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Preface

For a finite set X, an automorphism o € Aut(X), we define the zeta function of the dynamical
system (o, X) as the following generating function.

Co(s, X) ::exp{ilFiw"ﬂXﬂsm}_

m

Here, Fix(o, X) is the fixed point set of o in X. Kim, Koyama and Kurokawa showed that this
dynamical zeta function has some properties which are analogous to the ones of Riemann zeta
function such as functional equation, Euler product ([9]). Furthermore the zeta function of (o, X)
satisfies the analogue of the Riemann hypothesis. The primary reason for this property is that
this dynamical zeta function has the determinant expression. Then focusing on this expression,
we define the representation zeta function by using the determinant expression. More precisely,
let G be a group and p : G — GL(V) be a finite-dimensional representation over C, then we
define the representation zeta function of g € G by

((s,9:p) = det(Igimp — p(g)s) ™"

Our motivation is to describe the invariants or information of the geometric objects such as
braids and knots by using the zeta function. Then in this paper, we study the properties of the
zeta function associated with a representation of the braid group B,

In Chapter 2, we will introduce the braid zeta functions associated with three famous braid
representations: Burau representation 3, ,, Jones representation x, 4, and HOMFLY representa-
tion 77%). Especially, the zeta function associated with the Burau representation, for simplicity,
we call “Burau zeta function” here, is a g-analogue of the zeta function of the finite dynami-
cal system (o, X). Furthermore, Burau zeta function has similar properties of dynamical zeta
function except the Euler product. In particular, like the class number formula of the Dedekind
zeta function which is a generalization of the Riemann zeta function, the residue at s = 1 of the
Burau zeta function encodes an important geometric invariant such as the Alexander polyno-
mial. Similar to the Burau zeta function, we will show that the Jones polynomial and HOMFLY
polynomial which are famous knot invariants are expressed as the special value of the logarithmic
derivative of the zeta functions associated with the remaining two representations respectively.
Furthermore, we show that these zeta functions can be written by the Burau zeta function.
Then considering the relationship between two different braid zeta functions, we can obtain the
relationship between knot invariants. For example, in the last section of Chapter 2, by using the
zeta function, we show that the HOMFLY polynomial of the closure of o € B3 can be expressed
by the Burau representation.

In Chapter 3, we consider the relation between the zeta function of a braid which is made by
the two braids ¢ and 7, and two zeta functions of ¢ and 7.

C(s,(0,7)) = C(s,0),((s,7)

In this chapter, we give an example by defining the special product of braids and explicit formula
of the Burau zeta function of a braid which is expressed as the special product of two braids.
As an application, for two braids o, 7, we show that the Alexander polynomial of the closure of
special product ¢ * 7 can be expressed by two Alexander polynomials of ¢ and 7.

In Chapter 4, we mainly study the zeta function of the torus type braid, which is defined in
Chapter 1, and its arithmetic properties. First we introduce the Kosyak’s braid representation
of B3 which is a ¢-deformation of the symmetric power of the reduced Burau representation. By



simple calculation, we can see that the zeta function associated with this representation for the
torus type braid in Bj is related to the following g¢-identity which is known to be the Euler’s
pentagonal number theorem.

o0

[Ta-a) =31

n=1 keZ
In this chapter, we define the representation for B,,, denoted by pgi\gt, which is a generalization
of Kosyak’s representation for B3 and consider the relation between torus type braid and related
g-series in general case. The main result of Chapter 4 shows that the zeta function associated
with pff,\;),t for the torus type braid can be expressed by the zeta function associated with a
representation of the symmetric group &,. As a corollary of this formula, we obtain some
related g¢-identities. In the last section, for ¢ € B,, we define the trace generating function

Zgt(s,0) as

o
Zgi(s,0) =1+ Z tr p;ﬁ?t(a)sN.
N=1

By the definition of pg]),t, and MacMahon Master Theorem, we can see that Z,(s,o) is the
g-deformation of the zeta function associated with the reduced Burau representation. Then, we
show that Z,(s,o) turns to the Alexander polynomial essentially when ¢ — 1,5 = 1. On the
other hand when o is torus type braid, we have the related g-series by substituting t — 1,s = 1.
Thus, these limit formulas bring a new prospect for the relation between invariant of torus knots
and arithmetic properties of g-series.



1 Introduction

1.1 Braid group

Let B,, be the braid group on n strands. It is known that B, has the following presentation.
B, = (0, (1<i<n—1)]|oi0; =0j0; (|i — j| > 2),0i0i410; = 0it10i0i41 (1 <i < n—2)).

The generator o; can be identified with the crossing between the i-th and (i 4+ 1)-st strands as
Figure 1, and the multiplication of generators implies that the braid obtained by attaching the

Figure 1: generator o; Figure 2: the closure of a braid o

generators from the top to the bottom. The closure of a braid is the link obtained from the
braid by connecting upper ends and lower ends as Figure 2. The closure of ¢ is denoted by &.
For a pair (n,m) € N2, we define the torus type braid as follows.

Figure 3: torus tybe braid o5 3 Figure 4: Torus knot T'(3,7)

Onm = (01 0pn-1)" € By.

When (n,m) is coprime, the closure of o, ,, turns to the torus knot which is denoted by
T(n,m) as usual. Next we define a map ¢ : B, — Z. We assume that o € B,, can be expressed
as o;'oy -0y, Then g(0) is defined as

elo):=e1+e+ - +ep
Let By,4 be the Burau representation, which is defined by
Bn,q : Bn — GL(W,,),

1— 1 .
Br,qg(oi) = i—1@( qq O>@In—i—1 (t=1,2,...,n—1).

Here W,, is n-dimensional vector space over C spanned by {fi, fo,..., fn}, and ¢ is complex
parameter. For simplicity, we assume that ¢ is generic. Since det f, 4(0;) = (—¢), then we have

det By q(0) = (=)™



It is well-known that the Burau representation 3, , can be decomposed into the trivial represen-
tation 1 and an (n — 1)-dimensional irreducible representation £y, ,.

Bn,q =1 B:L,qy

where f3, , is defined by

g @ B — GL(W,),

nqgl0i) i =qlicea® | ¢ —q¢ 1 | ©lp—i2 (2<i<n-—2),

In_3@<1 0) (i=n-1).
q —q

Here, W is (n — 1)-dimensional vector space spanned by {f1, f2, ..., fa_1}. Br.q is called the
reduced Burau representation.

1.2 The zeta function of a finite dynamical system

Let X, be a finite set X, := {1,2,...,n}. For an automorphism o € Aut(X,,) ~ &, the pair
(o, Xy,) is called dynamical system. Furthermore, for a dynamical system (o, X,,), we define

Cols, Xp) := exp{ Z |FiX(0m’X")Sm}’

m
m=1

where Fix(e™, X,,) = {z € X, | 0™z = z}. We call {,(s, X,,) the dynamical zeta function of
(o, Xn).

Example 1.2.1. Put 0 = (12)(345) € Aut(X;) ~ &p, then the number of fixed points is
calculated as

5 (m=0 mod 6),
0 (m=4+1 mod 6),
|Fix(c™, X5)| = 9 (m=42 mod6)
3 (m=3 mod6).
Then we have
. |Fix(o™, X, m
Cols, X5) = eXP{Z [Fix(o™, X5)| }
m=1 m
= exp i 3361C + i Lsﬁk—4 4 i LSGk—2 + i 3 PULES
6k 6k — 4 6k — 2 6k — 3
= ig 2"3_{_%3 3k _ 1 (1_ 2)—1+1 (1_ 3)—1 _ 1
= exp 57" a7 ° = exp« log S og S S A=)
k=1 k=1



It is well-known that the dynamical zeta function (,(s, X,,) has the following properties (see
[9] Proposition 1).

Proposition 1.2.1. We regard Aut(X,,) ~ &,,.
(1) Let Cycle(o) be the set of primitive cycles of o € &,, and l(P) be the length of cycle
P € Cycle(o). Then, (s(s, Xy) has the following expression.

1
Gr= 1 =g
PeCycle(o)
(2) (5(s,X,) satisfies the following functional equation.
Cols, Xn) = sgn(0)(—s) "Co(s ™, Xn),

where sgn : &, — { £1} is the signature of the permutation.
(3) We have the following expression.

Cols, X)) = det(I, — pp(o)s) L.

Here, p,, : 6,, — GL,(Z) is the permutation representation.
(4) All poles of (5(e™*%, X,,) satisfy

Re(s) = 0.

Note that the formula (1) is the analogue of Euler product expression of the Riemann zeta
function. Furthermore, (4) is the analogue of the Riemann hypothesis. Since the zeta function
(-(s, X;) has the determinant expression (3), we can prove easily the analogue of the Riemann
hypothesis (4).

Next we focus on the determinant expression, and consider the generalization of the dynamical
zeta function.

1.3 Representation zeta function

Let G be a group, and p : G — GL(V) be a finite-dimensional representation of G over C.
Then we define the representation zeta function of g € G as

C(s,9;p) = det(Laimp — p(g)s) "
Note that {(s, g; p) has the generating function expression as follows.
N o (™)
C(s,9;p) = expq Y ————L5" 0. (1.1)

m
m=1

By the definition, if p; ~ p2, we have ((s,g;p1) = ((s,g; p2). Furthermore if p = p; @ p2, we
have tr p(g) = tr p1(g) + tr p2(g) for all g € G. Then, by (1.1), we have the following formula.

C(s,9;p1 @ p2) = C((5,9;p1)¢(5,9; p2)- (1.2)

When p = p, which is the permutation representation of the symmetric group &,, the zeta
function ((s, o;pn) coincides with the dynamical zeta function (, (s, Xp).

CO’(SvX’Vl> = det(In - pn(U)S)il = C(S7U;pn)-

Hence, the representation zeta function can be regarded as the generalization of the dynamical
zeta function.



2 Braid zeta functions

In this section we define the zeta function of a braid by using the braid group representation.
That is, if there are some braid representations, then we can define the zeta functions associated
with each representation.

2.1 The Burau representation 3, ,

First, we introduce the case of the Burau representation. Since the Burau representation is a
g-deformation of the permutation representation, we can regard the zeta function associated with
the Burau representation as a g-analogue of the dynamical zeta function. This is the simplest,
but the most important braid zeta function. For a braid o € B,,, we can define the zeta function
associated with the Burau representation as follows.

(8,03 Bng) := det(I, — Bny(0)s) .

Theorem 2.1.1. (1) For any o € B, we have the following limit formula.
lim ((s, o; 671,(1) = ((s,mn(0);pn) = Cﬂn(a)(37 Xn).
q—1

Here, m, : B, — S, is natural projection defined by mp(0;) := (i,i + 1) € &,,.
(2) For any o € By, we have

C(5,05Bng) = (=) 7 (=5)"C(1/5,07 " Bng)-
(3) We assume that the closure of o € By, is a knot. Then we have the following residue formula.

1
[n]q

Here Az (q) is the Alezander polynomial of a knot o, and [n]y is defined by

Res (5,03 n,g) = = As(g)

(4) Assume that q is a point of the unit circle on C, in other words, q is expressed by e e R),
and that the argument of q satisfies |0| < 2w /n. Then for any o € By, all poles of ((e™°,0; Bn.q)
satisfy

Re(s) = 0.
(5) For a coprime pair (n,m) € N2, we have the following explicit formula.

(1—4q™s)

C(S, Un,m?ﬁn,q) = (1 _ S)(l — q"ms") .

Remark that ((s,0;(y,4) does not have the Euler product expression in general. However,
(2) and (4) are analogous to Proposition 1.2.1. Furthermore (3) is the characteristic property of
the braid zeta function associated with the Burau representation. This property can be regarded
as the analogue of the residue formula of the Dedekind zeta function which is the generalization
of the Riemann zeta function.



Proof. (1) When ¢ — 1, the Burau representation turns to the permutation representation.
Then we have the formula (1).
(2) By the definition, we have

C(s,0; Bn,q) = det(l, — qu(a)s)*l = det(,@n,q(a)s)*l(—l)" det(1,, — ﬂ;é(a)sil)*l
= (=) (=5) (s 07 Bug)-

(3) When the closure of o is knot, it is well-known that the Alexander polynomial of & can be
obtained by using the reduced Burau representation as follows (see [4, Theorem 3.11]).

det(In-1 — B 4(0)) = 1+ a+ @+ + 7" ")As(q).

Since m,(0) is the simple cycle, ((s,m,(0); pn) has a simple pole at s = 1. On the other hand,
by the decomposition of the Burau representation, ((s,o; 84) must have a pole at s = 1. By
the limit formula (1), the order of this pole is smaller or equal to the order of the pole of
C(s,mn(0);pn) at s = 1. Thus ((s,0; By,¢) has a simple pole at s = 1. Moreover the residue of
¢(s,0; Bn,q) can be calculated as follows.

Res ((s, 0 Bng) = lim det(I, — 16 By q(0)s)~! = lim —
s=1 ’ s—1 ’ 1

(4) If the absolute values of the eigenvalues of ), (o) are all equal to 1, then all poles of
C(e™*,0; Bn,q) satisty

e = Jo=?] = || = 1,
where oy is one of the eigenvalues of 3] (o). Then, the real part of s is equal to 0.

Re(s) = 0.

Hence, it is sufficient to show that the absolute values of the eigenvalues of 3 (o) are all equal
to 1. In [18|, Squier proved that the reduced Burau representation is unitary in the following
sense. We put

q% + q_% —q% )
1
—q 2
Q) = )
O —qf% q% + qfé

Then, the following equation holds for any braid o € B,,.

tﬁ,’;’q(a) Q- B (o) =
When ¢ € {z € C | |z| = 1}, we can regard ¢ — ¢! as the arbitrary conjugation of the matrix
with complex entries. Furthermore, we can regard that B, acts on C"~! by using the reduced
Burau representation.

;7(1 : Bn — GLnfl((C).
Now, we define the following sesquilinear form for =,y € C*~!

<x7y>Bn =" Q; Y.

