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1 Introduction

The hyperbolic Eisenstein series is the Eisenstein series associated to hyper-
bolic fixed points, or equivalently a primitive hyperbolic element of Fuchsian
groups of the first kind. It was first introduced by S. S. Kudla and J. J.
Millson [11] in 1979 as an analogue of the ordinary Eisenstein series asso-
ciated to a parabolic fixed point. They established an explicit construction
of the harmonic 1-form dual to an oriented closed geodesic on an oriented
Riemann surface M of genus greater than 1. Furthermore, they proved the
meromorphic continuation of the hyperbolic Eisenstein series to all of C and
gave the location of the possible poles when M is compact. After that, they
generalized the results of [11] to compact n-dimensional hyperbolic manifold
and its totally geodesic hyperbolic (n − k)-manifolds. In [11, 12], they con-
structed the hyperbolic Eisenstein series by averaging certain smooth closed
k-form.

Following Kudla and Millson’s point of view, the scalar-valued analogue
of the hyperbolic Eisenstein series is defined in [3, 4], and [10]. It is defined as
follows. Let H2 := {z = x+ iy ∈ C | x, y ∈ R, y > 0} be the upper-half plane
and Γ ⊂ PSL(2,R) a Fuchsian group of the first kind acting on H2 by the
fractional linear transformations. Then the quotient Γ\H2 is a hyperbolic
Riemann surface of finite volume. Let γ ∈ Γ be a primitive hyperbolic
element and Γγ = ⟨γ⟩ be its centralizer group in Γ. Consider the coordinates
x = eρ cos θ and y = eρ sin θ. In this setting, the hyperbolic Eisenstein series
associated to γ is defined by the series

Ehyp,γ(z, s) :=
∑

η∈Γγ\Γ

(sin θ(Aηz))s, (1)

where s ∈ C with sufficiently large Re(s) and A is an element in PSL(2,R)
such that AγA−1 =

( a(γ) 0

0 a(γ)−1

)
for some a(γ) ∈ R with |a(γ)| > 1. The

hyperbolic Eisenstein series (1) converges for any z ∈ H2 and s ∈ C with
Re(s) > 1 and defines a Γ-invariant function where it converges. Further-
more, it is known that the hyperbolic Eisenstein series Ehyp,γ(z, s) satisfies
the following differential equation

(−∆+ s(s− 1))Ehyp,γ(z, s) = s2Ehyp,γ(z, s+ 2),

where ∆ is the hyperbolic Laplace-Beltrami operator.
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There are many researches on this hyperbolic Eisenstein series. M. S.
Risager [16] studied the hyperbolic Eisenstein series twisted by modular sym-
bols. T. Falliero [2] and D. Garbin, J. Jorgenson and M. Munn [3] studied
the asymptotic behavior of the hyperbolic Eisenstein series for a degenerat-
ing family of finite volume hyperbolic Riemann surfaces. They proved that
the limit of the hyperbolic Eisenstein series associated to a pinching geodesic
for degenerating family is equal to the parabolic Eisenstein series associated
to the newly formed cusp on the limit surface. D. Garbin and A.-M. v. Pip-
pich [4] studied the asymptotic behavior of parabolic, hyperbolic and elliptic
Eisenstein series for a elliptic degenerating family of finite volume hyperbolic
Riemann surfaces.

Furthermore, J. Jorgenson, J. Kramer and A.–M. v. Pippich [10], in 2010,
proved that the hyperbolic Eisenstein series is a square integrable function
on Γ\H2 and obtained the spectral expansion associated to the hyperbolic
Laplace-Beltrami operator −∆ precisely. It is given as follows. Let

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

be the eigenvalues of −∆ and em the eigenfunction corresponding to λm. Let
D ⊂ N is an index set for a complete orthogonal system of eigenfunctions
{em}m∈D. We denote a cusp of Γ\H2 by ν and the ordinary Eisenstein series
associated to the cusp ν by Eν(z, s). Then the spectral expansion of the
hyperbolic Eisenstein series Ehyp,γ(z, s) is given by

Ehyp,γ(z, s) =
∑
m∈D

am,γ(s)em(z)

+
1

4π

∑
ν:cusps

∫ ∞

−∞
a1/2+iµ,γ(s)Eν(z, 1/2 + iµ)dµ. (2)

Then this series converges absolutely and locally uniformly. The coefficients
am,γ(s) and a1/2+iµ,γ(s) are given by

am,γ(s) =
√
π · Γ((s− 1/2 + µm)/2)Γ((s− 1/2− µm)/2)

Γ(s/2)2

×
∫
L̃γ

em(z)dσ (3)
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and

a1/2+iµ,γ(s) =
√
π · Γ((s− 1/2 + iµ)/2)Γ((s− 1/2− iµ)/2)

Γ(s/2)2

×
∫
L̃γ

Eν(z, 1/2 + iµ)dσ, (4)

where µ2
m = 1

4
−λm and L̃γ is the closed geodesic corresponding to γ. Further-

emore, they proved the meromorphic continuation of Ehyp,γ(z, s) to the whole
complex plane C. They also derived the location of the possible poles and
residues from the spectral expansion (2) and the meromorphic continuation.

In our previous paper [5], we defined the hyperbolic Eisenstein series for
a loxodromic element of the cofinite Kleinian groups acting on 3-dimensional
hyperbolic space and proved the results analogous to [10]. We also in [7]
consider the asymptotic behavior of the hyperbolic Eisenstein series for the
degeneration of 3-dimensional hyperbolic manifolds and obtain the results
corresponding to [2, 3].

Our purpose in this article is to obtain a generalization of the hyperbolic
Eisenstein series (1) for the n-dimensional hyperbolic spaces. Let

Hn := {x = (x1, x2, ..., xn) ∈ Rn | xn > 0}

be the n-dimensional upper-half space of Rn. With the hyperbolic metric
|dx|
xn

, Hn is the n-dimensional hyperbolic space. Let G := O(n, 1) be the
orthogonal group of signature (n, 1) and G0 the connected component of G
containing the unit element. ThenG0 acts onHn transitively and any element
of G0 determines an element of the group of orientation preserving isometries
of Hn. Let Γ ⊂ G0 be a torsion-free cofinite discrete subgroup. Then the
quotient Γ\Hn is a n-dimensional hyperbolic manifold. Let σ ∈ O(n+ 1) be
the involution which is invariant on a hyperbolic (n−k)-plane Dσ ⊂ Hn. We
denote by Gσ and Γσ the centralizer group of σ in G0 and the intersection
Γ ∩Gσ respectively. We assume the following assumption

σΓσ = Γ.

Then the quotient Γσ\Dσ is naturally identified (n−k)-submanifold of Γ\Hn.
In addition, we assume Γσ\Dσ is compact. Without loss of generality, we
may identify Dσ with the subset

{x = (x1, ..., xn) ∈ Hn | xi = 0, 1 ≤ i ≤ k} ⊂ Hn.
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Then, for x ∈ Hn and s ∈ C with sufficiently large Re(s), the hyperbolic
Eisenstein series associated to the involution σ is defined as follows.

