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Abstract

Circumplanetary disks around forming gas-giant planets are plausible and possible
targets of future observations, and can unveil the formation of planets and their
satellites. Three-dimensional hydrodynamic simulations with high spatial resolution
are performed to investigate the spatial scale of the disks and the mass transfer near
the forming planets. The numerical model has the following three assumptions: hy-
drostatic equilibrium in the vertical direction of a protoplanetary disk, isothermal
equation of state, and the Keplerian rotation around the protostar. This model has
only one parameter r̂H, the non dimensional Hill radius, defined as the Hill radius
divided by the scale height. A new sink method is implemented in a nested grid code,
in which the mass at the center is removed in each time-step and the removed mass
is determined in an analytical way. After the convergence of physical quantities is
confirmed, a calculation is executed until the circumplanetary disk achieves a steady
state. With many calculations, the radius of circumplanetary disks is precisely de-
termined. I propose a fitting formula of the circumplanetary disk radius, which is
approximately proportional to r̂ 2.4

H . Turbulent motion dominates the rotational mo-
tion outside the region where the gas rotation velocity is less than 60 percent of the
Keplerian velocity of the protoplanet. In addition, the physical quantities highly os-
cillate with time in such a turbulent region. Thus, the simulations imply the existence
of a critical radius which corresponds to the boundary between a stable disk and a
turbulent region. Adopting a standard protoplanetary disk model, I translate the
non-dimensional quantities used in simulations into the dimensional quantities and
compare them with observations.
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Chapter 1

Introduction

It is crucially important to understand the formation of various planets such as gas
giant, earth-like rocky and icy giant planets seen in the solar system. Since the first
discovery of exo-planet (Mayor & Queloz 1995), over 3000 exo-planets were already
found, including gas-giant, earth-like and icy giant planets. Thus, the planetary
systems are considered to exist ubiquitously in the neighborhood of the solar system
(or in our galaxy). Before the discovery of the first exo-planet, the planet formation
scenario had been constructed based only on the solar system. However, now, we
may able to elucidate the origin and evolution of the solar system composed of giant
and earth-like planets referring to the exo-planets and exo-planetary systems, and
construct the general formation scenario of planetary systems and various planets.

The planets and plenary systems are a byproduct of the star formation. Stars
form in molecular cloud cores with a size of L ∼ 104 AU. About t ∼ 106 years after
the molecular cloud begins to collapse, the protostar with a size of 0.01 AU forms in
the central region of the gravitationally collapsing molecular cloud core. Then, the
circumstellar disk appears around the protostar and grows in t ∼ 107 years, during
which various planets are expected to form in the disk. Very recent theoretical studies
claimed that a gas-giant planet first forms in the circumstellar disk. In such studies,
the rocky (or earth-like) planets and other giant or icy planets are considered to form
after the first gas-giant planet formation. Thus, firstly, we need to study the formation
process of the gas-giant planet in the circumstellar disk.

Recent ALMA (Atacama Large Millimeter/submillimeter Array) observations iden-
tified possible sites of planet formation. The ring-like structure, gap and density hole
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(gas or dust hole) are frequently observed in the protoplanetary disk around the
protostar, and they are considered to be made by protoplanets or forming planets.
However, so far, researchers could not identify the existence of the proto- (or forming-
) planet itself in the circumstellar disk, because the size of gas-giant planet is about
5×10−5 AU which is much smaller than the minimum spatial resolution of telescopes.
When the ALMA capability of 0.01" is assumed, the spatial resolution of nearby star-
forming regions (e.g., Taurus star forming region) is ∼ 1 AU. Note that the spatial
resolution of telescope is determined by both the size of the telescope and the dis-
tance from the sun. On the other hand, the size of the Hill radius, which roughly
corresponds to the gravitational sphere of each planet in a planetary system, is about
0.3 AU at Jovian orbit (5.2 AU) when the Jovian mass is adopted in the solar system.
In addition, the Hill radius becomes large with the increment of the orbital radius of
the planet.

The gas-giant planet forms in the protoplanetary disk, in which the rocky core hav-
ing about ten-times earth mass acquires the gas component from the protoplanetary
disk. Since the accreting gas has an angular moment, the rotationally supported disk
naturally forms around the gas-giant planet during its formation stage. In general,
the gas disk around a protoplanet is called the circumplanetary disk (CPD). The
circumplanetary disk forms in the Hill sphere, because the accreting matter is gravi-
tationally bound only in it. Note that the circumplanetary disk is mainly supported
by the centrifugal force against the gravity of the (gas-giant) planet and the accreted
matter is supplied only from the protoplanetary disk. Although the circumplanetary
disks are expected to be smaller than or comparable to the Hill radius, they can be
directly observed in near future observations.

Since the existence of the circumplanetary disks is a direct proof of the planet for-
mation, we can acquire a plenty of useful information about the formation of planets
and planet-satellite systems when CPDs are observed. In this thesis, I investigate
properties of the circumplanetary disk using a three-dimensional nested grid method
with an extremely high-spatial resolution and show that the circumplanetary disk
located about ∼ 10 AU away from the central star is possible, which suggests that
it can be observed even with the current instrument of telescopes. I also discuss
the observational possibility of the circumplanetary disks depending on the planetary
orbit and the mass of the protoplanet, and comment on the implication of the for-
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mation process of protoplanet and planet-satellite system from the view point of the
circumplanetary disk.

