ > 0. Assume that N sinh3 τ ≥ CN ε for some

C > 0 and ε > 0. Then

N−1∑
k=0

ψk(y)
2 = O

( √
N

y2 − 2N

)
. (3.41)

(3) There is a positive constant c20 such that for all N ∈ N

sup
y∈R

|ψN (y)| ≤ c20N
− 1

12 . (3.42)

Proof. (1) follows from Lemma 5.2 (i) in [25]. (2) follows from Lemma 5.2 (ii) in [25].
From Lemma 6.9 in [54] there exists a constant c20 such that

|N
1
12ψN (2

√
N + yN− 1

6 )| ≤ c20

(1 ∨ |y|)
1
4

, y ∈ [−2N
2
3 ,∞).

Hence we have

|ψN (y)| ≤ c20

N
1
12 (1 ∨ {N

1
6 |y − 2

√
N |})

1
4

, y ∈ [0,∞). (3.43)

Claim (3.42) is immediate from (3.43) and the well-known property such that ψN (y) =
ψN (−y) if N is even and that ψN (y) = −ψN (−y) if N is odd.
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3.3.2 Determinantal kernels of N-particle systems

We recall the definition of determinantal point processes. Let K : R2 → C be a measurable
kernel. A probability measure µ on S is called a determinantal point process with kernel
K if, for each n, its n-point correlation function is given by

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1. (3.44)

If K is an Hermitian symmetric and of locally trace class such that 0 ≤ Spec(K) ≤ 1,
then there exists a unique determinantal point process with kernel K [65, 67].

The distribution of the delabeled eigenvalues of GUE associated with (3.1) is a deter-
minantal point process with kernel KN such that

KN (x, y) =
N−1∑
k=0

ψk(x)ψk(y). (3.45)

The Christoffel-Darboux formula and a simple calculation yield the following.

KN (x, y) =

√
N

2

ψN (x)ψN−1(y)− ψN−1(x)ψN (y)

x− y
. (3.46)

From the scaling (3.3), µNθ is a determinantal point process with kernel

KN
θ (x, y) =

1√
N

KN (
x+Nθ√

N
,
y +Nθ√

N
). (3.47)

Let xN =
√
Nx and yN =

√
Ny. We set

LN (x, y) =
1√
N

KN (xN , yN ) =
1√
N

KN (
√
Nx,

√
Ny). (3.48)

From (3.47) and (3.48) we then clearly see that

KN
θ (x, y) = LN (

x

N
+ θ,

y

N
+ θ), (3.49)

LN (x, y) = KN
θ (N(x− θ), N(y − θ)).

From (3.46) we deduce

LN (x, x) = (1/
√
2){ψN−1(xN )ψ′

N (xN )− ψN (xN )ψ′
N−1(xN )}. (3.50)

Using the Schwartz inequality to (3.45) we see from (3.46) and (3.48) that

LN (y, z)2 ≤ LN (y, y)LN (z, z). (3.51)

From here on, we assume

− 2

3
< α < −1

2
. (3.52)

We set

BN = (−
√
2−Nα,−

√
2 +Nα) ∪ (

√
2−Nα,

√
2 +Nα). (3.53)

The next lemma will be used in Section 3.4.
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Lemma 3.13. We set UN = R\BN . Then the following holds.
(1) There exists a constant c21 such that for all N ∈ N

sup
x,y∈R

|LN (x, y)| ≤ c21N
1
3 , (3.54)

sup
x,y∈UN

|LN (x, y)| ≤ c21. (3.55)

(2) Assume (3.52). Then there exists a constant c22 such that

|LN (x, y)| ≤ c22
N |x− y|

for each x, y ∈ UN , N ∈ N. (3.56)

Proof. It is well known that

√
2ψ′

n(x) =
√
nψn−1(x)−

√
n+ 1ψn+1(x).

From this and (3.50), we see that with a simple calculation

LN (x, x) =
1√
2
{ψN−1ψ

′
N − ψNψ

′
N−1}(xN ) (3.57)

=
N

1
2

2
{ψ2

N−1 + ψ2
N −

√
1−N−1ψN−2ψN −

√
1 +N−1ψN−1ψN+1}(xN ).

Combining this with (3.42) we obtain

LN (x, x) ≤ N
1
2

2
5c220N

− 1
6 =

5c220
2
N

1
3 .

From this and (3.51) we deduce (3.54). From Lemma 3.11 and (3.57), we see that

sup
N∈N

sup
y∈UN

LN (y, y) <∞.

We deduce (3.55) from this and (3.51). Taking a constant c21 in (3.54) and (3.55) in
common completes the proof of (1).

Claim (3.56) follows from Lemma 3.11, (3.46), and (3.48).

3.4 Proof of (3.37)–(3.40)

As we see in Section 3.2, the point of the proof of Theorem 3.1 is to check conditions
(3.37)–(3.40) in Lemma 3.10. The purpose of this section is to prove these equations. We
recall a property of the reduced Palm measures of determinantal point processes.

Lemma 3.14 ([65]). Let µ be a determinantal point process with kernel K. Assume
that K(x, y) = K(y, x) and 0 ≤ Spec(K) ≤ 1. Then the reduced Palm measure µx is a
determinantal point process with kernel Kx given by

Kx(y, z) = K(y, z)− K(y, x)K(x, z)

K(x, x)
(3.58)

for x such that K(x, x) > 0.
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Let KN
θ be the determinantal kernel of µNθ given by (3.47). Let µNθ,x be as in Lemma 3.10.

Recall that KN
θ (y, z) = KN

θ (z, y) by definition. Then from this, (3.47), and (3.58), µNθ,x is
a determinantal point process with kernel

KN
θ,x(y, z) = KN

θ (y, z)−
KN
θ (x, y)KN

θ (x, z)

KN
θ (x, x)

. (3.59)

From (3.44) and (3.59), we calculate correlation functions in (3.37)–(3.40) as follows.

ρN,1
θ (y) = KN

θ (y, y), (3.60)

ρN,1
θ,x (y)− ρN,1

θ (y) = −
KN
θ (x, y)2

KN
θ (x, x)

, (3.61)

ρN,2
θ (y, z)− ρN,1

θ (y)ρN,1
θ (z) = −KN

θ (y, z)2, (3.62)

ρN,2
θ,x (y, z)− ρN,1

θ,x (y)ρ
N,1
θ,x (z)− {ρN,2

θ (y, z)− ρN,1
θ (y)ρN,1

θ (z)} (3.63)

= −KN
θ,x(y, z)

2 + KN
θ (y, z)2

= 2
KN
θ (y, z)KN

θ (x, y)KN
θ (x, z)

KN
θ (x, x)

−
KN
θ (x, y)2KN

θ (x, z)2

KN
θ (x, x)2

.

Using these and (3.49) we rewrite (3.37)–(3.40) as follows.

Lemma 3.15. To simplify the notation, let

xNθ =
x

N
+ θ, TN

r,∞(x) = {y ∈ R ;
r

N
≤ |xNθ − y| <∞}. (3.64)

Then (3.37)–(3.40) are equivalent to (3.65)–(3.68) below, respectively.

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

LN (y, y)

xNθ − y
dy − θ

∥∥∥
R
= 0, (3.65)

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

1

xNθ − y

LN (xNθ , y)
2

LN (xNθ , x
N
θ )
dy
∥∥∥
R
= 0. (3.66)

Furthermore,

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

1

N

LN (y, y)

|xNθ − y|2
dy −

∫
TN
r,∞(x)2

LN (y, z)2

(xNθ − y)(xNθ − z)
dydz

∥∥∥
R
= 0, (3.67)

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

1

N

1

|xNθ − y|2
LN (xNθ , y)

2

LN (xNθ , x
N
θ )
dy (3.68)

+

∫
TN
r,∞(x)2

1

(xNθ − y)(xNθ − z){
2
LN (y, z)LN (xNθ , y)L

N (xNθ , z)

LN (xNθ , x
N
θ )

−
LN (xNθ , y)L

N (xNθ , z)

LN (xNθ , x
N
θ )2

}
dydz

∥∥∥
R
= 0.

Proof. Recall that LN (x, y) = KN
θ (N(x−θ), N(y−θ)) by (3.49). Then Lemma 3.15 follows

easily from (3.60)–(3.63).
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Let BN and UN be as in Lemma 3.13. Decompose UN into UN
1 and UN

2 such that

UN
1 = [−

√
2 +Nα,

√
2−Nα], UN

2 = R\(−
√
2−Nα,

√
2 +Nα).

Then clearly UN = UN
1 ∪ UN

2 and R = UN
1 ∪ UN

2 ∪ BN . We begin by the integral outside
UN
1 .

Lemma 3.16. Let 0 < q < 3/2. Then

lim sup
N→∞

∥∥∥∫
R\UN

1

LN (y, y)q

|xNθ − y|
dy
∥∥∥
R
= 0. (3.69)

Proof. From (3.54), (3.64), and the definition of BN , we obtain that

lim sup
N→∞

∥∥∥∫
BN

LN (y, y)q

|xNθ − y|
dy
∥∥∥
R

(3.70)

≤ lim sup
N→∞

∥∥∥∫
BN

cq21N
q
3

|xNθ − y|
dy
∥∥∥
R

≤ lim sup
N→∞

∥∥∥cq21N q
3

{
log
∣∣∣ x
N

+ θ − (
√
2−Nα)

∣∣∣− log
∣∣∣ x
N

+ θ − (
√
2 +Nα)

∣∣∣}
+cq21N

q
3

{
log
∣∣∣ x
N

+ θ − (−
√
2−Nα)

∣∣∣− log
∣∣∣ x
N

+ θ − (−
√
2 +Nα)

∣∣∣}∥∥∥
R

=O(N
q
3
+α) = 0 as N → ∞.

Here we used q < 3/2 and α < −1/2 in the last line.
Note that |y| ≥

√
2 +Nα for y ∈ UN

2 . Let y =
√
2 cosh τ . Then we see that

N sinh3 τ = N(cosh2 τ − 1)
3
2

= N2−
3
2 (y2 − 2)

3
2 ≥ N2−

3
2 (2

√
2Nα +N2α)

3
2 .

From this, q > 0, and α > −2/3, we apply (3.41) to obtain c23 > 0 such that,

lim sup
N→∞

∥∥∥∫
UN
2

LN (y, y)q

|xNθ − y|
dy
∥∥∥
R
≤ lim sup

N→∞

∥∥∥∫
UN
2

c23

|xNθ − y|N q(y2 − 2)q
dy
∥∥∥
R
= 0,

which combined with (3.70) yields (3.69).

Lemma 3.17. (3.65) holds.

Proof. Let y =
√
2 cos τ . Then N sin3 τ ≥ N2−

3
2 (2

√
2Nα − N2α) for y ∈ UN

1 . Then
applying Lemma 3.12 (1) we deduce that for each r > 0

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)∩UN

1

LN (y, y)

xNθ − y
dy − θ

∥∥∥
R

= lim sup
N→∞

∥∥∥{∫ xNθ − r
N

−
√
2+Nα

+

∫ √
2−Nα

xNθ + r
N

} 1

xNθ − y

1

π

√
2− y2 dy − θ

∥∥∥
R

=

∣∣∣∣P.V. ∫
√
2

−
√
2

1

θ − y

1

π

√
2− y2dy − θ

∣∣∣∣ = 0.

Combining this with (3.69), we obtain (3.65).
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It is well known that KN
θ (x, x) are positive and continuous in x, and {KN

θ (x, x)}N∈N
converges to Kθ(x, x) =

√
2− θ2/π uniformly on each compact set. Then we see

sup
N∈N

sup
x∈SR

1

KN
θ (x, x)

<∞.

From this, (3.49), and (3.64), we see that the following constant c24 is finite.

c24 := sup
N∈N

sup
x∈SR

1

LN (xNθ , x
N
θ )

<∞. (3.71)

Lemma 3.18. (3.72) and (3.73) below hold. In particular, (3.66) holds.

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

LN (xNθ , y)
2

|xNθ − y|LN (xNθ , x
N
θ )
dy
∥∥∥
R
= 0, (3.72)

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

LN (xNθ , y)

|xNθ − y|LN (xNθ , x
N
θ )
dy
∥∥∥
R
= 0. (3.73)

Proof. From (3.51) and (3.69) we deduce that as N → ∞∥∥∥∫
R\UN

1

LN (xNθ , y)
2

|xNθ − y|LN (xNθ , x
N
θ )
dy
∥∥∥
R
≤
∥∥∥∫

R\UN
1

LN (y, y)

|xNθ − y|
dy
∥∥∥
R
→ 0. (3.74)

From (3.56) and (3.71) for each N ∈ N and r > 0∥∥∥∫
TN
r,∞(x)∩UN

1

LN (xNθ , y)
2 dy

|xNθ − y|LN (xNθ , x
N
θ )

∥∥∥
R
≤
∥∥∥∫

TN
r,∞(x)∩UN

1

c222c24 dy

N2|xNθ − y|3
∥∥∥
R

(3.75)

≤ c222c24
r2

.

Hence (3.72) follows from (3.74) and (3.75). This completes the proof of (3.72).
We next prove (3.73). From (3.51), (3.69), and (3.71) we see for each r > 0

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)\UN

1

LN (xNθ , y)

|xNθ − y|LN (xNθ , x
N
θ )
dy
∥∥∥
R
= 0. (3.76)

From (3.56) and (3.71) we see that for each N ∈ N and r > 0∥∥∥∫
TN
r,∞(x)∩UN

1

LN (xNθ , y) dy

|xNθ − y|LN (xNθ , x
N
θ )

∥∥∥
R
≤
∥∥∥∫

TN
r,∞(x)∩UN

1

c22c24 dy

N |xNθ − y|2
∥∥∥
R

(3.77)

≤2c22c24
r

.

Combining (3.76) and (3.77) we obtain (3.73).

Lemma 3.19. (3.78) and (3.79) below hold. In particular, (3.67) holds.

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

LN (y, y)

N |xNθ − y|2
dy
∥∥∥
R
= 0, (3.78)

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)2

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R
= 0. (3.79)
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Proof. Note that LN (y, y) ≤ c21 on UN by (3.55). Then by the definition of TN
r,∞(x),∫

TN
r,∞(x)∩UN

LN (y, y)

N |xNθ − y|2
dy ≤ c21

N

2N

r
=

2c21
r
. (3.80)

By (3.54) we see LN (y, y) ≤ c21N
1
3 on R. Recall that |BN | = 4Nα by construction.

Furthermore, c25 := lim supN→∞ supy∈BN ∥|xNθ − y|−2∥R <∞. Hence for each r > 0

lim sup
N→∞

∫
TN
r,∞(x)∩BN

LN (y, y)

N |xNθ − y|2
dy ≤ lim sup

N→∞

c21N
1
3 4Nαc25
N

= 0. (3.81)

Here we used α < −1/2. We thus obtain (3.78) from (3.80) and (3.81).
We proceed with the proof of (3.79). We first consider the integral away from the

diagonal line. By (3.56) and the Schwartz inequality, we see that∥∥∥∫
(TN

r,∞(x)∩UN )2∩{|y−z|≥ 1
N
}

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R

≤
∥∥∥∫

(TN
r,∞(x)∩UN )2∩{|y−z|≥ 1

N
}

c222
N2|y − z|2|xNθ − y||xNθ − z|

dydz
∥∥∥
R

≤
∥∥∥{∫

TN
r,∞(x)2∩{|y−z|≥ 1

N
}

c222
N2|y − z|2|xNθ − y|2

dydz
} 1

2

{∫
TN
r,∞(x)2∩{|y−z|≥ 1

N
}

c222
N2|y − z|2|xNθ − z|2

dydz
} 1

2
∥∥∥
R

=
∥∥∥∫

TN
r,∞(x)2∩{|y−z|≥ 1

N
}

c222
N2|y − z|2|xNθ − y|2

dydz
∥∥∥
R

≤ c222
2N

N2

{2N
r

}
=

4c222
r
.

The last line follows from a straightforward calculation. Indeed, first integrating z over
{|y − z| ≥ 1

N }, and then integrating y over TN
r,∞(x), we obtain the inequality in the last

line. We therefore see that

lim
r→∞

lim
N→∞

∥∥∥∫
(TN

r,∞(x)∩UN )2∩{|y−z|≥ 1
N
}

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R
= 0. (3.82)

We next consider the integral near the diagonal. From (3.55), we see that∥∥∥∫
(TN

r,∞(x)∩UN )2∩{|y−z|≤ 1
N
}

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R

(3.83)

≤
∥∥∥∫

(TN
r,∞(x)∩UN )2∩{|y−z|≤ 1

N
}

c221
|xNθ − y||xNθ − z|

dydz
∥∥∥
R

≤
∥∥∥∫

TN
r,∞(x)2∩{|y−z|≤ 1

N
}

c221
2
{ 1

|xNθ − y|2
+

1

|xNθ − z|2
}dydz

∥∥∥
R

=
2c221
N

∥∥∥∫
TN
r,∞(x)

1

|xNθ − y|2
dy
∥∥∥
R
=

2c221
N

2N

r
=

4c221
r
.
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From (3.82) and (3.83), we have

lim
r→∞

lim
N→∞

∥∥∥∫
(TN

r,∞(x)∩UN )2

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R
= 0. (3.84)

We next consider the integral on BN × BN . Let

c26 = lim sup
N→∞

sup
x∈SR,y∈BN

|xNθ − y|−1.

Then, we deduce from (3.54) and the definition of BN given by (3.53) that

lim sup
N→∞

∥∥∥∫
(TN

r,∞(x)∩BN )2

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R

(3.85)

≤ lim
N→∞

c221c
2
26N

2
3 (4Nα)2 = 0.

Here we used |BN | = 4Nα for the inequality and α < −1/2 for the last equality.
We finally consider the case UN × BN . Then a similar argument yields∥∥∥∫

(TN
r,∞(x)∩UN )×(TN

r,∞(x)∩BN )

LN (y, z)2

|xNθ − y||xNθ − z|
dydz

∥∥∥
R

(3.86)

≤
∥∥∥∫

(TN
r,∞(x)∩UN )×(TN

r,∞(x)∩BN )

LN (y, y)LN (z, z)

|xNθ − y||xNθ − z|
dydz

∥∥∥
R

=
∥∥∥∫

TN
r,∞(x)∩UN

LN (y, y)

|xNθ − y|
dy

∫
TN
r,∞(x)∩BN

LN (z, z)

|xNθ − z|
dz
∥∥∥
R

=O(logN)O(N
1
3
+α) → 0 as N → ∞.

Collecting (3.84), (3.85), and (3.86), we conclude (3.79).

Lemma 3.20. (3.68) holds.

Proof. We shall estimate the three terms in (3.68) beginning with the first. From (3.51)
and (3.78) we have

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

LN (xNθ , y)
2dy

N |xNθ − y|2LN (xNθ , x
N
θ )

∥∥∥
R

(3.87)

≤ lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)

LN (y, y)dy

N |xNθ − y|2
∥∥∥
R
= 0.

Next, using the Schwartz inequality, we have for the second term∥∥∥∫
TN
r,∞(x)2

LN (y, z)LN (xNθ , y)L
N (xNθ , z) dydz

|xNθ − y||xNθ − z|LN (xNθ , x
N
θ )

∥∥∥
R

≤
∥∥∥∫

TN
r,∞(x)2

LN (y, z)2dydz

|xNθ − y||xNθ − z|

∥∥∥ 1
2

R

∥∥∥∫
TN
r,∞(x)2

LN (xNθ , y)
2LN (xNθ , z)

2dydz

|xNθ − y||xNθ − z|LN (xNθ , x
N
θ )2

∥∥∥ 1
2

R

=
∥∥∥∫

TN
r,∞(x)2

LN (y, z)2dydz

|xNθ − y||xNθ − z|

∥∥∥ 1
2

R

∥∥∥∫
TN
r,∞(x)

LN (xNθ , y)
2

|xNθ − y|LN (xNθ , x
N
θ )
dy
∥∥∥
R
.
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Applying (3.79) and (3.72) to the last line, we obtain

lim
r→∞

lim sup
N→∞

∥∥∥∫
TN
r,∞(x)2

LN (y, z)LN (xNθ , y)L
N (xNθ , z) dydz

|xNθ − y||xNθ − z|LN (xNθ , x
N
θ )

∥∥∥
R
= 0. (3.88)

We finally estimate the third term. From (3.73), as N → ∞, we have∥∥∥∫
TN
r,∞(x)2

LN (xNθ , y)L
N (xNθ , z) dydz

|xNθ − y||xNθ − z|LN (xNθ , x
N
θ )2

∥∥∥
R

(3.89)

=
∥∥∥{∫

TN
r,∞(x)

LN (xNθ , y) dy

|xNθ − y|LN (xNθ , x
N
θ )

}2∥∥∥
R

=
∥∥∥∫

TN
r,∞(x)

LN (xNθ , y) dy

|xNθ − y|LN (xNθ , x
N
θ )

∥∥∥2
R
→ 0 by (3.73).

From (3.87), (3.88), and (3.89) we obtain (3.68). This completes the proof.

3.5 Proof of Theorem 3.1

From Lemma 3.17–Lemma 3.20 we deduce that all the assumptions (3.37)–(3.40) in
Lemma 3.10 are satisfied. Hence (3.26) is proved by Lemma 3.10. Then Theorem 3.1
follows from Lemma 3.8, Lemma 3.9, and Lemma 3.10.

3.6 Proof of Theorem 3.2

In this section we prove Theorem 3.2 using Theorem 3.1. It is sufficient for the proof of
Theorem 3.2 to prove (3.15) in C([0, T ];Rm) for each T ∈ N. Hence we fix T ∈ N. Let

XN = (XN,i)Ni=1 be as in (3.13). Let Y θ,N,i = {Y θ,N,i
t } such that

Y θ,N,i
t = XN,i

t + θt. (3.90)

Then from (3.13) we see that Yθ,N = (Y θ,N,i)Ni=1 is a solution of

dY θ,N,i
t = dBi

t +
N∑
j ̸=i

1

Y θ,N,i
t − Y θ,N,j

t

dt− 1

N
Y θ,N,i
t dt+

θ

N
dt (3.91)

with the same initial condition as XN . Let P θ,N and Qθ,N be the distributions of XN and
Yθ,N on C([0, T ];RN ), respectively. Then applying the Girsanov theorem [18, pp.190-195]
to (3.91), we see that

dQθ,N

dP θ,N
(W) = exp{

∫ T

0

N∑
i=1

θ

N
dBi

t −
1

2

∫ T

0

N∑
i=1

∣∣∣ θ
N

∣∣∣2dt} (3.92)

= exp{ θ
N

N∑
i=1

Bi
T − θ2T

2N
},

where we writeW = (W i) ∈ C([0, T ];RN ) and {Bi}Ni=1 under P
θ,N are independent copies

of Brownian motions starting at the origin.
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Lemma 3.21. For each ϵ > 0,

lim
N→∞

Qθ,N
(∣∣∣dP θ,N

dQθ,N
(W)− 1

∣∣∣ ≥ ϵ
)
= 0. (3.93)

Proof. It is sufficient for (3.93) to prove, for each ϵ > 0,

lim
N→∞

P θ,N
(∣∣∣dQθ,N

dP θ,N
(W)− 1

∣∣∣ ≥ ϵ
)
= 0.

This follows from (3.92) immediately.

Proof of Theorem 3.2. We write Wm = (W 1, . . . ,Wm) ∈ C([0, T ];Rm) for W = (W i)Ni=1,
where m ≤ N ≤ ∞. Let Qθ be the distribution of the solution Yθ with initial distribution
µθ ◦ l−1. From Theorem 3.1 and (3.90) we deduce that for each m ∈ N

lim
N→∞

Qθ,N (Wm ∈ ·) = Qθ(Wm ∈ ·)

weakly in C([0, T ];Rm). Then from this, for each F ∈ Cb(C([0, T ];Rm)),

lim
N→∞

∫
C([0,T ];RN )

F (Wm)dQθ,N =

∫
C([0,T ];RN)

F (Wm)dQθ. (3.94)

We obtain from (3.93) and (3.94) that

lim
N→∞

∫
C([0,T ];RN )

F (Wm)dPN,θ = lim
N→∞

∫
C([0,T ];RN )

F (Wm)
dP θ,N

dQθ,N
(W)dQθ,N

= lim
N→∞

∫
C([0,T ];RN )

F (Wm)dQθ,N

=

∫
C([0,T ];RN)

F (Wm)dQθ.

This implies (3.15). We have thus completed the proof of Theorem 3.2.
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4 Density preservation of unlabeled diffusion in systems
with infinitely many particles

4.1 Introduction

Let S be a configuration space over Rd for d ∈ N. We endow S with the vague topology.
Let µ be a random point field on Rd with infinitely many particles, and consider a µ-
reversible diffusion (X,P) with state space S. Here X = {Xt} is of the form Xt =

∑
i∈N δXi

t

and P = {Ps}s∈S is the diffusion measure.
Suppose that for µ-a.s. s, there exists a limit limr→∞ s(Sr)/r

d, where Sr = {x ∈
Rd ; |x| < r}, and let

Φ(s) = lim
r→∞

s(Sr)

rd
.

This assumption holds, for example, if µ is translation invariant. Note that Φ is tail σ-field
measurable random variable by definition [see (4.4) below]. For a fixed positive constant
θ, we set Aθ = {s ; Φ(s) = θ}. Then, from the reversibility of (X,P),

Pµ

(
lim
r→∞

Xt(Sr)

rd
= θ
)
= µ(Aθ) for any t. (4.1)

The purpose of this paper is to refine (4.1) such that for q.e. s ∈ Aθ,

Ps

(
lim
r→∞

Xt(Sr)

rd
= θ for any t

)
= 1.

We prove that an unlabeled diffusion starting on a set that is specified in terms of density
does not change the density over the course of its time evolution. This property is useful
for the study of the dynamics of infinite particle systems.

Note that the set Aθ is an element of the tail σ-field of S. The tail σ-field plays an
important role in the study of the properties of unlabeled diffusions. Indeed, the tail
σ-field contains global information about infinite particle systems. A typical example
is the particle density, as mentioned above. We are particularly interested in the tail-
preserving property of unlabeled diffusions, that is, whether an unlabeled diffusion starts
on an element of the tail σ-field, then it stays on the set permanently. However, the tail
σ-field is not topologically well behaved; for example, it is not countably determined in
general even if the state space is countably determined. Consequently, it is hard to treat
the tail σ-field directly. Conversely, if the tail σ-field is identified by particle densities,
we can discuss the behavior of an unlabeled diffusion on the field by studying the density
instead of the field itself. Then, in some cases the tail-preserving property follows from
the preservation of density.