Eσ(x, s) :=
∑

η∈Γσ\Γ

sinφ0(ηx)
s, (5)

where φ0 is given by sinφ0(ηx) = cosh(dhyp(ηx, Dσ))
−1 and dhyp(ηx, Dσ)

denotes the hyperbolic distance from ηx to Dσ. The hyperbolic Eisenstein
series Eσ(x, s) converges absolutely and locally uniformly for any x ∈ Hn

and s ∈ C with Re(s) > n − 1 and satisfies the following differential shift
equation

(−∆+ s(s− n+ 1))Eσ(x, s) = s(s− n+ k + 1)Eσ(x, s+ 2), (6)

where −∆ denotes the Laplace-Beltrami operator associated to the hyper-
bolic metric. In this aritcle, about this hyperbolic Eisenstein series Eσ(x, s),
we obtain the following results:

Main Theorem. (See Theorems 4.3 and 4.4). Let 0 = λ0 < λ1 ≤ λ2 · · · be
the eigenvalues of −∆ and em the eigenfunction corresponding to λm. Let
D ⊂ N be an index set for a complete orthogonal system of eigenfunctions
{em}m∈D. Then, for any s ∈ C with Re(s) > n − 1, the Eisenstein series
Eσ(x, s) admits the following spectral expansion.

Eσ(x, s) =
∑
m∈D

am,σ(s)em(x)

+
1

4π

∑
ν:cusps

∫ ∞

−∞
an−1

2
+iµ,σ(s)Eν

(
x,
n− 1

2
+ iµ

)
dµ, (7)

where Eν is the ordinary Eisenstein series associated to the cusp ν. Then
this series converges absolutely and locally uniformly. The coefficients am,σ(s)
and an−1

2
+iµ,σ(s) are given by

am,σ =
1

2
vol(Sk−1) · Γ

(
k

2

)
×

Γ
((
s− n−1

2
+ µm

)
/2
)
Γ
((
s− n−1

2
− µm

)
/2
)

Γ (s/2) Γ ((s− n+ k + 1) /2)

×
∫
Γσ\Dσ

emdv2 (8)
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and

an−1
2

+iµ,σ =
1

2
vol(Sk−1) · Γ

(
k

2

)
×

Γ
((
s− n−1

2
+ iµ

)
/2
)
Γ
((
s− n−1

2
− iµ

)
/2
)

Γ (s/2) Γ ((s− n+ k + 1) /2)

×
∫
Γσ\Dσ

Eν

(
x,
n− 1

2
+ iµ

)
dv2, (9)

where µ2
m = (n−1

2
)2−λm and dv2 is the hyperbolic volume element restricted

on Γσ\Dσ. In addition, vol(Sk−1) denotes the Euclidean volume of the unit
(k − 1)-dimensional sphere

Sk−1 := {x = (x1, ..., xk) ∈ Rk | |x|2 = x21 + · · ·+ x2k = 1}.

Besides, we derive the meromorphic continuation of Eσ(x, s) to all complex
plane C and the possible poles and residues from the spectral expansion.
(See Theorem 4.4).

We finally introduce the outline of this article. In Section 2, we estab-
lish basic notations and recall known results needed later in this article.
Section 3 is devoted to the definition of the hyperbolic Eisenstein series on
n-dimensional hyperbolic spaces and its fundamental properties. In Section
4, we state details of Main Theorem and its proof.
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2 Preliminaries

2.1 The hyperboloid model of the hyperbolic n-space

Let Rn+1 be the (n+1)-dimensional real vector space and ei (1 ≤ i ≤ n+ 1)
be the standard basis of Rn+1. For any vector x ∈ Rn+1, we write the
coordinate representation in standard basis of Rn+1 as

x = (x1, x2, ..., xn+1).

We consider the Lorentzian inner product ( , ) on Rn+1. It is defined for any
two vectors x and y in Rn+1 as follows.

(x,y) := x1y1 + x2y2 + ...+ xnyn − xn+1yn+1.

The inner product space Rn+1 together with the Lorentzian inner product
( , ) is called Lorentzian (n+1)-space and is also denoted by Rn,1. The norm
in Rn+1 associated with ( , ) is defined to be the complex number

||x|| = (x,x)
1
2 .

Here ||x|| is either positive real number, zero, or positive imaginary. This
norm is also called the Lorentzian norm. A function ϕ : Rn+1 → Rn+1 is a
Lorentz transformation if and only if

(ϕ(x), ϕ(y)) = (x,y)

for all x, y ∈ Rn+1.

Definition 2.1. A vector x ∈ Rn+1 is called

(1) space-like if ||x|| > 0,

(2) light-like if ||x|| = 0, or

(3) time-like if ||x|| is imaginary.

If a vector x ∈ Rn+1 is light-like or time-like, x is said to be positive (resp.
negative) if and only if xn+1 > 0 (resp. xn+1 < 0).

Definition 2.2. A vector subspace V of Rn+1 is called
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(1) space-like if and only if every nonzero vector in V is space-like,

(2) time-like if and only if V has a time-like vector, or

(3) light-like otherwise.

Two vector x and y in Rn+1 is called Lorentz orthogonal if and only if
(x,y) = 0. Then if both x and y are nonzero vectors, the one of x or y
is time-like and the other is space-like. In addition, Lorentz orthogonal two
vectors x and y called Lorentz orthonormal if and only if ||x||2 = ±1 and
||y|| = ∓1.

We define the hyperbolic n-space as the hyperboloid model. Let Fn ⊂
Rn+1 be the sphere of unit imaginary radius, i.e.

Fn := { x ∈ Rn+1 | ||x|| = −1 }.

Then Fn is disconnected. The subset of all x ∈ Fn such that xn+1 > 0 (resp.
xn+1 < 0) is called the positive (resp. negative) sheet of Fn. The hyperboloid
model of hyperbolic n-space is defined as the positive sheet of Fn. We denote
it by Fn

+. Then, for two vectors x,y ∈ Fn
+, the hyperbolic distance between

x and y is written as follows.

cosh dFn
+
(x,y) = −(x,y),

where (, ) is the Lorentzian inner product. This hyperbolic distance function
defines a hyperbolic metric on Fn

+. Then the hyperbolic geodesic and the
hyperbolic m-plane in Fn

+ are defined as follows.

Definition 2.3. A hyperbolic geodesic of Fn
+ is the intersection of Fn

+ with
a 2-dimensional time-like vector subspace of Rn+1.

Definition 2.4. A hyperbolic m-plane of Fn
+ is the intersection of Fn

+ with
a (m+ 1)-dimensional time-like vector subspace of Rn+1.

Let V be the (m+1)-dimensional time-like vector subspace of Rn+1. Then
the intersection Fn

+ ∩ V is a hyperbolic m-plane. Then any x ∈ Fn
+ there

exist orthonormal vectors x1 and x2 such that

x = cosh(t)x1 + sinh(t)x2,

where x1 ∈ Fn
+ ∩ V , ||x2|| = 1 and t is the hyperbolic distance from x to x1.
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2.2 The conformal ball model

Next, we define the conformal ball model of the hyperbolic n-space. Let Bn

be the open unit ball in Rn.

Bn := {x = (x1, ..., xn) ∈ Rn | |x| = x21 + · · ·+ x2n < 1}.

Let P1 be the stereographic projection of Bn onto Fn
+ defined by

P1(x) = x+
1 + |x|2

1− |x|2
(x+ en+1),

where | | is the Euclidean norm of x. The metric dBn on Bn is defined by

dBn(x,y) = dFn
+
(P1(x), P1(y)).