1.1 Recent observations
Firstly, the current status of recent observations is reviewed. In 1990’s, since the

ability of telescopes was not sufficient, researchers observed the star forming regions
or the region near protostars by radio wavelengths and made a spectral energy dis-
tribution (SED) of each protostar candidate. The SEDs around very young protostar
showed a clear excess in the long wave length, and researchers did not fit a single
(or simple) black-body radiation. Then, the researchers interpreted the excess as the
disk component associated with protostars. Thus, many researchers believed that
the circumstellar (or protoplanetary) disk exists around protostar without the direct
observations at those days. Theoretically, the circumstellar disk is expected to be
formed because the molecular cloud core has an angular momentum (Caselli et al.,
2002). Since the angular momentum is conserved, it is considered that the rotation-
ally supported disk naturally appears in the star formation process. Since the late
1990’s, the circumstellar disks were directly observed by large telescopes, such as
Subaru telescope, and we could confirm the images of them.

In early 2000’s, Subaru telescope implemented Coronagraphic Imager with Adap-
tive Optics (CIAO), which veils the central bright object (i.e., protostar) and can
highlight the structure around the protostar (or circumstellar disk). However, since
the researchers only observed the scattered light from the surface of the disk, they
could not understand the detailed the properties of circumstellar disks. This is be-
cause the protoplanetary disk has a large optical depth in the near-infrared wavelength
(Subaru Telescope). Figure 1.1 shows the observation of the circumstellar structure
around AB Aur (Fukagawa et al., 2004). Similar observations were done in some other
protostars and the researchers directly confirmed the disk-like structure. Therefore,
from these observations, we can confidently say that the protostars really possess the
protoplanetary disk.

The ALMA telescope is completed at 2012. Then, recent ALMA observations have
showed surprising images of protoplanetary disks. The most striking observation is
the existence of several rings in the protoplanetary disk around HL Tau (Figure 1.2).
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Figure 1.1. Subaru Observation of the circumplanetary disk around AB Aur (Fuka-
gawa et al. 2004. Credit: ALMA ESO/NAOJ/NRAO). Central black circle is CHAO
which masks the bright central star. Orange region corresponds to the protoplanetary
disk.

Although there are many explanation and scenario of the origin of the gaps and the
rings seen in Figure 1.2, the most plausible explanation is the existence of (proto or
forming) planets. When a protoplanet exists in a protoplanetary disk, the planet
can scatter gas particles around the protoplanetary orbit (although part of the gas is
absorbed by the protoplanet). Thus, it is considered that the ring naturally appears
in the circumstellar disk when the protoplanet exists. Therefore, the several rings
may be a proof of the existence of the several protoplanets. In summary, now, we
may just observe the stage of planet formation.

Also, a gap and a stream were observed in the protoplanetary disk around HD142527
using ALMA telescope (Fig. 1.3, Casassus et al. 2015). We can see a clear gap around
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Figure 1.2. Circumstellar disk around protostar HLTau. Several gaps and rings are
clearly seen. (Credit: ALMA ESO/NAOJ/NRAO)

the central bright object and the bridge between the central object and the outer
disk-like structure. Although the origin of the gap and the stream have not been
identified by the observation, some studies predicted that the protoplanet can create
the gap or hole around the central protostar. In addition, the outer disk continues to
supply the gas to the protoplanet through the stream seen in the gap.

More recently, several rings and two streams were observed using ALMA telescope
(TW Hydrae; Figure 1.4). In Figure 1.4, we can see several rings in a large scale,
while the gap and stream can be seen in a small scale (the inset of Fig. 1.4). Thus,
TW Hydrae also may show the planet formation stage.

Some protoplanetary disks show the gap and spiral structure (SEEDS project).
These disks were called the transitional disk just after its discovery, because it is
considered that they are the disks during the gas depletion phase. However, recent
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Figure 1.3. The distribution of gas and dust around protostar HD142527. Two disks
are clearly seen the outer and inner disks. The gas streams also can be seen between
the outer and the inner disks. The gap (the region between the inner and outer disks)
may be formed by the protoplanet. The protoplanet is expected to be located in the
gas stream. Credit: ALMA (ESO/NAOJ/NRAO), S. Casassus et al.

observations and theoretical studies imply that the protoplanet can produce the gap
and spiral structure during its formation stage.

An exo-planet was found with the radial velocity method at 1995 for the first time as
mentioned above. Then, three exoplanets were directly observed at 2008. Figure 1.5
shows an example of the direct observation of exo-planet. In the figure, the exo-planet
is oriented toward the north west side.

So far, some exo-planets were confirmed by direct imaging observations
(http://exoplanet.eu/). However, we have not observed the forming planets
yet. To establish the planet formation scenario or planet formation process, we
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Figure 1.4. The protoplanetary disk around TW Hydrae. Zoomed image are inset. In
a large scale, several rings exist. In a very small scale, the gap and gas flow (streams)
are confirmed, and they are considered to be formed by the gas-giant planets. (ALMA
/ ESO / NAOJ / NRAO)

　

　 　

Figure 1.5. Direct observation of Planet orbiting GJ504 (Crejit:NAOJ)
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inevitably need to confirm forming planets or circumplanetary disks. Sallum et al.
(2015) found that Hα emission in a protoplanetary disk (LKCa 15). Without
considering the protoplanet and circumplanetary disk, it is difficult to emit such a
line in the protoplanetary disk. Thus, it is interpreted as a proof of the accretion
luminosity onto the protoplanet or circumplanetary disk.

Thus, although there are some indirect proofs of the forming planet in the circum-
stellar disk, we have no observation of direct proof on it. As described above, the
protoplanet is too small to be directly observed even in near future observations. In-
stead, we may able to observe the circumplanetary disks formed around protoplanet
by current telescopes. However, we do not know the properties of the circumplanetary
disk. Thus, we need to predict it in theoretical or numerical studies.