10



Here y is the complex conjugation of y. Then, we have

(Br.q(0)z, By o (0)y) B, = &} 4(0) - Q- B, -1(0)F

= <$>y>Bn'

Since €, is the Hermitian matrix, the sesquilinear form (-,-)p, is positive definite if and only
if the eigenvalues of (2], are all positive. In this case, the eigenvalues of €2} can be computed
explicitly by using the formula for the tridiagonal matrix (see [19]). Then the set of eigenvalues
of €, can be expressed by

y
{q% —I—q_% —92cos |1<j<n-1}.
n
Hence, consequently we can say that (-,-)p, is positive definite if and only if

n

2

0] < (2.1)

We assume that = is an eigenvector of 3] (o) with the eigenvalue oy for o € B,,. Then we have

(@,2)B, = (B1,4(0)2, B}, 4 (0)2) B, = (g2, aq2) B, = |ogl* (2,2,

Under the condition (2.1), all eigenvalues of 3, (o) satisfy [ay| = 1. Therefore we complete the
proof of (4).

(5) We compute the eigenvalues of (3, q(0yn m). By the definition of the Burau representation, we
have

l1-q 1—q -+ 1—¢q 1
q 0
Bn,q(an,l) = q
0
q 0
Thus,
1-(1-qs =1-q)s -+ —(1-q)s —s
—qs 1
det(I, — Bn,q(om,1)s) = det —qs
1
—qs 1
n—2 ‘
=(1-(1-q)s)—(L—q)s > (g5) — s(gs)""
j=1
1— n _ n
_ Lo (e9)" 1 (gs)
1—gs 1—gs
(=91 (g9
1—gs '
Putting &, = e%, the eigenvalues of matrix 3, 4(cn 1) are presented by 1,¢ 1, ..., ¢ 1&n 1.
When a pair (n,m) is coprime, the eigenvalues of 3y, 4(0'nm) coincide with 1,47 &y, ..., g ™ER L.
Then we have the formula (5) by replacing g — ¢™. O

11
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Figure 5: (o105 ")2

Example 2.1.1. We consider the braid o = (0102_1)2 € Bs. The closure of this braid turns to
a famous knot which is said to be Figure-eight knot (Figure 5).
We have

q2

(1—s)(g®>— (1 —2¢+ ¢ —2¢% + ¢Y)s + ¢?s?)

(s, (0105 1)% B3 q) =

By Theorem 2.1.1,

(2.2)

2

_ . q
R )% B3q) =1
e C(s, (0107)% Bs.q) ool g2 — (1—-2¢+q¢*>—2¢% + ¢*)s + ¢%s?

q2

+q+¢*)(-1+3¢—¢*)

Then we have A (q) = ¢ 2(—=1+ 3q — ¢?). Moreover, by (2.2), the non-trivial poles of

(710712
(s, (0105 1)%; B34) are equal to the solutions of the following quadratic equation.

1—(g2=2¢ 41 -2¢+¢*)a+a>=0. (2.3)
Since a # 0, by (2.3), we have

atat=q¢?-2¢ +1-2¢+¢@=(qg+qg ") -20q+qg ") -1

2

If the argument of ¢, denoted by 0, satisfies || < 2%, we have —1 < ¢+ ¢~! < 2. Then under

this condition, we have
atat=(g+q ) -20¢+g ) -1<2

Since |a| = 1 if and only if a + a~! < 2, we conclude that the analogue of Riemann hypothesis
holds under the condition |0] < 2.

2.2 The Jones representation X, ,

The zeta function associated with the Burau representation is connected with the Alexander
polynomial. Next we introduce the braid zeta function connected with the Jones polynomial
which is also famous knot invariant. Let V2 be a 2-dimensional vector space and R, be a linear
map on V2®2 defined by

0 ¢

Ry = 1 1-¢

By directly computing, we have the following equation.
(Ir ® Rq)(Rq ® I2)(I2 ® Rq) = (Rq ® Iy)(Ia ® Rq)(Rq ® I2). (2.4)
Here, I5 is the identity map on V5, and ® is the Kronecker product. The equation (2.4) is said

to be the Yang-Baxter equation.

12



Definition 2.2.1. We define the linear map X 4 : By, — GL(Vy"") as follows.
Xn,q(07) = 12®(i_1) ® Ry @ 12®(n_i_1)-

Since R, satisfies the equation (2.4), xp 4 is the braid representation. We call x4 the Jones
representation. Then we can define the braid zeta function associated with x,, 4. Here, we define
the “weighted” braid zeta function. For o € B,

Ct(Sa a; Xn,q) = det(IZ” - Xn,q(U)NQ(t)(@nS)il'

Here, us(t) := diag(1,t), and t is complex parameter. When we let ¢ = 1, we have the usual
representation zeta function (s, 05 Xn.q)-

Theorem 2.2.1. (1) For any o € B, we have the following functional equation.

_on _on—2 _ n—1 _ _
Ct(svg;Xn,q):s 2 (_Q) 2 E(U)t n2 Ctil(s 170 1§Xn,q)'

(2) We assume that the closure of o € By, is a knot, then we have

d Lin_e(o)—
Tlog(y(s. 0 xmg)| = g2 ==@=0(1 4 q)J5(q). (2.5)
s=0

Here, J5(q) is the Jones polynomial of & which is famous knot invariant.

Proof. (1) From the definition, we have
Gt(5, 05 Xn,q) = det(=sxn,g(0)p2()") 7 det(Ion — xnq(0™ p2(t™)*"s™")

= (=) det(xn,q(0)) "  det(ua()®") 1 G1 (s 07 Xnyg)-

To compute det(xy,q(0)) and det(u2(¢)®™), we use the following property of the Kronecker prod-
uct. Let A be an n X n matrix, and B be an m X m matrix, then

det(A ® B) = det(A)™ det(B)". (2.6)

Since det(R,) = —q, we have

2n7i+1

det(xnq(0s)) = det(1$0Y) det(R, @ I3 1)2 !
= {det(Ry)*" " det(I)*"}*

= (0"

Hence we have det(x, (o —¢)?"7?¢(@). Similarly, we have det(pa(t)®") = ¢"2"". Then (1
7q

is hold.
(2) It is well-known that the Jones polynomial of a knot & is given as following formula (see
[14], Chapter 12).

g~ n—e(@)-1)

J5(q) = 1—+qtr (Xn.q(o)p2(q)®™). (2.7)

By using the generating function expression, we have

d doot n ®n\ym
@mwmmwzwszm@ﬁ@>>

13



Hence

d n
% log Cq(sa g3 Xn,q) =tr (Xn,q(U)NQ (Q)® )
s=0

By (2.7), we have the formula (2.12) O

Next we introduce the g-analogue of the exterior algebra to show that the zeta function
Ct(s,0; Xn,q) can be expressed by using only the information of the Burau representation.

Definition 2.2.2. Let U,, be an n-dimensional vector space spanned by {u1,ug,...,u,}. Then
the g-exterior algebra of U, is defined as

/\q(Un) =T (Un)/(ui @ uj + quj @ui(1 <i < j<n)u; @u(l <i<n)).

Here T'(Uy,) is the tensor algebra of U, defined by

o0

T(U,) = P U™

m=0
The product of A 4(Uy) is written by A.

The k-th g-exterior power of Uy, denoted by A%(Uy,), is the vector subspace of A ¢(Un)
spanned by the elements of the form x; A--- Azy, for z; € Uy,. Then the set {u;, A, A+ Aug, |
1 <iy <ip<---<ip<n}isabasis of A¥(U,). Furthermore we have

NaUn) =D N\ Un).
k=0

Suppose that F' is the linear map on Uy, then we can construct the linear map on A 4(U,)
denoted by A4F'. More concretely, for each 0 < k < n, we define the map /\SF as

NEF(zy Ao Aay) == Fa1) A+ A F(xy).

Theorem 2.2.2. For o € B,,, we have

n

(3,05 xng) = [ [ C(tFs. 030 ). (2.8)

k=0
k . Ak
Here, @y = A2 Bng-

Proof. Let By,4 : By, — GL(W,,) be the Burau representation and {fi,..., fn} be the basis of
W,,. Then we consider the (—g)-exterior algebra of W,,. First, we define the map $,, inductively
as follows.

Hp—18id
D2 VP =2 A L (Was1) @ Vo — N\ —g(Win). (2.9)
Here, $1(eg) :=1,91(e1) := f1, and the second map is defined by
agReg+ay ®er — ag+ ag A fn, (2.10)

for ag, 1 € N\ —q(Wyp—1). Then $, is an isomorphism. We next show that $), is equivariant
with respect to the actions of By, on Vi® and A —4(W,) by induction on n. The case of n = 2
is trivial, then we consider the general n. We assume that $),_1 is equivariant with respect to

14



the action of B,_1. Then by construction (2.9), we can see that §), is equivariant with respect
to the action of Bj,_;. Thus, it is sufficient to consider the action of ¢,_1 € B,, since we can
regard B,,_1 C B,. Computation of £, can be expressed as follows.

Hn—2®id id
- V2®n M /\ —q(Wn—Z) @Vo®@ Vo — /\ —q(Wn)-

Here the second map is computed by

app ® eg ®eptapr Weg®er +ajg®er ¥Weg+ ap ®ep ®ep
=00+ o1 Ao+ aioA fac1t F a1 A fuo1 A fa. (2.11)

Here, o j € N\ —g(Wp—2) (i,5 = 0,1). By the definition of R,, the action of oy,—1 on V;° takes
the left hand side of (2.11) to the image

ap0 ®eg ®eg+ a1 ® (ge1 ®ep) + a0 @ (eo ®er + (1 —q)er ®ep) + ar1 ®ep ® e.

On the other hand, from the definition of the Burau representation, the action of o,_1 on W,
takes frn—1 = (1 — q)fun-1+ fn, fn — qfn—1. Then the action of 0,1 on A _4(WW,,) takes the
right hand side of (2.11) to the image

a0+ 01 A (qfn—1) Fa10 A (1= @) fam1+ fo) F a1 A((L = q) fam1 + fn) A (@ fn=1)
=ap0+ 0,1 A (qfn—1) +Fa10 A (1 = q) fu—1+ fn) +a11 A (fa) A (@fn-1)
=ago +ao1 A (qfn1) a0 A (L= q)fa1+ fo) +a11 A (fao1) A (fa)-

Hence we can conclude that $),, is equivariant with respect to the action of o,,—1, and we have

n n
k k
Xn,g ™~ N—qPn,q = @ N gBn,q = @ Pn,q-
k=0 k=0

Then, by using the formula (1.2), we have

n

((s,03xnq) = [ [ C(s. 0505 ).

k=0

By (2.10), the map u(t)®™ on A% (W,) can be regarded as scalar multiplication tkid/\k W)+
—q n
Then we have the formula (2.8). O

Remark 2.2.1. From the formula (2.12), we have

—%(n—z—: o)—

q (@)-1) & k k
J5(q) = 114 kzoq tr(¢n ()

Furthermore, go?hq is the trivial representation. Moreover, ‘p}z,q coincides with the Burau repre-
sentation.

2.3 The HOMFLY representation TT(LZ)
In this section, we introduce the HOMFLY representation 7'7%) which is a generalization of the
Jones representation.
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Definition 2.3.1. ([14], Chapter 12) Let Viy be an N-dimensional vector space spanned by
(N)

{eo,€1,...,en—1}. Then we define the map 75,4 as
™ B, — GL(Vg"™),

. i—1 . n—i—1
T,(L{\q[)(ai) = zd%}fl )& RéN) ® 1d{8;]g ),

Here, R((IN) is defined by
ge; ® e; (Z < j),

RM(e;®ej) S e; @ e (i = 7)
ej e+ (1—qle;®ej (i> 7).
First we show the following proposition.
Proposition 2.3.1. RéN) satisfies the following Yang-Baxter equation.
(RN @ idy,, ) (idy, ® ROV (RWN) @ idyy,) = (idyy @ RN (RN @ idy,, ) (idy, @ RV,

Proof. For simplicity, we consider only 3 basis ej, e, e3. Furthermore, we put Ry := (Rl(zN) X

idyy ) (idyvy, @ REYVERY @ idyy,), Ry = (idy, @ ROV R @ idyy, ) (idy,, © RYY). Then it is

sufficient to show the equation
Ri(ei ® ej ® ex) = Ra(e; ® ej @ ey,)

for following 13 cases: (1) e1 ®e Peq, (2) e1 ® e X e, (3) e1 ®ex ®eq, (4) e1 ® ez ® e, (5)
e1®@ex®es, (6) eqx@ez®ez, (7) e2®@e1®eq, (8) e2®@e1 ®ea, (9) ea®er ®es, (10) ea @ ez Ve,
(11) e2 ® eg @ e, (12) e3 @ e1 ® €2, (13) e3 ® e2 ® e1. By the definition of R((IN), we heve

() er®er ®e
Ri(e1®e1®e1) =e1 ®e; e,
Ro(e1®er ®ep) =ep ey ®ey.
(2) e1®@er ®ez
Ri(e1®e1 @ eg) = Pea ® e ®eq,
Ry(e1 ®e1 ®ez) = Pea @ e @ ey
(3) e1 ®ea @eq
Ri(fe1®ea®er) =qe1 @ea®@er +q(l —qlea ®eq ®ex,
Ry(e1®@ea®er) =qer ®ea®ep +q(l —qlea ®ep ®ey.
(4) e1 ®e2 @ e2
Ri(e1 ®ea ®@e2) = Pea @ ea @ ey,

Ro(e1®es ®ea) = q°ea @ ea @ey.
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(5) e1 ®ea ®e3
Ri(e1 ® ea ® e3) =g’e3 @ ey @ ey,
Rae1 @ ea @ e3) = ¢°e3 @ ea @ ey.
(6) e1 ®e3 @ ea
Ri(e1®e3®e) = Pea @es@er + ¢° (1 — q)es ® ea @ ey,
Ry(e1 ®es@ez) = Pea @ ez @ e1 + ¢°(1 — q)e3 ® ea @ ey
() ea®er ®eq
Ri(ea®@e1®e1) =e1®@ea®er + (1 —q)le1®e1 Rea+ea®e; Qey),
Rlea®e1®ej) =e1Q@ea®@e1+ (1 —q)le1 ®er e +e2 ey Rey).
(8) e2®er ®en
Ri(e2®e1 ®ez) =qea®@e; ®er +q(l — glea ®e2 D ey,
Ro(ea®e; ®ez) =qea ®@er ®ep 4+ q(l — q)ea ® ea @ ey.
(9) e2 ®e1 ® ez
Ri(e2®e1 ®es) =qPes@er @ ez + ¢ (1 — q)es ® ea @ ey,
Ry(ea®e1 ®e3) = Pes @ e1 ® ez + ¢°(1 — q)es ® ea @ ey
(10) e2 ® e2 @ €1
Ri(ea®@ea®er) =e1Q@ea®ea+ (1 —q)(ea®e; Rea+ea @ea@ey),
Ry(ea®@ea®@er) =e1@ea®@ea+ (1 —¢q)lea®e; ®ea+e2@ex @eq).
(11) ea ® e3 ® €1
Ri(ea®e3®eq)
=qe1®es@er+q(l—q)(es@e1®@ea+e2®es@er) +q(1 — q)’e3® ey e,
Ra(ea ® e3 ®eyq)
=ge1®es®ea+q(l—q)(es®e1®ea+ea ez ®er) + (1 — q)’es @ ea @ e
(12) e3 ®e1 ® e
Ri(ez ® e ® e2)
=qea®e1®ez+q(l—q)(e2®e3®@ez+e3®er ®ez) + q(1 — q)’es @ ez @ e,
Rao(e3 ® e ® e3)

:q€2®€1®€3+q(1—q)(62®€3®63+€3®61®62)+q(1—q)263®62®61.
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(13) e3®@ea ®eq

Ri(es®@ea®@er) =e1 ®ea ®ez+ (1 —q)le1@e3s@exs+ea®@e; ®es

)
+(1-g(ea@es@e+ee@e)+(1-q)(1-g+¢)ez@er®en,
Ro(es®@ea®er) =e1 ®ea®ez+ (1 —q)(e1 ®es®ea + ea ®ep @ e3)

(

+(1-q)(e2®es@e1 +e3®er ®ea) + (1 —q) (1 — g+ ¢*)ez @ ea @ ey.