Then P1 is an isometry from Bn to Fn
+ with this metric dBn . The hyperbolic

line element and the hyperbolic volume element of Bn associated to dBn are
given as

2|dx|
1− |x|2

and
2ndx1 · · · dxn
(1− |x|2)n

.

Then the hyperbolic Laplace-Beltrami operator associated with the hyper-
bolic line element is given by

∆ =
1

4
(1− |x|2)2

n∑
i=1

∂2

∂x2i
+
n− 2

2
(1− |x|2)

n∑
i=1

xi
∂

∂xi
.

2.3 The upper-half space model

We introduce another model of hyperbolic n-space, namely upper-half space
model. Let Un be the upper-half space of Rn i.e.

Un = { x ∈ Rn | xn > 0 }.

The isometry from Bn to Un is given by the stereographic projection P2 of
Rn. The metric dUn on Un is defined

dUn(x,y) = dBn(P−1
2 (x), P−1

2 (y)).
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The hyperbolic line element and the hyperbolic volume element of Un asso-
ciated to dUn are given as

|dx|
xn

and
dx1 · · · dxn

xnn
.

Then the hyperbolic Laplace-Beltrami operator associated with the hyper-
bolic line element is given by

∆ = x2n

(
∂2

∂x21
+ · · ·+ ∂2

∂x2n

)
− (n− 2)xn

∂

∂xn
.

2.4 Orthogonal group O(n, 1)

A real (n + 1) × (n + 1) matrix A is said to be Lorentzian if and only if
the corresponding linear transformation A : Rn+1 → Rn+1 is Lorentzian. A
Lorentzian matrix A is said to be positive (resp. negative) if and only if A
transforms positive time-like vectors into positive (resp. negative) time-like
vectors. The set of all Lorentzian matrices forms a group with the ordinary
matrix multiplication. We let

G = O(n, 1) :=

{
g ∈ GL(n+ 1,R)

∣∣∣∣∣ tg

(
1n

−1

)
g =

(
1n

−1

) }

be the orthogonal group of signature (n, 1). Here 1n denotes the n× n unit
matrix. Then any element of G is a Lorentzian matrix and G is naturally
isomorphic to the group of all Lorentz transformations of Rn+1. Immediately,
G acts Fn transitively and preserves the Lorentz inner product so that we
can naturally identify G with the isometry group of Fn. Let PO(n, 1) be the
set of all positive matrices in G. Then PO(n, 1) acts on Fn

+ transitively.
Let K be the stabilizer of en+1 in G. Then K is a maximal compact

subgroup of G. By definition, the determinant of g ∈ G is equal to +1 or
−1. We denote the connected component of G (resp. K ) containing the unit
element by G0 (resp. K0 ). Then G0 acts on Fn

+ transitively and naturally
identifies the orientation preserving isometries on Fn

+. K0 is the stabilizer of
en+1 in G0 and a maximal compact subgroup of G0. Then the quotient space
G0/K0 is naturally identified with Fn

+.
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2.5 Eisenstein series associated to cusps

Let Γ ⊂ G0 be a cofinite discrete subgroup of G0 and ζ ∈ Rn−1 ∪ {∞} be a
cusp. We define the stabilizer-group of ζ by

Γζ := {M ∈ Γ |Mζ = ζ}

Choose A ∈ G0 such that Aζ = ∞. For any x ∈ Un, we write its coordinates

x = (x1, ..., xn).

Then, for any x ∈ Un and s ∈ C with sufficiently large Re(s), the Eisenstein
series associated to ζ is defined as

Eζ(x, s) :=
∑

M∈Γζ\Γ

xn(AMx)s.

The Eisenstein series Eζ(x, s) converges absolutely and locally uniformly for
any x ∈ Un and s ∈ C with Re(s) > n − 1 and it defines a Γ-invariant
function where it converges.

We set B1, . . . , Bh ∈ G0 so that

η1 = B−1
1 ∞ , . . . , ηh = B−1

h ∞ ∈ Rn−1 ∪∞

are the representatives for Γ-classes of cusps of Γ. For ν = 1, ..., h and x ∈ Un,
the Eisenstein series associated to ην is defined

Eν(x, s) =
∑

M∈Γην \Γ

xn(BνMx)s.

Then Eν(x, s) has the Fourier expansions at the cusp of the form

Eν(B
−1
ν x, s) = xsn + ϕνν(s)x

n−1−s
n + · · ·

for ν = 1, ..., h and the case ν ̸= µ

Eν(B
−1
µ x, s) = ϕνµ(s)x

n−1−s
n + · · · ,

where the functions ϕνµ(s) are described as certain Dirichlet series. Using
the above notation, we define

E(x, s) :=

E1(x, s)
...

Eh(x, s)

 ,
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Φ(s) := (ϕνµ(s)),

where ν is the row index and µ the column index. The matrix Φ(s) is called
the scattering matrix for E(x, s). Then the following facts are known about
E(x, s) and Φ(s). Both Φ(s) and E(x, s) have meromorphic continuations to
all of C in the following sense. There is a holomorphic function g : C → C
with g ̸= 0 such that for every ν = 1, ..., h the product g(s)Eν(x, s) can be
continued to a function on Un×C which is real analytic in x and holomorphic
in s ∈ C. Then the continued functions satisfy the following functional
equation

E(x, n− 1− s) = Φ(n− 1− s)E(x, s)

and

Φ(s)Φ(n− 1− s) = 1h,

where 1h is the h × h unit matrix. Furthermore, the continued components
Eν(x, s) of E(x, s) satisfy the following differential equation

(−∆− s(n− 1− s))Eν(x, s) = 0,

if s is not a pole of Eν(x, s).
The Eisenstein series Eν(x, s) and the entries of scattering matrix Φ(s)

have no poles in {s ∈ C | Re(s) > n−1
2
} except possibly finitely many points

in the semi-open interval (n−1
2
, n−1] on the real line. These poles are simple.

Furthermore, Eν(x, s) has a simple pole at s = n − 1. Both the entries of
E(·, s) and of Φ(s) has no poles for s ∈ C with Re(s) = n−1

2
and Φ(s) is a

unitary matrix on this line.

2.6 Domain of Laplace-Beltrami operator

Let Γ ⊂ G0 be a cofinite subgroup of G0. We denote by L2 (Γ\Un) the set
of all Γ-invariant measurable functions f : Un → C which satisfy∫

FΓ

|f |2 dv <∞,

where FΓ denotes a fundamental domain of Γ. For f, g ∈ L2 (Γ\Un), the
function fḡ is Γ-invariant. Hence the definition

⟨f, g⟩ :=
∫
FΓ

fḡ dv (10)

13



makes sense and ⟨·, ·⟩ is an inner product on L2 (Γ\Un). The space L2 (Γ\Un)
is a Hilbert space through the inner product ⟨·, ·⟩. For any f ∈ L2 (Γ\Un),
we have the following lemma.