1.2 Theoretical works
There exist some star forming regions near the sun. Several hundreds of stars are

born in each star forming region and the star forming condition have been clearly
observed by radio telescopes. Observations indicate that stars form in the molecular
cloud core which typically has a size of ∼ 104 AU and ∼ 1 M⊙. In molecular cloud
cores, since the gravitational energy dominates the thermal, rotational and magnetic
energies, the gravitational collapse occurs to form a protostar. After the cloud collapse
begins, the cloud isothermally contracts. Then, the dust thermal emission becomes
optically thick and the collapsing gas behaves adiabatically and the first adiabatic
core forms. Since the first core slowly contracts and the collapsing timescale becomes
shorter than the rotation timescale, the magnetic field lines are strongly twisted and
the outflow appears from the first core. In addition, the magnetic braking effectively
transfers the angular momentum outward. On the other hand, the magnetic field dis-
sipates inside the first core, because the ionization degree becomes extremely low and
Ohmic dissipation becomes effective in a dense gas region. Therefore, both Lorentz
and centrifugal forces weaken and further contraction is promoted.

When the number density of the collapsing cloud (or the contracting first core) ex-
ceeds n > 1015 cm−3, the molecular hydrogens are dissociated and the second collapse
occurs. After the dissociation of molecular hydrogen is completed, the gas behaves
adiabatically again. Then, the gas contraction stops and the protostar appears (Lar-
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Figure 1.6. Schematic view of star formation in collapsing cloud. The gas accretion
and circumstellar disk formation stage are also presented.

son 1969, Masunaga & Inutsuka 2000). The remnant of the first core remains even
after protostar formation, and it evolves into the circumstellar disk (Bate, 1998). Af-
ter protostar formation (gas collapsing phase), the lump of gas firstly accretes onto
the circumstellar disk. Then, although a part of the gas is ejected by the protostellar
outflows and jets, the remainder gradually moves toward the central protostar in the
circumstellar disk. The star formation scenario expected by recent theoretical studies
is summarized in Figure 1.6.

As seen in Figure 1.6, the circumstellar (or protoplanetary) disk is gravitationally
unstable in the early phase of the star formation. However, as the protostellar mass
increases, the disk becomes stable against the gravitational instability (Toomre, 1964).
The planet formation is expected to occur in such a stable disk.

The standard scenario of planet formation is schematically presented in Figure 1.6.
As seen in the figure, the protoplanetary disk is composed of gas and solid components
(dusts). The dusts settle into the equatorial plane and planetesimals form. The plan-
etesimals grow by collision and the earth-like (rocky or icy) protoplanets form. After
the mass of protoplanet exceeds about 10 earth mass, the protoplanet cannot main-
tain its massive gas envelope due to strong gravity of protoplanet and the runaway
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Figure 1.7. Schematic view of planet formation.

gas collapse begins (Mizuno et al. 1978, Mizuno 1980, Ikoma et al. 2000). In the run-
away gas collapsing phase, the circumplanetary disk is expected to be formed because
the accreting gas has an angular momentum. Thus, multi-dimensional simulations
are necessary to investigate the gas-giant planet formation. Using multi-dimensional
simulations, the gas-planet formation was studied (Miyoshi et al. 1999, Lubow et al.
1999, Kley et al. 2001, D’Angelo et al. 2003, Tanigawa & Watanabe 2002). As de-
scribed above, we need to understand the properties of circumplanetary disk in order
to identify the forming planet (or protoplanet) in observations. However, the circum-
planetary disk was not fully resolved in two (Tanigawa & Watanabe, 2002) and three
(D’Angelo et al., 2003) dimensional simulations due to limitation of the CPU perfor-
mance at those days. Using three-dimensional simulations, Machida (2009), Machida
et al. (2008, 2010), Ayliffe & Bate (2009) managed to resolve the circumplanetary disk.
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However, since their studies focused on the Jovian or Saturn orbit in our solar system,
it is difficult to apply their results to other planetary systems. Recently, Gressel et
al. (2013) studied the gas-giant planet formation with the state-of-art simulations, in
which the magnetic field and its dissipation process were considered. However, they
also assumed the Jovian orbit to apply the gas opacity and magnetic resistivity of the
protoplanetary disk. Thus, their results are not applicable to other orbits or other
planetary systems.

1.3 Aim of this study
Recent observations imply the planet formation in the protoplanetary disk, while

yet we have no smoking gun of the planet formation or forming planet even in pro-
toplanetary disks observed by the newest telescopes. The protoplanet cannot be
spatially resolved by current and future telescopes, while the circumstellar disks are
able to resolve in near future (or current) observations. Thus, we need to theoretically
understand the properties of the circumstellar disks in various planetary systems be-
fore the observations. However, so far, only a few studies focused on the formation
and evolution of the circumplanetary disk. In addition, these studies limited the gi-
ant planet formation to Jovian or Saturn orbit in our solar system. Thus, when the
general properties of circumplanetary disks are identified from a theoretical study, we
can compare them taken from the theoretical study with observations. Therefore, I
would unveil the planet formation in various planetary systems.
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Chapter 2

Model for Numerical Simulation

In this chapter, after describing the basic equations used in simulations, I transform
it into the non-dimensional form. We cannot calculate the entire protoplanetary
disk and time evolution of the protoplanet because we need to spatially resolve the
protoplanetary disk, circumstellar disk, and protoplanet. The spatial scale of the
protoplanetary disk, circumstellar disk and protoplanet is ∼ 100 AU, ∼ 0.1 AU and
∼ 10−4 AU, respectively. Thus, difference in spatial scale between protoplanetary disk
and protoplanet is about 107. In addition, the timescale among them is considerably
different. Thus, I use the local Hill coordinate, in which only a local region around
the protoplanet is calculated using the Hill approximation as mentioned below, and a
quasi-steady solution is calculated. I assume a standard model of the protoplanetary
disk and the Keplerian motion of the protoplanet. In the Hill approximation, the Hill
radius controls the mass and orbit of the protoplanet.