Our result is closely related to the ergodic decomposition of unlabeled diffusions. Be-
cause the space of an unlabeled diffusion is huge, it is an important and difficult problem
to specify the topological support when infinitely many particles are in motion. Our result
is a first step toward addressing this problem.

Density preservation is also important from the point of view of infinite-dimensional
stochastic differential equations (ISDEs), because the tail preserving property implies the
strong uniqueness of a solution of an ISDE. We consider interacting Brownian motions with
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infinitely many particles having an interaction potential Ψ. The dynamics is described by
the ISDE

dXi
t = dBi

t −
1

2

∑
i ̸=j

∇xΨ(Xi
t , X

j
t )dt, 1 ≤ i <∞. (4.2)

Lang began to study (4.2) using Itô’s calculus [37, 38]. In this work, he assumed that
Ψ is C3

0 or exponentially decaying. Lang’s result therefore does not work if Ψ is a long-
range potential, for example, logarithmic. This work was followed by Fritz [15], Tanemura
[70], and others. Recently, Tsai [76] solved (4.2) for the case in which Ψ is logarithmic
and d = 1, that is, Dyson’s Brownian motion in infinite dimensions. This result can be
applied to out-of-equilibrium initial conditions, then this is a strong way to study ISDEs.
On the other hand, the Dirichlet form approach can also solve (4.2) under assumptions
including long-range potentials. In fact, Osada [44] constructed an unlabeled diffusion of
(4.2) whenever Ψ is logarithmic potential using this approach. Then, using this unlabeled
diffusion, (4.2) was again solved using Dirichlet forms [47]. Furthermore, the sufficiency
condition that an ISDE of the form given by (4.2) has a unique strong solution has been
shown by Osada and Tanemura [53]. They identified the sufficient conditions in the context
of a random point field. Their results guarantee that an ISDE in the form of (4.2) has a
unique strong solution when a random point field is tail trivial.

In addition, they also discussed the strong uniqueness of a solution of an ISDE when a
random point field is not tail trivial. In this case, the random point field has multiple tails.
They proved that if a solution of an ISDE satisfies the absolute continuity condition with
respect to the random point field conditioned by the tail σ- field, then strong uniqueness
holds. That is, so long as a solution has the tail-preserving property, strong uniqueness
holds. However, they could not exclude existence of a solution that does not satisfy this
condition. Proving that there is no solution such that the tail-preserving condition is not
satisfied remain an open question in [53].

Our result addresses this problem in part. We can demonstrate the strong uniqueness
of an ISDE in a more general situation than considered in [53]. In particular, this general
theory can be applied to an ISDE related to random matrices. One of the most important
examples of this is Dyson’s Brownian motion with infinitely many particles, which has
a logarithmic interaction potential. Then we can show that the strong uniqueness of
Dyson’s Brownian motion with multiple tails holds as a corollary of our result, but we do
not pursue this topic here.

Density preservation is also important from the point of view of finite particle approx-
imations of ISDEs. We will demonstrate that a solution of a finite dimensional stochastic
differential equation converges to that of the corresponding ISDE as the particle number
goes to infinity. One of the key points of the proof in the finite particle approximation is
the uniqueness of a solution of an ISDE in the limit. Therefore, we can employ the finite
particle approximation of an ISDE associated with many random point fields if we can
prove that the tail-preserving property holds for an unlabeled diffusion associated with
the random point fields.

This paper is organized as follows. In Section 4.2, we describe our framework and the
main results. In Section 4.3, we prove the main result.
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4.2 Set up and main results

We begin by defining a random point field and introducing an unlabeled diffusion. Set
S = Rd (d ≥ 1) and let S be a configuration space over S defined by

S =
{
s =

∑
i

δsi ; si ∈ S with s is a Radon measure
}
.

A probability measure µ on S is called a random point field.
A symmetric function ρn : Sn → C is called the n-correlation function of µ with respect

to the Lebesgue measure if∫
A

k1
1 ×···×Akm

m

ρn(x1, . . . , xn)

n∏
i=1

dxi =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ(s)

holds for any disjoint compact sets Ai ∈ B(S) and ki ∈ N such that
∑m

i=1 ki = n.
Next, we define the Dirichlet form associated with µ. We set Sr = {x ∈ S ; |x| ≤ r}

and let πr : S → S be a mapping such that πr(s) = s(· ∩ Sr). A function f on S is called
local if there exists an r ∈ N such that f is σ[πr]-measurable and called smooth if f̌ is
smooth, where f̌((si)i) is a permutation invariant function in (si)i ∈

∪
n∈N Sn ∪ SN such

that f(s) = f̌((si)i). Let D◦ be the set of all of local smooth functions on S.
For f, g ∈ D◦, we define a bilinear form as

D[f, g](s) =
1

2

∑
i

∇si f̌(s) · ∇si ǧ(s),

where s =
∑

i δsi and s = (si)i. We use the notation D[f ] for D[f, f ]. Define a bilinear
form (E ,Dµ

◦ ) on L
2(S, µ) as

E(f, g) =
∫
S
D[f, g](s) dµ(s) for f, g ∈ Dµ

◦ ,

Dµ
◦ = {f ∈ D◦ ∩ L2(S, µ) ; E(f, f) <∞}.

We further assume that

(A1) ρn is locally bounded for each n ∈ N; and
(A2) (E ,Dµ

◦ ) is closable on L2(S, µ).

Let (E ,D) be the closure of (E ,Dµ
◦ ) on L2(S, µ). It is known that, given (A1) and

(A2), (E ,D) is a local, quasi-regular Dirichlet form [44]. In particular, there exists an
associated S-valued diffusion (X, {Ps}s∈H) with state space H ⊂ S such that µ(H) = 1.
This S-valued diffusion is called the unlabeled diffusion.

Throughout this paper, we assume the random point field µ has infinitely many par-
ticles with probability 1, that is,

µ(S∞) = 1, where S∞ = {s ∈ S ; s(S) = ∞}. (4.3)

In addition to (4.3), we assume the following:

(A3) Capµ(Sc∞) = 0.

Recall that for a subset A ⊂ S, Capµ(A) denotes the capacity of A with respect to the
Dirichlet space (E ,D, L2(S, µ)).
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Remark 4.1. It is known that if each tagged particle of (X, {Ps}s∈H) does not explode,
then (A3) holds [46]. We do not explain about non-explosion property in this paper.
Refer to [46] for this.

For (A3), we can regard (E ,D, L2(S, µ)) as (E ,D, L2(S∞, µ)) and the associated S-
valued diffusion (X, {Ps}s∈H) as being S∞-valued.

Hereafter, we fix the Dirichlet space (E ,D, L2(S∞, µ)) and consider the unlabeled diffu-
sion (X, {Ps}s∈H) associated with it. We use the general concepts of Dirichlet form theory
(see [16]).

For a non-decreasing function f : [0,∞) → (0,∞) that satisfy limr→∞ f(r) = ∞, we
define random variables Φ±(s) : S∞ → [0,∞] as

Φ+(s) = lim sup
r→∞

s(Sr)

f(r)
,

Φ−(s) = lim inf
r→∞

s(Sr)

f(r)
.

Let T (S∞) be the tail σ-field given by

T (S∞) =
∩
r∈N

σ[πcr], (4.4)

where πcr(s) = s(· ∩ Sc
r). For each i ∈ {+,−}, we define Ai as

Ai = {s ; Φi(s) = 1}. (4.5)

Note that Ai ∈ T (S∞), because Φ± is T (S∞)-measurable.

Theorem 4.2. With assumptions (A1)–(A3), if f satisfies

lim
r→∞

f(r + 1)

f(r)
= 1, (4.6)

then the associated unlabeled diffusion (X, {Ps}s∈H) satisfies, for i ∈ {+,−},

Ps(τAi
= ∞) = 1 for q.e. s ∈ Ai, (4.7)

Here, τA is the first exit time from A defined as

τA = inf{t > 0 ; Xt /∈ A}.

Recall that “q.e.” in (4.7) is the abbreviation of “quasi-everywhere,” which means that the
equations holds with the exception of a set of zero capacity ([16, p.68]). Then (4.7) means
that for fixed f and i, there exists Nf,i such that Capµ(Nf,i) = 0 and Ps(τAi

= ∞) = 1 for
any s ∈ Ai \ Nf,i.

Remark 4.3. If f is a polynomial growth function, then it satisfies (4.6). Exponential
growth functions do not.
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Remark 4.4. Note that (X, {Ps}s∈H) is µ-reversible by construction, and thus the follow-
ing trivially holds:

Pµ(Xt ∈ Ai) = µ(Ai) for any t ∈ [0,∞). (4.8)

Equation (4.8) implies that the probability of Xt being in Ai is invariant for each t ∈ [0,∞).
It does not, however, provide information about the trajectory of the diffusion. In contrast,
what we prove in Theorem 4.2 is that for q.e. s ∈ Ai,

Ps(Xt ∈ Ai for any t ∈ [0,∞)) = 1, (4.9)

that is, Ai is an invariant set of the diffusion.

We next provide an application of Theorem 4.2. Fix a positive constant θ ∈ (0,∞).
Let Aθ represent all of the configurations with density θ given by

Aθ =
{
s ; lim

r→∞

s(Sr)

vol(Sr)
= θ
}
.

From Theorem 4.2 by choosing f(r) = θ vol(Sr), we obtain the corollary that the associated
unlabeled diffusion does not change its density over the time evolution:

Corollary 4.5. Given assumptions (A1)–(A3), for each θ ∈ (0,∞) the associated unla-
beled diffusion satisfies

Ps(τAθ
= ∞) = 1 for q.e. s ∈ Aθ.

4.3 Proof of Theorem 4.2

In this section, we give a proof of Theorem 4.2. We begin by introducing cut off functions.
Let u : SN → S∞ be an unlabeled map defined as

u(s) =
∑
i∈N

δsi for s = (si)i∈N ∈ SN.

A mapping l : S∞ → SN is called a labeled map if l is measurable and u ◦ l is the identity.
We fix a non-decreasing sequence a = {ar}r∈N ⊂ N and a label l = (l1, l2, . . .) satisfying

|lj(s)| ≤ |lj+1(s)| for any j ∈ N. Let ρ : R → [0, 1] be a smooth function such that

ρ(t) =

{
1, t ∈ (−∞, 0],

0, t ∈ [1,∞),

and let c27 be a positive constant given by

c27 := sup
x∈R

|ρ′(x)|(<∞).

We set
Jr,s,+ = {j ; j > ar, lj(s) ∈ Sr}.
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Then, for each m ∈ N, we define χm
+ [a] : S∞ → [0, 1] as

χm
+ [a](s) = ρ ◦ hma,+(s),

where

hma,+(s) =
log(dma,+(s) + 1)

log 2
, dma,+(s) =

∞∑
r=m

∑
j∈Jr,s,+

(r − |lj(s)|)2.

Similarly, we set
Jr,s,− = {j ; j < ar, lj(s) ∈ Sc

r},
and for each m ∈ N, define χm

− [a] : S∞ → [0, 1] as

χm
− [a](s) = ρ ◦ hma,−(s),

where

hma,−(s) =
log(dma,−(s) + 1)

log 2
, dma,−(s) =

∞∑
r=m

∑
j∈Jr,s,−

(r − |lj(s)|)2.

In addition, we prepare maps approximating χm
i [a] for i ∈ {+,−}. Let

χm,s
i [a](s) = ρ ◦ hm,s

a,i (s),

where

hm,s
a,i (s) =

log(dm,s
a,i (s) + 1)

log 2
, dm,s

a,i (s) =
s∑

r=m

∑
j∈Jr,s,i

(r − |lj(s)|)2.

Clearly, χm,s
+ [a] is thus σ[πs]-measurable. By the definition of S∞, χm,s

− [a] is σ[πs+1]-
measurable. Therefore, for each i ∈ {+,−},

χm,s
i [a] ∈ D◦.

Furthermore, it is easily deduced that lims→∞ χm,s
i [a] = χm

i [a] in L2(S∞, µ).

Lemma 4.6. Recall that c27 = supx∈R |ρ′(x)| < ∞. For each i ∈ {+,−} and each
m, s ∈ N,

D[χm,s
i [a]](s) ≤ 2c227

(log 2)2
dm,s
a,i (s)

(dm,s
a,i (s) + 1)2

. (4.10)

In particular, there exists a positive constant c28 independent of m, a, i, and s such that

D[χm,s
i [a]](s) ≤ c28. (4.11)

Proof. Easy calculation yields (4.10). In fact, we have

D[χm,s
i [a]](s) =

1

2

s∑
r=m

∑
j∈Jr,s,i

{
ρ′(hm,s

a,i (s))

log 2

2(r − |lj(s)|)
dm,s
a,i (s) + 1

}2

≤ 2c227
(log 2)2

·
dm,s
a,i (s)

(dm,s
a,i (s) + 1)2

.

Equation (4.11) then follows from (4.10) immediately.
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For a given non-decreasing sequence a = {ar}r∈N, we set

Sm+ [a] = {s ∈ S∞ ; s(Sr) ≤ ar for any r ≥ m},
Sm− [a] = {s ∈ S∞ ; s(Sr) ≥ ar for any r ≥ m}.

Clearly, the Sm± [a] are non-decreasing sets with respect to m. For given a, we define new
sequences a± = {ar±1}r∈N. We use the bilinear form E1 given by E1(u, v) = E(u, v) +
(u, v)L2(S∞,µ) for u, v ∈ D. Below, ||u||E1 denotes the norm with respect to E1(u, u). Note
that (E1,D) is a Hilbert space.

Lemma 4.7. For each i ∈ {+,−} and each m ∈ N, the following hold:
(i) χm

i [a] = 1 on Smi [a] and χm
i [a] = 0 on (Smi [ai])c.

(ii)

lim
s→∞

χm,s
i [a] = χm

i [a] weakly in (E1,D). (4.12)

(iii) χm
i [a] ∈ D.

Proof. From the definition of χm
+ [a] and χm

− [a], we obtain (i) immediately.
Equation (4.11) implies that sups∈N ||χm,s

i [a]||E1 ≤
√
1 + c28. Using this together with

the L2(µ)-convergence of χm,s
i [a], we obtain (ii)

Clearly, (iii) follows from (ii).

Lemma 4.8. For each i ∈ {+,−}, {χm
i [a]}m∈N is a Cauchy sequences in E1.

Proof. We prove only the case in which i = +; the (−)–case can be demonstrated similarly.

Let δ be a constant satisfying 0 < δ < 1. We define subsets SM,δ
1 and SM,δ

2 for each
M ∈ N as

SM,δ
1 = {s ∈ S∞ ; dMa,+(s) < δ},

SM,δ
2 = {s ∈ S∞ ; δ ≤ dMa,+(s) <∞}.

We can and do take M sufficiently large that

µ(SM,δ
2 ) ≤ δ. (4.13)

From (4.12), we have

||χl
+[a]− χm

+ [a]||2E1 (4.14)

≤ lim inf
s→∞

||χl,s
+ [a]− χm,s

+ [a]||2E1

= lim inf
s→∞

{∫
S∞

|χl,s
+ [a]− χm,s

+ [a]|2 dµ(s) +
∫
S∞

D[χl,s
+ [a]− χm,s

+ [a]] dµ(s)
}
.

We set SM,δ = SM,δ
1 + SM,δ

2 and

Sl,m,s = {s ; dl,sa,+(s) < 1 or dm,s
a,+(s) < 1}.
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Clearly,

lim
s→∞

µ((SM,δ)c ∩ Sl,m,s) = 0. (4.15)

By the definition of χm,s
+ [a],

χl,s
+ [a] = χm,s

+ [a] on (Sl,m,s)c for l,m ∈ N.

From this and (4.11), we have∫
(SM,δ)c

|χl,s
+ [a]− χm,s

+ [a]|2 dµ(s) +
∫
(SM,δ)c

D[χl,s
+ [a]− χm,s

+ [a]] dµ(s)

=

∫
(SM,δ)c∩Sl,m,s

|χl,s
+ [a]− χm,s

+ [a]|2 dµ(s) +
∫
(SM,δ)c∩Sl,m,s

D[χl,s
+ [a]− χm,s

+ [a]] dµ(s)

≤ (1 + 4c28)µ((S
M,δ)c ∩ Sl,m,s).

Combining this and (4.15), we conclude

lim
s→∞

{
∫
(SM,δ)c

|χl,s
+ [a]− χm,s

+ [a]|2 dµ(s) +
∫
(SM,δ)c

D[χl,s
+ [a]− χm,s

+ [a]] dµ(s)} = 0. (4.16)

By virtue of Lipschitz continuity, there exists a positive constant c29 such that

|χl,s
+ [a]− χm,s

+ [a]| ≤ c29|dl,sa,+(s)− dm,s
a,+(s)|. (4.17)

Note that dma,+(s) ≤ dMa,+(s) for m ≥M and dm,s
a,+(s) ≤ dma,+(s). Then, for s ≥ m ≥M ,

dm,s
a,+(s) < δ on SM,δ

1 . (4.18)

Therefore, for each l,m ≥M , we have from (4.10), (4.17), and (4.18),∫
SM,δ
1

|χl,s
+ [a]− χm,s

+ [a]|2 dµ(s) +
∫
SM,δ
1

D[χl,s
+ [a]− χm,s

+ [a]] dµ(s) (4.19)

< c229δ
2 +

8c227
(log 2)2

δ.

From (4.11) and (4.13), we deduce that∫
SM,δ
2

|χl,s
+ [a]− χm,s

+ [a]|2 dµ(s) +
∫
SM,δ
2

D[χl,s
+ [a]− χm,s

+ [a]] dµ(s) (4.20)

≤ µ(SM,δ
2 )(1 + 4c28)

≤ δ(1 + 4c28).

Combining (4.14), (4.16), (4.19), and (4.20), we conclude that for any δ satisfying
0 < δ < 1, there exists M ∈ N such that for any l,m ≥M ,

||χl
+[a]− χm

+ [a]||E1 <
{
c229δ

2 +
8c227

(log 2)2
δ + δ(1 + 4c28)

}1/2
.

Hence, {χm
+ [a]}m∈N is a Cauchy sequences in E1.
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For a subset B ⊂ S∞, an element eB ∈ D is called the 1-equilibrium potential of B if
ẽB = 1 q.e. on B and E1(eB, v) ≥ 0 for any v ∈ D satisfying ṽ ≥ 0 q.e. on B. Here, ũ is a
quasi-continuous µ-version of u ∈ D.

Lemma 4.9. Take i ∈ {+,−} and set

Sai =
∪
m∈N

Smi [a], Sa
i

i =
∪
m∈N

Smi [ai].

Assume that

µ((Sai )
c ∩ Sa

i

i ) = 0. (4.21)

Then

lim
m→∞

χm
i [a] = eSai in E1, (4.22)

1− lim
m→∞

χm
i [a] = e(Sai )c in E1. (4.23)

Furthermore, we have

ẽSai = 0 for q.e. s ∈ (Sai )
c, (4.24)

ẽ(Sai )c = 0 for q.e. s ∈ Sai . (4.25)

Proof. We give a proof only for i = +; The (−)–case can be proved similarly.
First, there exists a u ∈ D such that limm→∞ χm

+ [a] = u in E1 from Lemma 4.8. To
show (4.22), it is enough to prove that ũ = 1 q.e. on Sa+ and E1(u, v) ≥ 0 for any v ∈ D
with ṽ ≥ 0 q.e. on Sa+.

From Lemma 4.7 (i), we have u = 1 µ-a.e. on Sa+. Here, we use the monotonicity of
Sm+ [a]. Therefore, we can take ũ as a version of u such that ũ = 1 q.e. on Sa+.

Next, we take v ∈ D such that ṽ ≥ 0 q.e. on Sa+. We use the result that u = 1 µ-a.e.
on Sa+ to obtain ∫

Sa+∩Sa++
u(s)v(s) dµ(s) ≥ 0. (4.26)

We have u = 0 µ-a.e. on (Sa
+

+ )c from Lemma 4.7 (i) and the monotonicity. From this and
(4.26), we deduce∫

S∞

u(s)v(s) dµ(s) =

∫
Sa

+
+

u(s)v(s) dµ(s) (4.27)

=
{∫

Sa+∩Sa++
+

∫
(Sa+)c∩Sa++

}
u(s)v(s) dµ(s)

≥ 0.

Here we have used the fact that the second term in the second line in (4.27) vanishes
because of (4.21).
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Next we consider E(u, v). Let {vm}∞m=1 ⊂ D◦ such that limm→∞ vm = v in E1. Recall
that limm→∞ χm

+ [a] = u in E1. Then

E(u, v)2 ≤ E(u, u)E(v, v) (4.28)

= lim
m→∞

E(χm
+ [a], χm

+ [a])E(v, v)

≤ lim
m→∞

lim inf
s→∞

E(χm,s
+ [a], χm,s

+ [a])E(v, v).

We set

Sm,s
+ [a] = {s ∈ S∞ ; s(Sr) ≤ ar for any r satisfying s ≥ r ≥ m}.

Note that Sm,s
+ [a] is a non-increasing set with respect to s. Because χm,s

+ [a] is constant on
Sm,s
+ [a] ∪ (Sm,s

+ [a+])c by definition,

D[χm,s
+ [a]](s) = 0 on Sm,s

+ [a] ∪ (Sm,s
+ [a+])c.

From this, we have

E(χm,s
+ [a], χm,s

+ [a]) =

∫
S
D[χm,s

+ [a]](s) dµ(s)

=

∫
(Sm,s

+ [a])c∩Sm,s
+ [a+]

D[χm,s
+ [a]](s) dµ(s). (4.29)

From (4.11) and (Sm,s
+ [a])c ⊂ (Sm+ [a])c,∫

(Sm,s
+ [a])c∩Sm,s

+ [a+]
D[χm,s

+ [a]](s) dµ(s) ≤ c28µ((S
m,s
+ [a])c ∩ Sm,s

+ [a+])

≤ c28µ((S
m
+ [a])c ∩ Sm,s

+ [a+]).

Combining this and (4.29), we have

lim inf
s→∞

E(χm,s
+ [a], χm,s

+ [a]) ≤ c28 lim inf
s→∞

µ((Sm+ [a])c ∩ Sm,s
+ [a+]) (4.30)

= c28µ((S
m
+ [a])c ∩ Sm+ [a+]).

We use the monotonicity of Sm,s
+ [a+] in the last line. From (4.28), (4.30), and the mono-

tonicity of Sm+ [a] with respect to m, we have

E(u, v)2 ≤ lim
m→∞

c28µ((S
m
+ [a])c ∩ Sm+ [a+])E(v, v)

≤ lim
m→∞

c28µ((S
m
+ [a])c ∩ Sa

+

+ )E(v, v)

= c28µ((S
a
+)

c ∩ Sa
+

+ )E(v, v).

Consequently, we find that E(u, v) = 0 by virtue of (4.21). Combining this and (4.27), we
have E1(u, v) ≥ 0. Then we conclude u = eSa+ . Equation (4.24) is clear because we have
u = 0 µ-a.e. on (Sai )

c from the discussion above.
Finally, (4.23) and (4.25) are deduced easily from (4.22) and (4.24).
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Theorem 4.2 follows from Lemma 4.9 with an appropriate choice of a. For small ε > 0,
we set

aε = {(f(r)(1− ε))}r∈N, bε = {(f(r)(1 + ε))}r∈N, (4.31)

as a non-decreasing sequence. We further set

Aε = {s ; Φ+(s) < 1− ε}, Bε = {s ; Φ+(s) > 1 + ε},
Cε = {s ; Φ−(s) < 1− ε}, Dε = {s ; Φ−(s) > 1 + ε}.

Lemma 4.10. With A± as in (4.5), the following hold:

Aε ⊂
∪
m∈N

Sm+ [aε], Bε ⊂
( ∪

m∈N
Sm+ [bε]

)c
, (4.32)

Cε ⊂
( ∪

m∈N
Sm− [aε]

)c
, Dε ⊂

∪
m∈N

Sm− [bε], (4.33)

and

A+ ⊂
( ∪

m∈N
Sm+ [aε]

)c
∩
∪
m∈N

Sm+ [bε], (4.34)

A− ⊂
∪
m∈N

Sm− [aε] ∩
( ∪

m∈N
Sm− [bε]

)c
. (4.35)

Proof. The first inclusion relation in (4.32) is obvious by∪
m∈N

Sm+ [aε] =
∪
m∈N

{s ; s(Sr) ≤ f(r)(1− ε), ∀r ≥ m}.

The second inclusion relation in (4.32) follows from( ∪
m∈N

Sm+ [bε]
)c

=
( ∪
m∈N

{s ; s(Sr) ≤ f(r)(1 + ε), ∀r ≥ m}
)c

=
∩
m∈N

{s ; s(Sr) > f(r)(1 + ε), ∃r ≥ m}.

Equations (4.33), (4.34), and (4.35) can be checked in a similar way.

Proof of Theorem 4.2. We use Lemma 4.9 for the non-decreasing sequence (4.31). For
(4.6), we can take arbitrary small ε > 0 in (4.31), which yields (4.21). In fact, let Saε

+ and

Sa
+
ε

+ be as in Lemma 4.9, then we have

(Saε
+ )c =

∩
m∈N

{s(Sr) > f(r)(1− ε), ∃r ≥ m} ⊂ {s ; Φ+(s) ≥ 1− ε}, (4.36)

and

Sa
+
ε

+ =
∪
m∈N

{s(Sr) ≤ f(r + 1)(1− ε), ∀r ≥ m} ⊂ {s ; Φ+(s) ≤ 1− ε}. (4.37)
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Combining (4.36) and (4.37), we obtain

(Saε
+ )c ∩ Sa

+
ε

+ ⊂ {s ; Φ+(s) = 1− ε}.

From this, (4.21) is satisfied for a = aε with an arbitrary small ε > 0.
Therefore, we combine Lemma 4.9 with Lemma 4.10 to obtain

Ps(τAc
ε
= ∞) = Ps(τBc

ε
= ∞) = 1 for q.e. s ∈ A+, (4.38)

Ps(τCc
ε
= ∞) = Ps(τDc

ε
= ∞) = 1 for q.e. s ∈ A−. (4.39)

Here we have used the fact that for a nearly Borel set A, p1S∞\A(·) = E·[e
−τA ] is a quasi-

continuous µ-version of eS∞\A. Because (4.38) and (4.39) hold for arbitrarily small ε, we
arrive at (4.7).
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5 Uniqueness of Dirichlet forms related to infinite systems
of interacting Brownian motions

5.1 Introduction

An infinite system of interacting Brownian motions in Rd can be represented by (Rd)N-
valued stochastic processX = (Xi)i∈N [37, 38, 44, 48]. This process is realized using several
probabilistic constructs such as stochastic differential equation, Dirichlet form theory, and
martingale problems. Among them, the second author constructed in a general setting
processes using the technique of Dirichlet forms [44, 48].