Proposition 2.5. Every f ∈ L2 (Γ\Un) has the following spectral expansion
associated to −∆

f(x) =
∑
m∈D

⟨f, em⟩em(x)

+
1

4π

∑
ν : cusps

∫ ∞

−∞

⟨
f, Eν

(
·, n− 1

2
+ it

)⟩
· Eν

(
x,
n− 1

2
+ it

)
dt, (11)

where D ⊂ N is an index set for a complete orthonormal set of eigen-
functions (en)n∈D for −∆ in L2 (Γ\Un) and ⟨f, Eν(·, n−1

2
+ it)⟩ is defined

by
∫
FΓ
f(y)Eν(y,

n−1
2

+ it)dv(y). The series of the right hand side of (11)

converges in the norm of the L2(Γ\Un).
Besides, if f ∈ C l0(Γ\Un) ∩ L2(Γ\Un) for a positive integer l0 > 0 such

that l0 >
n
2
and −∆lf ∈ L2(Γ\Un) for any 0 ≤ l ≤ ⌊n+1

4
⌋ + 1, the spectral

expansion (11) of f converges uniformly and locally uniformly on Γ\Un.
Especially, if f and −∆lf are smooth and bounded on Γ\Un for any 0 ≤ l ≤
⌊n+1

4
⌋ + 1, the spectral expansion (11) of f converges uniformly and locally

uniformly on Γ\Un.

Proof. See [9] p. 103 in Chapter 7, [1] p. 268 in Chapter 6 or [17].
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3 Hyperbolic Eisenstein series

Let V be the space-like vector subgroup of dimV = k and V ⊥ be the or-
thogonal complement space of V . The dimension of V ⊥ is n − k + 1. Then
Fn

+ ∩ V ⊥ is the hyperbolic (n− k)-plane.
Let σ = σV ∈ O(n+ 1) be the involution such that

σ =

{
−1 on V

1 on V ⊥.

Then Fn
+ ∩ V ⊥ is the fixed point set of σ in Fn

+. Let Gσ be the centralizer of
σ in G i.e.

Gσ = { g ∈ G | σgσ = g }.

Let Γ ⊂ G be a cofinite discrete subgroup of G i.e. the quotient Γ\Fn
+

has finite volume and Γσ be the intersection of Γ with Gσ. We assume the
following assumption.

σΓσ = Γ. (12)

In addition, we assume the quotient Γ\(Fn
+ ∩ V ⊥) is compact.

Without loss of generality, we may assume the vector subspace V and V ⊥

in Rn+1 as follows.

V = { x ∈ Rn+1 | xi = 0, k + 1 ≤ i ≤ n+ 1 }
V ⊥ = { x ∈ Rn+1 | xi = 0, 1 ≤ i ≤ k }.

Then the intersection Fn
+ ∩ V ⊥ is identified with

Dσ = { x ∈ Un | x = (0, · · · , 0, xk+1, . . . , xn), xn > 0 }.

We introduce the partial polar coordinate on Un. It is defined as follows.
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If 2 ≤ k ≤ n− 1,

x1 = eρ cosφ0 sinφ1,

...

xi = eρ cosφ0 · · · cosφi−1 sinφi, 2 ≤ i ≤ k − 1,

...

xk = eρ cosφ0 · · · cosφk−2 cosφk−1,

xk+1 = xk+1,

...

xn−1 = xn−1, and

xn = eρ sinφ0,

(13)

where 

ρ = log
√
x21 + · · ·+ x2k + x2n,

0 < φ0 <
π

2
,

−π
2
< φi <

π

2
, 1 ≤ i ≤ k − 2, and

0 ≤ φk−1 < 2π.

If k = 1, 

x1 = eρ cosφ0,

x2 = x2,

...

xn−1 = xn−1, and

xn = eρ sinφ0,

(14)

where  ρ = log
√
x21 + x2n,

0 < φ0 < π.
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Under this coordinates, the hyperbolic line element dσ and the hyperbolic
volume element dv are given by

dσ2 =
1

(sinφ0)2

{
dρ2 + dφ2

0 +
k−1∑
i=1

(
i−1∏
j=0

(cosφj)
2

)
dφ2

i +
n−1∑

i=k+1

dx2i
e2ρ

}
,

dv =
1

e(n−k)ρ(sinφ0)n
·
k−2∏
i=0

(cosφi)
k−1−i · dρdφ0 · · · dφk−1dxk+1 · · · dxn−1.

We define restricted volume element dv1 and dv2 as follows.

dv1 =

(
k−2∏
i=1

(cosφi)
k−1−i

)
· dφ1 · · · dφk−1,

dv2 =
1

e(n−k)ρ
· dρdxk+1 · · · dxn−1.

Then

dv =
(cosφ0)

k−1

(sinφ0)n
dφ0dv1dv2.

Furthermore, the Laplace-Beltrami operator is written by

∆ = (sinφ0)
2

{(
∂2

∂ρ2
+

∂2

∂φ2
0

+
k−1∑
i=1

1∏i−1
j=0(cosφj)2

· ∂2

∂φ2
i

+
n−1∑

i=k+1

e2ρ
∂2

∂x2i

)

−

(
(n− k − 1)

∂

∂ρ
+ ((k − 1) tanφ0 + (n− 2) cotφ0)

∂

∂φ0

+
k−1∑
i=1

(k − i− 1) tanφi
1∏i−1

j=0 cosφj

∂

∂φi

)}
.

Under above coordinates, we define the generalized hyperbolic Eisenstein
series associated to σ as follows.

Definition 3.1. Let x ∈ Un and s ∈ C with sufficiently large Re(s). Then
the hyperbolic Eisenstein series associated to the involution σ is defined as
follows.

Eσ(x, s) :=
∑

η∈Γσ\Γ

(sinφ0(ηx))
s. (15)
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Let dhyp(x, Dσ) be the hyperbolic distance from x to Dσ. Then we have

sinφ0(x) · cosh(dhyp(x, Dσ)) = 1

for any x ∈ Un. Using this formula, we can write the Eisenstein series
associated to σ as

Eσ(x, s) =
∑

η∈Γσ\Γ

cosh(dhyp(ηx, Dσ))
−s. (16)

Proposition 3.2. The Eisenstein series associated to σ converges absolutely
and locally uniformly for any x ∈ Un and s ∈ C with Re(s) > n − 1 and
satisfies the following differential shift equation

(−∆+ s(s− n+ 1))Eσ(x, s) = s(s− n+ k + 1)Eσ(x, s+ 2). (17)

Definition 3.3. Let T > 0 be a positive real number. Then we define the
counting function associated to σ as follows.

Nσ(T ;x, Dσ) := ♯{η ∈ Γσ\Γ | dhyp(ηx, Dσ) < T}, (18)

where ♯ is the cardinality of the set.

By using the counting function defined above, we can write the hyperbolic
Eisenstein series associated to σ as the Stieltjes integrals, namely

Eσ(x, s) =

∫ ∞

0

cosh(u)−sdNσ(u;x, Dσ). (19)

Lemma 3.4. Let r > 0 be the injective radius at x, i.e. for any γ1, γ2 ∈ Γ,
Bhyp(γ1x, r) ∩ Bhyp(γ2x, r) = ∅. For positive real numbers u, T0 and r such
that u > T0 > r, we have the following inequality of the counting function

Nσ(u;x, Dσ) ≤ Nσ(T0;x, Dσ)

+
1

n− 1
· vol(Sk−1) · volhyp(Γσ\Dσ)

volhyp(Bhyp(x, r))

× {(cosh(u+ r))n−1 − (cosh(T0 − r))n−1},

where Sk−1 is the unit (k − 1)-dimensional sphere.
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Proof. We define the subset V (T ) ⊂ Γσ\Un by

V (T ) := {x ∈ Γσ\Un | dhyp(x,Γσ\Dσ) < T}.