2.1 Fluid motion around a planet embedded in a
protoplanetary disk

Let us consider a inviscid isothermal fluid around a protoplanet embedded in a
protoplanetary disk. I define a local Cartesian coordinate with the origin at the
planet, which rotates in circular orbit around a central protostar with the Keplerian
velocity on the equatorial plane of the protoplanetary disk. In the coordinate, the
x-, y-, and z-axis corresponds to the radial, azimuthal, and vertical direction of the
protoplanetary disk, respectively. The basic equations in the coordinate are described
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as
∂v

∂t
+ (v · ∇)v = −∇P

ρ
− ∇φeff − 2Ωp ez × v, (2.1)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.2)

where ρ, t, v, p, φeff , and ez are the gas density, gas velocity, gas pressure, effective
potential, and the unit vector in the z-axis, respectively. The gas self-gravity is
ignored in this study, because the gravity of protostar and protoplanet dominate the
gas-selfgravity. The Keplerian angular velocity of the protoplanet Ωp is given by

Ωp =
√

GMc

r3
p

, (2.3)

where G is the gravitational constant, Mc is a stellar mass, and rp is the distance of
a protoplanet from the central star. I adopt an isothermal equation of state

P = c2
s ρ, (2.4)

where cs is a constant sound speed, and I assume an optically thin disk.
The effective potential φeff is given by

φeff = φc + φrot + φp, (2.5)

where φc, φrot, and φp are the gravitational potential of the central star, the or-
bital centrifugal potential, and the gravitational potential of protoplanet respectively.
These potentials are defined by,

φc =
−Ω2

pr3
p√

(rp + x)2 + z2
, (2.6)

φrot = −Ω2
p

(
x2

2
+ rpx

)
, (2.7)

φp = −GMp√
x2 + y2 + z2

, (2.8)

in which the curvature of the protoplanetary disk is neglected. I expand φc around
the origin and ignore the third and the higher-order terms. Adding φrot to φc, I can
obtain

φc + φrot = −Ω2
p

(
r2

p + 3x2

2
− z2

2

)
. (2.9)
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The first term of the right-hand side can be neglected because it is constant. Note
that I set the origin as the position of the protoplanet (i.e., rp = 0). Substituting
equation (2.9) into equation (2.5), I can obtain an approximate expression of the
effective potential φeff as

φeff = −
Ω2

p

2
(3x2 − z2) + φp. (2.10)

2.2 Unperturbed state of the protoplanetary disk
As an unperturbed disk state, I assume a disk without protoplanet. The disk

rotates with the Keplerian motion and is in a hydrostatic equilibrium in the vertical
direction. I use this unperturbed disk model as the initial condition. In the local
Cartesian coordinate, the fluid velocity of the unperturbed disk can be described as

v0 =
(

0, −3
2

Ωp x, 0
)

, (2.11)

in which the y-direction of the velocity originates from the Keplerian rotation of the
protoplanetary disk. The equation of motion in the z-direction can be written as

c2
s

ρ0

∂ρ0

∂z
= −GMc z

[
(rp + x)2 + z2]−3/2

, (2.12)

where ρ0 is the gas density of the protoplanetary disk. Integrating this equation, I
have the density distribution in the vertical direction

ρ0 = Σ0√
2πH

exp
(

− z2

2H2

)
, (2.13)

where Σ0 is the surface density of the protoplanetary disk and defined by

Σ0 ≡
∫ ∞

−∞
ρ0 dz, (2.14)

and H is the scale height of the protoplanetary disk *1 , and defined as

H = cs

Ωp
. (2.15)

*1 This definition of the scale height is
√

2 times smaller than the standard value, but this form
is often used in non-dimensionalization for convenience.
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The sound speed of gas is given by

cs =

√
kBT

µmH
, (2.16)

where kB, T , µ, and mH are Boltzmann constant, the temperature, the mean molec-
ular weight, and the mass of a hydrogen atom, respectively. Assuming the thermal
equilibrium between the disk gas and the dust, I have

T = 280
(

L

L⊙

)1/4 (
rp

1 [AU]

)−1/2

[K], (2.17)

where L and L⊙ are the protostellar and solar luminosities.

2.3 Non-dimensionalization
In order to transform the equations described in section 2.1 into a dimensionless

form, we scale the length by H, the time by Ω−1
p , and the density by Σ0/rH, where

rH is the Hill radius given by

rH = rp

(
Mp

3Mc

)1/3

. (2.18)

Thus, the basic equations of (2.1), (2.2), (2.4), (2.8), and (2.10) are rewritten as

∂v̂

∂t̂
+ (v̂ · ∇̂)v̂ = −1

ρ̂
∇̂P̂ − ∇̂φ̂eff − 2ẑ × v̂, (2.19)

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂v̂) = 0, (2.20)

P̂ = ρ̂ (2.21)

φ̂p = −3r̂3
H√

x̂2 + ŷ2 + ẑ2
, (2.22)

φ̂eff = −1
2

(3x̂2 − ẑ2) + φ̂p, (2.23)

where the circumflex denotes nondimensional variables. The relations between Hill
radius and the planetary mass are shown in figure 2.1. The gravity of the planet dom-
inates that of the protostar inside the radius rH. The unperturbed nondimensional
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velocity and density are described as

v̂0 =
(

0, −3
2

x̂, 0
)

, (2.24)

and
ρ̂0 = 1√

2π
exp

(
− ẑ2

2

)
. (2.25)

As a result, three parameters Mp, Mc, and rp can be removed from the original
equations, and I can characterize the models using only one parameter r̂H. Note
that a dimensional sound speed is required to convert a non-dimensional length into
dimensional one. In addition, dimensional surface density has to be defined as a
model of protoplanetary disk when we discuss about a value related to the dimensional
density.
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Figure 2.1. Relations between Hill radius and the planetary mass. Dimensional and
non-dimensional values are plotted in the top and bottom panel. When the planet
mass is fixed, the non-dimensional Hill radius increases as the orbital radius increases.