Specifically, the Dirichlet form introduced, (Eupr,Dupr) is obtained by the smallest
extension of the bilinear form (Eµ,Dµ

◦ ) on L
2(S, µ) with domain Dµ

◦ defined by

Eµ(f, g) =

∫
S
D[f, g](s)µ(ds),

D[f, g](s) =
1

2

∞∑
i=1

∇si f̌ · ∇si ǧ,

Dµ
◦ = {f ∈ D◦ ∩ L2(S, µ) ; Eµ(f, f) <∞},

where D◦ is the set of all local smooth functions on the (unlabeled) configuration space
S introduced in (5.6), f̌ is a symmetric function such that f̌(s1, s2, . . . ) = f(s), · is the
inner product in Rd, and s =

∑
i δsi denotes a configuration. If we take µ to be the

Poisson random point field, the intensity of which is the Lebesgue measure, then the
diffusion given by the Dirichlet form (Eupr,Dupr) is the unlabeled Brownian motion B such
that Bt =

∑∞
i=1 δBi

t
, where {Bi}∞i=1 is a system of independent copies of the standard

Brownian motion.
This Dirichlet form is a decreasing limit of Dirichlet forms associated with finite systems

of interacting Brownian motions in bounded domains SR = {x ∈ Rd; |x| ≤ R} with a
boundary condition. Because of the boundary condition, Brownian particles that touch
the boundary disappear. Also, particles enter the domain from the boundary according
to the reversible measure µ.

In contrast, Lang constructed the infinite system of Brownian motions as a limit of
stochastic dynamics in bounded domains SR by considering finite systems with another
boundary condition [37, 38]. In his finite systems, a particle hitting the boundary is
reflected and hence the number of particles in the domain is invariant. His process is
associated with the Dirichlet form (E lwr,Dlwr) that is the increasing limit of the Dirichlet
forms associated with finite systems with the reflecting boundary condition.

In this paper, we discuss the relation between these Dirichlet forms, (Eupr,Dupr) and
(E lwr,Dlwr). The main purpose of this paper is to give a sufficient condition for

(E lwr,Dlwr) = (Eupr,Dupr). (5.1)

By construction the inequality

(E lwr,Dlwr) ≤ (Eupr,Dupr) (5.2)

always holds whereas (5.1) does not necessarily hold in general. Although the problem
is quite natural and general, little is known about the equality (5.1). To the best of our
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knowledge, the unique example for which the equality (5.1) holds is the system of hard-core
Brownian balls proved by the third author [71].

The study of infinite systems of interacting Brownian motions was initiated by Lang
[37, 38] and continued by Fritz [15], the third author [70], and others. In their respective
work, the free potential Φ is assumed to be zero and the interaction potentials Ψ are of
class C3

0 (Rd) or exponentially decay at infinity and satisfying the super-stability in the
sense of Ruelle. The infinite-dimensional stochastic differential equation (ISDE) is given
by

dXi
t = dBi

t −
β

2

∞∑
j=1, j ̸=i

∇Ψ(Xi
t −Xj

t )dt. (5.3)

Here β > 0 is an inverse temperature. Lang constructed a solution for the µ-a.s. x unlabeled
initial point, where µ is a grand canonical Gibbs measure with interaction potential Ψ.

Indeed, Lang and others solved the ISDE as a limit of solutions of finite-volume stochas-
tic differential equations (SDE), describing particles in SR with reflecting boundary con-
dition on ∂SR. That is, the SDE is given by

dXi
t =dB

i
t −

β

2

x(SR)∑
j ̸=i

∇Ψ(Xi
t −Xj

t )dt−
β

2

∞∑
j>x(SR)

∇Ψ(Xi
t − xj)dt (5.4)

+
1

2
nR(Xi

t)dL
R,i
t for 1 ≤ i ≤ x(SR),

Xi
t =xi for i > x(SR)

with the initial condition X0 = (xi)
∞
i=1 such that |xi| < |xi+1| for all i ∈ N, and x(SR)

coincides with the number of particles in SR. The process L
R,i = {LR,i

t } denotes the local
time-type drift arising from the reflecting boundary condition on ∂SR (see (5.29) for LR,i)
and nR(x) is the inward normal vector at x ∈ ∂SR.

In contrast, the labeled diffusion in SR introduced in [44] is given by the SDE

dXi
t =dB

i
t −

β

2

∑
j ̸=i, Xj

t∈SR

∇Ψ(Xi
t −Xj

t )dt (5.5)

with the foregoing boundary condition. These SDEs have thus different boundary condi-
tions. The solutions of (5.4) are non-ergodic, whereas the solutions of (5.5) are ergodic.
Indeed, the system in (5.4) keeps the initial number of particles in SR. In the second dy-
namics, the number of particles in SR varies. The state space of solutions in (5.5) therefore
consists of a unique ergodic component (regarded as {

∪∞
m=0(S

int
R )m}-valued process, where

(Sint
R )0 = {∅} and Sint

R is the interior of SR).
Let (E lwr

R ,Dlwr
R ) be the Dirichlet form on L2(S, µ) associated with (5.4), that is, the

Dirichlet form (E lwr
R ,Dlwr

R ) describes the motion of unlabeled dynamics related to (5.4).
Let (Eupr,Dupr

R ) be the Dirichlet form on L2(S, µ) associated with (5.5). Here we use
the notation (Eupr,Dupr

R ) rather than (Eupr
R ,Dupr

R ) because (Eupr,Dupr
R ) is the closure of

(E ,Dµ
◦ ∩ BR(S)) (see Lemma 5.1 see for notational details), whereas (E lwr

R ,Dlwr
R ) is the

closure with respect to the energy form ER different from E . As we shall see later, these
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two Dirichlet forms satisfy the relation

(E lwr
R ,Dlwr

R ) ≤ (Eupr,Dupr
R ).

Furthermore, as R→ ∞, {(E lwr
R ,Dlwr

R )} is an increasing scheme of Dirichlet forms, whereas
{(Eupr,Dupr

R )} is decreasing. This fact implies the obvious relation (5.2).
The difference in these schemes lies in the boundary condition. Therefore, our task is

to control the effect of the boundary condition to prove it becomes negligible as R→ ∞.
The main examples of our models have a logarithmic interaction potential, which is a

very long rang potential that has quite strong long-range effect. We emphasize that the
ISDEs arising from random matrix theory usually have logarithmic interaction potentials,
and hence this class of interacting Brownian motions is significant.

The typical ISDE for logarithmic potentials is the Ginibre interacting Brownian motion
in R2 with the ISDE

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
|Xj

t |<r, j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N),

and

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r, j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N).

Surprisingly, these two ISDEs have the same solution that defines the Ginibre interact-
ing Brownian motion. This is a consequence of the long-rang effect of the logarithmic
interaction potential whereby the motion of the particles is suppressed very strongly.

Our result proves nevertheless the uniqueness of Dirichlet forms for which (5.1) holds,
a phenomenon similar to short-range interaction potentials.

In the first main theorem (Theorem 5.14), we shall prove that any limit point of
the solutions of (5.4) is a solution of the ISDE (5.3) satisfying well-behaved properties
(see Theorem 5.14). The limit points of the solutions of (5.5) were proved to satisfy
the ISDE (5.3) with the same well-behaved properties [44, 47]. Hence, assuming the
uniqueness of solutions of (5.3) under the foregoing well-behaved properties, these two
limits of the solutions are the same. This establishes the coincidence of the two Dirichlet
forms (E lwr,Dlwr) and (Eupr,Dupr).

The motivation of our work lies in the recent rapid and outstanding progress of random
matrix theory in proving that the random point fields arising from Gaussian random
matrices (invariant random matrices) such as sineβ, Airyβ, and Ginibre random point
fields, are universal. Indeed, these random point fields are obtained as scaling limits of
eigenvalue distributions of a quite general class of random matrices and also log gases
with general free potentials. Once this static universality is established, it is natural to
pursue its dynamical counter part. In a forthcoming paper, the first and second authors
will prove that the natural reversible stochastic dynamics associated with these random
point fields are also universal objects. Examples of universal stochastic dynamics are the
sine, Airy, and Ginibre interacting Brownian motions (see Section 5.8). They are limits
of the stochastic dynamics related to N -particle systems with reversible random point
fields that converge to those universal random point fields mentioned above. This result
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is established by assuming the limits of the lower and upper Dirichlet forms in (5.1) are
equal in addition to a certain strong convergence of the random point fields. Hence our
main theorem (Theorem 3.2) plays a crucial role in the dynamical universality of random
matrices in the sense given above.

The organization of the paper is as follows: In Section 5.2, we prepare the two schemes
of the Dirichlet forms describing interacting Brownian motions, and quote related results.
In Section 5.3, we state the main theorems (Theorem 5.14 and Theorem 5.15). In Sec-
tion 5.4, we prove Theorem 5.14. In Section 5.5, we prove Theorem 5.15. In Section 5.6,
we comment on a generalization to the uniformly elliptic case. In Section 5.7, we con-
struct cut-off coefficients br,s,p appearing in (A6). In Section 5.8, we present examples.
In Appendix (Section 5.9) we present a set D• used in Section 5.2 and prove Lemma 5.7.
In Section 5.10, we give concluding remarks with some open questions.

5.2 Preliminaries

5.2.1 Two schemes of Dirichlet forms

Let S be a closed set in Rd with interior Sint which is a connected open set satisfying
Sint = S and the boundary ∂S having Lebesgue measure zero.

A configuration s =
∑

i δsi on S is a Radon measure on S consisting of delta masses
δsi . Let S be the configuration space over S. Then, by definition, S is the set given by

S = {s =
∑
i

δsi ; s(K) <∞ for all compact set K}. (5.6)

By convention, we regard the zero measure as an element of S. We endow S with the
vague topology, which makes S to be a Polish space.

A probability measure µ on (S,B(S)) is called a random point field on S. We assume
µ is supported on the set consisting of infinitely-many particles:

µ({s ∈ S; s(S) = ∞}) = 1.

Let Sr = {s ∈ S ; |s| ≤ r} and Sm
r = Sr × · · · × Sr be the m-product of Sr. Let

Smr = {s ∈ S ; s(Sr) = m} for r,m ∈ N. We set maps πr, π
c
r : S → S such that

πr(s) = s(· ∩ Sr) and πcr(s) = s(· ∩ Sc
r).

For s ∈ Smr , xm
r (s) = (xir(s))

m
i=1 ∈ Sm

r is called a Sm
r -coordinate of s, if πr(s) =

∑m
i=1 δxi

r(s)
.

For a function f : S → R we set fmr (s,x) = fmr,s(x) such that fmr : S × Sm
r → R and

that fmr,s, with r,m ∈ N, satisfies
(1) fmr,s is a permutation invariant function on Sm

r for each s ∈ S.
(2) fmr,s(1) = fmr,s(2) if π

c
r(s(1)) = πcr(s(2)) for s(1), s(2) ∈ Smr .

(3) fmr,s(x
m
r (s)) = f(s) for s ∈ Smr , where xm

r (s) is a Sm
r -coordinate of s.

(4) fmr,s(s) = 0 for s /∈ Smr .

The function fmr,s is called the Sm
r -representation of f . Note that fmr,s is unique and

f(s) =
∑∞

m=0 f
m
r,s(x

m
r (s)) for each r ∈ N. When f is σ[πr]-measurable, the Sm

r -representations
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are independent of s. In this case we often write fmr instead of fmr,s. We set

Br(S) = {f : S → R ; f is σ[πr]-measurable}, B∞(S) =
∞∪
r=1

Br(S),

D◦ = {f ∈ B∞(S) ; fmr,s is smooth on Sm
r for all m, r ∈ N, s ∈ S}.

Note that D◦ ∩ L2(S, µ) is dense in L2(S, µ) and D◦ ⊂ C(S), where C(S) is the set of all
continuous functions on S. We remark that, if f ∈ D◦ and f is σ[πr]-measurable, then
fmr,s(x1, . . . , xm) is constant in xm on the boundary ∂Sr for each (x1, . . . , xm−1) ∈ Sm−1

r ,
and its derivatives vanishes on ∂Sm

r .
For s =

∑
i δsi we set ∇si = ( ∂

∂si1
, . . . , ∂

∂sid
). For f, g ∈ D◦ let

Dm
r [f, g](s) =

{
1
2

∑
i ; si∈Sr

∇sif
m
r,s(x

m
r (s)) · ∇sig

m
r,s(x

m
r (s)) for s ∈ Smr ,

0 for s /∈ Smr .
(5.7)

Moreover, we set

Dr =
∞∑

m=1

Dm
r . (5.8)

Note that Dm
r [f, g] is independent of the choice of the Sm

r -coordinate xm
r (s) and is well-

defined. We now define bilinear forms on D◦:

Eµ,m
r (f, g) =

∫
S
Dm
r [f, g](s)µ(ds) and Eµ

r =

∫
S
Dr[f, g](s)µ(ds). (5.9)

Then clearly Eµ
r =

∑∞
m=1 E

µ,m
r .

Let (Eµ,Dµ
◦ ) be a bilinear form on L2(S, µ) with domain Dµ

◦ defined by

Eµ(f, f) = lim
r→∞

Eµ
r (f, f), (5.10)

Dµ
◦ = {f ∈ D◦ ∩ L2(S, µ) ; Eµ(f, f) <∞}.

We note that Eµ
r (f, f) is nondecreasing in r, and hence the limit in (5.10) exists. We

assume

(Eµ,m
r ,Dµ

◦ ) is closable on L2(S, µ) for each m, r ∈ N. (5.11)

We present later a sufficient condition regarding (5.11); see (A1) in Section 5.2.

Lemma 5.1. ([44, Lemma 2.2, Theorem 2]) Assume (5.11). Then the following hold.
(1) (Eµ,Dµ

◦ ∩ Br(S)) and (Eµ
r ,Dµ

◦ ) are closable on L2(S, µ) for each r.
(2) (Eµ,Dµ

◦ ) is closable on L2(S, µ).

For symmetric bilinear forms (E ,D) and (E ′,D′) we write (E ,D) ≤ (E ′,D′) if D ⊃ D′

and E(f, f) ≤ E ′(f, f) for all f ∈ D′. We say a sequence of symmetric bilinear forms
{(En,Dn)}n∈N is increasing if (En,Dn) ≤ (En+1,Dn+1) for all n. Replacing ≤ by ≥, we call
{(En,Dn)}n∈N decreasing. Let (Eupr,Dupr

r ) and (E lwr
r ,Dlwr

r ) denote the closures of (Eµ,Dµ
◦ ∩

Br(S)) and (Eµ
r ,Dµ

◦ ) on L
2(S, µ), respectively. Then we quote:
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Lemma 5.2 ([44, Lemma 2.1]). Assume (5.11). Then
(1) {(E lwr

r ,Dlwr
r )}r∈N is increasing.

(2) {(Eupr,Dupr
r )}r∈N is decreasing.

Let (E lwr,Dlwr) be the increasing limit of {(E lwr
r ,Dlwr

r )}r∈N, that is,

E lwr(f, f) = lim
r→∞

E lwr
r (f, f), and Dlwr = {f ∈

∩
r∈N

Dlwr
r ; lim

r→∞
E lwr
r (f, f) <∞}.

Then (E lwr,Dlwr) is closed on L2(S, µ) by construction. Recall that (Eµ,Dµ
◦ ) is closable on

L2(S, µ) by Lemma 5.1. We then denote by (Eupr,Dupr) the closure of (Eµ,Dµ
◦ ) on L

2(S, µ).
Let Glwr

r,α, G
lwr
α , Gupr

r,α, and Gupr
α be resolvent of (E lwr

r ,Dlwr
r ), (E lwr,Dlwr), (Eupr,Dupr

r ), and
(Eupr,Dupr) on L2(S, µ), respectively.

Lemma 5.3. ([44, Lemma 2.1, Theorem 2]) Assume (5.11). Then
(1) {Glwr

r,α}r∈N converges to Glwr
α strongly in L2(S, µ) as r → ∞ for each α > 0.

(2) {Gupr
r,α}r∈N converges to Gupr

α strongly in L2(S, µ) as r → ∞ for each α > 0.

By construction we have for each r

(E lwr
r ,Dlwr

r ) ≤ (Eupr,Dupr
r ). (5.12)

Hence taking r → ∞ we see that

(E lwr,Dlwr) ≤ (Eupr,Dupr). (5.13)

We call (E lwr,Dlwr) the lower Dirichlet form and (Eupr,Dupr) the upper Dirichlet form. We
also call {(E lwr

r ,Dlwr
r )}r∈N a lower scheme and {(Eupr,Dupr

r )}r∈N an upper scheme. The
relations (5.12) and (5.13) justify the names of these schemes.

5.2.2 Quasi-Gibbs measures, unlabeled diffusions, and labeled dynamics

Let Λr be the Poisson random point field whose intensity is the Lebesgue measure on Sr
and set Λm

r = Λr(· ∩ Smr ). Let Φ : S → R ∪ {∞} and Ψ : S2 → R ∪ {∞} be measurable
functions such that Ψ(x, y) = Ψ(y, x). Following [48, 49] we quote:

Definition 5.4. A random point field µ is called a (Φ,Ψ)-quasi Gibbs measure if its
regular conditional probabilities

µmr,s = µ(πr(x) ∈ · |πcr(x) = πcr(s), x(Sr) = m)

satisfy, for all r,m ∈ N and µ-a.s. s,

c−1
30 e

−Hm
r (x)Λm

r (dx) ≤ µmr,s(dx) ≤ c30e
−Hm

r (x)Λm
r (dx). (5.14)

Here c30 = c30(r,m, s) is a positive constant depending on r, m, s. For two measures µ, ν
on a σ-field F , we write µ ≤ ν if µ(A) ≤ ν(A) for all A ∈ F . Moreover, Hm

r is the
Hamiltonian on Sr defined by

Hm
r (x) =

∑
xi∈Sr
1≤i≤m

Φ(xi) +
∑

xj,xk∈Sr
1≤j<k≤m

Ψ(xj , xk) for x =
∑
i

δxi .
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Remark 5.5. (1) From (5.14), we see that for all r,m ∈ N and µ-a.s. s, µmr,s(dx) have
(unlabeled) Radon–Nikodym densities mm

r,s(x) with respect to Λm
r . Clearly, the canonical

Gibbs measures µ with potentials (Φ,Ψ) are quasi-Gibbs measures, and their densities
mm

r,s(x) with respect to Λm
r are given by the Dobrushin–Lanford–Ruelle (DLR) equation.

That is, for µ-a.s. s =
∑

j δsj

mm
r,s(x) =

1

Zm
r,s

exp{−Hm
r (x)−

∑
xi∈Sr, sj∈Sc

r
1≤i≤m

Ψ(xi, sj)}.

Here Zm
r,s is the normalizing constant. For random point fields appearing in random matrix

theory, interaction potentials are logarithmic functions, where the DLR equations do not
make sense as stated because the term

∑
xi∈Sr, sj∈Sc

r
Ψ(xi, sj) diverges. The notion of a

quasi-Gibbs measure still makes sense for logarithmic potentials.
(2) We refer to [48, 49] for sufficient conditions of quasi-Gibbs measures. These conditions
give us the quasi-Gibbs property of random point fields appearing in random matrix theory,
such as sineβ, Airyβ (β = 1, 2, 4), and Bessel2,α (1 ≤ α), and Ginibre random point fields
[48, 49, 54, 17].

We make the following assumption.

(A1) µ is a (Φ,Ψ)-quasi Gibbs measure. Furthermore, there exists upper semi-continuous
functions (Φ̂, Ψ̂) and positive constants c31 and c32 satisfying

c−1
31 Φ̂(x) ≤ Φ(x) ≤ c31Φ̂(x), c−1

32 Ψ̂(x, y) ≤ Ψ(x, y) ≤ c32Ψ̂(x, y),

where Ψ and Ψ̂ satisfy Ψ(x, y) = Ψ(y, x) and Ψ̂(x, y) = Ψ̂(y, x).

If these interaction potentials are translation invariant, we often write Ψ(x, y) = Ψ(x−
y) and Ψ̂(x, y) = Ψ̂(x−y). The importance of (A1) lies in the fact that it gives a sufficient
condition of the basic assumption (5.11). We quote:

Lemma 5.6 ([48, 45-46pp]). Assume (A1). Then (Eµ,m
r ,Dµ

◦ ) is closable on L2(S, µ) for
each m, r ∈ N. In particular, (Eµ

r ,Dµ
◦ ) is closable on L2(S, µ).

We now recall two basic notions on random point fields: correlation functions and
density functions.

A symmetric and locally integrable function ρn : Sn → [0,∞) is called the n-point
correlation function of a random point field µ on S with respect to the Lebesgue measure
if ρn satisfies ∫

A
k1
1 ×···×Akm

m

ρn(x1, . . . , xn)dx1 · · · dxn =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any sequence of disjoint bounded measurable sets A1, . . . , Am ∈ B(S) and a sequence of
positive integers k1, . . . , km satisfying k1+ · · ·+km = n. When s(Ai)−ki < 0, according to
our interpretation, s(Ai)!/(s(Ai)− ki)! = 0 by convention. We assume that µ has n-point
correlation function ρn for each n ∈ N.
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A symmetric function σkr : Sk
r → [0,∞) is called the k-point density function of a

random point field µ on Sr with respect to the Lebesgue measure if for all non-negative,
bounded σ[πr]-measurable function f with Sk

r -representation f
k
r

1

k!

∫
Sk
r

fkr σ
k
rdx

k =

∫
Skr

fdµ <∞.

Let Smr = {s ∈ S ; s(Sr) = m} as before. We make the following assumption.

(A2)
∑∞

m=1mµ(S
m
r ) <∞ for all r ∈ N.

A family of probability measures {Px}x∈S on C([0,∞);S) is called a diffusion if the
canonical process X = {Xt} under Px is a continuous process having a strong Markov
property starting at x. Furthermore, {Px}x∈S is called conservative if it has an invariant
probability measure.

Assume (A1). Then we deduce from Lemma 5.1 and Lemma 5.6 that the non-negative
form (Eµ,Dµ

◦ ) is closable on L
2(S, µ). Therefore, let (Eupr,Dupr) be its closure on L2(S, µ).

The next result is a refinement of [44, 119p. Corollary 1] and can be proved in a similar
fashion. We postpone the proof to Appendix (see Section 5.9).

Lemma 5.7. Assume (A1) and (A2). Then there exists a µ-reversible diffusion {Pupr
x }x∈S

associated with the Dirichlet form (Eupr,Dupr) on L2(S, µ).

We note that (A2) is used to guarantee the existence of the diffusion. The µ-
reversibility of the diffusion follows from 1 ∈ Dupr and symmetry of (Eupr,Dupr).

By construction, such a family of diffusion measures Pupr = {Pupr
x } with quasi-continuity

in x is unique for quasi-everywhere starting point x. Equivalently, there exists a set S0
such that the complement of S0 has capacity zero and the family of diffusion measures
Pupr = {Pupr

x } associated with the Dirichlet space above with quasi-continuity in x is unique
for all x ∈ S0 and Pupr

x (Xt ∈ S0 for all t) = 1 for all x ∈ S0.
We next lift the unlabeled dynamics X to a labeled dynamics X = (Xi)i∈N. Under

Pupr = {Pupr
x }, we can write Xt =

∑∞
i=1 δXi

t
, where each Xi = {Xi

t} is a continuous

process with time parameter of the form [0, b) or (a, b). We call Xi tagged particles and
X = (Xi)i∈N labeled dynamics. Note that for a given unlabeled process X, there exist
plural labeled dynamics in general. We next give a condition such that X = (Xi)i∈N is
determined uniquely. For this purpose, we impose the following condition:

(A3) Under Pupr = {Pupr
x }, each tagged particle {Xi}i∈N does not collide with another.

Furthermore, {Xi}i∈N does not hit the boundary ∂S of S.

This condition is equivalent to both the capacity of multiple points and that of config-
urations with particles on the boundary ∂S being zero:

Capµ({s ∈ S; s({x}) ≥ 2 for some x ∈ S}) = 0,

Capµ({s ∈ S; s(∂S) ≥ 1}) = 0.

Here Capµ denotes the one-capacity with respect to the Dirichlet space (Eµ,Dµ) on
L2(S, µ) (see [16] for the definition of capacity).

Let Erf(t) =
∫∞
t (1/

√
2π)e−|x|2/2dx be the error function. We further assume:
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(A4) There exists a T > 0 such that, for each R > 0,

lim
r→∞

Erf
( r√

(r +R)T

) ∫
|x|≤r+R

ρ1(x)dx = 0.

From (A4), we deduce the non-explosion of each tagged particle [46, Theorem 2.5]. We
hence see from (A3) and (A4) that under Pupr = {Pupr

x } each tagged particle of {Xi}i∈N
neither collide each other nor hit the boundary ∂S nor explode.

We call u the unlabeling map if u((xi)) =
∑

i δxi . We call l a label if l : S → SN is a
measurable map defined for µ-a.s. x, and u ◦ l(x) = x. For simplicity, we take l as

|li(x)| < |li+1(x)| for all i ∈ N

throughout the paper. Because µ has an m-point correlation function for each m, l(x) is
well defined for µ-a.s.x.

Lemma 5.8 ([46, 48]). Assume that (A1)–(A4). Let l be a label. Then under Pupr =
{Pupr

x } there exists a unique, labeled dynamics X = (Xi)i∈N ∈ C([0,∞);SN) such that
X0 = l(X0) and that Xt =

∑
i∈N δXi

t
for all t.

Once the initial label l is assigned, the particles are marked forever because they neither
collide nor explode. We hence determine the labeled dynamics X from the unlabeled
dynamics X and the label l uniquely. We have thus had a natural correspondence between
X and (X, l) under the conditions (A3) and (A4). We remark here that Xt ̸= l(Xt) for
t > 0 in general.

The next lemma will be used in the proof of Lemma 5.12 and Lemma 5.20.

Lemma 5.9. Assume (A4). Then for each r, T ∈ N, the following holds.∫
S
Erf
( |x| − r√

T

)
ρ1(x)dx <∞. (5.15)

Proof. Let F (u) =
∫
Su
ρ1(x)dx. Then from (A4) we deduce

F (u) = o
( 1

Erf
(
u−R√
uT

)) as u→ ∞.

Hence we obtain∫
S
Erf
( |x| − r√

T

)
ρ1(x)dx =

∫ ∞

0
Erf
(u− r√

T

)
F ′(u)du

=
[
Erf
(u− r√

T

)
F (u)

]∞
0

−
∫ ∞

0

∂

∂u
Erf
(u− r√

T

)
F (u)du

<∞.