The hyperbolic distance from any x ∈ Un to Γσ\Dσ is given by sinφ0(x).
Hence the hyperbolic volume of V (T ) is given by following integral∫

Γσ\Dσ

∫ π
2

φ1=−π
2

· · ·
∫ π

2

φk−2=−π
2

∫ 2π

φk−1=0

∫ π
2

φ0=φ0(x)

(cosφ0)
k−1

(sinφ0)n
dφ0dv1dv2.

Since the restricted volume element dv2 is the hyperbolic volume element on
hyperbolic n− k-plane Dσ, we have∫

Γσ\Dσ

dv2 = volhyp(Γσ\Dσ).

In addition,∫ π
2

φ1=−π
2

· · ·
∫ π

2

φk−2=−π
2

∫ 2π

φk−1=0

dv1

=

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ 2π

0

(cosφ1)
k−2(cosφ2)

k−3 · · · cosφk−2dφ1 · · · dφk−2dφk−1

= vol(Sk−1),

where vol(Sk−1) is the Euclidean volume of the (k − 1)-dimensional unit
sphere. It is given explicitly as follows.

2k−2 ·
(

1

k − 2
· 1

k − 4
· · · 1

2

)
·
(π
2

) k−2
2

k : even,

2k−2 ·
(

1

k − 2
· 1

k − 4
· · · 1

3

)
·
(π
2

) k−3
2

k : odd.

Therefore, the hyperbolic volume of V (T ) is given by

volhyp (V (T )) = vol(Sk−1) · volhyp(Γσ\Dσ) ·
∫ π

2

φ0(T )

(cosφ0)
k−1

(sinφ0)n
dφ0,

where sinφ0(T ) cosh(T ) = 1. Let r > 0 be the injective radius at x and
Bhyp(x, r) := {y ∈ Un | dhyp(x,y) < r} be the hyperbolic ball with center
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x and hyperbolic radius r in Un. For positive real numbers u and T0 such
that u > T0 > r, we define {ηk}k ⊂ Γσ\Γ as the maximal set such that
ηx ∈ V(u) \ V(T0). Then∪

k

Bhyp(ηkx, r) ⊂ V (u+ r) \ V (T0 − r).

From this inclusion of the set, the following inequality holds

volhyp

(∪
k

Bhyp(ηkx, r)

)
= volhyp

(∑
k

Bhyp(ηkx, r)

)
=
∑
k

volhyp(Bhyp(ηkx, r))

=
∑
k

volhyp(Bhyp(x, r))

≤ volhyp (V (u+ r) \ V (T0 − r))

= volhyp(V (u))− volhyp(V (T0)). (20)

For u > T0 > 0, we have∫ π
2

φ(u)

(cosφ0)
k−1

(sinφ0)n
dφ0 −

∫ π
2

φ(T0)

(cosφ0)
k−1

(sinφ0)n
dφ0

=

∫ φ(T0)

φ(u)

(cosφ0)
k−1

(sinφ0)n
dφ0

≤
∫ φ(T0)

φ(u)

cosφ0

(sinφ0)n
dφ0

=
1

n− 1

(
1

(sinφ(u))n−1
− 1

(sinφ(T0))n−1

)
=

1

n− 1

(
(cosh(u))n−1 − (cosh(T0))

n−1
)
.

Hence we have the following inequality

volhyp(V (u))− volhyp(V (T0))

≤ vol(Sk−1) · volhyp(Γσ\Dσ) ·
1

n− 1
·
{
(coshu)n−1 − (coshT0)

n−1
}
. (21)
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From (20) and (21), we have

♯{η ∈ Γσ\Γ | T0 ≤ dhyp(ηx, Dσ) < u } = k =

∑
k volhyp (Bhyp(x, r))

vol (Bhyp(x, r))

≤ vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

× 1

n− 1
·
(
(cosh(u+ r))n−1 − (cosh(T0 − r))n−1

)
. (22)

By the definition of the set, we also have

♯{η ∈ Γσ\Γ | ηx ∈ V (u) \ V (T0)}
= ♯{η ∈ Γσ\Γ | ηx ∈ V (u)} − ♯{η ∈ Γσ\Γ | ηx ∈ V (T0)}. (23)

Therefore, from (22) and (23), we have the following inequality

♯{η ∈ Γσ\Γ | dhyp(ηx, Dσ) < u }

≤ ♯{η ∈ Γσ\Γ | dhyp(ηx, Dσ) < T0 }+ vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
·

× 1

n− 1
·
(
(cosh(u+ r))n−1 − (cosh(T0 − r))n−1

)
.

From above, the assertion of the lemma holds.

The following inequality plays an important role to analyze the hyperbolic
Eisenstein series.

Lemma 3.5. Let F be a real-valued, smooth, decreasing function defined
for u > 0 and let g1, g2 be real-valued, non decreasing functions defined for
u ≥ a > 0 and satisfying g1(u) ≤ g2(u) for u ≥ a. Then, the following
inequality of Stieltjes integrals holds when both integrals exist.

F (a)g1(a) +

∫ ∞

a

F (u)dg1(u) ≤ F (a)g2(a) +

∫ ∞

a

F (u)dg2(u). (24)

Proof. See [3] Section 2.6 or [4] Section 2.7.

Lemma 3.6. Let s ∈ C be a complex number with Re(s) > n − 1. Then,
for any ε > 0, there exists a sufficient large T0 > 0 such that∣∣∣∣∫ ∞

T0

(coshu)−sdNσ(u;x, Dσ)

∣∣∣∣ < ε. (25)
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Proof. We define real valued functions F (u), g1(u) and g2(u) as follows.

F (u) := (coshu)−Re(s),

g1(u) := Nσ(u;x, Dσ),

g2(u) := Nσ(T0;x, Dσ) + vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

× 1

n− 1
·
(
(cosh(u+ r))n−1 − (cosh(T0 − r))n−1

)
.

Then both g1 and g2 are non-decreasing and g1(u) ≤ g2(u) for u ≥ T0 > 0.
Elementary calculations imply that

dg2(u) = vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
·
(
(cosh(u+ r))n−2 sinh(u+ r)

)
du.