17



Chapter 3

Numerical Method

A circumplanetary disk is expected to be significantly smaller than the Hill radius
of its own host planet. Thus, we need a very huge telescope to observe the proto-
planet or length scale comparable to the planetary radius. On the other hand, in
simulations, we need to resolve a few period of the spiral density waves in the circum-
planetary disk, which is induced by the interaction between the protoplanetary disk
and the protoplanet. Then, we also need a high spatial resolution even in numerical
simulations. To realize the high spatial resolution around the protoplanet, I use the
nested grid method (e.g. Machida et al. 2008, Matsumoto & Hanawa 2003).

3.1 Initial condition
The initial density profile is adopted as

ρ̂(ẑ) = ρ̂init(ẑ) = max(ρ̂sky, ρ̂0(ẑ)), (3.1)

where ρ̂sky is a cutoff density and is set as ρ̂sky = 1.5 × 10−6 which corresponds to the
value of ρ0 at ẑ = 5. The limitation is required to avoid an unusual low density in a
high altitude. Note that the disk density exponentially decreases as the distance from
the equatorial plane increases (eq. 2.25). The limitation is a bit artificial. However,
this limitation is realistic because the protoplanetary disk is enclosed by the infalling
envelope which has a relatively high density.

For the initial velocity profile, I adopt the unperturbed disk velocity (vx, vy, vz) =
(0, −3x/2, 0). As described below, the initial velocity is described by the non-
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dimensional form.

3.2 Boundary conditions
Considering the symmetry of the equations (2.19), (2.20), (2.21), and (2.23) in the

x- and y-axis, I adopt the rotational symmetry in the density and velocities as

ρ̂(x̂, ŷ, ẑ) = ρ̂(−x̂, −ŷ, ẑ),
v̂x(x̂, ŷ, ẑ) = −v̂x(−x̂, −ŷ, ẑ),
v̂y(x̂, ŷ, ẑ) = −v̂y(−x̂, −ŷ, ẑ),
v̂z(x̂, ŷ, ẑ) = v̂z(−x̂, −ŷ, ẑ),

(3.2)

and the mirror symmetry at the velocity in the z direction as

v̂z(x̂, ŷ, ẑ) = −v̂z(x̂, ŷ, −ẑ), (3.3)

where v̂x, v̂y, and v̂z are x̂-, ŷ-, and ẑ-component of gas velocity. With these boundary
conditions, my computations are executed only in the region of

0 ≤x̂ ≤ L̂x, (3.4)

−L̂y/2 ≤ŷ ≤ L̂y/2, (3.5)

0 ≤ẑ ≤ L̂z, (3.6)

where the L̂x, L̂y, and L̂z are the length of the computational domain in x̂-, ŷ-,
and ẑ-axis, respectively. I impose the computational boundary at x̂ = 0 and ẑ = 0
considering the symmetry described above.

The boundary conditions of the density and velocity are ρ̂ = ρ̂init and v̂ = v̂0 at
x = Lx and z = Lz. The periodic boundary condition is imposed in the y direction
as ρ̂(x̂, L̂y/2, ẑ) = ρ̂(x̂, −L̂y/2, ẑ) and v̂(x̂, L̂y/2, ẑ) = v̂(x̂, −L̂y/2, ẑ).

3.3 Simulation code
In order to obtain the required spatial resolution near the protoplanet, I use the

nested grid method. This method can yield a high spatial resolution, locally gen-
erating multiple nested grids. Except for the innermost grid, each grid contains a
high-resolution grid, in which the spatial resolution is doubled with the increment
of the grid level. In the original nested grid code, each grid has the same number

19



Table 3.1. Number of cells in each axis and the boundary positions of the nested
regions

level imax jmax kmax xmax ymin ymax zmax
1 128 1024 24 30.00 -120.00 120.00 5.63
2 256 512 48 30.00 -30.00 30.00 5.63
3 256 512 48 15.00 -15.00 15.00 2.81
4 256 512 48 7.50 -7.50 7.50 1.41
5 256 512 48 3.75 -3.75 3.75 0.70
6 256 512 48 1.88 -1.88 1.88 0.35
7 256 512 48 0.94 -0.94 0.94 0.18
8 256 512 48 0.47 -0.47 0.47 0.09
9 256 512 48 0.23 -0.23 0.23 0.04

of computational cells and the same rectangular shape. To optimize this study, I
improved the code, in which a different aspect ratio of each cell and each grid is al-
lowed. The first grid level (i.e. root grid, l = 1) has the cells of (128 × 1024 × 24) in
the x-, y-, and z-directions, respectively. On the other hand, the second and higher
level of grids (l ≥ 2) have cells of (256 × 512 × 48). The grid level, the number of
cells and non-dimensional length scales in each direction used in the simulations are
summarized in Table 3.1.

The Roe numerical solver (Roe, 1981) is used for the time integration of equations
of hydrodynamics and an adaptive time step method is used. In this method, a time
step is individually determined in each grid level. Hence, the finer grid requires a large
number of integrations because of the Courant-Friedrichs-Lewy (CFL) condition.

3.4 Model parameters
Model parameters are summarized in table 3.2 which lists the model name, non-

dimensional Hill radius, maximum grid level, planet mass at 5.2 AU, non-dimensional
and dimensional minimum spatial resolutions and elapsed time until the end of the
calculation. The model name is composed of two parts: the Hill radius and maximum
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grid level. Among the models, the models containing T are the standard model that
have a maximum grid level lmax = 6−9. On the other hand, models H064R7 (lmax = 7)
and H064R9 (lmax = 9) are made by checking the results with different resolutions.
The dimensional planet masses shown in the table are derived from equations (2.15),
(2.16), (2.17), and (??), assuming Mc = M⊙, L = L⊙, and µ = 2.34.