This implies (5.15).
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5.2.3 ISDE-representation: Logarithmic derivative

We next present the ISDE describing the labeled dynamics given by Lemma 5.8. The key
notion for this is the logarithmic derivative of µ to be introduced below.

We first recall two new measures arising from random point field µ. The first concerns
the conditioning of µ, the second its disintegration.

For x = (x1, . . . , xk) ∈ Sk a random point field µx is called the reduced Palm measure
of µ conditioned at x ∈ Sk if µx is the regular conditional probability defined as

µx = µ( · −
k∑

i=1

δxi |s({xi}) ≥ 1 for i = 1, . . . , k).

A Radon measure µ[k] on Sk × S is called the k-Campbell measure of µ if µ[k] is given by

µ[k](dxds) = ρk(x)µx(ds)dx.

We set L1
loc(S × S, µ[1]) =

∩∞
r=1 L

1(S × S, µ
[1]
r ), where µ

[1]
r ( · ) = µ[1]( · ∩ Sr × S). We set

C∞
0 (S)⊗D◦ = {

m∑
i=1

fi(x)gi(y) ; fi ∈ C∞
0 (S), gi ∈ D◦, m ∈ N}.

We now recall the notion of the logarithmic derivative of µ [47].

Definition 5.10. An Rd-valued function dµ ∈ L1
loc(S × S, µ[1])d is called the logarithmic

derivative of µ if, for all φ ∈ C∞
0 (S)⊗D◦,∫

S×S
dµ(x, y)φ(x, y)µ[1](dxdy) = −

∫
S×S

∇xφ(x, y)µ
[1](dxdy). (5.16)

We make the following assumption:

(A5) µ has a logarithmic derivative dµ.

The next lemma reveals the importance of logarithmic derivative.

Lemma 5.11 ([47]). Assume (A1)–(A5). Let X and l be as in Lemma 5.8. Assume

b =
1

2
dµ. (5.17)

Then there exists S0 ⊂ S such that µ(S0) = 1 and that the labeled dynamics X = (Xi)i∈N
under Pupr

x solves the ISDE for each x ∈ S0

dXi
t = dBi

t + b(Xi
t ,X

⋄i
t )dt, i ∈ N, (5.18)

X0 = l(x), (5.19)

where B = (Bi)i∈N is the (Rd)N-valued standard Brownian motion, and X⋄i
t =

∑
j ̸=i δXj

t

for X = (Xi)i∈N.
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Let X = (Xi)i∈N be a solution of ISDE (5.18) and denote by Xt =
∑∞

i=1 δXi
t
the

associated unlabeled process. Let µt be the distribution of Xt. We make the following
assumptions on X.

(µ-AC) The µ-absolutely continuous condition is satisfied. That is, if X0 = µ in law, then

µt ≺ µ for all t ≥ 0, (5.20)

where µt ≺ µ means µt is absolutely continuous with respect to µ.

(NBJ) The no-big-jump condition is satisfied. That is, if the distribution of X0 equals to
µ, then for each r, T ∈ N

P (Ir,T (X) <∞) = 1, (5.21)

where Ir,T is the maximal label with which the particle intersects Sr defined by

Ir,T (X) = max{i ∈ N ∪ {∞} ; |Xi
t | ≤ r for some 0 ≤ t ≤ T}. (5.22)

Lemma 5.12 ([53]). Assume (A1)–(A5). Then under Pupr = {Pupr
x }x∈S the labeled

dynamics X satisfies the conditions (µ-AC), and (NBJ).

Proof. Because the unlabeled dynamics X is µ-reversible, µt = µ for all t. Hence (µ-AC)
is obvious. The second claim follows from the Lyons–Zheng decomposition and Lemma 5.9
(see [53, Lemma 9.4] for detail).

5.2.4 Finite systems in SR of interacting Brownian motions with reflecting
boundary condition

We give the SDE representation of the unlabeled process X associated with the Dirichlet
form (E lwr

R ,Dlwr
R ) on L2(S, µ). We denote by Plwr

R = {Plwr
R,x} the family of the diffusion

measures given by (E lwr
R ,Dlwr

R ) on L2(S, µ). The Dirichlet form (E lwr
R ,Dlwr

R ) is dominated
by (Eupr,Dupr), that is,

(E lwr
R ,Dlwr

R ) ≤ (Eupr,Dupr). (5.23)

Then from (5.23) we see that the capacity of (E lwr
R ,Dlwr

R ) is dominated by that of (Eupr,Dupr).
Hence non-collision of tagged particles under Plwr

R follows from that of the limit diffusion X
given by (Eupr,Dupr), which is assumed by (A3). With the same reason, tagged particles
under Plwr

R do not hit the set (∂S) ∩ SR. Non-explosion of tagged particles under Plwr
R is

obvious because they are reflecting diffusion on SR and frozen outside SR.
We now denote by X = (Xi)∞i=1 the labeled process associated with X and the label l.

Then X = {Xt} is given by Xt =
∑∞

i=1 δXi
t
from X = (Xi)∞i=1. By definition X0 = l(X0).

The process X under Plwr
R describes the system of interacting Brownian motions in which

1. each particle in SR moves in SR and when it hits the boundary ∂SR, it reflects and
enter the domain SR immediately,

2. the particles out of SR stay the initial positions forever.
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We denote by µRs the regular conditional distribution defined by

µRs( · ) = µ( · |σ[πcR])(s) for µ-a.s. s. (5.24)

Let SRs = {y ∈ S ; πcR(y) = πcR(s)}. Then µRs is a probability measure supported on SRs.
Let µRs,[1] be the 1-Campbell measure of µRs. Then we have

µRs,[1](dxdy) = ρRs,1(x)µRs
x (dy)dx for x ∈ SR, (5.25)

where ρRs,1 is the one-point correlation function of µRs and µRs
x is the reduced Palm

measure of µRs conditioned at x. By the Green formula, we see for all φ ∈ C∞
0 (S)⊗D◦,

−
∫
SR×S

∇xφ(x, y)µ
Rs,[1](dxdy) =

∫
SR×S

dµ(x, y)φ(x, y)µRs,[1](dxdy) (5.26)

+

∫
∂SR×S

φ(x, y)nR(x)SR(dx)µ
Rs
x (dy),

where SR is the Lebesgue surface measure on the boundary ∂SR and nR(x) is the inward
normal unit vectors at x ∈ ∂SR. Hence for µ-a.s. s and for µRs

x -a.s. y, the logarithmic
derivative dRs of µRs coincides with the sum of

dµ(x, πR(y) + πcR(s)) for x ∈ SR

and a singular part associated with the the boundary ∂SR. We then obtain informally

dRs(x, y) = 1SR
(x)dµ(x, πR(y) + πcR(s)) + nR(x)1∂SR

(x)δx. (5.27)

Here we naturally extend the domain of dRs(x, y) to S × S by taking dRs(x, y) = 0 for
x ̸∈ SR. This is reasonable because particles outside SR are fixed.

By definition x(SR) coincides with the number of particles in SR for a given configu-
ration x. From the Green formula (5.26) we see that X = (Xi)∞i=1 is the system of infinite
number of particles such that only particles in SR move and satisfies the following SDE:
For µ-a.s. s =

∑
i δsi and for µRs-a.s. x =

∑
i δxi

dXi
t =dB

i
t +

1

2
dµ(Xi

t ,X
⋄i
t )dt+

1

2
nR(Xi

t)dL
R,i
t , 1 ≤ i ≤ x(SR), (5.28)

dLR,i
t =1∂SR

(Xi
t)dL

R,i
t , 1 ≤ i ≤ x(SR), (5.29)

Xi
t =X

i
0, i > x(SR), (5.30)

X0 =l(x), (5.31)

where l(s) = (si)
∞
i=1, l(x) = (xi)

∞
i=1, X

⋄i
t =

∑
j ̸=i δXj

t
, and LR,i = {LR,i

t } are non-negative

increasing processes; see for instance [8]. The particles outside SR are frozen by (5.30).
Hence LR,i

t = 0 for i > x(SR). We remark that si = xi for all i > x(SR) for µ
s-a.s. x.

Let (E lwr
R ,Dlwr

R ) be the Dirichlet form introduced in Lemma 5.2. Then we can easily
deduce from (A1) and (A2) that (E lwr

R ,Dlwr
R ) is a quasi-regular Dirichlet form on L2(S, µ)

and that there exists the associated diffusion X. The capacity for (E lwr
R ,Dlwr

R ) is dominated
by that for (Eupr,Dupr). Hence from (A3) we deduce that X has also non-collision property.
Clearly, each tagged particle of X does not explode because of the definition of E lwr

R . We
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have thus obtained the labeled process X from the unlabeled process X and the label l.
Moreover, using the Fukushima decomposition and taking (5.27) into account, we see that
X is a solution of SDE (5.28)–(5.31).

Let µRs be as (5.24). Then

µ( · ) =
∫
S
µRs( · )µ(ds) (5.32)

and µRs(SRs) = 1, where SRs = {y ∈ S ; πcR(y) = πcR(s)} as before. We set

ERs
R (f, g) :=

∫
S
DR[f, g]dµ

Rs =

∫
S
DR[fRs, gRs]dµ

Rs, (5.33)

DRs
◦ = {f ∈ D◦ ∩ L2(S, µRs) ; ERs

R (f, f) <∞},

where we set hRs(·) = h(πR(·)+πcR(s)) for a function h on S. The second equality in (5.33)
is clear because for µRs-a.s. x

DR[f, g](x) = DR[f, g]Rs(x) = DR[fRs, gRs](x).

From (A1) we easily deduce that (ERs
R ,DRs

◦ ) is closable on L2(S, µRs). We then denote

by (ERs,lwr
R ,DRs,lwr

R ) the closure of (ERs
R ,DRs

◦ ) on L2(S, µRs). Furthermore, we see that

(ERs,lwr
R ,DRs,lwr

R ) is a quasi-regular Dirichlet form on L2(SRs, µRs). Hence there exists a

diffusion X associated with (ERs,lwr
R ,DRs,lwr

R ) on L2(SRs, µRs). Using the Fukushima de-
composition, we deduce that the associated labeled diffusion is a solution of the SDE
(5.28)–(5.31) for µRs-a.s. x for µ-a.s. s.

Lemma 5.13. Let Xlwr be the solution of the SDE (5.28)–(5.31) given by the Dirichlet
form (E lwr

R ,Dlwr
R ) on L2(S, µ). Let XRs,lwr be the solution of the SDE (5.28)–(5.31) given

by the Dirichlet form (ERs,lwr
R ,DRs,lwr

R ) on L2(SRs, µRs). Recall the disintegration µ =∫
S µ

Rsµ(ds) given by (5.32). Then, for µ-a.s. s, Xlwr = XRs,lwr in distribution for µRs-a.s. x.

Proof. Let T lwr
R,t and T

Rs,lwr
R,t be the semi-groups associated with the Dirichlet forms (E lwr

R ,Dlwr
R )

and (ERs,lwr
R ,DRs,lwr

R ) on L2(S, µ) and L2(S, µRs), respectively. Then to prove Lemma 5.13
it is sufficient to prove the coincidence of these two semi-groups.

There exists a countable subset D• of L2(S, µ), Dlwr
R , and DRs,lwr

R for µ-a.s. s such that

D• is dense in L2(S, µ), Dlwr
R , and DRs,lwr

R for µ-a.s. s with respect to L2(S, µ)-norm, E lwr
R,1-

norm, and ERs,lwr
R,1 -norm for µ-a.s. s, respectively. (see Section 5.9). Here E lwr

R,1-norm of f is

given by E lwr
R (f, f)1/2 + ∥f∥L2(S,µ). We set ERs,lwr

R,1 -norm similarly.
From (5.9), (5.32) and (5.33) we have for f, g ∈ D•

E lwr
R (f, g) =

∫
S
ERs,lwr
R (fRs, gRs)µ(ds). (5.34)

Then we see for f, g ∈ D•∫
S
f(s)g(s)µ(ds)−

∫
S
T lwr
R,tf(s)g(s)µ(ds) =

∫ t

0
E lwr
R (T lwr

R,uf, g)du, (5.35)∫
S
fRs(x)gRs(x)µ

Rs(dx)−
∫
S
TRs,lwr
R,t (fRs)(x)gRs(x)µ

Rs(dx) =

∫ t

0
ERs,lwr
R (TRs,lwr

R,u (fRs), gRs)du

(5.36)
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for µ-a.s. s. We recall that D• is countable. Hence, for µ-a.s. s, (5.36) holds for all
f, g ∈ D•. Because the particles outside SR are frozen, we easily see that for f, g ∈ D•
and for µ-a.s. s

T lwr
R,t(fRs) (x) = (T lwr

R,tf)Rs (x) for µRs-a.s. x. (5.37)

In the following we write T lwr
R,tfRs = T lwr

R,t(fRs) and T
Rs,lwr
R,t fRs = TRs,lwr

R,t (fRs).
From (5.32) and the definition hRs(·) = h(πR(·) + πcR(s)) we have∫

S
f(s)g(s)µ(ds) =

∫
S

{∫
S
fRs(x)gRs(x)µ

Rs(dx)
}
µ(ds). (5.38)

Replacing f with T lwr
R,tf in (5.38) and using (5.37) we have∫

S
T lwr
R,tf(s)g(s)µ(ds) =

∫
S

∫
S
(T lwr

R,tf)Rs(x)gRs(x)µ
Rs(dx)µ(ds) (5.39)

=

∫
S

∫
S
T lwr
R,tfRs(x)gRs(x)µ

Rs(dx)µ(ds).

Note that E lwr
R (T lwr

R,uf, T
lwr
R,uf) ≤ E lwr

R (f, f). With the same reason as (5.34) and from (5.37)
we have for all f, g ∈ D•

E lwr
R (T lwr

R,uf, g) =

∫
S
ERs,lwr
R ((T lwr

R,uf)Rs, gRs)µ(ds) (5.40)

=

∫
S
ERs,lwr
R (T lwr

R,ufRs, gRs)µ(ds).

Putting (5.38)–(5.40) into (5.35) and using the Fubini theorem we obtain∫
S

{∫
S
fRs(x)gRs(x)µ

Rs(dx)
}
µ(ds)−

∫
S

{∫
S
T lwr
R,tfRs(x)gRs(x)µ

Rs(dx)
}
µ(ds) (5.41)

=

∫
S

{∫ t

0
ERs,lwr
R (T lwr

R,ufRs, gRs)du
}
µ(ds).

Hence we from (5.41) for µ-a.s. s∫
S
fRs(x)gRs(x)µ

Rs(dx)−
∫
S
T lwr
R,tfRs(x)gRs(x)µ

Rs(dx) =

∫ t

0
ERs,lwr
R (T lwr

R,ufRs, gRs)du.

(5.42)

Compare (5.42) with (5.36). Then we see that f 7→ T lwr
R,tfRs is the semi-group associated

with the Dirichlet form (ERs,lwr
R ,DRs,lwr

R ) on L2(S, µRs). We note here f = fRs for µ
Rs-a.s.

Therefore, for µ-a.s. s,

T lwr
R,tf(x) = T lwr

R,tfRs(x) = TRs,lwr
R,t f(x) for µRs-a.s. x. (5.43)

Here we used µRs(SRs) = 1, where SRs = {y ∈ S ; πcR(y) = πcR(s)} as before.

The solutions Xlwr and XRs,lwr are associated with the semi-groups T lwr
R,t and TRs,lwr

R,t ,
respectively. Hence from (5.43) we deduce that these are equivalent in distribution. We
thus see that the solutions of SDE (5.28)–(5.31) given by these Dirichlet forms are the
same.
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5.3 Statements of the main results

We present our main results. Let T (S) be the tail σ-field of the configuration space S:

T (S) =
∞∩

R=1

σ[πcR].

Let µs be a regular conditional probability conditioned by the tail σ-field defined as

µs(·) = µ(·|T (S))(s). (5.44)

As S is a Polish space, such a regular conditional probability exists, and satisfies

µ(·) =
∫
S
µs(·)µ(ds). (5.45)

From martingale convergence theorem we see that, for µ-a.s. s,

lim
R→∞

µRs(A) = µs(A) for any A ∈ B(S). (5.46)

This implies the weak convergence of {µRs} to µs for µ-a.s. s.
Let b ∈ L1

loc(S × S, µ[1]) be a coefficient of ISDE (5.51) below. We introduce cut-off
coefficients br,s,p of b. Let Cb(S × S) be the set of all bounded continuous functions on
S × S. Then the main requirements for them are the following:

(A6) br,s,p ∈ Cb(S × S) for each r, s, p ∈ N with r < s, and

lim
r→∞

lim
s→∞

lim
p→∞

sup
R≥r+s+1

∥ br,s,p − b ∥L1
loc(S×S, µRs,[1])= 0 for µ-a.s. s, (5.47)

where µRs,[1] is the one-Campbell measure of µRs.
In Section 5.7, we shall present a sufficient condition of (A6) for coefficients b = 1

2d
µ

given by a logarithmic derivative dµ with pair interaction Ψ such that Ψ(x, y) = Ψ(y, x) =
Ψ(x− y) and inverse temperature β > 0. We assume b ∈ Lp

loc(S × S, µ[1]) with p > 1 and

b(x, y) =
β

2
lim
s→∞

({ ∑
|x−yi|<s

∇Ψ(x− yi)
}
− ϱs

)
in Lp

loc(S × S, µ[1]). (5.48)

Here y =
∑

i δyi , Ψ ∈ C∞(Rd\{0}), and ϱs are constants. We then take br,s,p as follows:

br,s,p(x, y) =
β

2
χr(x)

({ ∞∑
i=1

χs(x− yi)υp(x− yi)∇Ψ(x− yi)
}
− ϱs

)
ϖa[r](y), (5.49)

where χr, υp, and ϖa[r] are functions defined by (5.102), (5.103), and (5.106), respectively.

Let PR
l(x) be the distribution of the solution of SDE (5.28)–(5.31) given by the Dirichlet

form (E lwr
R ,Dlwr

R ) on L2(S, µ). The first main theorem of this paper is the following.
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Theorem 5.14. Assume that (A1)–(A6) hold. Then the sequence {PR
l(x)}R∈N converges

weakly in C([0,∞);SN) to P∞
l(x) for µ-a.s. x, that is, for any F ∈ Cb(C([0,∞);SN))

lim
R→∞

∫
C([0,∞);SN)

FdPR
l(x) =

∫
C([0,∞);SN)

FdP∞
l(x). (5.50)

For µ-a.s. x, the process X = (Xi)i∈N under P∞
l(x) is a solution of the ISDE

dXi
t = dBi

t + b(Xi
t ,X

⋄i
t )dt for i ∈ N, (5.51)

X0 = l(x) (5.52)

satisfying conditions (µ-AC) and (NBJ). Furthermore, X = (Xi)i∈N under P∞
l(x) is as-

sociated with the resolvent {Glwr
α } of the Dirichlet form (E lwr,Dlwr) on L2(S, µ) in the

following sense:

Glwr
α (f)(x) = E∞

l(x)[

∫ ∞

0
e−αtf(u(Xt))dt], (5.53)

where f ∈ L2(S, µ), u(Xt) =
∑∞

i=1 δXi
t
, and E∞

l(x) is the expectation with respect to P∞
l(x).

Because (E lwr,Dlwr) on L2(S, µ) is a Dirichlet form, there exists the associated Marko-
vian semi-group on L2(S, µ) whose resolvent is Glwr

α in Theorem 5.14. We have however
not yet constructed the associated diffusion. Only a stationary Markov process is thus
constructed at this stage. In general, we have to prove quasi-regularity of the Dirich-
let form (E lwr,Dlwr) on L2(S, µ) for the existence of the associated diffusion (see [42] for
quasi-regularity).

The next theorem establishes the existence of the associated diffusion by proving the
identity between the Dirichlet forms (E lwr,Dlwr) and (Eupr,Dupr).

We introduce another Dirichlet form (E+,D+). Recall that b = 1
2d

µ by (5.17), where
dµ is the logarithmic derivative of µ defined by (5.16). Put

D+ = {f ∈ L2(S, µ); there exists f ′ ∈ L2(S × S, µ[1])d such that

−
∫
S×S

f(δx + y){∇xφ(x, y) + dµ(x, y)φ(x, y)}µ[1](dxdy)

=

∫
S×S

f ′(x, y)φ(x, y)µ[1](dxdy) for φ ∈ C∞
0 (Sint)⊗D◦}.

Let us denote the distributional derivative f ′ by Dxf and set

E+(f, g) =

∫
S×S

1

2
Dxf ·Dxg µ

[1](dxdy), f, g ∈ D+.

We now state our second main theorem.

Theorem 5.15. Assume (A1)–(A6). Assume that a family of solutions of ISDE (5.18)–
(5.19) defined for µ-a.s. x satisfying (µ-AC) and (NBJ) are unique in law for µ-a.s. x.
Then

(Eupr,Dupr) = (E lwr,Dlwr) = (E+,D+). (5.54)
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In the remainder of this section, we give comments on the uniqueness of solutions
of the ISDE (5.18) assumed in Theorem 5.15. There are three major examples of this.
The second and third examples arise from random matrix theory, and have logarithmic
interaction potentials.

• If Ψ ∈ C3
0 (Rd) or hard-core potential of the form Ψ(x) = 1U (x), where U = {|x| ≤ r},

and Ψ is a Ruelle-class interaction potential, then Lang [37, 38], Fritz [15], Tanemura [70],
and others proved the pathwise uniqueness of stationary solutions for the associated grand
canonical Gibbs measures (see Section 5.8).

• For sineβ random point field µsine,β with β ≥ 1, Tsai [76] proved the pathwise
uniqueness of solutions and the existence of strong solutions for µsine,β-a.s. s. In [47],
the existence of solutions whose unlabeled dynamics are µsine,β-reversible was proved for
β = 1, 2, 4. Combining these, we see that the assumptions in Theorem 5.15 are fulfilled
for µsine,β with β = 1, 2, 4 (see Section 5.8).

• In [53, Theorem 5.3 (2)], it was proved that the following uniqueness of solutions
holds, which is enough for Theorem 5.15. We shall use this in Section 5.8.

Let l, S0, and Pupr
x be as Lemma 5.11. Let

Pupr
µ =

∫
S
Pupr
x µ(dx). (5.55)

For Pupr
µ -a.s.X with label l, we set Xm∗ = {Xm∗

t } is such that Xm∗
t =

∑
j>m δXj

t
. Note that

Xm∗ is determined by m ∈ N, X, and l. Let Ssde be a subset of S such that b is well defined
on {(s, y); δs + y ∈ Ssde}. We set

Sm
sde(t,X) = {sm ∈ Sm ; u(sm) + Xm∗

t ∈ Ssde},

where u(sm) =
∑m

i δsi for sm = (si)
m
i=1. Let H ⊂ Ssde such that µ(H) = 1. We take

H ⊂ S0 ⊂ Ssde. Let H = {s ∈ SN; u(s) ∈ H} and set

Hm = {(si)mi=1 ∈ Sm; s ∈ H}.

We now introduce the SDE of Ym = (Y m,i)mi=1 for each m ∈ N such that

dY m,i
t = dBi

t + b(Y m,i
t ,Ym,⋄i

t + Xm∗
t )dt for 1 ≤ i ≤ m, (5.56)

Ym
t ∈ Sm

sde(t,X) for all t, (5.57)

Ym
0 = ym ∈ Hm, (5.58)

where Ym,⋄i
t =

∑m
j ̸=i δY m,j

t
. By definition the drift coefficient bm,i in (5.56) is time-

inhomogeneous and is given by

bm,i(y, t) = b(yi,
m∑

j=1, j ̸=i

δyj + Xm∗
t ),

where y = (y1, . . . , ym) ∈ Sm. We emphasize the importance of (5.57). The function b is
not defined on the whole space S × S. Hence we have to restrict the state space of the
associated unlabeled dynamics as Ssde. The set H is the totality of the initial starting
points, which are not necessarily equal to Ssde. Following [53], we introduce:
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(IFC) There exists (H,Ssde) such that SDE (5.56) and (5.57) has a pathwise unique strong
solution for each ym ∈ Hm for each m ∈ N and for Pupr

µ -a.s. X.

(TT) The tail σ-field T (S) is µ-trivial, that is, µ(A) ∈ {0, 1} for all A ∈ T (S).

Feasible sufficient conditions for (IFC) were given in [53, Section 9.3]. The importance
of (IFC) is that it yields the pathwise uniqueness of solutions of ISDE (5.18)–(5.19) to-
gether with (µ-AC), (NBJ), and (TT) [53, Theorem 5.3 (2)]. All determinantal random
point fields are tail trivial [50]. Hence (TT) is satisfied for sine2, Airy2, Bessel2, and
Ginibre random point fields. We now quote a result from [53].

Lemma 5.16 ([53, Theorem 5.3 (2)]). Suppose that for µ-a.s. x, ISDE (5.18)–(5.19) has
solutions with conditions (µ-AC) and (NBJ) and (IFC). Assume that (TT) holds. Then
these solutions are pathwise unique for µ-a.s. x. That is, for µ-a.s. x, if there exist two
such solutions X and X′ defined on the same probability space with X0 = X′

0 = l(x), then
P (Xt = X′

t for all t) = 1.

Corollary 5.17. Assume (A1)–(A6). Assume (IFC) and (TT). Then (5.54) holds.

We next consider the case that µ is not tail trivial. We recall the decomposition of µ
into µs given by (5.44)–(5.45). Then it is known that, if (A1) is satisfied, then µs is tail
trivial for µ-a.s. s [53, Lemma 13.2].

Lemma 5.18 ([53, Theorem 5.4]). (1) Assume (A1)–(A6). Then for µ-a.s. s, ISDE
(5.18)–(5.19) has solutions for µs-a.s. x satisfying conditions (µs-AC) and (NBJ).
(2) Suppose that for µ-a.s. s, ISDE (5.18)–(5.19) has solutions for µs-a.s. x satisfying
(µs-AC), (NBJ), and (IFC). Then these solutions are pathwise unique. That is, for
µ-a.s. s, if there exist two such solutions X and X′ defined on the same probability space
with X0 = X′

0 = l(x) for µs-a.s. initial starting points x, then P (Xt = X′
t for all t) = 1 for

µs-a.s. x.

In [53], it was proved that solutions of ISDE in Lemma 5.18 (2) satisfy (IFC) if
coefficients of ISDE comes from interaction potentials which are smooth outside the origin.
See Lemma 9.7 and Section 10 in [53] for details. We then deduce that, even if µ is not tail
trivial, (5.54) holds for µs such that µs satisfies the conditions mentioned in Lemma 5.18.

5.4 Proof of Theorem 5.14

In this section we prove Theorem 5.14. Let µs be as in (5.44).