Hence RéN) satisfies the Yang-Baxter equation. O
By Proposition 2.3.1, we can see that T»,(l{g) is the braid representation which is called N-th

(N)

degree HOMFLY representation. Furthermore we remark that the representation 7, 4" coincides
with the Jones representation when N = 2. Similar to the Jones representation, we can define

(N)

the braid zeta function associated with 7, ,’ and the weighted braid zeta function as follows.

G, 7)) o= det(Iyn — 743 (0)n (£)%"s) ™,

» In,g
where, uy(t) := diag(1,¢t,...,tV1).
Theorem 2.3.1. (1) For any o € B, we have the following functional equation.

N)

Gi(s, J’Téq ) = ()N (—q) BN -DNTTI@) = ENTIN D) (g7 g1 n(N)y

n,q

(2) We assume that the closure of o € By, is a knot, then we have

d s(N—1)(n—e(o)—
Tlog (s, oy i) = g VD= @-DIN] gV (g). (2.12)

y Inyg o
ds N

Here, HéN)(q) is called N-th degree HOMFLY polynomial of & which is famous knot invariant.
Proof. (1) By similar calculation of the proof of Theorem 2.2.1,
oo, 70) = det(—s7L2) (@)pux (7)1 det(Tyn — 1) (o (£ ")
= (=) det(rg (o)) det(in (5" s (57 0 D)

Then we calculate the determinant of Rg ) by sorting the basis of Vy ® Vi as

€)X ep,...e0 0 eN_2,61Q€,...,61 0eN—_2,...,EN—2 €0,...,EN_2 K EN_2,
(A1)
€0 ® eN—1,EN—1 & €0, €2 O EN—1,EN-1 & €2,...,EN—2 B EN_1,EN-1 B EN_2,EN—1 D EN_1 .
(A2) (A2) (A2) (As)

)

Here, the action on the basis (A;) corresponds to Rt(ZN_ , and (Ag) corresponds to the following

2 X 2 matrix.
0 ¢
B(q)zz(l 1_q).

Since the action on (As) is trivial and det B(q) = (—q), then we have

det R = det RNV (det B(q))V ' = det RNV (—g)N "t = (—q) " =
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By the formula (2.6),
det(miM)(0,)) = det(Iyi-1 ® RN @ Iyn-i1) = (det RIV)N"7.
Thus, for o € B,
det(r})(9)) = (=q)z VIV,
Similarly, det(uy (t)®™) can be calculated as follows.
det(u (1)) = (et (1)) Y (NN TN = NI,

Hence (1) holds.
(2) It is well-known that the N-th degree HOMFLY polynomial of a knot & is given as the
following formula (see [14], Chapter 12).

g —3(N=1)(n—e(0)-1)
[Nl
By the same calculation of the proof of Theorem 2.2.1, we have the formula (2.12). O

tr (r\%) (o) (@)®™).

Next we introduce the product formula of the zeta function (s, o; 7'7%)) which is generaliza-
tion of Theorem 2.2.2. To state the product formula, we define some notations.
For I = (i1,i2,...,i,) € {0,1,..., N —1}" we define
er=¢ej Ve, - Ve € Vﬁ“.
Then {e; | I € {0,1,...,N — 1}"} is the basis of V3. Furthermore we assume that I and

J are equivalent if there exists a permutation ¢ € &, such that J = o(I), where o(I) =
o((i1,72,- -+ ,in)) is defined as

o((i1,92,  yin)) = (lo(1)s lo(2)s - - + s lo(n))-

Thus we can define the quotient set {0, 1,..., N—1}"/&,,. For simplicity, we regard this quotient
set as the following set.

For I € J,, we can define a vector subspace V7 spanned by all permutations of I, furthermore,
since the action of the braid group B,, preserves V; for all I € J,,, then we can obtain the braid
representation with respect to I € J,, as

@l 4t Bn — GL(V1).
Moreover we have the following decomposition.

Vit = v (2.13)

1€7,
Theorem 2.3.2. Let N > 2. Then, for any o € B,, we have the following formula.

Ct(s Uanq H C t|”8 U)San)
1€7,
Here, |I| :=1i1 +io + -+ 4+ iy for I = (i1,d9,...,10n) € Tp.

Proof. By (2.13), we immediately have
(s, om0 =TT <s, 0590 ).

Ie€Tn
Since un(t)e;, = t'ke;, for ix € {0,1,..., N — 1}, then the action of uy(¢)®" on V7 turns to the
scalar multiplication t//lidy,. Hence the formula of Theorem 2.3.2 holds. ]

19



2.4 Classical limit and dynamical zeta function

Let 2% be the power set of X,,. Then o € &,, acts on 2% naturally. Then the pair (o, 2%) is
dynamical system.

Example 2.4.1. The transposition s; := (1,2) € &3 acts on the power set 2%3 as follows.
si@)=¢, si({1}) =12}, si({2H={1}, s:({3})={3}
51({172}) = {172}7 51({273}) = {173}’ 51({3’1}) = {273}a 51({17273}) = {1’2’3}'

Furthermore, we consider the generalization of the power set of the finite set.

Definition 2.4.1. For N > 2, we define
NXn = {{1(2'1)72(1'2), e ,n(zn)} | 0< ij <N - 1}.
We call the set NX» N-colored power set.

Note that 2-colored power set coincides with usual power set 2%7. Moreover, similar to the
power set 2% the action of o € S, on NX can be defined naturally. Then, for N > 2, we can
define the zeta function of the dynamical system (o, N%») as follows.

CU(S,NX") = exp{ i ]Fix(am,NXn)\Sm}‘
m=1

m

Here, Fix(o™, NX») := {x € NX» | 0™z = z}. Next we consider the classical limit ¢ — 1 for
(N)

the braid zeta function associated with 7 4 .
Theorem 2.4.1. For any o € By, we have the following limit formula.

(}g% C(S,O’; 7_7(7,{\;)) = Cﬁn(o)('S?NXn)' (214)

Proof. When g — 1, RSN) turns to the following operator.

e; ®e; (i <j),
N .
Rg )(6i®6’j): e e (i=17),
e; ®e; (’L > j)
Then we obtain the representation p%N) o Ty 1= 7'7(5\1[) : B, — GL(VS™). Furthermore, we
identify {1y, 2(i5)s - -+ M(n) ) € N%Xn with a vector e;, ® e;, ® -+ ® e;, € V" Then we have

Tfﬁ)(a) = trp(N)(Wn(J)) = tr |Fix(m,(0), N¥)|.

n
Hence the formula (2.14) holds. O
If o € G,, is the cycle element with length n, we have the following explicit formula.
Theorem 2.4.2. Let ¢, € S, be a cycle element with length n, then we have
1
X’VL —
CCn(S?N ) - H (1 - Sd)M(N,d) . (215)
dln
Here, M(N,d) is defined by
1 d
M(N,d) == ~ — | N*
(N.d) = z|:u<k> ,

where p(n) is the Mobius function.
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Proof. Since p%N)(cZ) = Inn, the eigenvalues of p%N)(cn) are d-th roots of unity, where d | n.

Moreover, since tr(pgN) (cn)) is an integer value, the zeta function can be written by the following
form.

1
Ccn(stxn) = H (1 — Sd)fN,d'

dln

Considering the degree of (., (s, NX")~! we have

> d-fya=N"

dln
By using the Mobius inversion formula,

1 d
== — | N*.
IN.d d Z H < k)
k|d

Then, Theorem 2.4.2 holds. O

As an application of Theorem 2.4.1, and Theorem 2.4.2, for ¢ € B3, we obtain the explicit
formula of the HOMFLY polynomial HEN)(q) by using only the Burau representation.

o

Corollary 2.4.1. We assume that the closure of 0 € Bs is a knot, Then for N > 2, we have

(N-1)(eo)-2 1= @*A+ ¢ + ) + 90 = ¢V (1 = ¢V HtrBs 4(0)
(1-9)(1—-¢°) '

HéN) (q) =q>

Proof. From the definition of R((ZN), we have the following equation for arbitrary n.

T (00 = (L= a)ri (00) + - idyen.

n?q

Then, the HOMFLY representation T,S{\qf) has the structure of the Iwahori-Hecke algebra (see
[8], Chapter 4). Then from the Appendix A.2, we can see that the representation TT(LZ) can

be decomposed into the following three types: (1) reduced Burau representation 85 ,, (2) triv-

ial representation 1, (3) 1-dimensional representation o — (—q)5(?) which is equivalent to the
composition detofj . On the other hand, by Theorem 2.4.2, we have

. Ny 1 _ 1
Limy (0375, ) =] 1 (1= s)MNd) — (1 — s)N(1 — $3)NN*-1)/3" (2.16)

Then we can see that the type (3) does not appear in @éyq for any I € J,,. Hence we can conclude

that 73(7];[) is decomposed into N trivial representations 1 and %N(N2 — 1) Burau representations

1® B3 ,. Next we classify the set J3 as the following 3 patterns.
Cr = {(k,k, k) € T3}, Cy = {(k1, k1, k2), (k1, k2, k2) € T3 | k1 < ka},
C3:= {(ll,lg,lg) € J3 ‘ lh<lh< lg}

For I € 73, the dimension of V7 is equal to the number of the permutations of I. Then we obtain
the following correspondences.

1+—TeC, Bn,q < 1 € Cq, Br.g ® Bn,g +— 1 € Cs.
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By Theorem 2.3.2, we have

G(s, 03 7'3q H q(t ulS 0’790311)

1€73
I < s,018,) [T <t es,018s,)°
0<k1#ko<N-1 0<l1 <la<iz<N—-1
- N-1
Hl—t?’ks
k=0

N-1 0 L 3km X L (2k14ko)m
_ t m t 1+k2) tr63 ( ) m
—||exp{ ms } || exp{g s
k=0 m=1

0<ki#£ka<N—1 =1

o (Li+la+13)m
2t 1 2 3 t
X || exp{ E rﬁg o7 )sm}

0<l1 <la<iz<N—-1 =1

Hence
N-1
() () i) =30+ (3T ARty BT (s (o))
k=0 0<k1#ko<N-1 0<lhi<l2<i3<N-1
N-1 N-1 N-1 N-1
N {{(Z 2 (37 1) - t%}
k=0 k=0 k=0 k=0
9 N-1 N-1 N-1 N-1 N-1
TSRS SR TS LI TEE)
k=0 k=0 k=0 k=0 k=0
1
= [N]p + g([N]? — [N]p)tr(Bs,4(0)).
Here, [N]; := 1+t +---+t¥~!. By Theorem 2.3.1, we have
—3(N=1)(2—¢(0))
N 2 N
15 0) = () @ (0)
q
_ q%(N—l)(g(o')—Q) [N]q3 + %([N]g - [N]q3)tr(ﬁ3,q(0))
[Nq
_ q;(N_n(a(o)_z){ 1+¢V+ ¢  1-¢)0-¢")P -0 -9 +d" + qu)tr(ﬁg (0))}
1+q+¢ 3(1—q)%(1 - ¢°) ’q
— V-DE)-2) (1-g?(1+¢" +¢") + 90— ¢V H1 - qNH)tfﬁ&q(U).

(1-¢)(1—-¢?)

We give an example.

Example 2.4.2. When o = (010, )2 € Bjs, the trace of the Burau representation can be
calculated as

trBsq(0) = (1—q)? + (1 —q¢ ") =q¢ 21+ (1 -9
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Since (o) = 0, the N-degree HOMFLY polynomial of & can be calculated as

(V) 4) = g~V 1= +¢"+M) +¢7'0=¢"HA ="+ ¢ (1 - ¢)?

)= (1-q)(1—¢?)

=¢ N —qgt+1-qg+4".

3 Special product and decomposition formula

In this section, we consider the special product of braids. The main result of this section is
decomposition formula of the braid zeta function associated with the Burau representation for
a braid which is expressed by the special product. Namely, for two braids ¢ and 7, we define a
new braid written by o % 7. Then we will show that the zeta function of ¢ % 7 can be expressed
by the zeta function of ¢ and zeta function of 7.

3.1 Special product
Definition 3.1.1. We define the homomorphism w,, : B, — Bnm, by

W (0i) = (Tim -+ O'imf(mfl))(o'im-l—l T Uimf(mfZ)) e (Uier(mfl) S Oim)-
We call wy, (o) m-cabling braid.

Here is a example of m-cabling of o1 € Bs.

Figure 6: m-cabling braid wy,(c1) € Bap,

From the definition of w,,, for any positive integers m, n, we have
Wy © Wy, = Wy © Wiy = Winn-
Furthermore we define the special product of the braid.
Definition 3.1.2. For 0 € B,, and 7 € B,,, we define the special product o % T by
O *T 1= Ly mn(0) - W (T) € By,

Here, tppir : Bn — Bpyr is a natural inclusion defined by ¢y pir(0i) = 0 € Bpiy (i =
1,2,...,n—1).