By using Lemma 3.5, we have∣∣∣∣∫ ∞

T0

(coshu)−sdNσ(u;x, Dσ)

∣∣∣∣
≤
∫ ∞

T0

(coshu)−Re(s)dNσ(u;x, Dσ)

≤
∫ ∞

T0

(coshu)−Re(s)dg2 + (coshT0)
−Re(s) {g2(T0)− g1(T0)} . (26)

The second term of (26) has the following estimate

(coshT0)
−Re(s) {g2(T0)− g1(T0)}

= (coshT0)
−Re(s) · vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

× {(cosh(T0 + r))n−1 − (cosh(T0 − r))n−1}

= vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

× (coshT0)
−Re(s) · {(cosh(T0 + r))n−1 − (cosh(T0 − r))n−1}

≤ vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
·
(eT0

2

)−Re(s)

·
(
e(T0+r)

)n−1

= vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
· 2Re(s) · e(n−1−Re(s))T0+(n−1)r. (27)
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We calculate the first integral as∫ ∞

T0

(coshu)−Re(s)dg2

=

∫ ∞

T0

(coshu)−Re(s) · vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

×
(
(cosh(u+ r))n−2 sinh(u+ r)

)
du

= vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

×
∫ ∞

T0

(coshu)−Re(s) · (cosh(u+ r))n−2 sinh((u+ r))du

≤ vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
·
∫ ∞

T0

(eu
2

)−Re(s)

·
(
eu+r

)n−2 ·
(
eu+r

2

)
du

≤ vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
· 2Re(s)−1

∫ ∞

T0

e(n−1−Re(s))u+(n−1)rdu. (28)

The integral in (28) converges for Re(s) > n− 1 and we have

(28) = −2Re(s)−1 · vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
· e

(n−1−Re(s))T0+(n−1)r

n− 1− Re(s)
. (29)

Summing up (27) and (29), we have∣∣∣∣∫ ∞

T0

(coshu)−sdNσ(u;x, Dσ)

∣∣∣∣
≤ −2Re(s)−1 · vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
· e

(n−1−Re(s))T0+(n−1)r

n− 1− Re(s)

+ 2Re(s) · vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))
· e(n−1−Re(s))T0+(n−1)r

= 2Re(s)−1 · vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

× e(n−1−Re(s))T0+(n−1)r ·
(
2− 1

n− 1− Re(s)

)
. (30)
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Therefore, for any ε > 0, by choosing

T0 >
1

Re(s)− n+ 1

{
− log ε+ log

(
vol(Sk−1) · volhyp(Γσ\Dσ)

vol(Bhyp(x, r))

× 2Re(s)−1e(n−1)r

(
2 +

1

Re(s)− n+ 1

))}
,

we have that the last term of (27) is less than ε.

Proof of Proposition 3.2. From Lemma 3.6, the hyperbolic Eisenstein series
Eσ(x, s) converges absolutely for s ∈ C with Re(s) > n−1. This convergence
is locally uniformly and absolutely from the definition of Eσ(x, s). Further-
more, direct calculation shows that Eσ(x, s) satisfies the differential equation
(17). Hence we complete the proof of Proposition 3.2.
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4 Spectral expansion

4.1 Some lemmas

Lemma 4.1. For any s ∈ C with Re(s) > n − 1, the hyperbolic Eisenstein
series Eσ(x, s) is bounded as a function of x ∈ Γ\Un. If Γ is not cocompact
and ν is a cusp such that ν = A(xn∞) for some A ∈ G, then we have the
estimate

|Eσ(x, s)| = O(xn(A
−1x)−Re(s)) (31)

as P → ν.

Proof. If Γ\Un is compact, the boundedness of the hyperbolic Eisenstein
series Eσ(x, s) is clear. We consider the case that Γ\Un is non compact.
Without loss of generality, we may assume that the cusp of Γ\Un is xn∞.
Let S0 = {x | xn = r0} be the holosphere such that every point of Dσ has
xn-part less than r0. We consider x ∈ Un with xn > r0. Then dhyp(x, S0) =
log(xn/r0). We recall the counting function (18)

Nσ(T ;x, Dσ) = {η ∈ Γσ\Γ | dhyp(ηx, Dσ) < T}

and define the new counting function N ′
σ(T ;S0, Dσ) by

N ′
σ(T ;S0, Dσ) := {η ∈ Γγ\Γ | dhyp(ηS0, Dσ) < T}.

Every element of the set

{η ∈ Γγ\Γ | dhyp(ηx, Dσ) < T}

corresponds to a geodesic path from ηx to Dσ of length less than T . It
necessarily intersects the holosphere ηS0. For η ∈ {η ∈ Γγ\Γ | dhyp(ηx, Dσ) <
T}, trivially dhyp(ηS0, Dσ) < T − log(xn/r0). Thus we have

{η ∈ Γγ\Γ | dhyp(ηx, Dσ) < T} ⊂ {η ∈ Γγ\Γ | dhyp(ηS0, Dσ) < T − log(xn/r0)}.

We set d := log(xn/r0). Recalling the Stieltjes integral representation of the
hyperbolic Eisenstein series (19), we have the following estimate

|Eσ(x, s)| ≤
∫ ∞

d

cosh(u)−Re(s)dNσ(u;x, Dσ)

≤
∫ ∞

d

cosh(u)−Re(s)dN ′
σ(u− d;S0, Dσ). (32)
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Since eu/2 ≤ cosh(u) holds for any u ∈ R, we have∫ ∞

0

cosh(u)−Re(s)dN ′
σ(u− d;S0, Dσ)

≤
(
xn
2r0

)−Re(s) ∫ ∞

0

e−uRe(s)dN ′
σ(u;S0, Dσ). (33)

The integral in the right hand side of (33) converges when Re(s) > n − 1.
This is shown by using the same method with the proof of convergence of
the hyperbolic Eisenstein series in the proof of Proposition 3.2. Therefore,
from (32) and (33), we obtain the assertion of the lemma.

Lemma 4.2. Let ⟨·, ·⟩ be the inner product in L2(Γ\Un) and ψ be the real-
valued, smooth, bounded function on FΓ = Γ\Un. Assume ε > 0 to be the
sufficiently small. Then we have the following estimate

⟨Eσ(x, s), ψ⟩

=
1

2
vol(Sk−1) ·

(∫
Γσ\Dσ

ψ(x)dv +O(ε)

)
· Γ ((s− n+ 1)/2) Γ (k/2)

Γ ((s− n+ k + 1)/2)

as s→ ∞.

Proof. Since Γ is the cofinite discrete subgroup of G0, the quotient Γ\Un

has finite volume. Therefore, ψ ∈ L2(Γ\Un). From Lemma 4.1, we have
Eσ(x, s) ∈ L2(Γ\Un). Then we have

⟨Eσ(x, s), ψ⟩

=

∫
FΓ

Eσ(x, s)ψ(x)dv

=

∫
FΓ

 ∑
η∈Γσ\Γ

(sinφ0(ηx))
s

ψ(x)dv

=

∫
FΓσ

(sinφ0(x))
s ψ(x)dv

=

∫
Γσ\Dσ

∫
Sk−1

∫ π
2

φ0=0

(sinφ0(x))
sψ(x)dv

=

∫
Γσ\Dσ

∫
Sk−1

∫ π
2

φ0=0

(sinφ0(x))
sψ(x) · (cosφ0)

k−1

(sinφ0)n
· dφ0dv1dv2, (34)
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where Sk−1 = (φ1, ..., φk−1). For 0 < ε < π/2 such that sin(π/2−ε) < aε < 1,
we have

(34) =

∫
Γσ\Dσ

∫
Sk−1

∫ π
2

π
2
−ε

(sinφ0(x))
sψ(x) · (cosφ0)

k−1

(sinφ0)n
· dφ0dv1dv2

+O(as−n
ε ) (35)

as s→ ∞. Furthermore, for π
2
− ε < φ0 <

π
2
and Θ ∈ Sn−1, we have∫

Γσ\Un−k

ψ(x)dv2 =

∫
Γσ\Dσ

ψ(x)dv2 +O(ε) (36)

as s → ∞. From (34), (35) and (37), for any sufficiently small ε > 0, we
have

⟨Eσ(x, s), ψ⟩

=

∫ π
2

π
2
−ε

∫
Sk−1

(∫
Γσ\Dσ

ψ(x)dv2 +O(ε)