Lemma 5.19. Assume that µ satisfies (A1)–(A6). Then µs satisfies (A1)–(A6) for
µ-a.s. s.

Proof. This lemma follows from disintegration of µ on µs, and also the disintegration of
their correlation functions and density functions, and Fubini’s theorem.

Let XRs = (XRs,i)∞i=1 be the labeled diffusion process starting at l(x) whose unlabeled

process is associated with the Dirichlet form (ERs,lwr
R ,DRs,lwr

R ) introduced in Section 5.2.
Recall that x(SR) equals the number of particles in SR. To clarify the dependence on R
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and s, we write XRs = (XRs,i)∞i=1 instead of X = (Xi)∞i=1. Suppose that x(SR) ≥ m. We
set the m-labeled process XRs,[m] such that

X
Rs,[m]
t = (XRs,1

t , XRs,2
t , . . . , XRs,m

t ,

∞∑
j=m+1

δ
XRs,j

t
), (5.59)

where we freeze particles outside SR. Hence, XRs,i
t = XRs,i

0 for all t if i > x(SR). From

(5.59) we have consistency such that, if we denote by X
Rs,[m],i
t the i-th component of

X
Rs,[m]
t from the beginning for 1 ≤ i ≤ m to clarify the dependence on m, then

X
Rs,[m],i
t = X

Rs,[m+1],i
t = XRs,i

t (i = 1, 2, . . . ,m).

It is known [46] that XRs,[m] is the diffusion process associated with the Dirichlet form

ERs,[m](f, g) =

∫
Sm
R ×S

{1
2

m∑
i=1

∇if · ∇ig + DR[f, g]}(x, s)µRs,[m](dxds)

on L2(Sm × S, µRs,[m]), where the domain DRs,[m] is taken as the closure of{
f ∈ C∞

0 (Sm)⊗D◦; ERs,[m](f, f) <∞
}
∩ L2(Sm × S, µRs,[m]).

We set fi(x, s) = xi ⊗ 1. We can thus write for 1 ≤ i ≤ m

XRs,i
t −XRs,i

0 = fi(X
Rs,[m]
t )− fi(X

Rs,[m]
0 ) =: A

[fi],[m]
t .

Because the coordinate function xi = xi ⊗ 1 belongs to DRs,[m], A[fi],[m] is an additive
functional of the m-labeled diffusion XRs,[m] (see [16] for additive functional). We remark
here that the m-point correlation function of µRs vanishes outside SR.

Applying the Fukushima decomposition to fi, the additive functional A
[fi],[m]
t can be

decomposed as a sum of a unique continuous local martingale additive functional MRs,i

and an additive functional of zero energy NRs,i:

XRs,i
t −XRs,i

0 =MRs,i
t +NRs,i

t .

We refer to [16, Theorem 5.2.2] for the Fukushima decomposition.

We recall another decomposition of A
[fi],[m]
t called the Lyons–Zheng decomposition [16,

Theorem 5.7.1]. Let rT : C([0, T ];S) → C([0, T ];S) be such that rT (X)t = XT−t. Suppose

that the distribution of X
Rs,[m]
0 is µRs,[m], or more generally, absolutely continuous with

respect to µRs,[m]. Then from the Lyons–Zheng decomposition we obtain

XRs,i
t −XRs,i

0 =
1

2
MRs,i

t +
1

2
(MRs,i

T−t(rT )−MRs,i
T (rT )) a.s. (5.60)

From (5.28) and fi(x, s) = xi ⊗ 1 we see that MRs,i = Bi for 1 ≤ i ≤ x(SR), and hence
(5.60) becomes a simple form. That is, for 1 ≤ i ≤ x(SR)

XRs,i
t −XRs,i

0 =
1

2
Bi

t +
1

2
(Bi

T−t(rT )−Bi
T (rT )). (5.61)
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For x(SR) < i <∞ we have XRs,i
t = XRs,i

0 = li(x) by definition. Thus (5.61) is enough for
our purpose. The decomposition (5.61) will be the main tool in this section.

We set the maximal module variable X
Rs,m

of the first m-particles by

X
Rs,m

= max
1≤i≤m

sup
t∈[0,T ]

|XRs,i
t |. (5.62)

Throughout this section we fix T ∈ N. From (5.61) and (5.62) we obtain

Lemma 5.20. Assume that the distribution of XRs
0 is µRs ◦ l−1. Then there exists a

positive constant c33 such that for 0 ≤ t, u ≤ T

sup
R∈N

m∑
i=1

E[|XRs,i
t −XRs,i

u |4] ≤ c33m|t− u|2. (5.63)

Furthermore, for each m ∈ N

lim
a→∞

lim inf
R→∞

P (X
Rs,m ≤ a) = 1, (5.64)

and for each r ∈ N
lim
ι→∞

inf
R∈N

P (Ir,T (X
Rs) ≤ ι) = 1, (5.65)

where Ir,T is defined by (5.22).

Proof. From (5.61), we obtain

2|XRs,i
t −XRs,i

0 | ≤ |Bi
t|+ |Bi

T−t(rT )−Bi
T (rT )| a.s. (5.66)

From (5.66) we easily obtain (5.63).
Recall that l(x) = (li(x))i∈N ∈ SN is a label. From (5.46) we obtain for A ∈ B(SN)

lim
R→∞

µRs ◦ l−1(A) = µs ◦ l−1(A). (5.67)

Equation (5.64) follows straightforwardly from (5.66) and (5.67).
We deduce from (5.66)

P
(

inf
t∈[0,T ]

|XRs,i
t | ≤ r

)
≤ P

(
|XRs,i

0 | − r ≤ sup
t∈[0,T ]

|XRs,i
t −XRs,i

0 |
)

(5.68)

≤P
(
2{|XRs,i

0 | − r} ≤ sup
t∈[0,T ]

{|Bi
t|+ |Bi

T−t(rT )−Bi
T (rT )|}

)
≤P
(
|XRs,i

0 | − r ≤ sup
t∈[0,T ]

|Bi
t|
)
+ P

(
|XRs,i

0 | − r ≤ sup
t∈[0,T ]

|Bi
T−t(rT )−Bi

T (rT )|
)

=2P
(
|li(x)| − r ≤ sup

t∈[0,T ]
|Bi

t|
)

≤4d

∫
S
Erf(

|x| − r√
T

)µ ◦ (li)−1(dx).
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Then we deduce from (5.22) and (5.68) that

sup
R∈N

P
(
Ir,T (X

Rs) ≥ ι
)
≤

∞∑
i>ι

sup
R∈N

P
(

inf
t∈[0,T ]

|XRs,i
t | ≤ r

)
(5.69)

≤ 4d
∞∑
i>ι

∫
S
Erf(

|x| − r√
T

)µ ◦ (li)−1(dx).

From Lemma 5.9 we deduce

∞∑
i=1

∫
S
Erf(

|x| − r√
T

)µ ◦ (li)−1(dx) =

∫
S
Erf(

|x| − r√
T

)ρ1(x)dx <∞. (5.70)

From (5.69)–(5.70) we obtain (5.65).

From the conditions above we have the following lemma.

Lemma 5.21. Make the same assumption as Lemma 5.20. Then for each i, a, R ∈ N such
that i ≤ m

P
(
LRs,i
T = 0 ; X

Rs,m ≤ a
)
= 1 for a < R. (5.71)

Proof. Recall that by (5.29) we have

LRs,i
t =

∫ t

0
1∂SR

(XRs,i
u )dLRs,i

u .

Then LR,i = {LRs,i
t } is non-negative and increases only when {XRs,i

t } touches the boundary
∂SR = {|x| = R}. Hence LRs,i

T = 0 for all a < R on {XRs,m ≤ a}, which implies (5.71).

Let br,s,p be as in (A6) and put

BRs,i
r,s,p(t) =

∫ t

0
br,s,p(X

Rs,i
u ,XRs,⋄i

u )du. (5.72)

We set for m ∈ N

XRs,m = (XRs,i)mi=1, B
Rs,m
r,s,p = (BRs,i

r,s,p)
m
i=1, and LRs,m = (LRs,i)mi=1.

Let XRs = (XRs,i)∞i=1 and consider random variables

VRs,m
r,s,p = (XRs,m,BRs,m

r,s,p ,L
Rs,m), (5.73)

WRs
r,s,p =

(
(XRs,n,BRs,n

r,s,p ,L
Rs,n)∞n=1,X

Rs
)
. (5.74)

By construction, VRs,m
r,s,p and WRs

r,s,p are functionals of XRs. Hence we can regard VRs,m
r,s,p

and WRs
r,s,p are defined on a common probability space. Let

σRs,m
a = inf{0 ≤ t ≤ T ; max

1≤i≤m

∣∣XRs,i
t

∣∣ ≥ a}.

97



Let Ξm = C([0, T ];Sm)× C([0, T ];Rdm)2 and Ξm
0 = C([0, T ];Sm)× BV × C+, where

BV = {η = (ηi)mi=1 ∈ C([0, T ];Rdm); η is bounded variation},
C+ = {ζ = (ζi)mi=1 ∈ C([0, T ];Rdm); ζ is non-decreasing}.

We say a sequence of random variables is tight if for any subsequence we can choose a
subsequence that is convergent in law. We also remark that tightness in C([0, T ];SN) for
all T ∈ N is equivalent to tightness in C([0,∞);SN) because we equip C([0,∞);SN) with
a compact uniform norm.

Lemma 5.22. Make the same assumption as Lemma 5.20. Then for µ-a.s. s, the following
hold for all T ∈ N.
(1) {VRs,m

r,s,p (· ∧ σRs,m
a )}r,s,p,R∈N is tight in C([0, T ]; Ξm) for each m, a ∈ N.

(2) {VRs,m
r,s,p }r,s,p,R∈N is tight in C([0, T ]; Ξm) for each m ∈ N.

(3)
{
WRs

r,s,p

}
r,s,p,R∈N is tight in

∏∞
n=1C([0, T ]; Ξ

n)× C([0, T ];SN).

Proof. We remark that tightness of VRs,m
r,s,p (· ∧ σRs,m

a ) follows from that of each component

XRs,m(·∧σRs,m
a ), BRs,m

r,s,p (·∧σRs,m
a ), and LRs,m(·∧σRs,m

a ). Tightness of {XRs,m(·∧σRs,m
a )}R∈N

follows from Lemma 5.20. Tightness of {LRs,m(· ∧ σRs,m
a )}R∈N follows from Lemma 5.21.

Recall that br,s,p ∈ Cb(S × S) by (A6). Then tightness of {BRs,m
r,s,p (· ∧ σRs,m

a )}r,s,p,R∈N
follows from (5.72) with a straightforward calculation. We thus obtain (1).

In general, a family of probability measures ma in a Polish space is compact under the
topology of weak convergence if and only if for any ϵ > 0 there exists a compact set K
such that infama(K) ≥ 1− ϵ. Using this we conclude (2) from (1) combined with (5.64).

With the same reason as the proof of (1), we obtain (3) from (1) and (2).

Lemma 5.21 and Lemma 5.22 imply that for any subsequence of
{
VRs
r,s,p(·∧σ

Rs,m
a )

}
r,s,p,R∈N,{

VRs
r,s,p

}
r,s,p,R∈N, and {WRs

r,s,p}r,s,p,R∈N there exist convergent-in-law subsequences, denoted
by the same symbols, such that the following convergence in law holds:

lim
r→∞

lim
s→∞

lim
p→∞

lim
R→∞

VRs,m
r,s,p (· ∧ σRs,m

a ) =
(
Xs,m

a ,Bs,m
a , 0,Xs

a

)
for each m ∈ N, (5.75)

lim
r→∞

lim
s→∞

lim
p→∞

lim
R→∞

VRs,m
r,s,p =

(
Xs,m,Bs,m, 0,Xs

)
for each m ∈ N, (5.76)

lim
r→∞

lim
s→∞

lim
p→∞

lim
R→∞

WRs
r,s,p =

(
(Xs,n,Bs,n, 0)∞n=1,X

s
)
. (5.77)

Here the subscript a in the right hand side of (5.75) denotes the dependence on a. We
note that the convergence limR→∞ LRs,m(· ∧ σRs,m

a ) = 0 follows from Lemma 5.21. From
Lemma 5.22 (3), we have consistency:

Xs,m = (Xs,1, . . . , Xs,m).

Here Xs,i in the right hand side is the i-th component of Xs = (Xs,i)∞i=1. The same holds
for Bs,n and we write Bs,n = (Bs,i)ni=1 This is the reason why we extend the state space in
(3) of Lemma 5.22 from that in (1) and (2).

We next check consistency in a in the limits in (5.75) and (5.76). Without loss of
generality, we can assume

P ({Xs,m
= a}) = 0. (5.78)
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Indeed, if not, we can choose an increasing sequence {n(a)}a∈N of positive numbers diverges

to infinity such that P ({XRs,m
= n(a)}) = 0 instead of {a}a∈N. Let

σs,ma = inf{0 ≤ t ≤ T ; max
1≤i≤m

∣∣Xs,i
t

∣∣ ≥ a}.

Then from (5.78) we deduce that the discontinuity points of the stopping time σs,ma is
probability zero. Hence from convergence in (5.75) and (5.76) we have(

Xs,m
a ,Bs,m

a , 0,Xs
a

)
( · ) =

(
Xs,m,Bs,m, 0,Xs

)
( · ∧ σs,ma ). (5.79)

We set XRs,⋄i
t =

∑
j ̸=i δXRs,j

t
for XRs = (XRs,i

t )∞i=1. Using reversibility of diffusions, we

obtain the following dynamic estimates from the static condition (A6).

Lemma 5.23. Make the same assumption as Lemma 5.20. Furthermore, we assume (A6).
Then for µ-a.s. s and for each i ∈ N

lim
r→∞

lim
s→∞

lim
p→∞

sup
R≥r+s+1

E
[ ∫ T

0
1Sr(X

Rs,i
t )

∣∣{br,s,p − b}(XRs,i
t ,XRs,⋄i

t )
∣∣dt] = 0, (5.80)

lim
r→∞

lim
s→∞

lim
p→∞

E
[ ∫ T

0
1Sr(X

s,i)
∣∣{br,s,p − b}(Xs,i

t ,X
s,⋄i
t )

∣∣dt] = 0. (5.81)

Proof. Let XRs be the unlabeled diffusion such that XRs
t =

∑∞
i=1 δXRs,i

t
. Because the diffu-

sion XRs is associated with the Dirichlet form (ERs,lwr
R ,DRs,lwr

R ) introduced in Section 5.2,
XRs is µRs-reversible. Then because of reversibility we have for all t

E
[
1Sr(X

Rs,i
t )

∣∣{br,s,p − b}(XRs,i
t ,XRs,⋄i

t )
∣∣] (5.82)

≤E
[ ∞∑
i=1

1Sr(X
Rs,i
t )

∣∣{br,s,p − b}(XRs,i
t ,XRs,⋄i

t )
∣∣]

=E
[ ∞∑
i=1

1Sr(X
Rs,i
0 )

∣∣{br,s,p − b}(XRs,i
0 ,XRs,⋄i

0 )
∣∣]

=

∫
S

∑
xi∈Sr

1Sr(xi)
∣∣{br,s,p − b}(xi,

∞∑
j ̸=i

δxj )
∣∣µRs(dx),

where we set x =
∑

i δxi ∈ S. Then we obtain (5.80) from (5.47) and (5.82).
Recall that b ∈ L1

loc(S × S, µ[1]). Then br,s,p − b ∈ L1
loc(S × S, µ[1]). Hence

br,s,p − b ∈ L1
loc(S × S, µs,[1]) for µ-a.s. s.

From this and martingale convergence theorem, we obtain from (5.47) that

lim
r→∞

lim
s→∞

lim
p→∞

∥ br,s,p − b ∥L1
loc(S×S, µs,[1])= 0 for µ-a.s. s.

Then we can prove (5.81) in the same way as (5.80).
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Proof of Theorem 5.14. For ψ ∈ C∞
0 (Sm), let F : Ξm

0 → C([0, T ];R) such that

F (ξ, η, ζ)(t) = ψ(ξ(t))− ψ(ξ(0))−
∫ t

0

m∑
j=1

∇jψ(ξ(u)) · dηj(u) (5.83)

−
∫ t

0

m∑
j=1

∇jψ(ξ(u)) · ζj(du)−
∫ t

0

m∑
j=1

1

2
△jψ(ξ(u))du.

From Itô-Tanaka formula, (5.28)–(5.30), and dµ = 2b, we deduce that for each m ∈ N

sup
R≥r+s+1

E
[

sup
0≤t≤T

∣∣∣F (XRs,m,BRs,m
r,s,p ,L

Rs,m)(t)−
m∑
j=1

∫ t

0
∇jψ(X

Rs,m
u )dBj

u

∣∣∣] (5.84)

≤ c34(s,m, r, s, p)
{ m∑

j=1

sup
x∈Sm

|∇jψ(x)|
}
,

where we set

c34(s,m, r, s, p) = sup
R≥r+s+1

m∑
i=1

E
[ ∫ T

0
1Sr(X

Rs,i
t )

∣∣{br,s,p − b}(XRs,i
t ,XRs,⋄i

t )
∣∣dt]. (5.85)

We deduce from (5.80) and (5.85) that c34 satisfy for µ-a.s. s and for each m ∈ N

lim
r→∞

lim
s→∞

lim
p→∞

c34(s,m, r, s, p) = 0. (5.86)

Take ψ = ψQ ∈ C∞
0 (Sm) such that ψQ(x1, . . . , xm) = xi for {|xi| ≤ Q}. Let a,Q,R ∈ N

be such that a < Q,R. Recall that LRs,m
t = 0 by Lemma 5.21. Then we deduce from

(5.83) and Itô-Tanaka formula that

F (XRs,m,BRs,m
r,s,p ,L

Rs,m)(t ∧ σRs,m
a )−

m∑
j=1

∫ t∧σRs,m
a

0
∇jψQ(X

Rs,m
u )dBj

u (5.87)

= XRs,i(t ∧ σRs,m
a )−XRs,i(0)− BRs,i

r,s,p(t ∧ σRs,m
a )−Bi

t∧σRs,m
a

,

where we write Yt = Y (t) for a stochastic process Y = {Yt}. We also remark that {Bi}∞i=1

is (Rd)N-valued Brownian motion taken to be independent of R.
We write Xs,m

a = (Xs,i
a )∞i=1 and Xs,i

a = {Xs,i
a,t}. We set

lim
r,s,p,R

= lim
r→∞

lim
s→∞

lim
p→∞

lim
R→∞

.

We have from (5.75), (5.87), (5.84), and (5.86) that

E
[

sup
0≤t≤T

∣∣Xs,i
a,t −Xs,i

a,0 − Bs,i
a,t −Bi

t∧σs,m
a

∣∣]
= lim

r,s,p,R
E
[

sup
0≤t≤T

∣∣XRs,i(t ∧ σRs,m
a )−XRs,i(0)− BRs,i

r,s,p(t ∧ σRs,m
a )−Bi

t∧σRs,m
a

∣∣] by (5.75)

= lim
r,s,p,R

E
[

sup
0≤t≤T

∣∣F (XRs,m,BRs,m
r,s,p ,L

Rs,m)(t ∧ σRs,m
a )−

m∑
j=1

∫ t∧σRs,m
a

0
∇jψQ(X

Rs,m
u )dBj

u

∣∣] by (5.87)

= 0 by (5.84) and (5.86).
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This implies

Xs,i
a,t −Xs,i

a,0 − Bs,i
a,t −Bi

t∧σs,m
a

= 0 for all t. (5.88)

Then from (5.79) and (5.88) we have for all a ∈ N

Xs,i
t∧σs,m

a
−Xs,i

0 − Bs,i
t∧σs,m

a
−Bi

t∧σs,m
a

= 0 for all t. (5.89)

From P (lima→∞ σs,ma = ∞) = 1, (5.89) implies

Xs,i
t −Xs,i

0 − Bs,i
t −Bi

t = 0 for all t. (5.90)

So it only remains to calculate the representation of Bs,i.
We now recall BRs,m

r,s,p = (BRs,i
r,s,p)

m
i=1 and BRs,i

r,s,p(t) =
∫ t
0 br,s,p(X

Rs,i
u ,XRs,⋄i

u )du by defini-
tion. We then deduce from (5.73), (5.76), and (5.81) combined with br,s,p ∈ Cb(S × S)
that

Bs,i
t = lim

r→∞
lim
s→∞

lim
p→∞

lim
R→∞

BRs,i
r,s,p(t) by (5.73) and (5.76) (5.91)

= lim
r→∞

lim
s→∞

lim
p→∞

lim
R→∞

∫ t

0
br,s,p(X

Rs,i
u ,XRs,⋄i

u )du by definition

= lim
r→∞

lim
s→∞

lim
p→∞

∫ t

0
br,s,p(X

s,i
u ,X

s,⋄i
u )du by br,s,p ∈ Cb(S × S)

= lim
r→∞

∫ t

0
1Sr(X

s,i
u )b(Xs,i

u ,X
s,⋄i
u )du by (5.81)

=

∫ t

0
b(Xs,i

u ,X
s,⋄i
u )du in law.

Putting (5.90)–(5.91) together yields

Xs,i
t −Xs,i

0 −
∫ t

0
b(Xs,i

u ,X
s,⋄i
u )du−Bi

t = 0.

We then complete the proof of Theorem 5.14.

5.5 Proof of Theorem 5.15

In this section we prove Theorem 5.15. Let µRs,[1](dxdy) = ρRs,1(x)µRs
x (dy)dx as (5.25).

Let

DRs,+
R = {f ∈ L2(S, µRs); there exists fRs ∈ L2(SR × S, µRs,[1])d such that

−
∫
SR×S

f(δx + y){∇xφ(x, y) + dµ(x, y)φ(x, y)}µRs,[1](dxdy)

=

∫
SR×S

fRs(x, y)φ(x, y)µ
Rs,[1](dxdy) for φ ∈ C∞

0 (Sint
R )⊗D◦}.

Denote fRs by DRs,xf . We introduce the bilinear form ERs,+
R with domain DRs,+

R such that

ERs,+
R (f, g) =

∫
SR×S

1

2
DRs,xf ·DRs,xg µ

Rs,[1](dxdy), (5.92)

DRs,+
R,◦ = {f ∈ D◦ ∩ L2(S, µRs) ; ERs,+

R (f, f) <∞}. (5.93)
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Lemma 5.24. For µ-a.s. s, the following hold.
(1) (ERs,+

R ,DRs,+
R,◦ ) is closable on L2(S, µRs) for each R ∈ N.

(2) (ERs,+
R ,DRs,+

R ) is the closure of (ERs,+
R ,DRs,+

R,◦ ) on L2(S, µRs) for each R ∈ N.
(3) (ERs,lwr

R ,DRs,lwr
R ) = (ERs,+

R ,DRs,+
R ) for each R ∈ N.

Proof. We easily see from (A1) that µRs,[1] has a labeled density mRs,[1](x, y1, . . . , ym)
with respect to the Lebesgue measure on S1+m

R such that

c−1
35 e

−Φ(x)−
∑m

i=1 Φ(yi)−
∑m

i=1 Ψ(x,yi)−
∑m

i<i′ Ψ(yi,yi′ ) ≤ mRs,[1](x, y1, . . . , ym) (5.94)

≤ c35e
−Φ(x)−

∑m
i=1 Φ(yi)−

∑m
i=1 Ψ(x,yi)−

∑m
i<i′ Ψ(yi,yi′ ),

where s(SR) = 1 +m, m ∈ N ∪ {0}, πcR(s) =
∑∞

j=m+2 δsj for l(s) = (si)
∞
i=1. Furthermore,

c35 is a positive constant depending on (Φ,Ψ), πcR(s), and m. For µ-a.s. s, (ERs,+
R ,DRs,+

R,◦ )

can be regarded as a form on L2(S1+m
R ,mRs,[1]dxdy1 · · · dym). Hence we deduce (1) and

(2) from (5.94). Once we regard (ERs,+
R ,DRs,+

R,◦ ) as a form in finite dimensions as above,
(3) is obvious.

We next introduce the Dirichlet form (E+
R ,D

+
R). Let

D+
R = {f ∈ L2(S, µ); there exists fR ∈ L2(SR × S, µ[1])d such that (5.95)

−
∫
SR×S

f(δx + y){∇xφ(x, y) + dµ(x, y)φ(x, y)}µ[1](dxdy)

=

∫
SR×S

fR(x, y)φ(x, y)µ
[1](dxdy) for φ ∈ C∞

0 (Sint
R )⊗D◦}.

Let us denote fR by DR,xf , and set for f, g ∈ D+
R

E+
R (f, g) =

∫
SR×S

1

2
DR,xf ·DR,xg µ

[1](dxdy), (5.96)

D+
R,◦ = {f ∈ D◦ ∩ L2(S, µ) ; E+

R (f, f) <∞}. (5.97)

Lemma 5.25. (1) (E+
R ,D

+
R,◦) is closable on L2(S, µ).

(2) (E+
R ,D

+
R) is the closure of (E+

R ,D
+
R,◦) on L

2(S, µ).

(3) (E lwr
R ,Dlwr

R ) = (E+
R ,D

+
R).

Proof. On account of the disintegration (5.32), we have

µ[1](dxdy) =

∫
S
µRs,[1](dxdy)µ(ds). (5.98)

From (5.92)–(5.93) and the Fubini theorem, we see that D+
R,◦ ⊂ DRs,+

R,◦ for µ-a.s. s. From

(5.92), (5.96), and (5.98) we deduce for f, g ∈ D+
R,◦

E+
R (f, g) =

∫
S
ERs,+
R (f, g)µ(ds). (5.99)

Hence (1) follows from Lemma 5.24 (1) and the argument in [48, 45-46pp]. These together
with the similar argument in Section 5.2 yield (2). We obtain (3) from (5.99) combined
with (5.34) and Lemma 5.24 (3).
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Theorem 5.26. (E lwr,Dlwr) = (E+,D+).

Proof. Since (E lwr,Dlwr) and (E+,D+) are the increasing limits of {(E lwr
R ,Dlwr

R )} and
{(E+

R ,D
+
R)} as R→ ∞ respectively, we deduce Theorem 5.26 from Lemma 5.25 (3).

Proof of Theorem 5.15. From Lemma 5.11 and Lemma 5.12 we see that the diffusion
Xupr such that Xupr

0 = l(x) associated with the Dirichlet form (Eupr,Dupr) on L2(S, µ) is a
solution of (5.18)–(5.19) satisfying (µ-AC) and (NBJ).