Example 3.1.1. For o := (01051)2 € By, 7:= ai)’ € By, the special product and its closure can
be expressed by Figure 7, and Figure 8.

Lemma 3.1.1. Foro € By, 7 € By, p € By, we have

(oxT)s*p=0x(T%p).
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9

Figure 7: Special product o * 7 Figure 8: The closure of o * 7

Proof. From the definition of the special product,

(0 %7) % = (tppm(o)wi(T)) * p
= le,lmn(”,lm(g)wl(T>)wlm(:u’)
= Ll,lmn(g)blm,lmn(wl (7—)>wlm(u)
Since le,lmn(wl(T)) = wl(Lm,mn(T))a
(J * 7—) = Ll,lmn(o-) (wl(bm,mn(T))wlm(/'L)'
On the other hand,
o x (T * /J) =0 * (Lm,mn(T)wm(:u))

= Ll,lmn(o)wl (me—m T)wpm (1))

(
= Ll,lmn(0>wl(llm,mn(7))wlm (U)
Then Lemma 3.1.1 holds.
Next we calculate the formula of the Burau representation of m-cabling braids.

Lemma 3.1.2. For m € N, 0; € B,,, we have

N (1=q)An(a) Inm ‘
Buman @) = Iy @ (170D T Y 6ty

Here, A, (q) is an m x m matriz defined by

1 1
q2 q2 q2
An(q) = q q q
qm—l qm—l . qm—l

Proof. 1t is sufficient to show the case of o1 € By as follows.

Bam,q(wm(o1)) = ( (1 _qgr?[Amm(Q) %n > ‘

(3.1)

We show the formula (3.1) by using the induction on m. When m = 1, since wy(01) = 01 € By,
the formula (3.1) holds. We suppose that (3.1) is true for m = k > 2. By Figure 9, wy11(01)

can be expressed by

wk+1(01) = (0k+10k+2 s 02k)wk(01)(02k+102k s Uk+1)-
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k k

Figure 9: wgy1(01) expressed by using wg(o7)

Hence, we can calculate By11),q(wit1(01)) as follows.

Iy,
Bak,q(wr(o1)) > < Iy >
wii1(01)) = o : :

Bo(i+1),g(Wr1(01)) Br+1,a(k+1,1) ) ( I Brr2,4(Oks1 -+ 01)
Since

1—gq 1 l-q 1—q -+ 1—q 1

g1-q 0 1 q 0
ﬁn,q(o'l,n) = ) ﬁn,q(o'nfl"'o'l) = ’
¢"*(1-q) 0 1 g 0

qnfl 0 q 0

we obtain
_( =@ Ak1(q0) T4
Buternalionaton)) = (1@ oty

Hence (3.1) is true for any positive integer m. Then, Lemma 3.1.2 holds. O

3.2 Component number

In this section, we calculate the component number of the link ¢ by using the dynamical zeta
function. We write the component number of @ by ¢(o). Since ¢(o) is equal to the number of
the primitive cycle of m,(c) € &,,, then we have the following proposition.

Proposition 3.2.1. For o € B,,, the component number c(o) is equal to the order of the pole
s =1 of the dynamical zeta function (g, (o) (s, Xn)-

Proof. By the Euler product expression of dynamical zeta function, we have

1 1 1
C¢7<3>: H B = ot H o
PeCycle(o) 1—slP) (1 — 5)lCyele(o)l PeCyele(o) 14+s+---+siP)

Then, Proposition 3.2.1 holds. O
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For m € N and o € B,,, we obtain the formula of the dynamical zeta function of 7y, (W (0)).
Proposition 3.2.2. Let m be a positive integer. For o € By, we have
S (wm (0)) (8> Xnm) = G (0 (8, Xn)™
In particular,
c(wm(0)) = me(o).

Proof. First, we compute ppm (Tnm(wm(o))). When we let ¢ — 1, Burau representation turns
to the permutation representation. Then by Lemma 3.1.2 we have

. O I,
pnm(ﬂ-nm(wm(ai))) = ég% ﬁnm,q(wm(ai)) = Im(i—1) @ < I, O > @ Im(nfz'fl)

0 1
= [i-1) @ < 10 > © L(n—i-1)) ® I,

= pn(mn(0i)) @ Iy

By generating function expression of the dynamical zeta function, we have

tr( pnm(ﬂ'nm (wm(U])))) j
j ’ }

anm(wm(a)) (57 Xnm) = exp{z

j=1

J

=1

_ exp{z m - tr (pnj(ﬂ'n(aﬂ)))sj} — Cﬂ'n(a)(stn)m-

j=1

Since the order of the pole at s = 1 of (r,. (wn(0)) (S, Xnm) is equal to me(o), then we have
c(wm(o)) = me(o) by Proposition 3.2.1. O

Next we consider the component number of the special product of braids.
Proposition 3.2.3. For o € B,,, 7 € B,,, we have
clox1)=c(o)+me(r) —1).

Proof. First, we calculate the zeta function (r,,. (o+r)(8; Xnm). mn(7) € &, can be expressed as
follows.

7Tn(7') = (17 ig, e ’il(l))(il(1)+17 e ,il(1)+l(2)) tee (’L'l<1)+...+l<7_71), e 7/L'l(1)+"'+l(r))‘
Then there exists a permutation y € &,_1 such that

< 1 Pn—1(pt) )pn(wn(T))( 1 Pr1(1) >_1 - éq(kr

Here, Cl<k) is defined as

—_
o

Cl(k) = . . € GLl(k)(Z).
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For simplicity, we put

1
Q o ( pn—l(lu’) > .
Then, we compute

(Q® L) - pam(Tam (o x 7)) - (Q @ Im)_l
= (Q ® L) * Prum (T (tm,nm () + Prm (Wi (7)) - (Q ® Im)il
= (Q® Im) - (Pm(m(0)) ® Lin—1ym) - (P (mn(7)) © L) - (Q © L)~
= Pn(Tm(0) @ Lin—1ym) - (Q ® I) - (Pu(mn (7)) ® I1n) - (Q ® 1) ™"

c(T

C

—~

7)

2

(7)

= (P (T (0) ® L1, ~1)m) (Clyy ® In)) S D(Ciyy @ In).
k=2

T

Q

We write C1(0) := pm(mm (o) & I(l<1)—1)m)(0l(1) ® I) € GLyy, (Z). Then the zeta function
Crpm (o+7) (8, Xnm) can be expressed as follows.

_ 1
o) (3 Xom) = det(hiy = Ca(@))™ [ e

Since the form of Cj(0) is

o Pm(mm(0))
Ol (G) = SO € GLml(l) (Z)v

then we have

Hence,

det(, miqy 01(0')8)_1 = exp{z Wsj}

JZ0 (mod (1)) J k=1

= Cﬂm(a) (sl(l) ) Xm)
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Thus,

e(7)
Cﬂ'nm(a*r) (37 Xnm) = Cﬂm(a) (sl(l) ’ Xm) H

k=2

e(7)

1
= (1 — s)mem -1 H H 1 _ Jol®P)

) s PeCycle(mm (o))

e(7)
(1 _ 8) —1)+c(o H ]

k—2

-
(1 — slwym

1
lwls - (P gy

5 PeCycle(mm (o))

By Proposition 3.2.1, we have

clox1)=c(o)+me(r) —1).

From Proposition 3.2.3, we obtain the following Corollary.
Corollary 3.2.1. For o € B,,, T € B,,, 0 * T is a knot if and only if both G and T are knots.

Moreover, for ¢ € By, we define the N-th special product as follows.

oN:=gxox---x0 € Byn

We calculate the component number of the N-th special product of o.
Proposition 3.2.4. For o € B, (n>2), N € N, we have
c(o™N) = [N]u(c(o) = 1) + 1

where [N], := 1+n+n?+---+n""1 and we put [0, = 0. In particular, if the closure of
o € By, is a knot, then the closure of o*N is a knot.

Proof. By Proposition 3.2.3,
(o) = ("N x o)
= n(c(*™ V) = 1) 4 ¢(0)
= ne(a* N Y) + ¢(o) — n.

Then we have the following recurrence relation.

C(O'*N) _n- C(U) _ n{c(o_*(N—l)) _n- C(U) }

n—1 n—1
Thus,
ANy _ o N-1 n—clo)y  n-co)
c(o™) =n""c(o) - — } —
:n_l{n )—1)+n—1-(c(o)—1)}
= [N]p(c(o) = 1) + 1.
If ¢(0) = 1, we have c(0*") = 1. Then Proposition 3.2.4 holds. O

28



3.3 Braid zeta function of the cabling braid
We consider the formula of the braid zeta function of the cabling braid.
Definition 3.3.1. We define the following braid representation.

bn,q : B — GL(W),,),

0 1 .
bmq(ai) = Z‘_l@(q 0>@In—i—1 (221,2,...,71—1).

From the definition, for o € B,,, we have
det by q(0) = (—q)*7.
Lemma 3.3.1. If the closure of o € B, is knot, we have
bp,q(c") = qs(") .~
Proof. Since 0 is knot, 7, (o) is simple cycle. In other word, there exists u € &,, such that

0 1

1 0
On the other hand, by, 4(0) has exactly one entry of 1, or the power of ¢ in each row and each
column and 0’s elsewhere. Since lin% bn,q(0) = pn(mn(0)), we obtain
q—

0 cf1

Pn (N)bn,q((j)pn (N) = . . = Cn,q'
g 0
By cofactor expansion, we can calculate the zeta function associated with b, 4 as follows.
((s,03bn,4) = det(I, — bn,q(a))_l = det(l,, — pn(#)bn,q(a)pn(ﬂ)_l)_l

1

14 (=1)"det(Cy q)s™
1

1+ (—1)"+5(U)q5(0)5n )

Since 7y, (o) is simple cycle,
(=) = sgn(ma (o)) = (=1)" .

Then we have

1 > 1
. _ - (U m
((s,0; bn,q) = @ q€ = exp{mgl — 0 }

Thus we obtain the following equation.
tr by g (o) = n - 7@k,
Since all non-zero entries of b, 4(c) are the power of ¢, we can conclude

bn q(ank) _ qa(a)kln‘

)
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For m € N, we have the following formula.

Theorem 3.3.1. We assume that the closure of o € By, is a knot. Then, we have

1
(1 _ qms(a)sn)m—l

C(s7wm(a)§ﬂnm,q) = <(3a0§6n,qm)'

Proof. First, we compute the trace of w,, (o). For a generator o; € B,,, the Burau representation
can be expressed by

1—q O
5n,q(0-i) — Oifl S ( 0 q 0 > (S5 Onfifl + bn,q(ai)a

_ 0 0 B
Br,q(o; H=0i1a < 0 1—¢! > ® Op—i—1+ bpg(o; b,

Here, Oy is a square zero matrix of size k x k. Moreover for o € B,, we put T by

Bna(0) =T(0,q) + bng(0).

To examine the (7, j)-entry of T'(c,q), we introduce the following matrices.

z 0
00

Xi(2,4) := 01 @ ( > © Op—i—1+ bpq(0i),

For non-zero integer e, we define

X {X+(x,¢)e (e >0),
X_(y,i)7¢ (e<0).

e1 _ea

We fix an expression o = 0,037 -+~ Jf:. For this expression, we define the matrix U by

U= XOX2- X € My(Z[z,y,q)).

Furthermore we define T(m, Y,q) as

T(.CC, Y, Q) =U — bn,q(a)'
Then (i, j)-entry of T(z,y, q) can be written by the following form.

T(x,y,q)z;j: Z Wa b e Y " (3.2)
a+b>1,ceZ

By replacing z =1 —¢q,y=1—¢ ", f(x,y,q) turns to T'(o,q). Then the (i, j)-entry of T'(o,q)
can be written by

T(o,Q)ij= Y wapel—q)"1—q )¢ (3:3)
a+b>1,c€Z

Next we consider the cabling braid. For m € N, we define

T(0,9) = Bunsg (Wi (0)) = brgn(0) ® L.
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For generator o; € B,,, we can calculate

1—q)An O
/Bnm,q(wm(ai)) = Om(ifl) @ < ( q)O (Q) 10) ) @ Om(nfifl) + bn,qm (Uz) ® I,

. | 0 0 | .
Bnm q(wm(a )) - Om(z—l) D < 9] (1 _ qfl)quJrlAm(q) > D Om(n—z—l) + bn,qm (Ji ) ® Ly

We assume that the (i, j)-entry of f(w, y,q) can be expressed as (3.2), Then we have

Tn(o, )iy = Y. wWapel(1 = Q) An(@)} (1 — ¢ g ™ An(q)} {q" I }".

a+b>1,ceZ

Here, Trn(0, q)}; 5 is the (i, j)-block entry of T;,, (0, g). Moreover for N € N, we immediately have
Am(@)™ = [m)* - A (9).
Then the trace of A,,(¢)" can be computed as
tr (A (g)") = [m]*Hr An(q) = [m]".
Thus we have

L0, Qg = D Wa7b,ctr{{(1 ~ Q) An(@} {1~ g An(@)} g™ m}c}

a+b>1,c€7Z

= > wapell = @) (1 — g7 (A ()" )
a+b>1,c€Z

= Y wWape(l —q)* (1 — g )Pgm g [m]
a+b>1,ceZ

— Z Wa,b,c(l o qm)a(l o q—m)quc'

a+b>1,ce€Z
Hence
tr Tm(U, Q)[i,j] =T(o, qm)i,j

We suppose that the closure of o € By, is a knot. When j # 0 (mod n), diagonal components
of by 4(07) are all 0 because m,(c) is simple cycle. Then we have

tr ﬁnm,q(wm(g‘j)) =tr Tm(o-jy Q) +tr (bn,qm (Uj) ® Im)

i=1
If j = nk (€ N), by Lemma 3.3.1,
6 Bog(0™) = tr T(a™, q) + n - g%
Then for m € N,

tr /Bnm,q(wm(ank)) = tr'Ty ( nk7 Q) + qus(”)tr Ion
— tr T( nk m) +n- quza(a) + n( 1) . qua(a)
= tr Bpgm (0™) + n(m — 1) - k),
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Hence, by generating function expression, we have

m(0?) . m (o™ — 1)gmke(o)
C(s,wm(a);ﬁnm,q)—exp{ > At G (aJ)S]+Ztan,q (") & nim — 1)g™ Snk}

j#0 (mod n) k=1 nk

_ exp{z tr Bn,qu ] n Z mkE( )S”k}

j=1
1
(1 _ qme(a)sn)m—l ’

= C(S, ag; ﬁn,qm)

We give an example.