Table 3.2. Model Parameters

Model name r̂H lmax Mp/MJup(5.2AU) ∆x̂(lmax) ∆x/rJup Time [Ω−1]
H135T6 1.35 6 1.00 7.3 × 10−3 4.1 163.47
H115T7 1.15 7 0.62 3.7 × 10−3 2.1 40.29
H100T7 1.00 7 0.41 3.7 × 10−3 2.1 43.01
H087T7 0.87 7 0.27 3.7 × 10−3 2.1 87.69
H077T8 0.77 8 0.19 1.8 × 10−3 1.0 31.68
H070T8 0.70 8 0.14 1.8 × 10−3 1.0 26.99
H064T8 0.64 8 0.11 1.8 × 10−3 1.0 45.09
H054T8 0.54 8 0.06 1.8 × 10−3 1.0 35.94
H036T9 0.36 9 0.02 9.2 × 10−4 0.5 24.56
H064R7 0.64 7 0.11 3.7 × 10−3 2.1 21.64
H064R9 0.64 9 0.11 9.2 × 10−4 0.5 24.09

3.5 Sink cell method
In simulations, since the protoplanet is located at the origin, the gravity of cells

around the origin is extremely strong. Thus, the calculation is often broken or the
long-term time integration does not work well. To avoid such situations, in various
studies, a softening parameter ε, which ‘softens’ the gravity in the vicinity of the
protoplanet, is adopted to the gravitational potential as

φ′
p = −GMp√

x2 + y2 + z2 + ε2
. (3.7)

However, this technique is not sufficiently justified and causes unrealistic results near
the protoplanet. Thus, the more plausible way to avoid the singularity is required to
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precisely calculate the circumplanetary disk.
The most straightforward way is to resolve the surface of a protoplanet with a

sufficiently high spatial resolution and remove the gas accreted on the surface every
time step. However, this treatment is wasteful for my purpose. Machida et al. (2008,
2010) already mentioned this problem, and they determined the sink radius, in which
the gas inside the sink radius is removed from the computational domain. This is an
appropriate way for my purpose. However, since they did not discuss the amount of
mass to be removed, we cannot evaluate the validity of their method. The amount
of removing mass would significantly influence the structure of circumplanetary disk
because the balance among the accretion flow and the outflow determines the structure
in the vicinity of the protoplanet. Therefore, the correct estimation of the amount of
the removed mass is crucially important.

In the simulation with the sink method, the removed gas should be determined by
the pressure gradient force because I do not change the gravity of the protoplanet
with a softening parameter. Thus, I need to appropriately treat the gas pressure (or
pressure gradient force) when the sink method is implemented. In addition, I also
need to pay attention to the gas flow in the vicinity of the protoplanet or around the
sink. Obviously, the gas density and pressure are the highest at the origin (i.e., at
the position of the protoplanet). Thus, the region around protoplanet (or around the
origin) would have a positive pressure gradient force in the radial direction. However,
from the simulation, I cannot confidently determine the gas density (and the gas
pressure) at the origin because the spatial resolution is not sufficient to resolve the
protoplanet. Thus, instead of adopting the density derived from the simulations, I
extrapolate the density (or the pressure) at the origin using the density in the vicinity
of the cell as

ρ̂s:i,j = [6ρ̂i+1,j − 4ρ̂i+2,j + ρ̂i+3,j

+ 6ρ̂i,j+1 − 4ρ̂i+1,j+1 + ρ̂i+2,j+1

− 4ρ̂i,j+2 + ρ̂i+1,j+2

+ ρ̂i,j+3]/4,

(3.8)

where i and j are the identified numbers of the sink cells located at (x̂, ŷ, ẑ) =
(∆x/2, ∆y/2, ∆z/2). In this interpolation, density distribution in the vertical (or
z) direction is neglected, because I confirmed the steeper gradient of dρ̂/dẑ in the
vertical direction than that in the x and y direction on the equatorial plane.
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There is an another sink cell at (x̂, ŷ, ẑ) = (∆x/2, −∆y/2, ∆z/2), and the treatment
is the same but the position rotates 90 degree with respect to the origin. At every
time step of the simulations, I replace the density derived from the simulation into
that is extrapolated by the cells around the protoplanet as

ρ̂′ = min (ρ̂, (ρ̂s + ρ̂)/2) . (3.9)

If a steady state exists, the density of sink cell would converge to a constant value
with time. Note that without the averaging of right hand side of equation (3.9), I
confirmed that the computation has crushed.
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Chapter 4

Convergence Analysis of the
Simulations

The simulation or the time-integration can continue until the simulation has
crashed. Thus, I need to determine the epoch at which the simulation stops. The
criterion of stopping the simulation differs from one study to another. For example,
Tanigawa et al. (2012) stopped their computation when the accretion flow onto the
circumplanetary disk comes to a nearly steady state. On the other hand, Szulágyi
(2017) continued to run the computations until the planetary gap profile comes to a
steady state. To evaluate the structure of the circumplanetary disk, I need to execute
the computation until the disk becomes a steady state. However, previous studies
could not show a steady state of the circumplanetary disk. This is because in such
studies the simulations were performed with a softening parameter ε or smoothing
length, as mentioned above.