By Theorem 5.14 the process X under P∞
l(x) is a solution of the ISDE (5.51)–(5.52)

satisfying (µ-AC) and (NBJ).
For µ-a.s. x, the solutions of ISDE (5.18)–(5.19) satisfying (µ-AC) and (NBJ) are

unique in law by assumption. Hence for µ-a.s. x, Xupr and X starting at l(x) have the
same distribution. Hence the associated semi-group coincides with each other. This to-
gether with (5.53) implies (Eupr,Dupr) = (E lwr,Dlwr). From Theorem 5.26 we have al-
ready obtained (E lwr,Dlwr) = (E+,D+). Combining these we complete the proof of Theo-
rem 5.15.

5.6 Symmetric diffusions for uniformly elliptic differential operators

In this section, we give a remark on a generalization of Theorem 5.14 and Theorem 5.15.
For this purpose we introduce a function a : S × S → Rd2 and assume:

(B1) a,∇xa ∈ Cb(S × S), a = ta, and a is uniformly elliptic on S × S.

For f, g ∈ D◦ we set Da,m
r [f, g](s) = 0 for s /∈ Smr and

Da,m
r [f, g](s) =

1

2

m∑
i=1

a(si, s
⋄i)∇sif

m
r,s(x

m
r (s)) · ∇sig

m
r,s(x

m
r (s)) for s ∈ Smr , (5.100)

where we set s⋄i =
∑

j ̸=i δsj for s =
∑

i δsi . Moreover, we set

Da
r[f, g](s) =

∞∑
m=1

Da,m
r [f, g](s). (5.101)

If we replace the square fields Dm
r and Dr in (5.7) and (5.8) with Da,m

r and Da
r in (5.100)

and (5.101) and add assumption (B1), then all results in Section 5.3 still hold.

5.7 Construction of cut-off coefficients br,s,p

In this section we construct br,s,p. For this purpose we prepare cut off functions.
Let χt ∈ C∞

0 (Rd) such that 0 ≤ χt ≤ 1 and that

χt(x) =

{
1 for |x| ≤ t− 1,

0 for |x| ≥ t.
(5.102)

Let υp ∈ C∞
0 (Rd) such that 0 ≤ υp ≤ 1 and that

υp(x) =

{
0 for |x| ≤ 1/p,

1 for 2/p ≤ |x| <∞.
(5.103)
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For given increasing sequences of natural numbers a = {a(k)}∞k=1 we set

K(a) = {s ∈ S ; s(Sk) ≤ a(k) for all k}.

Note that K(a) is compact and that, furthermore, a subset A in S is relatively compact
if and only if there exist such sequences a satisfying A ⊂ K(a). Let a[r] = {a[r](k)} be a
family of increasing sequences of natural numbers such that

a[r](k) < a[r + 1](k) for all k.

Then K(a[r]) ⊂ K(a[r+1]). Because of the compactness criteria in S as above and compact
regularity of probability measures on Polish spaces, we can and do take a[r] such that

µ(K(a[r])c) ↓ 0 as r → ∞. (5.104)

Hence from (5.45) we have µs(K(a[r])c) ↓ 0 as r → ∞ for µ-a.s. s. For each R ∈ N we
similarly have µRs(K(a[r])c) ↓ 0 as r → ∞ for µ-a.s. s. Then from these and (5.46) we
obtain for µ-a.s. s

lim
r→∞

sup
R∈N

µRs(K(a[r])c) = 0. (5.105)

Let a+[r] = {1 + a[r](k + 1)}∞k=1. Let ϖa[r] ∈ C0(S) such that 0 ≤ ϖa[r] ≤ 1 and that

ϖa[r](s) =

{
1 for s ∈ K(a[r]),

0 for s ∈ K(a+[r]
c).

(5.106)

We refer to Section 5.9 or [44, Lemma 2.5] for the construction of such a ϖa[r].

We assume that b ∈ Lp
loc(S × S, µ[1]) with p > 1 and that b is given by

b(x, y) =
β

2
lim
s→∞

({ ∑
|x−yi|<s

∇Ψ(x− yi)
}
− ϱs

)
in Lp

loc(S × S, µ[1]).

Here Ψ ∈ C∞(Rd\{0}) and ϱs are constants. We now take br,s,p as follows:

br,s,p(x, y) =
β

2
χr(x)

({ ∞∑
i=1

χs(x− yi)υp(x− yi)∇Ψ(x− yi)
}
− ϱs

)
ϖa[r](y).

We easily see that (A6) is satisfied. Indeed, br,s,p ∈ Cb(S×S) follows from χt, υp ∈ C∞
0 (Rd)

and ϖa[r] ∈ C0(S). We next check (5.47). Similarly as (5.105), we see that for µ-a.s. s and
for each k ∈ N

lim
r→∞

lim
s→∞

lim
p→∞

sup
R≥r+s+1

µRs,[1]
({
Sk × K(a+[r])

}
∩
{
|b(x, y)− br,s,p(x, y)| ̸= 0

})
= 0.

(5.107)

Because p > 1, (5.47) follows from the Hölder inequality, (5.105) and (5.107) combined
with (5.102)–(5.103), and (5.106).

We remark that the construction of br,s,p as above is robust and can be applied to all
examples in this paper.
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5.8 Examples

We now present examples of random point fields for which the following holds:

(Eupr,Dupr) = (E lwr,Dlwr) = (E+,D+), (5.108)

which is the claim in Theorem 5.15. In this section we write Lp
loc(µ

[1]) = Lp
loc(S × S, µ[1]),

where µ[1] is the one-Campbell measure of µ as before.

5.8.1 Sineβ interacting Brownian motion (β = 1, 2, 4)

Let d = 1 and S = R. Let µsin,β be a sineβ random point field [43, 14], where β = 1, 2, 4.
By definition, µsin,2 is the random point field on R with n-point correlation function ρnsin,2
with respect to the Lebesgue measure given by

ρnsin,2(x1, . . . , xn) = det[Ksin,2(xi, xj)]
n
i,j=1.

Here Ksin,2(x, y) = sinπ(x−y)/π(x−y) is the sine kernel. µsin,1 and µsin,4 are also defined
by correlation functions given by quaternion determinants [43]. The random point fields
µsin,β (β = 1, 2, 4) satisfy (A1)–(A3) [47, 45]. µsin,β clearly satisfy (A4) because their
one-point correlation functions are constant.

Let 1 < p < 2. Then (A5) is satisfied with the logarithmic derivative given by

b(x, y) =
β

2
lim
r→∞

∑
|x−yi|<r

1

x− yi
in Lp

loc(µ
[1]
sin,β).

Here y =
∑

i δyi and “in Lp
loc(µ

[1]
sin,β)” means convergence in Lp(Sr×S, µ

[1]
sin,β) for all r ∈ N.

The labeled process X = (Xi)i∈Z solves ISDE:

dXi
t = dBi

t +
β

2
lim
r→∞

∑
j ̸=i, |Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt (i ∈ Z),

with conditions (µ-AC) and (NBJ) [47, 76]. We readily verify conditions (A6) from
Section 5.7. We have checked (A1)–(A6). Moreover, µsin,2 satisfies (TT) because µsin,2
is a determinantal random point field [50]. Hence we apply Theorem 5.15 and obtain
(5.108) for µsin,2 and, if β = 1, 4, then for µssin,β for µsin,β-a.s. s.

If β = 2, then an algebraic construction of the stochastic dynamics associated with
the upper Dirichlet form (Eupr,Dupr) was known [23]. The distribution of the dynamics
are determined by the space-time correlation functions, which is explicitly given by the
concrete determinantal kernel. Because of the identity (Eupr,Dupr) = (E lwr,Dlwr) in Theo-
rem 5.15, the same holds for the stochastic dynamics associated with the lower Dirichlet
form (E lwr,Dlwr).

5.8.2 Airyβ interacting Brownian motion (β = 1, 2, 4)

Let d = 1 and S = R. Let µAi,β be the Airyβ random point field, where β = 1, 2, 4. By
definition, µAi,2 is a determinantal random point field whose n-point correlation function
ρnAi,2 with respect to the Lebesgue measure is given by

ρnAi,2(x1, . . . , xn) = det[KAi,2(xi, xj)]
n
i,j=1.
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Here KAi,2 is a continuous kernel given by

KAi,2(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
for x ̸= y.

Here the value KAi,2(x, x) is given by continuity, Ai is the Airy function, and Ai′ is its
derivative. The random point fields µAi,β for β = 1, 4 are also given by a similar formula
with a quaternion determinant (see [43]). µAi,β satisfy (A1)–(A3) [49, 54, 45]. Moreover,
µAi,β clearly satisfies (A4). (A5) is satisfied with the logarithmic derivative given by

b(x, y) =
β

2
lim
r→∞

({ ∑
|yi|<r

1

x− yi

}
−
∫
|x|<r

ρ̂(x)

−x
dx
)

in Lp
loc(µ

[1]
Ai,β),

where ρ̂(x) = 1(−∞,0)(x)
√
−x/π. The labeled process X = (Xi)i∈N solves the ISDE:

dXi
t = dBi

t +
β

2
lim
r→∞

({ ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

}
−
∫
|x|<r

ρ̂(x)

−x
dx
)
dt.

with conditions (µ-AC), (NBJ) and (IFC) [54, 53]. We can check (A6) in the same
fashion as Section 5.7. We have checked (A1)–(A6). (TT) was proved for β = 2 [50].
Hence we apply Theorem 5.15 and obtain (5.108) for µAi,2. If β = 1, 4, then we obtain
(5.108) for µsAi,β for µAi,β-a.s. s.

Similarly as Sineβ interaction Brownian motion, an algebraic construction of the stochas-
tic dynamics associated with the upper Dirichlet form (Eupr,Dupr) was known if β = 2 [23].
The distribution of the dynamics are determined by the space-time correlation functions,
which is explicitly given by the concrete determinantal kernel.

5.8.3 Bessel2,α interacting Brownian motion

Let d = 1 and S = [0,∞). Let 1 ≤ α < ∞. Let µBe,α be the Bessel2,α random point
field. By definition µBe,α is a determinantal random point field whose n-point correlation
function ρnBe,α with respect to the Lebesgue measure on [0,∞) is given by

ρnBe,α(x1, . . . , xn) = det[KBe,α(xi, xj)]
n
i,j=1.

Here KBe,α is a continuous kernel given by

KBe,α(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)
for x ̸= y.

The Bessel2,α random point fields µBe,α satisfy (A1)–(A3) [17, 45]. (A4) is obvious. In
[17], it was proved that (A5) is satisfied with the logarithmic derivative given by

b(x, y) =
α

2x
+

∞∑
i=1

1

x− yi
in Lp

loc(µ
[1]
Be,α).

The labeled process X = (Xi)i∈N satisfies (A3) solves the ISDE:

dXi
t = dBi

t + { α

2Xi
t

+
∞∑
j ̸=i

1

Xi
t −Xj

t

}dt (i ∈ N).
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with conditions (µ-AC), (NBJ) and (IFC) [17, 53]. We can readily verify conditions
(A6) as in the same fashion as Section 6. (TT) was proved in [50]. We then apply
Theorem 5.15 and obtain (5.108) for µ = µBe,α.

An algebraic construction of the stochastic dynamics associated with the upper Dirich-
let form (Eupr,Dupr) was known [23]. The distribution of the dynamics are determined by
the space-time correlation functions explicitly given by the concrete determinantal kernel.

5.8.4 Ginibre interacting Brownian motion

Let d = 2 and S = R2. Let β = 2. Let µGin be the Ginibre random point field. By
definition µGin is a random point field on R2 whose n-point correlation function with
respect to the Lebesgue measure is given by

ρnGin(x1, . . . , xn) = det[KGin(xi, xj)]
n
i,j=1,

where KGin : R2 × R2 → C is the kernel defined by

KGin(x, y) =
1

π
e−

1
2
{|x|2+|y|2} · exȳ.

Here we identify R2 as C by the obvious correspondence R2 ∋ x = (x1, x2) 7→ x1+ix2 ∈ C,
and ȳ = y1 − iy2 is the complex conjugate in this identification, where i =

√
−1. The

random point field µGin satisfies (A1)–(A3) [47, 48, 45]. Because the one-point correlation
function is constant, µGin clearly satisfies (A4). The logarithmic derivative is given by

b(x, y) = lim
r→∞

∑
|x−yj |<r

x− yj
|x− yj |2

in Lp
loc(µ

[1]
Gin) (5.109)

and

b(x, y) = −x+ lim
r→∞

∑
|yj |<r

x− yj
|x− yj |2

in Lp
loc(µ

[1]
Gin). (5.110)

It is known that (5.109) and (5.110) define the same logarithmic derivative [47]. The
labeled process X = (Xi)i∈N solves ISDE [47]:

dXi
t = dBi

t + lim
r→∞

∑
j ̸=i, |Xi

t−Xj
t |<r

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N)

and

dXi
t = dBi

t −Xi
tdt+ lim

r→∞

∑
j ̸=i, |Xj

t |<r

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N)

with conditions (µ-AC), (NBJ) and (IFC) [53]. We can readily check conditions (A6)
in the same fashion as Section 6. (TT) was proved in [50]. Therefore, we can apply
Theorem 5.15 and obtain (5.108) for µGin.
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5.8.5 Gibbs measures with Ruelle-class potential

Let S = Rd with d ∈ N. Let Φ = 0 and we consider ISDE (5.3). Assume that Ψ is smooth
outside the origin and is a Ruelle-class potential. That is, Ψ is super-stable and regular
in the sense of Ruelle [61]. Here we say Ψ is regular if there exists a positive decreasing
function ψ : R+ → R and R0 such that

Ψ(x) ≥ −ψ(|x|) for all x, Ψ(x) ≤ ψ(|x|) for all |x| ≥ R0,∫ ∞

0
ψ(t) td−1dt <∞.

Let µΨ be canonical Gibbs measures with interaction Ψ satisfying (A2). We do not a
priori assume the translation invariance of µΨ. Instead, we assume a quantitative condition
in (5.111) below, which is obviously satisfied by the translation invariant canonical Gibbs
measures.

Suppose that, for each p ∈ N, there exist positive constants c36 and c37 satisfying

∞∑
r=1

∫
Sr
ρ1(x)dx

rc36+1
<∞, lim sup

r→∞

∫
Sr
ρ1(x)dx

rc36
<∞, (5.111)

|∇Ψ(x)|, |∇2Ψ(x)| ≤ c37
(1 + |x|)c36

(5.112)

for all x such that |x| ≥ 1/p. Here ρm is the m-point correlation function of µΨ.
For the non-collision property of tagged particles we assume the following. Suppose

that d ≥ 2 or that d = 1 with Ψ is sufficiently repulsive at the origin in the following
sense [19]. There exist a positive constant c38 and a positive function h : (0,∞) → [0,∞]
satisfying that ∫

0<t≤c38

1

h(t)
dt = ∞, (5.113)

ρm(x1, . . . , xm) ≤ h(|xi − xj |) for all xi ̸= xj .

From the DLR equation, µΨ satisfies (A1). (A2) holds by assumption. (A3) follows
from (5.113) [19]. (A4) is obvious. (A5) is satisfied with the logarithmic derivative given
by

dµΨ(x, y) = −β
∞∑
j=1

∇Ψ(x− yj) in Lp
loc(µ

[1]
Ψ ).

The labeled process X = (Xi)i∈N solves ISDE:

dXi
t = dBi

t −
β

2

∞∑
j=1, j ̸=i

∇Ψ(Xi
t −Xj

t )dt (i ∈ N).

with conditions (µ-AC), (NBJ) and (IFC) [53]. We can readily check conditions (A6)
in the same fashion as Section 6. We then apply Theorem 5.15 and obtain (5.108) for
µ = µsΨ for µΨ-a.s. s.

108



5.9 Appendix

5.9.1 Construction of D•

In this section we construct D• in Section 5.2. Let ϖa[r] be as in (5.106). In addition to
the properties stated in Section 5.7, we can take ϖa[r] to be

D[ϖa[r], ϖa[r]](s) ≤ 2 for all s ∈ S. (5.114)

Indeed, we can take ϖa[r] as follows.
Let θ ∈ C∞(R) such that 0 ≤ θ(t) ≤ 1 for all t ∈ R and θ(t) = 1 for t ≤ 0 and θ(t) = 0

for t ≥ 1. Furthermore, we assume |θ′(t)| ≤ 2 for all t.
Let s =

∑
i δsi . Recall that l is a label such that |li(s)| ≤ |li+1(s)| for all i. We set

da[r](s) =
{ ∞∑

k=1

∑
i∈Jk,s(a[r])

(k − |li(s)|)2
}1/2

,

where Jk,s(a[r]) = {i ; i > a[r](k), li(s) ∈ Sk}. Let

ϖa[r](s) = θ ◦ da[r](s).

Then a straightforward calculation shows

D[ϖa[r], ϖa[r]](s) =
1

2

{θ′(da[r](s))

da[r](s)

}2
∞∑
k=1

∑
i∈Jk,s(a[r])

(k − |li(s)|)2

=
1

2

(
θ′(da[r](s))

)2 ≤ 2.

We thus see that ϖa[r] satisfies (5.114). It is not difficult to see that ϖa[r] also satisfies
the requirements in Section 5.7. That is, ϖa[r] satisfies ϖa[r] ∈ C0(S), 0 ≤ ϖa[r] ≤ 1 and
(5.106).

Let D•• = {fϖa[r]; f ∈ D◦, r ∈ N}. Then because ϖa[r] has compact support and

satisfies (5.114), we see D•• is a subset of L2(S, µ), Dlwr
R , and DRs,lwr

R for µ-a.s. s. Moreover,

D•• is dense in L2(S, µ), Dlwr
R , and DRs,lwr

R for µ-a.s. s with respect to L2(S, µ)-norm, E lwr
R,1-

norm, and ERs,lwr
R,1 -norm for µ-a.s. s, respectively. We use here (5.104) and (5.105). We can

further choose a countable subset D• of D•• that keeps these properties. This completes
the construction of D•.

5.9.2 Proof of Lemma 5.7

In this section we prove Lemma 5.7. The assumption (A2) corresponds to (A.2) in [44]
(we write (A.2) below). It was assumed in (A.2), in addition to (A2), the boundedness
of density functions of all order on each Sr. In [44], (A.2) was used only in the proof of
(2.2) in Lemma 2.4 (see [44, 125p]). Moreover, (2.2) in [44] is used only to prove Lemma
2.4 (3) in [44], which is the claim such that D◦ is dense in L2(S, µ). Hence our task is to
prove this under (A2). For this purpose we recall a mollifier on S introduced in [44].

Let j : Rd → R be a non-negative, smooth function such that
∫
Rd j(x)dx = 1, j(x) = 0

for |x| ≥ 1/2. Let jε(x) = εdj(x/ε) and jiε((x1, . . . , xi)) =
∏i

j=1 jε(xj).
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For a σ[πr]-measurable, bounded function f we set

Jr,εf(s) =

{
jiε ∗ f ir(xi

r(s)) for s ∈ Sir (i ≥ 1),

f(s) for s ∈ S0r .
(5.115)

Here f ir is Si
r-representation of f and xi

r(s) is the S
i
r-coordinate introduced in Section 5.2.

Moreover, ∗ denotes the convolution in (Rd)i, that is, jiε ∗ f ir(x) =
∫
(Rd)i j

i
ε(x−y)f ir(y)dy,

where we set f ir(x) = 0 for x ̸∈ Si
r.

Lemma 5.27. D◦ is dense in L2(S, µ).

Proof. Let 0 < δ < r (δ ∈ R) and f ∈ Cb(S) ∩ Br−δ. Then f is a bounded continuous,
σ[πr−δ]-measurable function on S by definition. From [44, Lemma 2.4 (2.1)] we see Jr,εf ∈
D◦ for 0 < ε < δ. Moreover, because f ∈ Cb(S), we see from (5.115) that

lim
ε→0

Jr,εf(s) = f(s) for each s, (5.116)

sup
s∈S

|Jr,εf(s)| ≤ sup
s∈S

|f(s)| <∞. (5.117)

From (5.116)–(5.117) we can apply the Lebesgue convergence theorem to obtain for each
r ∈ N

lim
ε→0

∫
S
|Jr,εf(s)− f(s)|2µ(ds) =

∫
S
lim
ε→0

|Jr,εf(s)− f(s)|2µ(ds) = 0. (5.118)

Because

∞∪
r=1

∪
0<δ<r, δ∈R

Cb(S) ∩ Br−δ

is dense in L2(S, µ), the claim follows from (5.118).

5.10 Concluding remarks and questions

1. We have proved that the two natural Dirichlet forms (E lwr,Dlwr) and (Eupr,Dupr) are
equal under the assumptions in Theorem 5.15. The most important condition for this is
the non-explosion property of each tagged particle that follows from (A4). Indeed, this
condition controls the effect of boundary ∂SR as R → ∞. We have an example of non-
coincidence when tagged particles explode. We then conjecture that non-explosion is a
necessary and sufficient condition of the coincidence of the upper and the lower Dirichlet
forms.
Question 1. Can one prove that the upper and the lower Dirichlet forms coincide with
each other if and only if each tagged particle does not explode?

2. We can naturally formulate the same problem for non-local Dirichlet forms. In particu-
lar, the case such that the associated Markov processes have big jump would be interesting.

3. In [33, 35], the uniqueness of the Silverstein extension of Dirichlet forms was studied.
In particular, it was proved that the Silverstein extension is unique when the Dirichlet
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form is quasi-regular and equipped with a suitable exhaustion function with bounded
energy measure [33, Theorem 5.1, Theorem 6.1]. Our result (5.54) however can not be
derived from this because we do not a priori know whether the lower Dirichlet form
(E lwr,Dlwr) is a Silverstein extension of the upper Dirichlet form (Eupr,Dupr). As a corollary
of Theorem 5.15, we see that (E lwr,Dlwr) is the Silverstein extension of the upper Dirichlet
form (Eupr,Dupr) because these two forms are equal.

4. In [69], Takeda proved the uniqueness of Markovian extension of Dirichlet forms
on distorted Brownian motion in a domain in Rd (also called a generalized Schrödinger
operator). We refer to [16, Chapter 3.3] for the Markovian extension of Dirichlet forms.
This class of Dirichlet forms is a finite-dimensional counter part of the Dirichlet forms in
the present paper. Hence it is natural to discuss the uniqueness of the Markovian extension
of the upper Dirichlet form (Eupr,Dupr).
Question 2. What is the sufficient condition for the uniqueness of the Markovian ex-
tension of the upper Dirichlet form (Eupr,Dupr)? Is it same as the condition in Question
1?
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6 Dynamical universality for random matrices

6.1 Introduction

A concept of universality in strongly correlated systems was envisioned by Wigner. He
conjectured that eigenvalue distribution of large random matrix behaves universal, that is,
eigenvalue distribution depends only on symmetry class of matrices, not on distributions
of matrix component. The universality of random matrices has been a central concept in
random matrix theory, and have been studied intensively this two decades.

Let us show an example of universality results. Consider N -particles system on R.
For an analytic function V : R → R satisfying limN→∞ V (x)/ log |x| = ∞, let µNV be the
random point field whose labeled density is given by mN

V :

mN
V (dxN ) =

1

ZN
V

N∏
i<j

|xi − xj |2
N∏
k=1

e−NV (xk) dxN , (6.1)

where xN = (x1, . . . , xN ) ∈ RN and ZN
V is a normalizing constant.

If V (x) = x2, then µNV gives the eigenvalue distribution of the Gaussian Unitary
Ensemble (GUE), which is an Hermite matrix whose entries are i.i.d Gaussian distribution
(see [2, 43]). Note that each particles repel by logarithmic interaction potential, which is
a long-range potential.

We set xN =
∑

1≤i≤N δxi , where δa denotes the delta measure at a. Then, there exists
a probability density function ϱV on R such that

lim
N→∞

EµN
V
[
1

N
xN ((−∞, s])] =

∫ s

−∞
ϱV (x) dx. (6.2)

The ϱV is called an equilibrium measure with respect to µNV . When V (x) = x2, ϱV is
nothing but the Wigner semicircle law given by ϱV (x) =

1
π

√
2− x21{|x|<

√
2}.

The convergence in (6.2) is in macroscopic regime, then consider microscopic regime
next. More precisely, we take a thermodynamical limit of (6.1) and obtain a random point
field with infinitely many particles as a limit. Here, we shall take a bulk scaling limit. For
θ satisfying

ϱV (θ) > 0, (6.3)

we set a bulk scaling at θ as

x 7→ s

NϱV (θ)
+ θ. (6.4)

Let mN
V,θ be a density function of (6.1) with respect to s under the scaling (6.4), that is,

mN
V,θ(dsN ) =

1

ZN
V,θ

N∏
i<j

|si − sj |2
N∏
k=1

exp
(
−NV

( sk
NϱV (θ)

+ θ
))
dsN .

We set µNV,θ as a random point field whose labeled density is given by mN
V,θ.
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Let µsin be the sine random point field, which is a determinantal random point field
whose kernel is given by

Ksin(x, y) =
sinπ(x− y)

π(x− y)
.

Let {ρnsin}n∈N be correlation functions of µsin. Then by definition

ρnsin(x1, . . . , xn) = det[Ksin(xi, xj)]1≤i≤j≤n.

Bulk universality for log-gases asserts that for suitable and wide class of V and for any
above θ satisfying (6.3), we expect

lim
N→∞

µNV,θ = µsin weakly,

or more strongly,

lim
N→∞

ρN,n
V,θ = ρnsin compact uniformly for any n ∈ N,

where {ρN,n
V,θ }n∈N are correlation functions of µNV,θ. Here, the limit µsin is independent of V

and θ. In this sense, the sine random point field can be thought of a geometric universal
object.

It is natural to ask what is the dynamical counterpart of the geometric universality
results. We consider a N -dimensional SDE corresponding to µNV,θ

dXN,i
t = dBi

t +
∑

1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt− 1

2ϱV (θ)
V ′( XN,i

t

NϱV (θ)
+ θ
)
dt, 1 ≤ i ≤ N. (6.5)

In fact, (unlabeled version of) a solution for (6.5) is reversible with respect to µNV,θ.
We are interested in an infinite-dimensional stochastic differential equation (ISDE)

related to (6.5). We expect that a limit of (6.5) as N → ∞ is given by

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r

1

Xi
t −Xj

t

dt, i ∈ N. (6.6)

Actually, (6.6) is the ISDE related to sine random point fields. In this sense, (6.6) is a
universal dynamical object.

To prove such kind of dynamical finite particle approximation, the authors established
a general theory [28]. Our framework in [28] does not depend on dimension of underlying
space, inverse temperature, and integrable structure, then we can apply the theory to
many examples. A key point in the previous paper is the control of drift terms in finite-
dimensional SDE, which is a sensitive estimate for long-range potential. Actually, we
proved dynamical bulk scaling limit by completing such a estimate when V (x) = x2 [29].
However, when it comes to general V (x), we have to do more complicated calculation.