Example 3.3.1. We calculate the zeta function of wy,(03) € Ba,. By using the formula of
torus type braid (Theorem 2.1.1, (5)) and Theorem 3.3.1, we have

1 1
C(S7 wm(af); BQm,q) = (1 — q3m82)m_1 C(Sv Uij’; BQ,qm) = (1 — S)(l n q3m5)(1 — q3m82)m_1

The closure of w,,(0}) turns to m-cabling version of the trefoil knot.

e
O

Figure 10: m-cabling braid wy,(c}) € Bam, Figure 11: The closure of wy,(a7)

3.4 Decomposition formula
The main goal of this section is to show the following decomposition formula.

Theorem 3.4.1. Let 0 € B,,,, 7 € B,, be the braids whose closures are both knots, then we have
the following formula.

<(57 0 *T; 5nm,q) = (1 - qu(T)Sn)C(qma(T)sna o] B’m,q)C(Sa T3 ﬁn,qm)'
Proof. We calculate the trace of Bnm((o * 7)7). By using T,,,, we have

/Bnm,q(a * 7—) = ﬁnm,q(ém,nm (U)) ’ /Bnm,q (wm(T))
= (5m,q(a) D Im(n—l))(Tm(T> q) + bn,qm (1) @ In).

As with the proof of Theorem 3.3.1, we express the (i, j)-block entries of T,,, (7, q) as

Tt @i = Y waped(1 = ) An(@} (1 = g™ An(@)} g™ I} .

a+b>1,c€7
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By easy calculation, we have

(o) Ga)-(a)-(oa) (0 e)
g 0 q q q q q q g 0)°
Then, for any o € B,,, the matrix A,,(q) satisfies

ﬂm,q(U)Am(Q) = Am(Q) = Am(Q)ﬁm,q(U)'

Hence we have

Tm(T’ q) (ﬁm,q(g) D Im(n—l)) = Tm(Tv Q) = (/Bm,q(a) & 1, m(n— 1)) (T Q)

Thus Bum.q((0 * 7)7) can be computed as

Brm,q((o*7) ) = {(Bmqlo) @ L —1))(bn,qm(7') ® Im) + T (T, q)}j
= {(ﬁm,q(a) D Im(n—l))(bn,qm (1) ® Im)}j + Tm(Tja q)-

Similarly, we have

»Bnm,q(wm(Tj)) ={Tin(7,q) + bngm(7) ® Im}j
= Tm(Tja q) + (bpgm(7) ® Im)j‘

Since the closure of 7 is a knot, there is the permutation p € &,, such that

-1
1 0 1 0
n\Tn\0 =C,.
< 0 pn-1(p) )p (mat2)) ( 0 pa-1(p) )
For simplicity, we set
1 0
Q= ( 0 puo(n) > |
Furthermore @ satisfies

(Q®I )(6mq( ) m ) (/qu( )@Im(nfl))(Q(X’Im)-

Then we have

(Q ® L) Brum,q (0 * T)j)(Q ® IM)_I

= (@ LM Tn(r,0) + {(Bmaf0) & Fo)) o (7) © L) PHQ @ )™
= (@ LT, )@ 1) + (@ & M (Brual0) & L)) g (7) @
QI @ 1 (0 )5 )b (7) @
= (@ LT, 0@ L) + (Brg(0) & Fam1y(@ & 1)) b g (7) @
0 0" ()
— @@ ITu( )@ @ f) + | 17 |
L, O
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Here, i1 +ia + -+ + ip = (7). When j # 0 (mod n), we have

tr Bum,q((0 * 7)7 ) =t1 {(Q ® Im)Brm.q((0 * T)’ )(Q ® Im)~ 1}
= tr {(Q® L) Tu(77,9)(Q @ I;n) "'} + 0
=tr Tpn(77, q)
= trT(Tj,qm)
= tr B qm (Tj).
On the other hand, when j = nk(k € N), from Lemma 3.3.1,

) qmilﬂm,q(a) g : . k
g2l gt B (o)

qunI 0 qm(i1+."+in)ﬁm,q(0)

qu’a(r) ﬁm,q (O’k)

que(fr)ﬁm’q(ak)
= ¢ (I, @ B g(F)).

Hence we can calculate the trace as follows.
tr Brm,g((0 % 7)) = tr T (77, q) + tr (¢ (I, ® Brg(®)))
—tr T( nk m) +n- quE(T)trﬁ (Uk)
= t1 Bugn (T7F) + ng™ = (tr B, 4(o*) — 1).

Thus, we have

(5,0 % 75 Bamg) = eXp{Z tr ,Bnm,q(.(o' * 7)) Sj}

=1 J

_ exp{ Z tx B gm (77) o Z tr Bpgm (77F) + ng™s Dk (tr By, 4 (%) — 1)3”’“}

. J nk
jZ0 (mod n)

w\w

tr By, qm tr /Bm q ) ma = me 7')
= exp 3 P 5 2Bl oy 3
7j=1 ‘7 k=1
= (5,73 Bgm) - (478", 03 Bng) - (1= ¢™7)s™).
Hence we finish the proof of Theorem 3.4.1. O

Corollary 3.4.1. For o € By,, 7 € By, we assume that both & and T are knots and (1) = 0.
Then we have

Arr(q) = Az(q)Az(q™).

O*T
Proof. Since & * 7 is a knot, by Theorem 2.1.1, we have

1

MA&?(Q)A-

R_els C(S7 0 *xT; Bnm,q) = -
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On the other hand, by Theorem 3.4.1,

Res (s 0475 um,g) = Reg {C(s,75 Bngm) - €5, 3 fmg) - (1= ")}
= ll_)H%(S - 1)(1 - Sn)C(sna g, Bm,q)ﬁ(& T3 Bn,qm)

1 1
= — A" —As(g)"
P T
Since [nm]y = [m]q[n]gm, Corollary 3.4.1 holds. O

We now compute the zeta function of the N-th special product of o € B,,.

Theorem 3.4.2. We assume that the closure of o € By, is a knot, then we have

N-1
(5,05 B ) = Cls, 038, v 1) [T (=@ 725 )o@ 9D 0B, i) (3.4)

Proof. We prove Theorem 3.4.2 by induction. The equation (3.4) is obviously hold when N = 1.
Then we suppose that the formula holds for o** (k > 2). By Theorem 3.4.1,

¢(s, U*(k+1); Bnkﬂ,q)
= (1= ") (g5 03 B )C (5,0 Bk gn)

k—1
_ (1 . qns(g*k)snk)C(qns(g*k)snk7 0‘; 577/7(1)4.(57 (J‘; /Bn’an) H(]_ . an-‘rl—JE(a*J)SnJ )C(an-‘rl—JE(a*J)SnJ ’ O'; n’an—j)
j=1
k k 1— j k+1—j j j
(o, o) [T = =)D (AN i ),
Then the equation (3.4) holds for any N € N. O

Example 3.4.1. We calculate the zeta function of 3-rd special product of 0§ € By as follows.

2
C(s.07 % o o Bg) = C(s, 083 Bage) [T = 7)™ ot B, o)
7=1
= (5,03 o) (1 = 0257)C(a"%5%, 0% B 2) (1 = ¢°5")C (65", 05 B )
1
T (1= )1+ q2)(1+q5s7)(1 + ¢%3s%)

Then, we obtain the Alexander polynomial of (03)*3.

= (1—q)(1+¢*2)(1+¢*®*)(1+¢*)

A
1—¢8

(U%/)TS(Q)

g+ =P+ g2 — B+ — T g1 — g9+

PP T ST LR i e R S I >
SRS NS LIpE. N, SR N SR L
— 4 ¢

Next we consider the N-th special product of torus type braid.
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b
J

Figure 12: The closure of (o73)*3

Theorem 3.4.3. We assume that (n,m) is coprime, then for any N € N, we have

i i G) N—1
(1—q N 1)(1 _qu Jan],m) _ H [a%,zn]quj
O

— S0
(1= g™ )(1 =g ratm) 5 [ardm] v

||::]Z

('nm

Here a(]) =mn@ T +1)/(n+1).
Proof. From the definition, we have €(0(,, m)) = m(n — 1). Then for j € N we compute

1

<.
|

<.
|

1 9
x m(n¥ —1
€< (vi m)) = Og(wnk (J(n,m))) = m(n - 1) 0n2k = (n_|_1)

>
I
>
Il

By Theorem 3.4.2 and formula of the zeta function of the torus type braid, we have

N-1
N—j.(-(5) ; N—j.(-(3) ;
¢(s, U( 5nN,q) ((s, J(nm ; Br,gN- 1) H (1-¢" E(U(n’m))snj)qqn E(J(n’m))snj’U(nvm);ﬁn,quijil)
j=1
1—qgm" s = —q" N
= (1 — 5)(1 — gmn sn) ]1_[1 1 _qmnN J4nN—itle(or il m))snﬂ—l-l
1 N—ll_ nN— IJ)Snj
- 1 — S ]HO 1 nN Ja(]> Sn]+1
By Theorem 2.1.1, we have
1 N-1 1— qu—ja(nj)m
A——(q) = .
T m) @ [nN]g jl;[) 1-—- q”N_j_la%]v%"
NH1 1" g
0 (L= g™ 7)1 = g i)
N-1 an]m
j=0 (Inqu j—1
Thus, we finish the proof of Theorem 3.4.3. O
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Example 3.4.2. We have the formula of the Alexander polynomial of (02 3)*" as

2

2N Jj— 1)(1 —q2N_j(22j+1+1))

0_23 H 2N _7 q2N—j—1(22j+1+1))

1 + q2N Jj— 1(223+1+1)

oN—j—1

0 l+gq

- (~1)fgh2"

4 g-analogue of symmetric Burau representation

A. Kosyak introduced the new braid representation by quantizing the symmetric power of the
Burau representation for the case of Bs (see [1]). The goal of this section is to generalize the
case of By, and to calculate the zeta function associated with this representation for the torus
type braid. Furthermore, calculating the zeta function of the torus type braid by different two
ways, we obtain a certain g-identities.

(N)

4.1 Construction of the representation p,

In this section, we define the braid representation of B, which is a generalization of the Kosyak’
representation of Bs. Let 5 , be the reduced Burau representation as we already defined. Then
we decompose 3}, ,(;) into two or three matrices and replace g by —t as follows.

1 1 t 0 .
() (1) -

100 100 1 0
Bhglo)=qLi2®| 0 1 1 0t 0 110 |®L s 2<i<n-2),
00 1 001 0

0 1
10 1 0 .
In_3@<0 t)(—l 1) (t=n-—1).

We can obtain the braid representation by considering the N-th symmetric power of 3] _; for
N € N. We write this representation by Sym(N)ﬁfL’,t : B, — GL(Sym™) (W?)). We define the
set I (V) as

T (N) i= {I = (in,iz, ... in) € XpUy | i1 <idp < -+ <iin}.
Here, X,,—1 :={1,2,...,n—1}. For I = (i1,12,...,in) € I'(N), we put
Jr=fifin- fin-

Then, we can regard {f; | I € I"(N)} as the basis of Sym™(W"). We denote N;(I) as the
number of i in I € I (N), and put N;(I) =0 for i € X,—1. For i € X,,_1, we define the maps
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7‘2-+ and 7; as follows.

7, I (N) — T (N),

TZ~+I = (kg dyky ) (ot 40+ 1%, L),
~—— ~——
Ni(I) Ni(I)—1

7-17 H;(N)HHZ(N%

T, = (oot ity ik, ) (Coy ki — 104 iy %y )
N;i(I) Ni(I)—-1

If N;(I) =0, we assume that 7> = id. By using these maps, we define the following sets.

THI) = {Z D [0S k< N(DY, T (1) = {r H(I) | 0 < k < N(D)}.

3 3

Here, Tl-ik = TZ-:E 0---0 Ti:t. Then, using these notations, the (I, J)-entry of the representation
—_————
k

Sym(N)Ba_t can be expressed by

N1 (I 1
(Nll((j)))tNl(J)(sTf_(I) (J) (Z = 1)7
Sym(N)ﬂ:L’_t(ai) =< (Li - Ri(t))1,0 (2<i<n-2),
(=)t DN (NN D5y (D) (= n = 1).

Here, L; and R;(t) are matrices defined as

(LZ‘)]7J = <]]\\2((§)))6Tz+(1)(J)7 Ri(t)LJ = (—I)Ni(J)_Ni(J) (]]\\;thlj)))tNZ(I)6T(I)(J>

For a set X and its subset A, we define the functiond4 on X by

1 (zeA),
da(zx) =
0 (z¢A).

Then we consider the following g-deformation for all entries of Sym®) Br.—+(0;) except for L;.

() =7 2),

Here, t(m) := m(";l), and (:;)q is g-binomial coefficient defined as
n)q!
(1) - gy O<m<m. [kl =2 (1) (1),
m/, 0 (otherwise), ! 1 (n=0).

Finally, we replace the binomial coefficient of the (I,.J)-entries of L; to the usual g-binomial
coefficient as follows.
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Hence we can get the matrix A;(q,t) with respect to the generator o; € By, as follows.

. Ny (I .
qt(N’(J))(Nll((J)))qtNl(J)5T1+(1)(J) (1=1),
Ai(g,t) == { (Li(q) - Ri(q, 1)1, (2<i<n-—2),
(—1)Nt (D= Noa () gt (N I(J))(]J\\;::ll((tll)))qt]v"ﬂ([)(szpn— 1(1)(J) (i=n-—1).

Here L;(¢q) and R;(q,t) are the following matrices.
L@y = (VY 5 o) Rig )y = (—1)NOD=ND) g N)) NiI)\ nng (J).
) NZ(J) . T, (1) ’ y U, N’L(J) . T (I)

Now we show some properties of A;(q,t).

Proposition 4.1.1. Fori € X,_1, the matriz A;(q,t) can be expressed by

o o (NI Ni(I) — N;(J)
Ai(q 1) = (—1)Nim1(D=Nio1 () HNi () A
(¢,t) = (=1) q Ni(J)) y\Niza1(J) = Nipa(1) /, R

Here,

0 otherwise.