The softening or smoothing length enables to avoid singularity of the planet’s
gravitational potential at the origin and can yield realistic flow in a large scale formed
by gravitational interaction, but accumulates a mass infinitely around the planet.
Consequently simulations cannot be reached steady state and we would extremely
overestimate the accreted mass and the size of circumplanetary disk

In this thesis, I developed a new sink method and confirmed a steady state of
circumplanetary disk and convergence of physical quantities. I remove the mass of
the cells every time steps in the finest grid, in which an amount of the removed gas is
dynamically determined in the simulation. When the circumplanetary disk achieves
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a steady state, the removed mass is equal to the mass captured by the protoplanet
in the protoplanetary disk. Then, the physical quantities of the circumplanetary disk
are converged. In this chapter, I show the results of the convergence test and discuss
the validity of the steady state derived from my sink method.

4.1 Overview of mass distributions on the equatorial
plane

Figure 4.1 shows the density distribution at the end of the simulation (the epoch is
listed in Table 3.2) on the mid-plane for each model which has a different parameter
of the Hill radius. As the Hill radius decreases, the radius of dense gas region, which
corresponds to a circumplanetary disk, rapidly decreases. This figure also shows two
pairs of spiral arms which can be observed for models with the Hill radius larger than
r̂H ≥ 0.77 (Figs. 4.1[a]–[e]). The density of the spiral arms is higher than that of the
other regions. However, for models with smaller Hill radii (r̂H < 0.77), the spiral arms
are not clear compared with models with larger r̂H. In addition, the root of arms are
away from the origin or apart from each other.

Figure 4.2 shows the surface density distributions for each model, which is calculated
as

Σ(x, y) =
∫ H

−H

ρ(x, y, z) dz. (4.1)

The area of dense region (the region with yellow color in Fig. 4.1) decreases as the
Hill radius decreases. Although this tendency is similar to the density distribution on
the equatorial plane, the dense spiral arms seen in the density distribution in models
with r̂H = 0.87 and 0.77 (Fig. 4.1[d] and [e]) do not appear in Figure 4.2(d) and (e).
Thus, the dense arms are considered to be induced only near the mid-plane, while
weak spiral arms are expected to appear in the region above the mid-plane. Note that
although the Hill radius for models in Figure 4.2(a) is larger than that for model with
Figure 4.2(b), the maximum density in the larger Hill radius model is lower than that
in the higher Hill radius model. This implies that the spatial resolution affects the
density distribution. This kind of the resolution dependency was reported in some
previous studies (e.g. Morbidelli et al. 2014).
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Figure 4.1. Gas density (color) on the equatorial plane around the protoplanet at the
end of the simulations. Parameter r̂H differs in each panel.

4.2 Convergence of cumulative mass
In order to evaluate convergence of the calculations, the time sequence of the mass

distribution is examined. Figure 4.3 shows time evolution of the cumulative mass
within a radius R and scale height H for model with r̂H = 0.64. The cumulative mass
is calculated as

Mcd(R) =
∫ R

0

∫ 2π

0

∫ H

−H
ρ(x, y, z) dzdθdr, (4.2)

where r is defined as r =
√

x2 + y2, and θ is the azimuthal angle measured from
the x-axis. In this figure, the cumulative masses at four different radii R = rH/100,
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Figure 4.2. Surface density Σ̂ distribution near the protoplanet at the end of the
calculation for each model.

rH/10, rH/2 and rH are plotted by the solid, dashed, dotted, and dash-dotted line,
respectively.

After the calculation starts, the cumulative masses steeply increase and show a weak
peak. Then, they converge to a constant value within an orbital period (<2πΩ−1).
The time to converge the cumulative mass is sufficiently shorter than the growth
timescale of the planet. This indicates that the density enhancement due to the
growth of the protoplanet greatly affects the structure of the circumplanetary disk. In
addition, the density distribution of the circumplanetary disk changes in a short time
compared with the Keplerian timescale. Since the growth timescale of the protoplanet
is much longer than the Keplerian timescale, this simulation can be regarded as a
snapshot of the accreting circumplanetary disks.
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Figure 4.3. Time evolution of the accreted mass within a radius R̂ and scale height H
for model with r̂H = 0.64. The solid, dashed, dotted, and dash-dotted line represents
the non-dimensional mass within R̂ = r̂H/100, r̂H/10, r̂H/2, and r̂H, respectively. The
elapsed time is normalized by the orbital period.

Figure 4.4 is the same plot as in Figure 4.3 but for model with r̂H = 0.36 which has
the smallest Hill radius in this study. The figure shows that cumulative masses have
weak (overshooting) peaks before they converge to a constant value. The time scale
for the convergence in this model is shorter than that for model with rH = 0.64. This
implies that a smaller protoplanet quickly changes its surrounding structure. Thus,
even for the models with a smaller Hill radius, I can regard it as a snapshot around a
growing planet. However, for model with r̂H = 1.35 (Fig. 4.5) which has the largest
Hill radius among the models, I cannot confirm a clear convergence of the cumulative
masses within the computation time. In Figure 4.5, although top three lines, which
corresponds to R ≥ rH/10, show a peak, they continue to decrease. On the other
hand, the cumulative mass for R = rH/100 (the bottom line) also show a peak, while
it keeps an almost constant value. This indicate that the radius R = rH/100 is located
within the inner edge of circumplanetary disk. Although the cumulative masses seen
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Figure 4.4. Time evolution of the accreted mass within a radius R and scale height H
for model with r̂H = 0.36. The solid, dashed, dotted, and dash-dotted line represents
the non-dimensional mass within R̂ = r̂H/100, r̂H/10, r̂H/2, and r̂H, respectively. The
elapsed time is normalized by the orbital period.

in Figure 4.6 also have not been completely converged, the mass within R < rH/100
keeps a constant value for t̂ ≳ 0.2. Thus, a steady state is expected to be achieved
around the protoplanet (or inside the circumplanetary disk).