When we consider a ISDE related to the Airy random point field, which arises from
soft-edge scaling limit of eigenvalue distribution of random matrices, this point is more
sensitive problem. It is because the drift term in corresponding finite-dimensional SDE
includes divergent term.
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To overcome this difficulty, we construct a new method in the present paper. In this
approach, we use a convergence concept of Dirichlet forms associated with finite or infinite
particles systems. Except for existence of infinite particles dynamics, we assume two main
conditions as follows:

(1) Uniqueness of Dirichlet forms associated with infinite particles systems ((A3) in
Section 6.2).

(2) Strong convergence of random point fields in the sense that correlation functions of
random point fields with finite particle systems converges to that of infinite particles
uniformly on each compact set and capacity of zero points of density functions of
the limit random point field is vanished. ((M3) or (M3’) or (M3”) in Section 6.2
for detail).

Condition (1) is issue of infinite-particle dynamics, and showing (1) comes down to
uniqueness of a solution for ISDE [31].

The only condition related to finite-particle system is (2). This is purely matter of
static, and remark that we do not require any assumption of estimates related to dy-
namics of finite-particle system such as estimate of drift term in [28]. Additionally, the
method in the present paper works regardless of the dimension of underlying space, inverse
temperature, and integrable structures as well as in [28].

Consequently, when there exists a unique solution for an ISDE, strong convergence
of random point field derives dynamical convergence automatically. Until now, it has
been proved that several ISDEs including logarithmic interaction have unique solution
[53, 54, 76]. Therefore, strong universality for random matrices can be strengthened to
dynamical universality with respect to not only Dyson’s Brownian motion but also ISDE
related to the Airy random point field, the Ginibre random point field, and so on.

The idea of the proof of the dynamical universality is the following. One of the main
tools for the proof is Mosco convergence in the sense of Kuwae-Shioya [34] of Dirichlet
forms. The definition of Mosco convergence consists of two limit relations related to
Dirichlet forms (see Definition 6.17).

Canonically, there are two natural Dirichlet forms with respect to a random point
field with infinitely many particles. Accordingly there exist two natural schemes of finite-
volume Dirichlet forms and each schemes converge the limit Dirichlet forms. These two
canonical Dirichlet forms are the same one because we assume the uniqueness of Dirichlet
forms. Therefore, we conclude the Mosco convergence.

In the co-paper [31], we proved the uniqueness of Dirichlet forms applicable the current
situation. This uniqueness theorem is robust and can be applied to random point fields
arising from random matrix theory in spite of the long range interaction that these point
fields have.

Generally, dynamical convergence fails under only weak convergence of measure even
in one dimensional diffusion. Then we must assume stronger convergences such as (2),
and (2) is thus an eligible assumption.

Recently, universality results for random matrices has been studied under extensively
general assumptions as [5]. However, these universality results are weak convergence.
If we improve the results to strong convergence, its dynamical version can be proved
immediately.
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This paper is organized as follows. In Section 6.2, we set up Dirichlet forms and
state main results. There, two types of convergence of unlabeled dynamics are shown. In
Section 6.4, we prove the first theorem. The second theorem, which is more convenient
than first one, is proved in Section 6.5. In Section 6.6, we give examples of dynamical
universality.

6.2 Set up and main results

6.2.1 Two spacial approximation schemes of Dirichlet forms and unlabeled
dynamics

In this subsection, we prepare Dirichlet forms and the associated dynamics. Let S = Rd

for any d ∈ N. Let S be a configuration space over S given by

S = {s =
∑
i

δsi ; si ∈ S, s(K) <∞ for any compact set K},

where we regard the zero measure as an element of S. The set S is equipped with the
vague topology, under which S is a Polish space. We set Sr = {|s| ≤ r} and

Smr = {s ∈ S ; s(Sr) = m}.

For a set A ∈ S, let πA : S → S be a projection given by πA(s) = s(· ∩ A). We
often write πr = πSr . A function f on S is called local if f is σ[πK ]-measurable for some
compact set K in S. For such a local function f on S, f is said to be smooth if f̌ = f̌O is
smooth, where O is a relative compact open set in S such that K ⊂ O. Moreover, f̌O is
a function defined on

∑∞
k=0O

k such that f̌O(x1, . . . xk) restricted on Ok is symmetric in
xj (j = 1, . . . , k) for each k such that f̌O(x1, . . . , xk) = f(x) for x =

∑
i δxi and that f̌O is

smooth in (x1, . . . , xk) for each k. Here the case k = 0 corresponds to a constant function.
Because x is a configuration and O is relatively compact, the cardinality of the particles
of x is finite in O. Note that f̌O has a consistency such that

f̌O(x1, . . . , xk) = f̌O′(x1, . . . , xk) for all (x1, . . . , xk) ∈ Ok ∩O′k.

We see that f(x) = f̌O(x1, . . . xk) is thus well defined.
Next, we introduce carré du champs D and Dm

r on S. Let D◦ be the set of all local
smooth functions on S. For f, g ∈ D◦, define D and Dm

r as

D[f, g](s) =
1

2

∑
i

∇si f̌(s) · ∇si ǧ(s),

Dm
r [f, g](s) =

{
1
2

∑
si∈Sr

∇si f̌(s) · ∇si ǧ(s) (s ∈ Smr ),

0 (s /∈ Smr ),
(6.7)

where we set s =
∑

i δsi and s = (si). Because the right-hand side of these equations are
symmetric functions in s, they are regarded as functions in s =

∑
i δsi . We thus write

D[f, g](s) = D[f, g](s), Dm
r [f, g](s) = Dm

r [f, g](s).
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A probability measure µ on S is called a random point field (point process). We set
L2(µ) = L2(S, µ). We define the bilinear form (E ,Dµ

◦ ) on L
2(µ) as

E(f, g) =
∫
S
D[f, g](s)dµ,

Dµ
◦ = {f ∈ D◦ ∩ L2(µ) ; E(f, f) <∞}. (6.8)

For each r,m ∈ N we set the bilinear form (Em
r ,D

µ
◦ ) on L

2(µ) as

Em
r (f, g) =

∫
S
Dm
r [f, g](s)dµ. (6.9)

We make an assumption:

(A1) (Em
r ,D

µ
◦ ) is closable on L2(µ) for each r,m ∈ N.

Set Bb
r = {f ; f is bounded and σ[πr]-measurable}. For functions f, g ∈ Bb

r ∩Dµ
◦ being

constant outside the subset Smr = {s ∈ S ; s(Sr) = m} we have

Dm
r [f, g](s) = D[f, g](s) for all s ∈ Smr .

Here σmr is the density function of µ on Smr with respect to the Lebesgue measure on Sm
r ,

that is, σmr is the symmetric function such that

1

m!

∫
Sm
r

f̌Srσ
m
r dxm =

∫
Smr

fdµ (6.10)

for any bounded σ[πr]-measurable functions f , where πr = πSr . From this we see that

Em
r (f, g) =

∫
Sm
r

D[f, g]σmr dxm for f, g ∈ Bb
r ∩ Dµ

◦ . (6.11)

This obvious identity is one of the key points of the argument in [44]. In the following, we
quote a sequence of results from [44].

Lemma 6.1 ([44, Lemma 2.2]). Assume (A1). Then the following holds:
(1) (E ,Dµ

◦ ∩ Bb
r) is closable on L2(µ).

(2) (Er,Dµ
◦ ) is closable on L2(µ), where we set Er =

∑∞
m=1 Em

r .

We write (E1,D1) ≤ (E2,D2) if

D1 ⊃ D2 and E1(f, f) ≤ E2(f, f) for any f ∈ D2,

and (E1,D1) ≥ (E2,D2) if

D1 ⊂ D2 and E1(f, f) ≥ E2(f, f) for any f ∈ D1.

For a sequence {(En,Dn)}n∈N of positive definite, symmetric bilinear forms on L2(µ), we
say {(En,Dn)} is increasing if (En,Dn) ≤ (En+1,Dn+1) for any n ∈ N, and decreasing if
(En,Dn) ≥ (En+1,Dn+1) for any n ∈ N.

By Lemma 6.1 (E ,Dµ
◦ ∩ Bb

r) and (Er,Dµ
◦ ) are closable on L2(µ). Then we denote the

closures by (Er,Dr) and (Er,Dr), respectively.
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Lemma 6.2 ([44, Lemma 2.2]). Assume (A1). Then the following hold.
(1) {(Er,Dr)}r∈N is decreasing.
(2) {(Er,Dr)}r∈N is increasing.

By definition the largest closable part ((Ẽ)reg, (D̃)reg) of a given positive symmetric
form (Ẽ , D̃) with a dense domain is a closable form such that ((Ẽ)reg, (D̃)reg) ≤ (Ẽ , D̃) and
that ((Ẽ)reg, (D̃)reg) is the largest element of closable forms dominated by (Ẽ , D̃). Such a
form exists uniquely.

Because (E ,Dµ
◦ ) is closable on L2(µ) under (A1), we define (E ,D) as the closure. Let

(E∞,D∞) be the symmetric form such that

E∞(f, f) = lim
r→∞

Er(f, f)

with the domainD∞ =
∪

r∈NDr. Then the closure of the largest closable part ((E∞)reg, (D∞))reg)
of (E∞,D∞) corresponds to (E ,D) [44].

Let (E ,D) be the closed symmetric form such that

E(f, f) = lim
r→∞

Er(f, f)

with the domain D = {f ∈
∩∞

r=1Dr ; limr→∞ Er(f, f) <∞}.
Summarizing above we obtain the next lemma.

Lemma 6.3. Assume (A1). Then the following hold.
(1) (E ,D) is the strong resolvent limit of {(Er,Dr)}r∈N as r → ∞.
(2) (E ,D) is the strong resolvent limit of {(Er,Dr)}r∈N as r → ∞.
(3) (E ,D) ≤ (E ,D).

Proof. The first two statements follow from Lemma 6.2 and the general theory of the
monotone convergence theorem of closed forms. The third follows from (Er,Dr) ≤ (Er,Dr)
for any r, and thus we have (E ,D) ≤ (E ,D) by the monotone convergence of these forms
given by Lemma 6.2.

(A2) The random point field µ satisfies

∞∑
r=1

mµ(Smr ) <∞ for each m ∈ N.

We refer to [42] for the quasi-regularity and the locality of Dirichlet forms and related
notions. The importance of the quasi-regularity and the locality is that they guarantee
the existence of diffusion associated with the Dirichlet form.

We obtain an unlabeled diffusion from [44]. The next result is one of the main theorems
in [44]. To be more precise, boundedness of density functions was assumed in addition to
(A2) in [44], this was removed in [31].

Proposition 6.4 ([44, Theorem 1, Corollary 1]). Assume (A1) and (A2). Then (E ,D)
is a local quasi-regular Dirichlet form on L2(µ). In particular, there exists an S-valued,
µ-reversible diffusion X associated with (E ,D).
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Let (E ,D) and (E ,D) be as in Lemma 6.3. We assume:

(A3) (E ,D) = (E ,D).

Remark 6.5. From Proposition 6.4 and (A3) we deduce that (E ,D) is a quasi-regular
Dirichlet form, and there exists the associated S-valued diffusion. This diffusion is the
same as that of the diffusion associated with (E ,D).

6.2.2 Finite particle approximation for a random point field and main result:
convergence of unlabeled dynamics.

In Section 6.2.1 we introduced two schemes of finite volume approximations related to
bounded domains Sr and we take r → ∞. In the present section, we introduce another
approximation consisting of Dirichlet forms describing N -particles. Note that the particles
in the present section move in whole S, but the number of particles at the each stage of
approximating dynamics is N ∈ N, and we let N go to infinity.

Let {µN} be a sequence of random point fields such that µN (s(S) = N) = 1 for any
N ∈ N and limN→∞ µN = µ weakly. For r,m ∈ N, let σN,m

r be the m-particles density of
µN on Sr with respect to the Lebesgue measure. We set

EN
r,k(f) =

k∑
m=1

∫
Sm
r

D[f ]σN,m
r dxm.

Hereafter, E(f) and D[f ] denote E(f, f) and D[f, f ], respectively. We remark that, if
f ∈ Bb

r ∩ Dµ
◦ , then by (6.9) and (6.11) we have

EN
r,k(f) =

k∑
m=1

∫
S
Dm
r [f ](s)dµN =

k∑
m=1

EN,m
r (f).

From µN (s(S) = N) = 1 we have D◦ = DµN

◦ , where DµN

◦ is defined by (6.8) with µN .
Recall that there exists a diffusion associated with a local, regular Dirichlet form. We

refer to [16] for the definition of regular Dirichlet forms and related notions. To guarantee
the existence of N -particles dynamics, we assume:

(M1) For any N ∈ N, (EN ,D◦) is closable on L
2(µN ). Furthermore, the closure (EN ,DN )

of (EN ,D◦) is a regular Dirichlet form on L2(µN ).

Let XN and X be the diffusions associated with the Dirichlet space (EN ,DN , L2(µN ))
and (E ,D, L2(µ)), respectively. We assume the initial distributions satisfy:

(M2) The distributions of XN
0 and X0 have densities ξN ∈ L2(µN ) and ξ ∈ L2(µ) with

respect to µN and µ, respectively, and satisfy

lim
N→∞

ξN = ξ

strongly in the sense of Definition 6.15.

We assume density functions σN,m
r and σmr of µN and µ defined in (6.10) satisfy:
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(M3) For each r,m ∈ N

lim
N→∞

∥∥∥σN,m
r

σmr
− 1
∥∥∥
Sm
r

= 0. (6.12)

Here ∥ · ∥Sm
r

denotes the L∞(Sm
r , dx)-norm.

Theorem 6.6. Assume (A1)–(A3). Assume (M1)–(M3). Then we have

lim
N→∞

XN = X in distribution in C([0,∞);S). (6.13)

The density σmr in (6.12) may vanish in general. Then we introduce the condition

Cap
( ∞∪

m,r=1

{s ∈ Smr ; σmr (s) = 0}
)
= 0. (6.14)

Here, σmr = σmr (s1, . . . , sm) is regarded as a function on Smr = {s ∈ S ; s(Sr) = m} such
that σmr (s) = σmr (s1, . . . , sm) for s(· ∩ Sr) =

∑m
i=1 δsi , and Cap is the capacity associated

with (E ,D) on L2(µ). See [16, 66p] for the definition of capacity.
We now relax the assumption (M3) as below. We shall use (M3’) when we present

examples in Section 6.6.

(M3’) For each r,m ∈ N,

lim
N→∞

∥∥∥σN,m
r − σmr

∥∥∥
Sm
r

= 0. (6.15)

Furthermore, (6.14) holds.

Theorem 6.7. Assume (A1)–(A3). Assume (M1)–(M2) and (M3’). Then (6.13)
holds.

A symmetric and locally integrable function ρn : Sn → [0,∞) is called the n-point
correlation function of a random point field µ on S with respect to the Lebesgue measure
if ρn satisfies ∫

A
k1
1 ×···×Akm

m

ρn(x1, . . . , xn)dx1 · · · dxn =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any sequence of disjoint bounded measurable sets A1, . . . , Am ∈ B(S) and a sequence of
natural numbers k1, . . . , km satisfying k1 + · · ·+ km = n. If correlation functions converge
compact uniformly, (6.15) is satisfied. In fact, the following relation between correlation
functions and density functions hold. If for each r ∈ N there exist constants c39 and c40
satisfying c39 > 0 and c40 < 1 such that

sup
xn∈Sn

r

ρn(xn) ≤ cn39n
c40n,
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then

σmr (xm) =
∞∑
j=0

(−1)j

j!

∫
Sm
r

ρm+j(xm,yj)m(dyj).

Let ρN,n be the n-correlation function of µN . We shall obtain (6.15) from uniform
convergence of ρN,m to ρm on Sm

r .

(M3”) Correlation functions ρN,n and ρn satisfy

lim
N→∞

∥∥ρN,m − ρm
∥∥
Sm
r

= 0 for each r,m ∈ N, (6.16)

sup
N∈N

sup
xn∈Sn

r

ρN,n(xn) ≤ cn39n
c40n. (6.17)

Furthermore, (6.14) is satisfied.

Theorem 6.8. Assume (A1)–(A3). Assume (M1)–(M2) and (M3”). Then (6.13)
holds.

Remark 6.9. (1) If σmr are bounded, then (6.12) implies (6.15).
(2) Clearly, (6.16) and (6.17) imply (6.15).
(3) Because of the variational formula of capacity, one can obtain (6.14) easily from esti-
mates of correlation functions.

6.2.3 Convergence of labeled dynamics (SDE) and proof of Theorem 6.10

In this section, we consider labeled dynamics and formulate convergence of finite-dimensional
SDEs to the limit ISDE.

Let u : SN → S be the unlabeling map given by u(s) =
∑

i δsi , where s = (si)i∈N. We
assume the following:

(A4) Each particle is non-explosion and non-collision.

Because of (A4), we can construct the labeled dynamics X = (Xi)i∈N ∈ C([0,∞);SN)
such that Xt =

∑
i∈N δXi

t
with initial label l(X0) = X0. Next theorem proves dynamical

convergence of labeled dynamics.

Theorem 6.10. Make the same assumptions as Theorem 6.6 or Theorem 6.7 or Theo-
rem 6.8. Assume (A4) and that the initial distributions of the labeled dynamics XN and
X satisfy for each m ∈ N,

lim
N→∞

µN ◦ (lN,1, . . . , lN,m)−1 = µ ◦ (l1, . . . , lm)−1 (6.18)

weakly. Then for each m ∈ N,

lim
N→∞

(XN,1, . . . , XN,m) = (X1, . . . , Xm) (6.19)

in distribution in C([0,∞);Sm).
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Proof. From (A4) we can construct the labeled dynamicsXN andX such thatXN
0 = lN (s)

and X0 = l(s). Note that the initial distribution is in Lp(µN ) for some 1 < p. Then using
Lyons-Zheng decomposition, we see the tightness of {(XN,i)mi=1}N∈N in C([0,∞);Sm) for
each m.

The convergence of the finite-dimensional distributions of XN follows from the weak
convergence of the unlabeled processes XN and the convergence of the labeled initial
distributions (6.18).

Collecting these we obtain Theorem 6.10.

We next present the ISDE representation of the limit labeled dynamics.
We write f ∈ Lp

loc(µ
[1]) if f ∈ Lp(Sr × S, µ[1]) for all r ∈ N. Let C∞

0 (S) ⊗ D◦ be the
algebraic tensor product of C∞

0 (S) and D◦, that is,

C∞
0 (S)⊗D◦ = {

N∑
i=1

fi(x)gi(y) ; fi ∈ C∞
0 (S), gi ∈ D◦, N ∈ N}.

Definition 6.11 ([47]). An Rd-valued function dµ ∈ L1
loc(µ

[1])d is called the logarithmic
derivative of µ if, for all f ∈ C∞

0 (S)⊗ {D◦ ∩ L∞(µ)},∫
S×S

dµ(x, y)f(x, y)µ[1](dxdy) = −
∫
S×S

∇xf(x, y)µ
[1](dxdy).

Lemma 6.12 ([47]). Assume (A1)–(A4). Assume the logarithmic derivatives dµ of µ
exists. Then, the following ISDE has a solution.

dXi
t = dBi

t +
1

2
dµ(Xi

t , X
i,♢
t )dt (i ∈ N). (6.20)

Here Xi,♢
t denotes

∑
j ̸=i δxj

t

Assume the logarithmic derivative dµ
N
of µN exists. Then the finite particle dynamics

XN = (XN,1, . . . , XN,N ) ∈ C([0,∞) ; SN ) are solutions of SDEs such that

dXN,i
t = dBN,i

t +
1

2
dµ

N
(XN,i

t , XN,i♢
t )dt (i = 1, . . . , N). (6.21)

Combining Lemma 6.12 with Theorem 6.10, we obtain convergence in distribution of
solutions of SDEs (6.21) to a solution of the ISDE (6.20).

Remark 6.13. If we assume that the ISDE (6.20) has a unique solution in distribution,
then the condition (A3) holds [31].

6.3 The generalized Mosco convergence

Our main result needs the language of Dirichlet forms and convergence concept of it. In
this section, we recall the generalized Mosco convergence in the sense of Kuwae-Shioya
[34].
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Definition 6.14. Let HN (N ∈ N) and H be Hilbert spaces. We say {HN}N∈N converges
to H if there exists a dense subspace C ⊂ H and a sequence of operators

ΦN : C → HN

such that for any u ∈ C,

lim
N→∞

||ΦNu||HN
= ||u||H .

Definition 6.15. (1)We say that a sequence {uN} with uN ∈ HN strongly converges to
u ∈ H if there exists {ũM} ⊂ C such that

lim
M→∞

||ũM − u||H = 0,

lim
M→∞

lim sup
N→∞

||ΦN ũM − uN ||HN
= 0.

(2) We say {uN} with uN ∈ HN weakly converges to u ∈ H if

lim
N→∞

(uN , vN )HN
= (u, v)H .

for any sequence {vN} with vN ∈ HN which strongly converges to v ∈ H.

Definition 6.16. Let L(H) denote the set consisting of linear operator on H. We say
that a sequence of bounded operators {BN} with BN ∈ L(HN ) strongly converges to an
operator B ∈ L(H) if for any sequence {uN} with uN ∈ HN which strongly converges to
u ∈ H, {BNuN} strongly converges to Bu.

Let (E ,D) be a non-negative, symmetric bilinear form E : D × D → R, where D is a
subspace of Hilbert space H. We identify a bilinear form E with the function on H such
that

E(u) =

{
E(u, u), u ∈ D,
∞, u /∈ D.

We say that E is a bilinear form on H if the domain of E is a subset of H.

Definition 6.17. We say that a sequence {EN} of bilinear forms E on HN converges in
Mosco to a bilinear form E on H if the following two conditions hold.
(1) If a sequence {uN} with uN ∈ HN weakly converges to u ∈ H, then

E(u) ≤ lim inf
N→∞

EN (uN ).

(2) For any u ∈ H, there exists a strongly convergent sequence limN→∞ uN = u with
uN ∈ HN such that

E(u) = lim
N→∞

EN (uN ).

Let {TN
t }t≥0 and {Tt}t≥0 be the subgroups on HN and H associated with EN and E ,

respectively. We quote:

Proposition 6.18 ([34]). The following are equivalent.
(1) limN→∞ EN = E in Mosco.
(2) limN→∞ TN

t = Tt strongly for all t > 0.

We thus see that the Mosco convergence of Dirichlet forms is equivalent to the strong
convergence of the associated semigroup.
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6.4 Convergence of unlabeled dynamics I: Proof of Theorem 6.6

In this section, we give the proof of Theorem 6.6. Throughout this section, we always
assume (A1)–(A4) and (M1)–(M3).

We shall utilize the notion of Mosco convergence in Definition 6.17. We take HN =
L2(µN ), H = L2(µ), and C = {f ∈ Dµ

◦ ; f is bounded} in Definition 6.14. Furthermore, we
take ΦN as identity map. Then we have limN→∞HN = H in the sense of Definition 6.14.

6.4.1 Lower schemes of Dirichlet forms.

First, we give a proof of Definition 6.17 (1). We set

EN
r (f, g) =

∞∑
m=1

∫
Sm
r

D[f, g]σN,m
r dxm.

By the assumption (M1), let (EN
r,k,DN

r,k) and (EN
r ,DN

r ) be closures of (EN
r,k,D◦) and

(EN
r ,D◦) on L2(µN ) respectively. Let (EN ,DN ) be the increasing limit of {(EN

r ,DN
r )}

as r → ∞. Then (EN ,DN ) = (EN ,DN ) because µN is supported on the set consisting of
N -particles. The next lemma is clear by definition.

Lemma 6.19. For each N, k, r ∈ N and f ∈ L2(µN ),

EN (f) = EN (f) ≥ EN
r,k(f). (6.22)

Proof. By definition, we have DN ⊂ DN
r ⊂ DN

r,k and

EN (f) = EN (f) ≥ EN
r (f) ≥ EN

r,k(f).

These imply (6.22).

We consider the bilinear form Er,k =
∑k

m=1 Em
r on L2(µ). From (A1), we see that

(Er,k,Dµ
◦ ) is closable on L2(µ). Then let (Er,k,Dr,k) be its closure.

Lemma 6.20. Let fN ∈ L2(µN ) and f ∈ L2(µ). Assume that fN → f weakly. Then

lim inf
N→∞

EN
r,k(fN ) ≥ Er,k(f). (6.23)

Proof. If lim infN→∞ EN
r,k(fN ) = ∞, then (6.23) is obvious. Hence we assume

lim inf
N→∞

EN
r,k(fN ) <∞, (6.24)

which implies fN ∈ DN
r,k infinitely many times. Remark that from (6.12) and (6.24) we

have

lim inf
N→∞

Er,k(fN ) <∞. (6.25)
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For fN ∈ D◦, by a direct calculation we have

EN
r,k(fN ) =

k∑
l=1

∫
Sl
r

D[fN ]σN,l
r dxl (6.26)

=

k∑
l=1

∫
Sl
r

D[fN ]σlr

{σN,l
r

σlr
− 1
}
dxl + Er,k(fN )

≥− Er,k(fN )
{

max
l=1,...,k

∥∥∥σN,l
r

σlr
− 1
∥∥∥
Sl
r

}
+ Er,k(fN ).

From (6.12), (6.25) and (6.26) we obtain that for any {fN} ⊂ D◦ satisfying limN→∞ fN = f
weakly,

lim inf
N→∞

EN
r,k(fN ) ≥ lim inf

N→∞
Er,k(fN ).

By approximation, we obtain that for sequence {fN} such that fN ∈ DN
r,k infinitely many

times,

lim inf
N→∞

EN
r,k(fN ) ≥ lim inf

N→∞
Er,k(fN ). (6.27)

We take a subsequence of {Er,k(fN )}, denoted by the same symbol, such that

lim
N→∞

Er,k(fN ) = lim inf
N→∞

Er,k(fN ).

Recall that {Er,k(·, ·) + α(·, ·)L2(µ)} is a Hilbert space for any α > 0. By (6.24) and
(6.27) we see that the subsequence {Er,k(fN )+α||fN ||L2(µ)}N∈N is bounded. Hence, taking
a further subsequence if necessary, {fN} is also a weak convergent sequence with respect
to Er,k(·) + α|| · ||L2(µ). Then for each α > 0 we get

lim inf
N→∞

{Er,k(fN ) + α||fN ||L2(µ)} ≥ Er,k(f) + α||f ||L2(µ).

Therefore we obtain

lim inf
N→∞

Er,k(fN ) ≥ Er,k(f) (6.28)

Collecting (6.27) and (6.28), we obtain (6.23).