() om {1 Nu(I) = Np(J), (k #i—1,i,i + 1),

Proof. First we show the case of 2 < ¢ < n — 2. By definition,

N v Ni(I)\ (Ni(K)\ Nk
Ay — 5 T)(— 1) NilE) Nzu)qt(zvzu))( > ( ¢N:(K)
(g:)1,1 HZ R O 1y (N(=1) Ni(K)) \Ni() ],

> <—1>Ni<K>—Ni<J>qt<Nz-w>(Ni<f>) (59Y i,
wers a0 N) \5),

Since Ny (1) = Ni(J) for k € X,,—1 \ {i — 1,i,i + 1}, there exists K € T;" (I) N T;",(J) uniquely.
Then we can get m and [ such that K’ = T+m(I) =77 (J). Since Ni(K') = N;(I) + Nip1(I) —
Niy1(J), then we have

(N =Na() s [ N (K vy
Aa.t) = (-1) O (iaen), (i ).

Ni(
(1Y) N) gHN () ( ((ﬁ)) ( ((f)) —;[V((;}Q (Ni(E)

q
()N NH(J)qt(Nz(J))( ) ( NN (DNt () y (1. ).
=1 Ni(J)) ¢ \Nit1(J) = Nita(I)/ il )

When ¢ = 1, we can immediately see that No(I) = No(J) = 0, and Ny(I) — Ny(I) = No(J) —
Ns(I) from the definition of N;(I) and x1(f,J). On the other hand, when i = n — 1, we have
Ny(I) = Nyp(J) and Ny,_o(I) — Np—2(J) = Np—1(J) — Np—1(I). Hence we can show that all
A;(q,t) are expressed by the form of Proposition 4.1.1. O

Now, we introduce the following useful lemma.
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Lemma 4.1.1. For n > 1, we have the following formulas.

L+ 27 =(1 4 2)(1+g2) - (L ¢"2) Zq (”)

I 1 N (Y L
(1+z)g_(1+z)(1+qz)---(1+q"—1z)_Z;( D( l >q'

If n =0, we put (1 +z)2 =1.
Proposition 4.1.2. The matrices A1(q,t), ..., An—1(q,t) satisfy the following relations.

Ai(g, ) A4(q,t) = Aj(g, 1) Ailg, 1) (i =3[ > 1),
Ai(q, 1) Ait1(q, 1) Ai(g,t) = Aiga(q, 1) Ai(g, 1) Aia(g,t) (1 <i<n—2)

Proof. To show these relations, we use another expression of A;(q,t) as follows.

. N_N. . NZI . /
A1) = (—1)NeK) N“”q“N*”)(7:?X>tN“K)xAIND-

Here, | and m are numbers which satisfy K’ = 7,7™(I) = 7, (J), and ( is the ¢-

% ml,mz)q

multinomial coefficient defined by

[n]q!

( . ) = [ml]q![mQ]q!["?;ml—mQ]q! (O < ma,my < n,O < my+my S n)’

mi,ma/,

0 (othetwise).

Now we show the first relation. For simplicity, we calculate the case of j =7 + 2.

Ai(g,t)Aiyalq, t)rg = Z(_l)llqt(Ni(K)) (N (I)> th(Kl)(_]_)Ith(Nz+2(J)) ( +2( )> tNiv2(K2)
q

% mi, q ma, Iy
X Xi(LK)Xi-‘r?(K: J)

Here, K1 = 7,7 (I) = Ti‘tlll(K ), and Ky = T;TSQ(K ) = T:jrlf(J ). The following table helps our
calculation.

[ i1 i i+1 i+2 i+3 |
! Ni—1(I) Ni(I) Niv1(1) Niy2(1) Nis(I)
K Ni-1(1) Ni(I) =m1  Nipai(Z) +my Nit2([) Nits(I)
Ki | NiciK) -l Ni(K)+h  Nipa(K) Nit2(K) Niys(K)
K Ni-1(K) Ni(K) Niy1(K) Niy2(K) Ni3(K)
Ko N;_1(K) N;i(K) Nit1(K ) Nit2(K) —ma  Nip3(K) +ma
Ky Ni—1(J) Ni(J) Nip1(J) — Nit2(J) + 12 Nit3(J)
J Ni—1(J) Ni(J) z+1(J) Nita(J) Niy3(J)

From this table, we have
li = Ni—1(J) — Ni—1 (1), m1 = Ni—1(I) + N;(I) — N;—1(J) — N;(J),

la = Nito(I) + Nips(I) — Nip2(J) — Nivs(J),  ma2 = Niy3(J) — Nips(I).
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Hence
Ai(q,t)Aiga(q, V)1,

N (D)= Nia (D) i) Ni(T) Ni(I) — Ni(J) Ni—1 (J)+N; ()= Ni_1 (1)
(-1) q t
Ni()) \ Wi (7) = N (D)),

q

% (_1)Ni+2(I)+Ni+3(1)*Ni+2(‘])*Ni+3(J) t(Ni+2(J))<Ni+2(I)> (NHQ(I) _Ni+2(‘])> tNit2(D)+Niy3(I)=Niy3(J)
q

Nit2(J) /), \Ni+3(J) — Nigs(I)
X Xi,it2(1, J).
Here,
1 Ng(I)=Ni(J) for ke X, 1 \{i—1,4,i+1}U{j—1,4,5+1}),
Xij (I, J) = {

0 otherwise.

On the other hand, A;;2(q,t)Ai(g,t)r,; can be computed similarly.

Assa(@, ) Ai(g, )1, = 3 (=1)1 gt Ner2 () <Ni+2(f )> (N2 (K1) ()2 (i) (N <K)> §V:(K2)
q

= mi, 1 ma, lo
_ (_1)NZ~+2(I)+Ni+3(1)—Ni+2(J)—Ni+3(J)qt(Ni+2(J))(Ni-‘rQ(I)) (Ni+2(I) Z(J)) #Nig2(D+Niy3(D~Nisa(J)
Niv2(J) /) o \Ni43(J) — Nigs(I)

% (= 1) Nt D)=V et (Nild) Ni(D) = Ni(J) \ Nioa (DN =Nioa (D)
Ni()) \Niea(J) = N (D)),

X Xit2,i(1, J).

Then we have A;(q,t)Air2(q,t) = Aiyra(q,t)Ai(q,t). If 7 > i+ 2, we can get the first relation by
calculating the same way.

Then we next show the second relation. First we calculate A;(q,t)A;4+1(q,t).

Ai(q, ) Aisi(g,t) =3 (—1)l g Vi) <ljvi(l)> D =mr(_q)lz gt (N (1)) (N”l(K)) i1 (K)=ma
% 1,mi/, ma,ly /,

x xi(d, K)xit1(K, J).

In order to calculate A;(q,t)A;+1(q,t) we use the following table.

L i1 i i+1 i+2 |
I Ni-1(1) Ni(1) Niv1(1) Nis2(I)
K; Nz_l(I) Nz(I) —mq Nz+1(I) + ma NH_Q(I)
Ky || Ni-i(K) =11 Ny(K)+14 Nit1(K) Nii2(K)
K Ni—1(K) Ni(K) Ni+1(K) Ni2(K)
K, N;—1(K) N;(K) Nit1(K) —ma  Nip2(K) + mo
Ko Ni—1(J) Ni(J)—1la  Nipg(J)+ 1o Nita(J)
J Ni-1(J) i(J) Nit1(J) Nisa(J)

From the above table, we have
lh = Ni—1(J) — Ni—1(1), mg = Niyo(J) — Niyo(I),
my = Nl_l(I) + NI(I) — Nz—l(J) — NZ(J) + 1o.
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Then A;(q,t)Ai1+1(q,t)r,s can be calculated by

Ailg;

t)Aiv1(q, t)r,g
(J)
Ni—1(J)=Ni—1(I) 4(N:(J)—L2) N;i(1I) Ni—1(I) + N;(I) — Ni—1(J)
Z ! <Ni1(=]) - Nil(f))q< Ni(J) =12 >q

o ()2t () [ Nis1 () + Niwo(J) = Niwo (1) + 12\ (Niga (J) + Niwo(J) = Niso (1)
(=D ( Iy >q( Ni1(J) >

q

X tN«;(I)*mlJrN«LJrl(I)Jrnuim2 Xiji+1 (I’ J)

= (- 1) i—1(J)=Ni— 1(1) t(Ni+1(J) g Ni(D)+Nit1 (1) +Niy2(I)=Nit2(J)

Ni(I) Nit1(J) + Niya(J) — Nipo(I)
. <Ni—1(J) — Ni_1(1)>q( - sz(J) i >qu,i+1(I, J)
x Z g Ni() =) (Ni—l(D ‘]trf(\f}’gle—ZNi—l(J)>q(_l)12 <N¢+1(J) + Ni+2<l;7) — Nigo(I) + lg>q.

By Lemma 4.1.1, we can see that the last sum coincides with the coefficient of zVi(/) in the
following function.

Ni_ I Nz I_Ni— J >
(1 —|—Z) 1(D)+N; (1) 1(J) _ (—1)k Ni+1(I> — NZ(J) +k (qu—l(])+Ni(I)_Ni—1(J)Z)k'
(1+Z) Nit1(J)+Nig2(J)—Nipo(I)+1 Z k ’
k=0 q

Hence we have

Ai(q, ) Aiv1(g, )10 :(_1)N 1(J)+N;(J)—Ni— 1(1) t(Nig1 () +Ni(J)(Nio1 (I +Ni (1) =N;—1(J))

o) () (),

% tNi(I)"'Ni“(IHN”Q(I)_N”Q(J)Xi,zurl(I, J).
Then we next calculate A;(q,t)Air1(q,t)Ai(q,t)r.s

Ai(q: 1) Aiv1(q, 1) Ailg, )10 = ZA ¢, T)Ait1(q:t) 1, - Aiq,t) K,

— Z K)+N;—1(J)=N;— 1(I)qt(Ni+l(K))+(Ni—l(I)+Ni(1)_Ni—l(K))Ni(K)+t(Ni(J))

Niy1(K)

< o ) ( Ni— 1(£§E§3+1(J)—Ni+1(ff))q

w $NiD)+Nip1 (D +Nigp2(1)+Ni—1(J)+Ni(J)=Nit2(J)—Ni-1(K)

< - )(Ii\r ()> <Nz+1(K)+Nz’+2(J)—Ni+2(1)>
i—1

q

X Xi,i+1(L, K)xi (K, J).
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By substituting Nifl(K) = Nifl(J) — l,NZ(K) = NZ(J) + 1+ m and Ni+1(K) = Ni+1(J) - m,
we can express the A;(q,t)Ai+1(q,t)Ai(q,t)r,7 as the sum of [ and m.

Ai(q, ) Ai1(q, ) Ai(q, ). = (_1)Nifl(J)*Nifl(I)qt(Ni(J))tNi(I)+Ni+1(I)+Ni+2(1)+Ni(J)+Nifl(J)*Ni+2(J)

% Z +l+mqt(Ni+l(J)fm)+(Ni—1(1)+Ni(1)*Ni71(J)+l)(Ni(J)+l+m)
N1 () < Ni(I) ) (Nz‘+2(J) + Niy1(J) = Nisa(1)
Ni_1(J) = Ni—(I) =1 Nit1(J) —m

(v ren) i), () st
The last three binomial coefficients becomes
(v e), (™), 000,
_ (%j%))q(l\fm(f) _mNi(J) - l)q<Ni+1(I)l_ Ni(J)>q'

Thus we have

Ai(q, ) Air1 (g, 1) Ai(g, t)I,J _ (_1)Ni—1(J)_Ni—l(I)qt(Ni(J))tNi(I)+Ni+1(I)+Ni+2(I)+Ni(J)_Ni+2(J)

X Z N(J )HNip1 () +H o Nit1(J)+(Nie1 (D+Ni(I)=Ni—1 () +) (Ni(J)+1)

<t (Nz‘—l(J) ini\lfz?—l(f) - l)q (NM(I)Z_ Ni(J)>q (Z\J[q(lu(’?)q

Niy1(J)—m NH-?(J)+Ni+1(J)_Ni+2(I)—m
XZ v ( NZ»H(J)—m >q

X qt(m) (NH'I(I) = Ni(J) — l> q(Nifl(I)+Ni(1)_Ni—l(J)_Ni+l(J)+l+1)m.
m
q

The last sum coincides with the coefficient of zNi+1(/) in the following function.

(1_|__qu_l(I)+Ni(f)—Ni_1(J)—Ni+1( )+l+1 )q Z+1(I) N’L(J)_l

(1_|_ ) 1+2(J) 1+2(1)+1

i < (I)+N(I)_Ni1(J)_Ni+1(J)+l+k) K
i .
=0 q
Hence we have

Ai(q, ) Aia (g, ) Ai(g, ).y = (_1)Ni—1(J)+Ni(J)_Ni—1([) LN () +Ht(Nig1 () +Ni (J)(Ni—1 (D) +N; (1) = Ni—1(J))

Xth-(I>+Nz-+1(I>+Ni+2(I>+Ni(J)—Ni+2<J)( Ni(1) ) (Niﬂ(f))
Nipi(J)) \ Ni(J) /,

XZ ( i1 (I) — Nz‘U))( Ni(I) = Niz1(J) >
l AN () = Nia (D) — 1),
Nict (D) +Ni (D= Nima (J)+Ni (D41

x ¢
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On the other hand, A;1+1(q,t)Ai(q,t)Ai+1(q,t) can be calculated similarly as follows.
A1 (g, ) Ai(q, ) Aigr (g, t) 1.y = (_1)Ni71(I)‘f‘Ni(J)_Nifl(J)qt(Ni+l(J))'f't(Ni(J))J"Ni(J)(Nifl(I)""Ni(I)_Nifl(J))

XtNi(I)+Ni+1(I)+Ni+2([)+Ni(J)_Ni+2(J)( Ni(I) ) (Ni"'l(l))
Nit1(J))  \ Ni(J) /,

N —m{ Niga(I)— Ni(J
St (N ),

" Ni(I) = Niz1(J) )

<Ni—1(J) = Ni1(I) = Nipa(I) + Ni(J) +m

x qWNimt (DFN(D=Nia (SN (J)+Niga (1) =Ni(J)=m) (N1 (1) = Ni(J)=m)

Putting N;41(I) — N;(J) —m =1, we have
Ai(q,0)Aiv1(q, 1) Ai(q, )10 = Aiv1(g, ) Ai(g, ) Air1 (g, 1)1,
Then we complete the proof of Proposition 4.1.2. O

From Proposition 4.1.2, we obtain the following braid group representation.