)
× (cosφ0)

k−1(sinφ0)
s−ndv1dφ0 +O(as−n

ε )

=

(∫
Γσ\Dσ

ψ(x)dv2 +O(ε)

)
×
∫ π

2

π
2
−ε

∫
Sk−1

(cosφ0)
k−1(sinφ0)

s−ndv1dφ0 +O(as−n
ε )

= vol(Sk−1) ·
(∫

Γσ\Dσ

ψ(x)dv2 +O(ε)

)
×
∫ π

2

π
2
−ε

(cosφ0)
k−1(sinφ0)

s−ndφ0 +O(as−n
ε )

= vol(Sk−1) ·
(∫

Γσ\Dσ

ψ(x)dv2 +O(ε)

)
×
∫ π

2

0

(cosφ0)
k−1(sinφ0)

s−ndφ0 (37)

as s → ∞. For complex numbers s1, s2 with Re(s1) > 0 and Re(s2) > 0, we
have the following formula∫ 1

0

xs1−1(1− x)s2−1dx =
Γ(s1)Γ(s2)

Γ(s1 + s2)
.
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Applying this formula to the integral in (37), we have

⟨Eσ(x, s), ψ⟩

=
1

2
vol(Sk−1) ·

(∫
Γσ\Dσ

ψ(x)dv2 +O(ε)

)
· Γ ((s− n+ 1)/2) Γ (k/2)

Γ ((s− n+ k + 1)/2)

as s→ ∞. We obtain the assertion of the lemma.

4.2 Spectral expansion

Theorem 4.3. For any s ∈ C with Re(s) > n− 1, the hyperbolic Eisenstein
series Eσ(x, s) admits the following spectral expansion.

Eσ(x, s) =
∑
m∈D

am,σ(s)em(x)

+
1

4π

∑
ν:cusps

∫ ∞

−∞
an−1

2
+iµ,σ(s)Eν

(
x,
n− 1

2
+ iµ

)
dµ. (38)

Then the series in right hand side converges absolutely and locally uniformly.
The coefficients am,σ(s) and an−1

2
+iµ,σ(s) are given by

am,σ =
1

2
vol(Sk−1) · Γ

(
k

2

)
×

Γ
((
s− n−1

2
+ µm

)
/2
)
Γ
((
s− n−1

2
− µm

)
/2
)

Γ (s/2) Γ ((s− n+ k + 1) /2)

×
∫
Γσ\Dσ

emdv2 (39)

and

an−1
2

+iµ,σ =
1

2
vol(Sk−1) · Γ

(
k

2

)
×

Γ
((
s− n−1

2
+ iµ

)
/2
)
Γ
((
s− n−1

2
− iµ

)
/2
)

Γ (s/2) Γ ((s− n+ k + 1) /2)

×
∫
Γσ\Dσ

Eν

(
x,
n− 1

2
+ iµ

)
dv2, (40)

where µ2
m =

(
n−1
2

)2 − λm and λm is the eigenvalue of the eigenfunction em.
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Proof. The hyperbolic Eisenstein series Eσ(x, s) is a bounded and smooth
function on Γ\Un by Definition 3.1 and Lemma 4.1. Since the hyperbolic
Eisenstein series Eσ(x, s) satisfies the differential sift equation (17), −∆lf
are bounded and smooth on Γ\Un for any 0 ≤ l ≤ ⌊n+1

4
⌋ + 1. Hence, from

Proposition 2.5, the hyperbolic Eisenstein series has the spectral expansion
(38) and it converges absolutely and locally uniformly.

In order to give the coefficients am,γ(s) and an−1
2

+iµ,γ(s), we calculate

the inner product ⟨Eσ, em⟩, which converges by asymptotic bound proved in
Lemma 4.2. Furthermore, we know the asymptotic bounds for eigenfunctions
of the Laplace-Beltrami operator ∆ by Lemma 4.2. We have the following
relation by using the differential equation (17)

λmam,σ(s) = λm⟨Eσ, em⟩ = ⟨Eσ, λmem⟩ = ⟨−∆Eσ, em⟩
= −s (s− n+ 1) am,σ(s) + s(s− n+ k + 1)am,σ(s+ 2),

which implies the relation

am,σ(s+ 2) =
s(s− n+ 1) + λm
s(s− n+ k + 1)

am,σ(s).

For µm with µ2
m =

(
n−1
2

)2 − λm we set the function g(s) as

g(s) =
Γ((s− n−1

2
+ µm)/2)Γ((s− n−1

2
− µm)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)
.

Then g(s) satisfies the relation

g(s+ 2) =
s(s− n+ 1) + λm
s(s− n+ k + 1)

g(s).

From this, we conclude that the quotient am,γ(s)/g(s) is invariant under
s 7→ s+ 2. Furthermore, it is bounded in a vertical strip. Therefore, the
quotient am,σ(s)/g(s) is constant, so we have

am,σ(s) = bm,σ ·
Γ((s− n−1

2
+ µm)/2)Γ((s− n−1

2
− µm)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)
(41)

for some constant bm,σ. From Lemma 4.2, for sufficiently small ε > 0, we
have following estimate

am,σ = ⟨Eσ(x, s), em⟩

=
1

2
vol(Sk−1) ·

(∫
Γσ\Dσ

e(x)dv2 +O(ε)

)
· Γ ((s− n+ 1)/2) Γ (k/2)

Γ ((s− n+ k + 1)/2)
(42)
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as s → ∞. In order to determine the constant bm,σ, we use the Stirling’s
asymptotic formula for the gamma function, which states that for a complex
number s ∈ C such that |args| < π − ε, the gamma function Γ(s) satisfies
the following asymptotic formula

log Γ(s) =
1

2
log(2π)− 1

2
log(s) + s log(s)− s+ o(1) (43)

as s→ ∞. From (41), (42) and (43), by comparing the order as s→ ∞, we
obtain

bm,σ =
1

2
vol(Sk−1) · Γ

(
k

2

)
·
∫
Γσ\Dσ

em(x) dv2

as claimed. We complete the proof of Theorem 4.3.

4.3 Meromorphic continuation

From the spectral expansion of the hyperbolic Eisenstein series Eσ(x, s), we
can prove the meromorphic continuation of Eσ(x, s) and the location of the
possible poles with the residues. Namely, we obtain the following theorem.

Theorem 4.4. The hyperbolic Eisenstein series Eσ(x, s) has a meromorphic
continuation to all s ∈ C. The possible poles of the continued function are
located at the following points.

(a) s = n−1
2

± µm − 2n′, where n′ ∈ N and µ2
m =

(
n−1
2

)2 − λm for the
eigenvalue λm, with residues

Ress=n−1
2

±µm−2n′

[
Eσ(x, s)

]
=

1

2
vol(Sk−1) · (−1)n

′
Γ(k/2)Γ(±µm − n′)

n′! · Γ((n−1
2

± µm − 2n′)/2)2

×
∫
Γσ\Dσ

em(x)dv2 · em(x).