Lemma 6.21. We have the following.

lim
k→∞

Er,k(f) = Er(f) for each r ∈ N, (6.29)

lim
r→∞

Er(f) = E(f). (6.30)

Proof. The first claim is clear because the sequence {Er,k(f)} is increasing in k for each
r ∈ N. (6.30) follows from [44, Theorem 3].
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Lemma 6.22. Assume that fN → f weakly. Then

lim inf
N→∞

EN (fN ) ≥ E(f) (6.31)

Proof. From Lemma 6.19 and Lemma 6.20 we obtain

lim inf
N→∞

EN (fN ) ≥ lim inf
N→∞

EN
r,k(fN ) ≥ Er,k(f) (6.32)

for any k ∈ N. Combining (6.32) with (6.29), we see that

lim inf
N→∞

EN (fN ) ≥ Er(f). (6.33)

Then taking r → ∞ in (6.33), we obtain from (6.30)

lim inf
N→∞

EN (fN ) ≥ E(f). (6.34)

Recall that E = E by (A3). Then (6.34) implies (6.31).

6.4.2 Upper schemes of Dirichlet forms.

We shall check (2) of Definition 6.14.
Let M(ℓ) = {Mk(ℓ)}k∈N be an increasing sequence of natural numbers such that

limk→∞Mk(ℓ) = ∞ for each ℓ ∈ N, and that for each k, ℓ ∈ N

Mk(ℓ) < Mk+1(ℓ), Mk(ℓ) < Mk(ℓ+ 1).

We can take M(ℓ) in such a way that

lim
ℓ→∞

µ
( ∩

k∈N
{s ; s(Sk) ≤Mk(ℓ)}

)
= 1. (6.35)

Indeed, recalling that a subset A in S is relatively compact if and only if there exists an
increasing sequence of natural numbers Mr such that A ⊂ {s; s(Sr) ≤ Mr for all r}, we
obtain (6.35).

Let {Nk(ℓ)}k∈N be an increasing sequence of natural numbers such that N1(ℓ) = 1.
We set for ℓ ∈ N

γk(ℓ) = sup
Nk(ℓ)≤N<∞

{
max

1≤j≤Mk+1(ℓ)+1

∥∥∥σN,j
k

σjk
− 1
∥∥∥
Sj
k

}
, (6.36)

where ∥ · ∥
Sj
k
denotes the supremum norm on Sj

k.

Lemma 6.23. We can take {Nk(ℓ)} in such a way that for each ℓ ∈ N

lim
k→∞

γk(ℓ) = 0.
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Proof. This follows from (M3) immediately.

We next introduce the cut off functions {χℓ} as follows:

χℓ(s) = ρ ◦ dℓ(s), dℓ(s) =
{ ∞∑

k=1

∑
j∈Jk,s(ℓ)

(k − |lj(s)|)2
} 1

2
.

Here, ρ ∈ C∞(R) is the function satisfying ρ(t) ∈ [0, 1] for any t ∈ R, ρ(x) = 1 for x ≤ 0,
ρ(x) = 0 for x ≥ 1, and ρ′(t) = 2 for any t ∈ R. Furthermore, l = (l1, l2, . . .) : S → SN is a
map satisfying |lj(s)| ≤ |lj+1(s)| for all j, and we define

Jk,s(ℓ) = {j ; j > Mk(ℓ), lj(s) ∈ Sk}.

The function l = (lj) is called a labeling map defined for µ-a.s. s. Let

S[ℓ] = {s ∈ S ; s(Sk) ≤Mk(ℓ) for all k ∈ N}, (6.37)

S[ℓ]+ = {s ∈ S ; s(Sk) ≤Mk+1(ℓ) + 1 for all k ∈ N}.

By construction these are compact sets in S under the vague topology. We quote:

Lemma 6.24 ([44, Lemma 2.5]). For each ℓ the following hold.
(1) χℓ = 1 on S[ℓ] and χℓ = 0 on S\S[ℓ]+.
(2) χℓf ∈ D for each f ∈ Dµ

◦ .
(3) E1(χℓf) ≤ 2E1(f) for each f ∈ Dµ

◦ .
(4) 0 ≤ D[χℓ](s) ≤ 2 on S[ℓ]+\S[ℓ], and D[χℓ](s) = 0 on (S[ℓ]+\S[ℓ])c.

Lemma 6.25. For each f ∈ L2(µ) there exists a sequence {gN} such that gN ∈ L2(µN )
and that {gN} satisfies the following.

lim
N→∞

gN = f strongly, (6.38)

lim
N→∞

EN (gN ) = E(f). (6.39)

Proof.
For any f ∈ D there exists a sequence {fk}k∈N in Dµ

◦ such that

lim
k→∞

E1(fk) = E1(f),

where E1(f, g) = E(f, g)+ (f, g)L2(µ) and E1(f) = E1(f, f). Because µN is concentrated on

the set consisting of N -particles, we have D◦ ⊂ L2(µN ). We then see that fk ∈ L2(µN )
for fk ∈ Dµ

◦ .
Recall that each element in Dµ

◦ is local by definition. Then, each fk is Fr(k)-measurable
for some r(k) ∈ N, where Fk = σ[πk] as before. Thus we can and do assume that fk is
Fk-measurable without loss of generality. From {fk}k∈N we shall construct {gN}N∈N such
that {gN} converges to f strongly and limN→∞ EN

1 (gN ) = E1(f).
Let gℓ,N = χℓfk for Nk(ℓ) ≤ N < Nk+1(ℓ), where {Nk(ℓ)}k∈N is an increasing sequence

of natural numbers in (6.36). From Lemma 6.23 we can take and do Nk(ℓ) such that
Nk(ℓ) ≤ Nk(ℓ+ 1) for all ℓ ∈ N and that for some 0 < θ < 1

γk(ℓ)E1(fk) ≤ θk for each k ∈ N. (6.40)
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By gℓ,N = χℓfk, we deduce that

|EN
1 (gℓ,N )− E1(f)| (6.41)

≤|EN
1 (χℓfk)− E1(χℓfk)|+ |E1(χℓfk)− E1(χℓf)|+ |E1(χℓf)− E1(f)|.

From Lemma 6.24 and (6.40) we see that

|EN
1 (χℓfk)− E1(χℓfk)| ≤ γk(ℓ)E1(χℓfk) ≤ θk. (6.42)

By the straightforward calculation we have from (6.35), (6.37), and Lemma 6.24

|E1(χℓfk)− E1(χℓf)| =
∣∣∣ ∫

S
D[χℓfk]− D[χℓf ] + χ2

ℓ (f
2
k − f2)dµ

∣∣∣ −−−→
k→∞

o(ℓ) (6.43)

and

|E1(χℓf)− E1(f)| =
∣∣∣ ∫

S
D[χℓf ]− D[f ] + (χ2

ℓ − 1)f2dµ
∣∣∣ = o(ℓ). (6.44)

Putting (6.42), (6.43), and (6.44) into (6.41) and taking gN from gℓ,N we obtain (6.38)
and (6.39).

Proof of Theorem 6.6. From Lemma 6.22 and Lemma 6.25, we obtain the Mosco con-
vergence in Definition 6.17. The Mosco convergence implies the convergence of finite-
dimensional distributions of XN to X. (see [34, Section 7]).

Because the initial distribution has a density in Lp(µN ) for some 1 < p, we see the
tightness of {XN}N∈N in C([0,∞);S) using Lyons-Zheng decomposition.

6.5 Convergence of unlabeled dynamics II: Proof of Theorem 6.7–Theorem 6.8.

In this section, we prove Theorem 6.7–Theorem 6.8 by using Theorem 6.6 and cut off
argument for Dirichlet forms.

6.5.1 Finite volume approximation with cut off

Let p = p(r,m) be a map p : N× N → N. For such a map p, we set

Smr (p) =
{
s ∈ Smr ; σmr (s1, . . . , sm) >

1

p(r,m)
for πr(s) =

m∑
i=1

δsi

}
,

Sr(p) =
∞∪

m=1

Smr (p).

Let D and Dm
r be as in (6.7). We define new bilinear forms for f, g ∈ D◦ as

Dm
r,p[f, g](s) =

{
Dm
r [f, g](s) for s ∈ Smr (p),

0 for s /∈ Smr (p),
(6.45)

Em
r,p(f, g) =

∫
S
Dm
r,p[f, g](s)dµ. (6.46)

We set Dr,p and Er,p similarly. By construction, we see that Er,p =
∑∞

m=1 Em
r,p. Let

Bb
r,p = {f ∈ Bb

r ; f is constant on each connected component of Sr(p)
c}.
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Lemma 6.26. (1) We have for each r ∈ N and p

(Er,p,Dµ
◦ ) ≤ (Er,Dµ

◦ ) ≤ (E ,Dµ
◦ ∩ Bb

r) ≤ (E ,Dµ
◦ ∩ Bb

r,p). (6.47)

(2) (Er,p,Dµ
◦ ) is closable on L2(µ).

(3) (E ,Dµ
◦ ∩ Bb

r,p) is closable on L2(µ).

Proof. By definition, the first inequality in (6.47) is clear because Smr (p) ⊂ Smr and the
definition of Dm

r,p and Em
r,p given by (6.45) and (6.46). The second follows from Er ≤ E and

Dµ
◦ ⊃ Bb

r. The third follows from Dµ
◦ ∩ Bb

r ⊃ Dµ
◦ ∩ Bb

r,p. We thus obtain (1).
We note that Smr (p) is an open set because σmr is lower semi-continuous for each

m, r ∈ N. Because Smr (p) is an open set, (Em
r,p,D

µ
◦ ) is closable on L2(µ). Recall that

(Er,p,Dµ
◦ ) = (

∞∑
m=1

Em
r,p,Dµ

◦ ).

We thus see that (Er,p,Dµ
◦ ) is a countable sum of closable forms on L2(µ). Hence (Er,p,Dµ

◦ )
is closable on L2(µ). We thus prove (2).

From (2) we have closability of (Er,p,Dµ
◦ ) on L

2(µ). By (6.47) we have had (Er,p,Dµ
◦ ) ≤

(E ,Dµ
◦ ∩ Bb

r,p). Hence closablity of (E ,Dµ
◦ ∩ Bb

r,p) on L
2(µ) follows from that of (Er,p,Dµ

◦ )
on L2(µ). We thus complete the proof of (3).

From Lemma 6.26, we define (Er,p,Dr,p) and (Er,p,Dr,p) as the closures of (Er,p,Dµ
◦ )

and (E ,Dµ
◦ ∩Bb

r,p) in L
2(µ), respectively. Let p(n) = p(n)(r,m) be a sequence of functions

and satisfy the monotonicity in n ∈ N as follows: For each (r,m) ∈ N2

p(n)(r,m) < p(n+ 1)(r,m) for all n ∈ N.

Lemma 6.27. (1) {(Er,p(n),Dr,p(n))}r∈N is increasing for each n ∈ N.
(2) {(Er,p(n),Dr,p(n))}r∈N is decreasing for each n ∈ N.

Proof. We see that Sr(p) ⊂ Sr+1(p). Then (1) follows from Er,p ≤ Er+1,p and (2) follows
from Bb

r,p ⊂ Bb
r+1,p.

By Lemma 6.27, we define the closed form (Ep(n),Dp(n)) as the increasing limit of
(Er,p(n),Dr,p(n)) in r, and (Ep(n),Dp(n)) as the decreasing limit of (Er,p(n),Dr,p(n)) in r.
Moreover, (Ep(n),D

µ
◦ ) is closable and (Ep(n),Dp(n)) coincides with the closure of the max-

imal closable part of (Ep(n),D
µ
◦ ).

Lemma 6.28. (1) {(Ep(n),Dp(n))}n∈N is increasing.
(2) {(Ep(n),Dp(n))}n∈N is decreasing.
(3) For each n ∈ N we have

(Ep(n),Dp(n)) ≤ (E ,D) ≤ (E ,D) ≤ (Ep(n),Dp(n)). (6.48)

Proof. By Sr(p(n)) ⊂ Sr(p(n+ 1)) and (6.45) we have (Er,p(n),D
µ
◦ ) ≤ (Er,p(n+1),D

µ
◦ ). By

taking closure we have (Er,p(n),Dr,p(n)) ≤ (Er,p(n+1),Dr,p(n+1)). Then taking a increasing

limit in r, we obtain (1). By definition, Bb
r,p(n) ⊂ Bb

r,p(n+1). Hence we have

(E ,Dµ
◦ ∩ Bb

r,p(n)) ≥ (E ,Dµ
◦ ∩ Bb

r,p(n+1)) for any r.
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Therefore, we get (Er,p(n),Dr,p(n)) ≥ (Er,p(n+1),Dr,p(n+1)), which shows (2). By (6.47)

(Er,p(n),Dr,p(n)) ≤ (Er,Dr) ≤ (Er,Dr) ≤ (Er,p(n),Dr,p(n)).

Taking r → ∞ and recalling

lim
r→∞

(Er,p(n),Dr,p(n)) = (Ep(n),Dp(n))

lim
r→∞

(Er,p(n),Dr,p(n)) = (Ep(n),Dp(n)),

we obtain (6.48).

By Lemma 6.28 we obtain the limit closed forms (Ep(∞),Dp(∞)) and (Ep(∞),Dp(∞)) of
{(Ep(n),Dp(n))}n∈N and {(Ep(n),Dp(n))}n∈N as n goes to infinity, respectively. We remark
that with the same reason as before (Ep(∞),Dp(∞)) is the closed form that coincides with
the closure of the maximal closable part of the decreasing limit of (Ep(n),Dp(n)) as n→ ∞.
Then from Lemma 6.28 (1) we have

(Ep(∞),Dp(∞)) ≤ (E ,D) ≤ (E ,D) ≤ (Ep(∞),Dp(∞)). (6.49)

Lemma 6.29. Assume (6.14). Then the following hold.

(1) Dp(∞) is dense in D with respect to E .

(2) D is dense in Dp(∞) with respect to Ep(∞)

Proof. Let N =
∪∞

m,r=1{s ∈ Smr ; σmr (s) = 0}. Then by (6.15) we have

Cap(N ) = 0. (6.50)

From (6.50) we see that µ(N ) = 0. Thus, there exists a sequence {φq} in D satisfying

φq = 1 on N , (6.51)

0 ≤ φq(s) ≤ 1 for all s ∈ S,

lim
q→0

φq(s) = 0 for µ-a.s. s,

lim
q→0

E1(φq) = 0.

Because of (6.51), we have φq ∈ Dp(∞). Hence

(1− φq) ∈ Dp(∞). (6.52)

Let f ∈ D ∩ L∞(µ). Then from (6.51) and (6.52) we easily deduce that

f(1− φq) ∈ Dp(∞) ∩ L∞(µ).
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Moreover, when f, φq ∈ Dµ
◦ , we obtain

E(f − f(1− φq)) = Ep(∞)(fφq)

= lim
n→∞

lim
r→∞

∫
Sr(p(n))

D[fφq]dµ

≤ lim
n→∞

lim
r→∞

2

∫
Sr(p(n))

D[f ]|φq|2 + |f |2D[φq]dµ

= lim
n→∞

lim
r→∞

2

∫
Sr(p(n))

D[f ]|φq|2 + |f |2D[φq]dµ

= o(q) as q → ∞.

Hence by approximation, Dp(∞) ∩ L∞(µ) is dense in D ∩ L∞(µ) with respect to E . This
completes the proof of (1) because D ∩ L∞(µ) is dense in D with respect to E .

Remark that φq ∈ D since D ⊂ D. Then for f ∈ Dp(∞) ∩ L∞(µ), we have

f(1− φq) ∈ D ∩ L∞(µ).

We conclude (2) in a similar way to the proof of (1).

Lemma 6.30. Assume (6.14). Then

(Ep(∞),Dp(∞)) = (E ,D) ≤ (E ,D) = (Ep(∞),Dp(∞)). (6.53)

Proof. (6.53) follows from (6.49) and Lemma 6.29 immediately.

6.5.2 N-particle approximation and the Mosco convergence II.

Next, we define cut off Dirichlet forms associated with µN . Let (EN
p(n),D

N
p(n)) be the in-

creasing limit limr→∞(EN
r,p(n),D

N
r,p(n)), here (EN

r,p(n),D
N
r,p(n)) is the closure of (EN

r,p(n),D◦)

on L2(µN ). Define (EN
p(n),D

N
p(n)) as the maximal closable part less than limr→∞(EN

r,p(n),D
N
r,p(n)),

here (EN
r,p(n),D

N
r,p(n)) is the closure of (EN ,D◦ ∩ Bb

r,p(n)) on L
2(µN ). Clearly, we obtain

(EN
p(n),D

N
p(n)) ≤ (EN ,DN ) ≤ (EN

p(n),D
N
p(n)). (6.54)

Lemma 6.31. Assume (M3’). For any f ∈ L2(µ) and n ∈ N, the following holds.
(1) Assume that limN→∞ fN = f weakly. Then

Ep(n)(f) ≤ lim inf
N→∞

EN
p(n)(fN ). (6.55)

(2) There exist fn,N ∈ L2(µN ) such that limN→∞ fn,N = f strongly and that

Ep(n)(f) = lim
N→∞

EN
p(n)(fn,N ) (6.56)

Proof. Recalling that densities of µ are positive on S(p(n)), (M3) holds on S(p(n)) from

(6.15) in (M3’). Therefore we obtain (1) by the same argument as in Section 6.4.1.
Similarly, we obtain (2) by the same argument as in Section 6.4.2.
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Lemma 6.32. Assume (M3’) and (A3). Assume that fN → f weakly. Then

E(f) ≤ lim inf
N→∞

EN (fN ) (6.57)

Proof. By (6.54) we have EN
p(n)(fN ) ≤ EN (fN ). From this, (6.53), and (6.55),

E(f) = Ep(∞)(f) = lim
n→∞

Ep(n)(f) (6.58)

≤ lim inf
n→∞

lim inf
N→∞

EN
p(n)(fN )

≤ lim inf
n→∞

lim inf
N→∞

EN (fN ) = lim inf
N→∞

EN (fN ).

By (A3) we see E(f) = E(f), which together with (6.58) implies (6.57).

In the next lemma, we prove Definition 6.17 (2).

Lemma 6.33. Assume (M3’) and (A3). Then for any f ∈ L2(µ) there exists a sequence
gN ∈ L2(µN ) (N ∈ N) such that gN converges to f strongly and

lim
N→∞

EN (gN ) = E(f). (6.59)

Proof. Let fn,N denote the sequence in (6.56). Note that from (6.53) we obtain

E(f) = lim
n→∞

Ep(n)(f) (6.60)

Combining (6.56) and (6.60), we can take gN satisfying (6.59) by choosing a subsequence
of {fn,N}n,N∈N.

Proof of Theorem 6.7. Lemma 6.32 and Lemma 6.33 implies the Mosco convergence.
The rest of the proof is same as that of Theorem 6.6.

Proof of Theorem 6.8. (M3”) implies (M3’). Hence Theorem 6.8 follows from Theo-
rem 6.7.

6.6 Examples.

In this section, we give examples of dynamical universality. All examples satisfy the
assumptions in Theorem 6.6–Theorem 6.10, and main theorems are thus applicable to
these examples.

6.6.1 Universality of Airy interacting Brownian motions.

The first example is Airy random point field with β = 2. Let µAi be the Airy random
point field with β = 2, that is, µAi is the determinantal random point field on S = R
whose kernel with respect to the Lebesgue measure is given by

KAi(x, y) =
Ai(x)Ai′(y)−Ai(x)′Ai(y)

x− y
.
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Here, Ai(x) is the Airy function. The corresponding ISDE is [54]

dXi
t = dBi

t + lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
−
∫
|x|<r

ςAi(x)

−x
dx
}
dt. (6.61)

Here we set

ςAi(x) =
1(−∞,0)(x)

π

√
−x.

It is known that ISDE (6.61) has a pathwise unique, strong solution X = (Xi)i∈N for
µAi-a.s. s =

∑∞
i=1 δXi

0
[54].

To introduce the N -particle system, we set l ∈ N and κ2l > 0. Let

V (x) =

2l∑
i=0

κix
i.

Consider µNAi,V such that

µNV,Ai(ds
N ) =

1

Z

N∏
i<j

|si − sj |2
N∏
k=1

exp(−NV (N− 1
2l (cN

(
1 +

s

αNN
2
3

)
+ dN ))) dsN .

Here, αN , cN , dN are constants depending only on V and N . By integration by parts, we
can easily calculate the logarithmic derivative of µNAi,V and show that the corresponding
N -dimensional SDE is

dXN,i
t = dBi

t +
∑

1≤j ̸=i≤N

1

XN,i
t −XN,j

t

dt

− N
1
3
− 1

2l cN
2αN

V ′(N− 1
2l (cN (1 +

XN,i
t

αNN
2
3

) + dN ))dt.

Let ρN,n
Ai,V be the n-correlation function of µNAi,V . Then the soft edge universality result

is proved by [9], which asserts

lim
N→∞

ρN,n
Ai,V = ρnAi compact uniformly.

In [31] (A3) is proved. We can thus apply Theorem 6.8 and Theorem 6.10, which show
the convergences (6.13) and (6.19).

6.6.2 Universality of Ginibre interacting Brownian motions at strong non-
Hermiticity.

In this section we apply our result to random matrix model with strong non-Hermiticity
introduced in [1].

Let S = R2. We naturally regard R2 as C by (x, y) 7→ x+
√
−1y. The Ginibre random

point field µgin is the determinantal random point field with kernel with respect to the
Lebesgue measure such that

Kgin(x, y) =
1

π
exp[−|x|2 + |y|2

2
+ xȳ].
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Then by definition the k-point correlation function ρkgin is given by

ρkgin(x1, . . . , xk) = det[Kgin(xi, xj)]
k
i.j=1.

It is known that the Ginibre random point field µgin satisfies (A3) (see [31]).
Let J (N) be the space of the normal matrices of order N . For constants γ ≥ 0,

Kp ∈ R, and τ ∈ [0, 1), we consider probability on J (N) whose density is given by

σ(J) =
1

Z
exp

[
− N

1− τ2
Tr(JJ∗ − τ

2
(J2 + J∗2))− γ(TrJJ∗ −NKp)

2
]

Then the joint density of eigen values is proportional to

N∏
i ̸=j

|zi − zj |2 × exp[− N

1− τ2
(

N∑
i=1

|zi|2 −
τ

2

N∑
i=1

(z2i + z̄i
2))− γ(

N∑
i=1

|zi|2 −NKp)
2] (6.62)

Let ρkN be the k-point correlation function of the eigen value density corresponding to
(6.62). Then there exists c41, c42, c43 > 0 depending on Kp, γ, τ such that with E = {z ∈
C; c41(ℜz)2 + c42(ℑz)2 < 1} the following universality holds:

Theorem 6.34 ([1, Theorem 1]). For any ζ ∈ E, k ∈ N

lim
N→∞

1

N
ρ1N (ζ) =

c43
π

1E(ζ).

As for local densities we have

1

(c43N)k
ρkN (ζ +

z1√
c43N

, . . . , ζ +
zk√
c43N

) = ρkgin(z1, . . . , zk) +O(
1√
N

).

From this theorem we obtain (M3”). Hence we obtain (6.14) and (6.19).
From (6.62) we easily calculate the logarithmic derivative of N -particle system, and

obtain the N -dimensional SDE corresponding to µNGin as follows:

dXi
t = dBi

t +
1

2

{ ∑
1≤j ̸=i≤N

2(Xi
t −Xj

t )

|Xi
t −Xj

t |2
}
− τN

1− τ2
(ζ +

Xi
t√

c43N
)

1√
c43N

+
τN

1− τ2
(ζ +

Xi
t√

c43N
)†

1√
c43N

− (ζ +
Xi

t√
c43N

)
2γ√
c43N

{ N∑
k=1

∣∣∣ζ + Xk
t√

c43N

∣∣∣2 −NKp

}
dt (i=1,. . . ,N).

Here we set (x, y)† = (x,−y) ∈ R2. The ISDE corresponding to µGin is the following [47]:

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r,j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N).

We thus see the representation of N -particle SDE is quite complicated, and the limit is
very simple and universal.
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[5] Bourgade, P., Erdős, L., Yau, H.-T., Universality of general β-ensembles, Duke Math.
J. 163 (2014), 1127–1190.
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[42] Ma, Z.-M., Röckner, M., Introduction to the theory of (non-symmetric) Dirichlet
forms, Springer-Verlag, 1992.

[43] Mehta, M. L., Random Matrices, 3rd edition, Amsterdam: Elsevier, 2004.

[44] Osada, H., Dirichlet form approach to infinite-dimensional Wiener processes with
singular interactions, Commun. Math. Phys. 176 (1996), 117–131.

[45] Osada, H., Non-collision and collision properties of Dyson’s model in infinite di-
mensions and other stochastic dynamics whose equilibrium states are determinantal
random point fields, in Stochastic Analysis on Large Scale Interacting Systems, eds.
T. Funaki and H. Osada, Advanced Studies in Pure Mathematics 39, 2004, 325-343.

[46] Osada, H., Tagged particle processes and their non-explosion criteria, J. Math. Soc.
Japan, 62 (2010), 867-894.

[47] Osada, H., Infinite-dimensional stochastic differential equations related to random
matrices, Probability Theory and Related Fields, 153 (2012), 471–509.

[48] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic in-
teraction potentials, Ann. of Probab. 41 (2013), 1-49.

136



[49] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic in-
teraction potentials II : Airy random point field, Stochastic Processes and their ap-
plications 123 (2013), 813-838.

[50] Osada, H., Osada, S., Discrete approximations of determinantal point processes on
continuous spaces: tree representations and tail triviality, J. Stat. Phys. 170 (2018),
421435.

[51] Osada, H., Tanemura, H., Cores of Dirichlet forms related to Random Matrix Theory,
Proc. Jpn. Acad., Ser. A, Vol. 90, 145–150 (2014).

[52] Osada, H., Tanemura, H., Strong Markov property of determinantal processes with
extended kernels, Stochastic Processes and their Applications 126 (2016), 186-208.

[53] Osada, H., Tanemura, H., Infinite-dimensional stochastic differential equations and
tail σ-fields, arXiv:1412.8674.

[54] Osada, H., Tanemura, H., Infinite-dimensional stochastic differential equations related
to Airy random point fields, arXiv:1408.0632.

[55] Pastur, L., Shcherbina, M. Universality of the local eigenvalue statistics for a class of
unitary invariant random matrix ensembles, J. Stat. Phys. 86 (1997), 109–147.

[56] Pastur, L., Shcherbina, M., On the edge universality of the local eigenvalue statistics
of matrix models, Math. Fiz. Anal. Geom., 10 (2003), 335–365.
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