Theorem 4.1.1. Fori € X,,_1, we define

N
pfl,q),t(ai) = Ai(q,1).

(N) .

T GL(Sym™) (W) is the braid group representation.

Then, p

4.2 Braid zeta functions of the torus type braid

(N)

.t for a torus type braid. Our

In this section, we calculate the zeta function associated with p
main result is the following formula.

Theorem 4.2.1. For coprime pair (n,m) € N, we have

mN 2mit(N)

C(5, nmi ) = C((—t)™N g5 s, cps Sym ™).

Here, ¢, € 6, is a cycle with length n, and p], is (n — 1)-dimensional irreducible representation
of &, which is called standard representation.

Lemma 4.2.1. Put S;(K) := Ni{(K)+---+N;(K) for K € I,(N), then (I, J)-entry ofpgz)yt(an,l)
can be expressed as follows.

n—2
(N) ()N =N 1 ()N (N1 () Newr(D - (s,n-si2(M.0)
Prgi(on1)rg = (—1) tq ll_Il ( N;i(J) qq '

Proof. p;],\g?t(gn’l)LJ can be expressed by the following sum for Ki,..., K,_2 € I (N).

N N N N
pfw,q),t(o-ml)lyf = > Pfl,q),t(al)I,Kl ‘Pfl,q),t(@)Kl,Kz e Pfl,q),t(ffn—l)Kn_z,w

Ki1,Ko,....Kn_2
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By Proposition 4.1.1, we have

n—1
Pg,\g),t(an,l)l,J = E H(—l)l““qt(N’(Kl)) (' '1) tNUED) Ky, K)
: Ni(K;)
K1,K2,...Kn—2 1=1

-y H 1)) Ni(ant(Ni(Ki))( Ni(Ki-1) ) Py
q

M .lA_ .
K1,K2, Kn_2 i=1 7—1.4y b9—1,2

Here, K;_1; = Tﬂ_mi_l”'(Ki_l) = Titli_l’i (K;)fori=1,...,n—1,and we put Ko =1, K,,—1 = J.

(2

Then we can see that lp1 = mp—2,—1 = 0 by the definition of A;(q,t). The power of t can be
calculated by

n—1

Z Ni(Ki—1;3) = Ni(I) — mo1 + Z(Nl(f) +mi—oi—1 —mi—13) + Np—1(I) — mp_3pn—2
i=1 '

—mo,1 + Z Ni(I) +mo1 —mp—3n—2+ Np—1(I) — mp_3n—2

m;—_1,; can be expressed as
m;_15 = SZ(I) — SZ(J) + li,z’+1-

Then we have

< Ni(Ki_1) > _ <Si(I)—Si—1(J)+li—1,z> (S,(I)— i— 1(J)> '

M1, lim1 lic1 Ni(J) = liita
Hence,
N
ng,q),t(Un,l)I,J
_ N b N ()i 1) (Si(f) = Si-1(J) + li—l,i) (S,(I) - Sz'—l(J)>
S S S 1 li—1 o\ NilJ) =lii /,
— tht(anl(J)) H q 1 1+1 ST(I) - l I(J) (—1)li’i+l S74+1(I) - SZ(J) + llﬂ“‘l .
Nz(J - lz i+1 lz i+1
l1,2, . ln—3n—2,l 1= 1 q ’ q

Here, each sum of

) i) <5i(f) - Si—l(J)> (1) (Sz‘+1(f) = 8i(J) + li,z‘+1>
Ni(J) = liit1 / liit1 .

is equal to the coefficient of zVi(/) in the following function

Sy(I)—S_
(14 2)5 D=5 () _ i ( i+1(I) — Ni(J) +l> (g5 (D=5im1(D) 1
(1+ Z)qu =0 ¢ q
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Then we have

(V) _ N (N1 () 1N Nigi(I)\  (8,(D)-8i 1())Ni ()
wi)rg =tV | | .
pn ,q,t (0 1) q ( N@(J) qq

Thus, we finish the proof of Lemma 4.2.1. O

By simple calculation, we have the another expression of pg}f]),t(an,l) 1,7 as follows.

n—2

. AN, N1 (I _(N_q. .

| (e e G A
i=1 v q-

The formula (4.1) is useful to compute the zeta function. Now we define the following array and
the corresponding polynomial.

Definition 4.2.1. For m € X,,_1, we define m-shifted array as

A o 1 2 - m—-—1 m m+1 --- n—1 °
BTl n—m4+1 n—m+2 - n—1 e 1 oonm—m—1 n—m

We write the set of pair of above and below of A, ,,, except two pairs which include a dot e by
P(n,m). Moreover, we define the following subsets of P(n,m).

P_(n,m) :={(i,j) € Pn,m) |1 <i<m—1},
Pr(n,m) :={(i,j) € P(n,m) | m+1<i<n-—1}.

For I,J € I}, (N), we define the following polynomial.

o (NI
Sunlai(.0) = [T ™ (J1))
(i,4)€P(n,m) J q

(N)

By using the above symbols, we can express (I, J)-entry of p,

(on,1) as follows.

Pt = ()N ()N Dg NS, 4 (g7 (1, 7)) D =e)),

Here, ay1(1,J) and a(I, J) are defined by

an1(I,J) ZNZH ), a(l,J) =Y N;(I)N;(J)
i>]
Furthermore, for m = 2,...,n — 1, we define
anm(,T) = > NiDN;(J) = N1 (D), bam(L,T) =Y an(I,J).
(i.)EP(n,m) =1

Remark 4.2.1. Since N, (J) = 0, the definition of a, (I, J) is consistent for all m € X,,_1.

Lemma 4.2.2. Form € X,,_1, and I,J € I'(N), we can express the (I, J)-entry of pﬁi\gt(amm)
as follows.

Pt (@nm)ng = (—)™N ()N gt NS, L (7Y (1,.))ghrem () =ald ), (4.2)
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Proof. We put

P](ZL) _ (_t)mN(_1)Nn,m(J)qt(N)Sn7m(q—1; (I, J))qbn,m(I,J)—a(I,J)‘
Since PI(l} = pﬁf}?}t(an,l), it is sufficient to show that
(m) p(1) _ p(m+1)
D PPy =P,
K
for 1 <m <n — 2. Then we have

> PR PRy = (<) DN ()N D) Sy Nen (DS, (g7 (1K)
K K

> Sn 1((]71; (K, J))qbn,m(I,K)fa(I,K)Jran,l(K,J)fa(K,J).
For simplicity, we put k; := N;(K). Then the part of summation becomes

> (08 (g (L K))Spa(g s (K, J))gtrom D)= Ky ban 1 (Kod)=alK,J)
K

(S () () (e

_ Npt1(I) _(N— Kp— _ _
t(kl) m+1 (N S’m+1(1))k1 _1 knfm n—m (knfm nfmfl(J))Snfw’LfQ(J)
x ;q < kl >q1q ( ) <kn—m - Nn—m—l(J)>q1q

X q_t(kan—Nnm(J))( N1(I) = N (J) ) g Nr=m (D kn—mi1=1) g =kn—mt1(Sn—m-1(/)=51(1)+1)
kn—m—l—l - Nn—m(J) g1

« g~Hlkn1=No—s() (le(f) an(J)> g~ N2 en-1-1) =1 (Sn-3(J) ~Smoa (D+D)
kn—l - Nn—2(J) g1

) (Nm+2(f ) =Ml )> g N a1 k2 (N=Smsa(1)
k? - Nl(J) g1

X q_t(knfmfl_Nn7m72(J)) (Nn_l(I) B Nn_m_Q(J>> q_ n7m72(J)(knfmfl_1)q_kn7mflsnfm73(l)
kn—m—l - Nn—m—Z(J) g1

Ni(I
_ oot ()= N1 (DS -m2() 11 ( EJ))>
(i.5)EP(nmAD\{(mn—1)} N 7N 0
t(k1)< +1 (N=Smy1(D)k1(_1\kn—m (kn—m=Nn—m—-1(J))Sn—m—2(J)

X q q q

; kl g1 ( ) kn—m - Nn—m—l(J) g !
" 11 =N ) (VD) = NiCDN o) =) g (8521 () =8:(0)+1)

i ki1 = Ni(J) ) 4

(1)EP— (nmt D)\ {(m.n—1)} q

X H q*t(kj+1*Nj(J)) <Nz(1) - Nj(J)) q*Nj(J)(kj+171)q7k]‘+1(N—Si(l)+sj_1(J))'
(i.)€P4 (mam-+1) kjrr = Ni(J) / g
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Here, first equation is given by comsidering the coefficient of k; in by .,(I, K) — a(f,K) +
an,1(K,J) — a(K,J). Concretely, the coefficient of ki is equal to —(IN — Sp41(1)), when
2 < i < n — m, the coefficient of k; is equal to —(N — Sy1i(I) + Si—2(J)). On the other
hand, when n —m +1 < i <n—1, the coefficient of k; is equal to —(Sj—2(J) — Si—n+m(I) +1).
Thus

> (DS (1L K))Sna (gt (K, ))gPrm (O =elb i) bana (B malie)

K
= gt (D)= Nacmoa (DS m-a()) 11 (%(?)
(i,/)€P(nym+1)\{(m,n—1)} i) g
(), (R ) N
t(k1)< +1 (N Sm+1(1))k1 _ kn—m (knfm Nn—m—l(J))Sn—m—Q(J)
x> q q (—1) q
EK: k1 q! kn—m_Nn—m—1<J) g1
« 11 gt = N5 () (Ni(f)—Nj(J)> g~ 1= N ()85 () =S D+) =N ()(S5 ()= S(1)
(1,§)€P— (n,m+1)\{(m,n—1)} ki1 = Ni(J) J
S § R <Ni(f)—Na'(J)> ¢~ e~ NG (N =Si (D485 (1)) Ny ()N =Si(D)+8;())-1)
(i.5)EP+ (n,m+1) kit = Ni(J) ) g
— (= 1) N1 () gt N1 (1) =Nt (D) S —2() (A (LD + A4 (1) x H (N,;(I)> .
(J)) _
(i,5)EP(nym+1)\{(m,n—1)} i) g
Here,
A(1,J) = > Nj(J)(S;(T) = SiI)),
(4,7)€P—(nym~+1)\{(m,n—1)}
A(I,J) = > N;(J)(N = Si(I) + S;(J) — 1).

(4,7)EP+(n,m+1)

Furthermore, by using Lemma 4.1.1, we can see that X is the coefficient of 2Nn=1() in the
function F(z,q1). Here, F(z,q) is defined by

F(Z,Q) = F—‘r(zv q)Fl(Z7Q)F—(zv q)a
Fi(zq):= [ @+ VS8 Jih=rit)
(4,7)EP+(n,m+1)

= (1 —+ qS”*m*Q(J)Z)(J]V_SmﬂLl(I)_Snfme(J)

I

(1+ qN_Sm+1(I)Z)£]Vm+1(1)

Fi(z,q) := ,
1( Q) (1 N qsn*m*Q(J)Z)évn_m_l(J)+l

F_(z,q) := H (1+ qu(J)*Si(I)HZ)(J]Vi(I)—Nj(J)
(i,§)€P— (n,m+1)\{(m,n—1)}
=(1+ qS"*Z(J)_Smfl(I)""lz)gnfmfl(J)_Sn72(‘])+smfl([)‘

Then we have

F(z,q) = 1 =S (Nm(f) — Nna(J) + l) (gN=5n(D )1,

(14 gV=Sm(Dz)gm D =ns 1=0 !

q
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Hence
m 1
S PP,
K
- (_t)(m+1)N(_1)Nn7m71(J)q2t(N)

.t N1 (D) =Nam 1 () Snmm—a (1) =(N=Sin (1) Nt (J)=(A= (1)) + A (1)) H <Ni(I)> ‘
(i,7)EP(n,m+1) gt

We next compute the power of ¢ as follows.

2t(N) = t(Nn-m-1(J)) = Nn—m-1(J)Sn-m—2(J) = Nn-1(J)(Sn-1(J) = Sm(1)) = (A-(1, J) + A1, ]))

=2t(N) = t(Nn—m-1(J)) = Np—m—-1(J) Sp-m—2(J) — Z (Si(J)Ni(J) = Ni(J))
1€Xn—1\{n—m—1}

n—2
= t(N) + bpma1 (I, J) + t(N) = t(Np—m1(J) = Y _ Si())Niga (J) — > 2t(Ni(J))
i=1 1€Xn—1\{n—m—1}
= t(N) + bpmi1 (I, J) — > t(N; (J)).

1€Xn_1\{n—m—1}

Thus,

ST PRI P, = (<) mEON ()N DN S, (g7 (1, ) g () = pED),
K

Then we finish the proof of Lemma 4.2.2.
Lemma 4.2.3. We have

pg,\tfz),t(anm)l,J = (—t)"Ng* M5 ;.

Here, 077 is defined as

Proof. By Lemma 4.2.2, we have

P (Onn—1)rs = (—t)TON ()Mt NS, (g7 (I, 0)) gt 0Dl )
n—2

— (=) (DN (L)L) gHN)Fbn o (10)—al1,]) Hq‘twﬂu»( Ni(I) >
qfl

paley Ni1(J)

We can obtain pg\gt(an,n) 1,7 by the following two computations.

N N N
P (Tnn)rg = > A G Y N R Py
K

N N
= Z pgl,q%t(Un,l)I,Mpg,q),t(Un,n—l)M,J-
M
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From the first computation and the definition of ¢-binomial coefficient, we have
P () 1,g # 0 <= Ni(J) < Nipa(K) < Ny(I) for 1 <i <n—2.
On the other hand, by the second computation,
P (0nn) 1,0 # 0 <= Ni(J) < Niga (K) < Ny(I) for 2 < i <n —1.
Hence we have
pﬁ\([])’t(an,n)j"l 20 = I=J.