(b) s = ρν − 2n′, where n′ ∈ N and ω = ρν is a pole of the Eisenstein series

30



Eν(x, ω) with Re(ρν) <
n−1
2
, with residues

Ress=ρν−2n′

[
Eσ(x, s)

]
=

1

2
vol(Sk−1) ·

m∑
j=0

(−1)jΓ(k/2)Γ(ρν − 2n′ + j − (n− 1)/2)

j! · Γ((ρν − 2n′)/2)Γ((ρν − 2n′ + k + 1)/2)

×
∑

ν:cusps

[
CTω=ρν−2n′+2jEν(x, ω) ·

∫
Γσ\Dσ

Resω=ρν−2n′+2jEν(x, ω)dv2

+Resω=ρν−2n′+2jEν(x, ω) ·
∫
Γσ\Dσ

CTω=ρν−2n′+2jEν(x, ω)dv2

]
,

where CTωEν(x, ω) denotes the constant term of the Laurent expansion
of the Eisenstein series Eν at ω and m ∈ N is the real number such
that n−1

2
− 2− 2m+ 2n′ < Re(ρν) ≤ n−1

2
− 2m+ 2n′.

(c) s = n−1−ρν−2n′, where n′ ∈ N and ω = ρν is a pole of the Eisenstein
series Eν(x, ω) with Re(ρν) ∈ (n−1

2
, n− 1], with residues

Ress=n−1−ρν−2n′

[
Eσ(x, s)

]
=

1

2
vol(Sk−1)

×
m∑

j=m−⌊n−1
4

⌋

(−1)jΓ(k/2)Γ((n− 1)/2− ρν − 2n′ + j)

j! · Γ((n− 1− ρν − 2n′)/2)Γ((−ρν − 2n′ + k)/2)

×
h∑

ν=1

[
CTω=ρν+2n′−2jEν(x, ω) ·

∫
Γσ\Dσ

Resω=ρν+2n′−2jEν(x, ω)dv2

+Resω=ρν+2n′−2jEν(x, ω) ·
∫
Γσ\Dσ

CTω=ρν+2n′−2jEν(x, ω)dv2

]
,

where CTωEν(x, ω) denotes the constant term of the Laurent expansion
of the Eisenstein series Eν at ω and m ∈ N is the real number such
that n−1

2
+ 2m− 2n′ < Re(ρν) ≤ n−1

2
+ 2m− 2n′ + 2.

Proof. First, we give the meromorphic continuation of the hyperbolic Eisen-
stein series Eσ(x, s). The explicit formula (39) shows that the series in (38)
arising from the discrete spectrum have the meromorphic continuation to all
s ∈ C. We give the meromorphic continuation of the continuous spectrum
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in (38). We consider the meromorphic continuation of the following integral

In−1
2
(s) =

∫
Re(z)=n−1

2

Γ((s− n+ 1 + z)/2)Γ((s− z)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)

×
(∫

Γσ\Dσ

Eν(x, z)dv2

)
· Eν(x, z)dt. (44)

The function In−1
2
(s) is holomorphic for s ∈ C with Re(s) > n−1

2
except

possibly finitely many points in the segment (n−1
2
, n − 1] on the real line.

Let ε > 0 be sufficiently small such that Eν(x, s) has no poles in the strip
n−1
2
< Re(s) < n−1

2
+ ε. For s ∈ C with n−1

2
< Re(s) < n−1

2
+ ε, we have by

the residue theorem

In−1
2
(s) = In−1

2
+ε(s)− 4πi

Γ(s− (n− 1)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)

×
(∫

Γσ\Dσ

Eν(x, s)dv2

)
· Eν(x, s). (45)

The right-hand side of (45) is a meromorphic function for n−1
2

− ε < Re(s) <
n−1
2

+ ε and it gives the meromorphic continuation of the integral In−1
2
(s) to

the stripe n−1
2

− ε < Re(s) < n−1
2

+ ε. Now, for n−1
2

− ε < Re(s) < n−1
2

using
the residue theorem once again, we have

(45) = In−1
2
(s) + 4πi

Γ(s− (n− 1)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)

×
(∫

Γσ\Dσ

Eν(x, n− 1− s)dv2

)
· Eν(x, n− 1− s)

− 4πi
Γ(s− (n− 1)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)

×
(∫

Γσ\Dσ

Eν(x, s)dv2

)
· Eν(x, s). (46)

The right-hand side of (46) is a meromorphic function for n−1
2

− 2 < Re(s) <
n−1
2

and it gives the meromorphic continuation of (45) to the stripe n−1
2

−2 <
Re(s) < n−1

2
. Summing up, from (45) and (46), we have the meromorphic

continuation of the integral In−1
2
(s) to the stripe n−1

2
− 2 < Re(s) ≤ n−1

2
.
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Continuing this process, the meromorphic continuation of the integral In−1
2
(s)

to the stripe n−1
2

− 2− 2m < Re(s) ≤ n−1
2

− 2m

In−1
2
(s) +

m∑
l=0

4πi · (−1)l

l!
· Γ(s+ l − (n− 1)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)

×
(∫

Γσ\Dσ

Eν(x, n− 1− 2l − s)dv2

)
· Eν(x, n− 1− 2l − s)

−
m∑
l=0

4πi · (−1)l

l!
· Γ(s+ l − (n− 1)/2)

Γ(s/2)Γ((s− n+ k + 1)/2)

×
(∫

Γσ\Dσ

Eν(x, s+ 2l)dv2

)
· Eν(x, s+ 2l). (47)

In order to determine the poles, we consider the spectral expansion (38).
First, we consider the discrete term of the spectral expansion. The poles
arising from discrete term of (38) are all derived from Γ-functions. Hence
the location of poles are given s = n−1

2
± µm − 2l, where l ∈ N and µ2

m =(
n−1
2

)2−λm for the eigenvalue λm. We can also calculate their residues from
the residues of Γ-function. Therefore we obtain (a). Next, we consider the
continuous spectrum of (38). We work from their meromorphic continua-
tion (47). Then only poles can arise from the summands Eν(x, s + 2l) and
Eν(x, n− 1− 2l− s), where l = 0, ...,m. The poles arising from Eν(x, s+2l)
are located at sν,l = ρν − 2l, where l = 0, ...,m and ρν is a pole of Eν(x, s)
with n−1

2
− 2 − 2m + 2l < Re(ρν) ≤ n−1

2
− 2m+ 2l. The poles arising from

Eν(x, n−1−2l−s) are located at s′ν,l = n−1−ρν−2l, where l = 0, ...,m and

ρν is a pole of Eν(x, s) with
n−1
2

+2m− 2l ≤ Re(ρν) <
n−1
2

+2m− 2l+2; in
this case there are only poles for m− ⌊n−1

4
⌋ ≤ l ≤ m, because the parabolic

Eisenstein series Eν(x, s) has no poles in {s ∈ C | Re(s) > n−1
2
} except

possibly finitely many simple poles in the segment (n−1
2
, n − 1] on the real

line. The residues can be easily derived from (47). Thereby we complete the
proof of Theorem 4.4.

Remark 4.5. The poles given in (a), (b), and (c) might coincide in parts.
If it is in the case, the corresponding residues have to be the sum added the
each residue.
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