Then ,0( ) (Onn ) is diagonal matrix. we next calculate the (I, I)-entry of ,07(I q)t(an n). By replac-

n,q,t
ing N1(K) = Np—1(I) and N;+1(K) = N;(I),(1 <i <n—2), we have
Pg,\;),t(an,n)u = (=) IN()MUIOGINS 1 (g7 (I, K))gPnm ()=l R

« (_t)N(_l)Nn,1(I)qt(N)Sn’l(q—l; (K, I))qanyl(K,I)—a(K,J)

— (_t)anQt(N) 72(t(N1(I))+---+t(Nn_2(I)))qbn,n_1(I,K)fa(I,K)fa(K,I)+an’1(K,I)‘

q
Here we calculate by, n,—1(I, K) —a(I,K) — a(K,I) 4+ an1(K,I) as follows.
bon—1(I,K)—a(l,K) —a(K,I)+ an1(K, 1)

—Z > NN(K) =Y N(I)N;(E) - > Ni(I)N;(K

(4,5)€P(n,m) i>j 1<j
n—2
+ ) (Ni(I)Nig1 (K) = Niga(K))
=1
n—2
—0+ Z Net (K) = Niga () = 2 5 #(Ni(D)).
=1

Hence,

pgz],\t[z),t(an,n)LJ = (—t)anzt(N)(Sl,J-

Then we next show the Theorem 4.2.1.
(N)

n,q,t’

Ny

Proof of Theorem 4.2.1. By the construction of p and ), = pp, we have Pni—1 =

Sym(N)p;"L. Then, from the result of Lemma 4.2.3, we have

2t(N) )

C(8,0m1;P50) = C(=t)Ng s, oz Sym™Y

Ph)-
Let P be the set of poles of ¢(s,¢n; Sym™)pr') which consists of d-th roots of unity for d | n.

7(1]7\2,5 Y Ng™ o )P Since (n,m) is

Then the set of poles of ((s,0n.1;p,, ,¢) can be expressed by (—t

2m
coprime, the set of poles of ((s, oy m; pSLJ’\Q’t) coincides with (—t)™™Ng= " n p Then we have

2mt(N)

C(8, Tnmi p) = C(—t)™V g7 s, cp; Sym™ph).
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4.3 ¢-identies and ¢-series

As an application of Theorem 4.2.1, we have the following g-identity.

Corollary 4.3.1. We assume that (n,m) is coprime for n,m € N2 then we have

qu(nkfl) (N — nk),

A
P o e i A | | qA?(/\) = —¢mFORD) (N = nk + 1),
1/ q

A=A, An—1) (i,5)€P(n,m) ise).
O i 0 (otherwise)

Here, sp1(A) :==0 and for 2 <m <n—1, we define

Snm (A Z( > Aixj—xn_l)

(4:.5)€P(n,1)
Proof. By Theorem 4.2.1, we have

(N) o0 N
tr pn,q7 ( ,m) k tr Sym( )pZ(CZL) mNE 2tk L
Z — = > (—t) (4.3)

q n s
m

k=1 k=1
Then comparing the coefficient of s in (4.3), we have

2mt(N)

’”NZ 1ot N D =alD S, (g5 (1,1) = tr Sym™p] (en) - (=)™ Vg

Putting N;(I) = A;, the above sum can be regarded as the sum of the partitions of N. Moreover,

— _ . )\i Iy () Y )\i
Somla ()= [ 4 t(&)()\.) = I e <A> _
q- 1/ q

(i,)€P(n,m) J (4,)€P(n,m)

Then, the power of ¢ can be computed as

t(N) +bpm (1) —a(l, D)+ > {;Aj(Aj +1)— )\i)\j}

(4,5)€P(n,m)
n—1
=D )+ D> AN +Z >N Z)\n D PPOIEE {;Aj()\frl)—)\i)\j}
k=1 i<j I=1 (i,j)eP(n,l) i<j (4,4)€P(n,m)

=tQnm)+ Y AT+ sum(N).
(3,7)€P(n,m)

From MacMahon Master Theorem (see [13]),

C(s,cn;ph) ZSym Dy (cn)s”. (4.4)

On the other hand, we compute the left-hand side of (4.4),

T l—s - nk nk+1
C(s,cnipy) = = Z(s — s,

1—sn

o1



Hence we have

1 (N =nk),
Sym®™p! (c,) = { —1 (N =nk+1),
0  (otherwise).

Then Corollary 4.3.1 holds. O

Remark 4.3.1. When m =1, Corollary 4.3.1 turns to the following simple identity.

¢l (N = k),

A
T (gt ntatoe T < ;;) = { —gHR ) (N =k + 1),
Aty 1 =N k=1 q 0 (otherwise).

4.4 Generating functions

We introduce the following trace generating function.
Definition 4.4.1. For o € B,,, we define the following series.
. N
Zgi(s,0) =1+ Z tr pfl’q%t(a)sN.
N=1
The trace generating function Z, (s, o) has the following properties.

Proposition 4.4.1. (1) For any o € By, we have

lim th(S U) C(S,O’;,B:;’,t)-

q%

(2) We assume that (n,m) is coprime, then we have

S
%Eﬁ th 1 Unm Z nmk mk nk—1) ( l)mqu(nkJrl)).
k=0

(N)

n,qt turns to the symmetric power representation of reduced Burau
171

Proof. If welet ¢ — 1, then p
representation denoted by Sym™® )Bﬁ’_t. Then we can show the first statement (1) by MacMahon
Master Theorem. Furthermore from the formula of Corollary 4.3.1, the second statement (2)
immediately holds. [

Remark 4.4.1. By Proposition 4.4.1, Z, (s, 0) can be regarded as a g-analogue of ((s,c; 8, _4).
Furthermore, if m = 1, we have the following expression by using Jacobi triple product.

lim Zg (1, 00,1) =1 = 11 (1-(=9)"). (4.5)
k=0,£(n—1) (mod 2n)

In summary, we obtain the relationship diagram in Figure 13.

(N)

We consider the case of n = 3. Here we calculate the trace of pqu?t(crg,l) by another way.
From Proposition 4.2.1,

(N)

No(I
A ()1 J:(_1)N—N2(J)tht(N2(J))+N1(I)N1(J)( 2( )> '

Ny (J)
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zeta function
(N)

C(Sa a; Pnyq,t)
= generating function
ZQ>t (S’ a)
o : torus type braid
g—1

(5,038, )
zeta function .

l g-series

Az (—t)

Alexander polynomial

Figure 13: braid zeta functions, generating function, and g-series

Putting No(I) =i, No(J) =5 (i,7 =0,1,2,...,N), we can express pg{\;?t(dgyl)],(] as follows

i . iV (N—i i
P:(),],g,)t(03,1)7;,j = (—1)N 3N gt i)+ (N =) (N—j) (N 3 )
J q

N t(N)—t(N—j)( i ) ,
(-1) q N-j),
Next, we compute the trace.

N .
—i_—t(N—i i -
tr ply )y (0.1) = Vg 3 (—1)N g )<N—i> l:tht(N)cﬁ)(q )
. .

Here we define

N . . i
@ (q) = S (-1)VigV = ( N Z_)q.

1=0

To get the formula of tr pg{\;’)t(ag,l), we need to calculate cg\?) (¢). In order to compute CS\:?) (q), we

consider the following generating function.

Here, we set c(()g)(q) = 1. Since (—1)V~ig (V=0 (NZ—z

the generating function f3(z,q) can be expressed by

)q is equal to the coefficient of 2V~ in (l—z)fl,

fa(z,q) = 2"(1—2)7 = (1 - 2)F(2,0,2q).
n=0
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Here, F(a,b; z,q) is a kind of g-hypergeometric series defined by
(1—a)y

F(a,b;z,q) := 732"
HZ:O =07

By using the properties of ¢-hypergeometric series (see [7], Chapter 1), we have the following
g-difference equation.

f3(z,q) = 14 qz — 42’ f3(¢2, 9).- (4.6)
Thus, we have
oo
q) _ Z(_Uk{qn(agfl) 3k n qk(31;+1> Z3k+1}. (4.7)
k=0

Hence we obtain the formula of Corollary 4.3.1 in the case of n = 3,m = 1. Conversely, we can
obtain the identity (4.7) by using the result of Corollary 4.3.1. Moreover, we remark that the
equation (4.7) includes a famous identity which is called Euler’s pentagonal number theorem as

o0

[T -a9 =20k

k=1 neL

We next consider the case of n = 4. By Proposition 4.2.1,

(N)

No(1 N3(I
p4’q7t(0_471)17(]:(_1)]\/1(J)+N2(J)tht(N)q—t(Nl(J))< a( )> 1q—t(N2(J))< 3( ))) 1q—N3(I)N1(J)‘
-

Ny (J) -
Then we have

— 4V ) (4)(q_1).

N
trp{V(0a1) = tNg" Ml

Here cgé) (q) is defined by

A A
Pl = > (—1)A1qt<h><£> (_1)A2qt(xg)<)\§> eeey
q q

A1+A2+A3=N

We put c(()4)(q) = 1. Then the generating function of cx‘;) (¢) can be expressed by

ch Z z ktw()u_qnz)ﬁ;zk.

It is difficult to calculate the function fy(z,q) directly, then we use the result of Corollary 4.3.1.

(_t)4k‘qk(4k‘—1) (N _ 4]{;)’
trpiyh(041) = § () (~1)gFEHD (N = 4k + 1),
0 (otherwise).

Hence,

FED (N = )
cgé) (q) = { WD (N =4k + 1),
0 (otherwise).

Then we obtain the following expansion.

(]) — Z{qk(4k—1)z4k + qk(4k+1)z4k+l}.

54



A Appendix

In this section, we give some propositions and formula which are used in this paper.

A.1 Mobius inversion formula
We introduce the Mobius inversion formula.

Definition A.1.1. If the domain of the map f is the positive integers, and its range is subset
of C, then f is called arithmetic function.

Definition A.1.2. For positive integer n, the function p is defined as follows.

W) =31 (n=1),
0 (n is not square free).

We call this arithmetic function Mobius function.

Proposition A.1.1. For any n > 1, we assume that arithmetic function f and g satisfy
gln) =) _fn).
din
Then,
n
= d)gl = ). Al
) = Y- utayg(5) (A1)

din

The formula (A.1) is called M6bius inversion formula.

A.2 Iwahori-Hecke algebra

In this section, we introduce the foundation of the theory of Iwahori-Hecke algebra. For more
detail, see [8], Chapter 5. We assume that n > 1, R is a commutative ring, and ¢ is invertible
element of R.

Definition A.2.1. H(q) is the universal associative R-algebra generated by Ti,T5, ..., Th_1
which satisfy the following relations.

LT =10 (i —jl > 1),
T‘iT%JrlT‘i:T%JrlT‘iT:i+1 (Z: 1727---7n_2)7
T?=(q-1DT;+q-1 (i=1,2,...,n—1).
Hf(q) is called (one-parameter) Iwahori-Hecke algebra.

Remark A.2.1. When n = 1, we can see H*(q) ~ R by the definition. Furthermore, it is
well-know that HF(1) ~ R[&,] which is group ring.

Next we state some famous facts.

Theorem A.2.1. We assume that q € C is neither 1 nor root of unity, then the Iwahori-Hecke
algebra HS(q) is semisimple. Thus, there is a finite family of simple subalgebras {Ax}xen of
HC(q) such that

Hy(q) = €D Ax.

AEA
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In other words, we can decompose any representation of HE (¢) into some irreducible repre-
sentations of HS(g). In fact, we can describe all irreducible representations of HS(q) by using
the Young diagram of the partition of n.

Definition A.2.2. Let A = (\1,...,\;) be a partition of a nonnegative integer n. We assume
that Ay > Ao > --- > \;. Then we define the set

D) ={(r,s) |1 <r<[,1<s<\}

and define the corresponding diagram which is called Young diagram as Figure 14.

S

1] ~

| ] Ao

(rs)

Figure 14: Young diagram

Definition A.2.3. For a partition A of n > 1, we define the bijection T': D(A) — {1,2,...,n}.
We call T labeling. In particular, if T satisfies

T(r,s) <T(r' s")
s <

for all (r,s), (,s") € D(X) such that r <7/,
set Ty as the set of standard labeling of D(A).

', the labeling T is said to be standard. We

Let T be a label of D()\). We assume that T'(r,s) =4, T(r',s’) =i+ 1, and we set d(r,s) :=
s —r. Then we define

dp(i) == d(T7 i+ 1)) —d(T7(i)) e Z.

Furthermore, we set

Here, ¢ is a complex parameter and suppose that ¢ is generic. Using ar(i) and br(i), we define
- (©)
the representation of Hy ’(q).

Definition A.2.4. Let V) be the complex vector space with basis {vr}rer;. Then we let the
generators T, ..., T,_1 of HS(q) act on the basis of V) by

T%(UT) = aT(i)vT + bT(i)USZ..T. (A2)

Here, s; is the transposition (i,i + 1) € &,, and s;T is given by switching the labels ¢ and i + 1
of T'. If s;T is not standard, we set s;T = 0.

Proposition A.2.1. The action on Vy defined by (A.2) has the structure of HS(q). Then we
obtain the representation

Px Hg(q) — Autc(V)).

56



px is called seminormal representation of HS(q). Furthermore, we can define the group
homomorphism w,, : B, — HS(q)* by sending the generator o; to T;. Then we have a braid
representation with respect to the partition A\ as

P8 := prowp : By — GL(Vy).

Proposition A.2.2. p) is irreducible. Furthermore, for any irreducible representation p which
has Iwahori-Hecke algebra, there exists a unique partition A of n such that p >~ py.

Proposition A.2.3. The partition A = (n) corresponds to the trivial representation 1 of By,

and X\ = (1,1,...,1) corresponds to the one dimensional representation sgn, : o (—q)5).
——
n
Moreover, the partition A\ = (2,1,...,1) corresponds to the reduced Burau representation Br.q
N—_—— ’
n—2

The Figure 15 is called Bratteli diagram which is the oriented graph of Young diagrams.
From this Figure and Proposition A.2.3, we can see that irreducible representation of Bs which
has the structure of Iwahori-Hecke algebra is classified into only 3 patterns: 1,sgng, 53 .

1
/
7 TS ED
D H — |
50\
N
\ E
Figure 15: Bratteli diagram

A.3 MacMahon Master Theorem

We state the simplest version of MacMahon Master Theorem which is useful in this paper.

Proposition A.3.1. Let A be an n x n matriz. Then the following identity holds.
det(I, — As)™ Ztr (S%A)s"
Here, S*A is the symmetric power of A.

A.4 Jacobi triple product

Finally, we state the Jacobi triple product.
Proposition A.4.1. The following identity holds.

00
anQZn _ H(l _ q2k)(1 + q2k—1z)(1 —|—q2k+12_1).
k=1

ne”

Replacing ¢ +— ¢" and z + (—1)"¢~!, we have the identity (4.5).
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