4.3 Overview of azimuthal velocity distribution on the
equatorial plane

Figure 4.7 shows the azimuthal velocity distribution on the equatorial plane nor-
malized by the local Keplerian angular velocity of the protoplanet, which is given
by

v̂Kep =
√

3r̂3
Hr̂, (4.3)

for each model at the end of the calculation. The figure shows that the normalized
azimuthal velocities are constant near the protoplanet, which indicates that the gas
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Figure 4.5. Time evolution of the accreted mass within a radius R and scale height H
for model with r̂H = 1.35. The solid, dashed, dotted, and dash-dotted line represents
the non-dimensional mass within R̂ = r̂H/100, r̂H/10, r̂H/2, and r̂H, respectively. The
elapsed time is normalized by the orbital period.

fluid around the protoplanet moves according to the Keplerian motion. Outside a
critical radius, which is defined as the boundary between the circumplanetary disk
and the protoplanetary disk, the normalized velocities are still positive, while fluid
shows a turbulent motion. This feature indicates that the angular momentum transfer
occurs around the critical radius. Also, the critical radii normalized by the Hill radius
increase as the Hill radii increase for models.

The azimuthally averaged azimuthal velocity is calculated by

v̄θ(r̂) =
∫ r̂+∆r̂

r̂−∆r̂

∫ 2π

0 L̂z dθdr̂∫ r̂+∆r̂

r̂−∆r̂

∫ 2π

0 r̂ρ̂ dθdr̂
, (4.4)

and is shown in Figure 4.8 for models with r̂H = 0.36, 0.64, 1.00, and 1.35, in which
the velocity is normalized by the Keplerian angular velocity. For each model, the
region near the protoplanet has almost the Keplerian velocity, while the normalized
velocity steeply decreases in the region far from the protoplanet. Gressel et al. (2013)
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Figure 4.6. Time evolution of the accreted mass within a radius R and scale height H
for model with r̂H = 1.15. The solid, dashed, dotted, and dash-dotted line represents
the non-dimensional mass within R̂ = r̂H/100, r̂H/10, r̂H/2, and r̂H, respectively. The
elapsed time is normalized by the orbital period.

defined the inflection point of the radial profile using the time averaged specific an-
gular momentum and reported that the circumplanetary disk has a radius of 0.5r̂H.
Although the tendency seen in Figure 4.7 is similar to their result, the decreasing
point of the normalized velocity (or the size of the circumplanetary disk) clearly de-
pends on the Hill radius (or the normalized Hill parameter). Therefore, my results
implies that the outer edge of circumplanetary disk has a similar dynamical structure
for models with different Hill radii.

4.4 Convergence of azimuthal velocity
Convergence of the azimuthal velocity is also investigated. Figures 4.9 and 4.10

shows the time sequences of the normalized azimuthal velocity at four different radii
for models with r̂H = 0.36, and 1.35. The azimuthal velocity converges near the
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Figure 4.7. Normalized azimuthal velocity distribution for each model at the end of
the calculation. The coordinate is scaled by r̂H.

protoplanet, while it oscillates the region far from the protoplanet. Nevertheless, the
amplitudes in the oscillation are not very large, which implies that the azimuthal
velocity roughly converges in all the radii. The region showing almost constant az-
imuthal velocity in Figure 4.9 is located inside the critical radius, as seen in Figure
4.7(i).

4.5 Summary
In this chapter, I showed the convergence of cumulative mass and azimuthal ve-

locity, i.e. specific angular momentum. Cumulative masses show convergence except
for model with r̂H = 1.35. In addition, all the azimuthal velocities profiles are con-
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verged. Thus, I can check the validity of the simulation and confidently analysis the
circumplanetary disk in the subsequent chapters.
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Chapter 5

Results and Discussions

In this chapter, I determine the spatial scale of circumplanetary disk relative to
the Hill radius. Circumplanetary disks are formed in each model (see Figure 4.1
and 4.2), but the outer edges of the disk are still unclear. Azimuthally averaged
radial profiles of some physical quantities which allocate the region adjacent to the
midplane are evaluated. To be precise, I estimated such physical quantities on the
plane of z = ∆z(lmax)/2, which corresponds to the lowest point in the z-direction in
the computational domain.

5.1 Radial profile of physical quantities
Figure 4.7 suggests the existence of a qualitative boundary between stable disk

region and outer turbulent region. Thus let us determine the outer edge of the cir-
cumplanetary disk from azimuthally averaged quantities.

5.1.1 Angular momentum

Figures 5.1 to 5.9 show the radial profiles of the averaged angular momentum, which
is calculated as

¯̂
L(r̂) =

∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 r̂ρ̂v̂θdrdzdθ∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 drdzdθ
(5.1)

and the radial gradient. The quantities are averaged during one orbital period after
the steady state is realized. The maxima and minima for each model during the

36



period are also plotted. The dotted line represents the Keplarian angular momentum
for corresponding model (or each r̂H).

In each model, the angular momentum increases with the distance from the origin
according to the Keperian profile (dotted line) near the protoplanet. Then, the an-
gular momentum is detached from the Keplerian profile after it reaches a peak value.
This peak radius, where ∂L/∂r = 0, is shown by the vertical dotted line in each
panel. Thus, the gas motion is almost the Keplerian near the protoplanet. In model
with r̂H = 0.36 (Figure 5.1), a clear peak is confirmed. After the peak potision, the
gradient of angular momentum becomes slightly negative and the fluctuation spreads
continuously. However in model with r̂H = 0.54, r̂H = 0.64 and r̂H = 0.70 (Figs. 5.2,
5.3 and 5.4), angular momentum stays nearly constant after the peak for a while,
and then it sharply decreases in the outer region. The range between maxima and
minima in the outer region is larger than that in the inner regions (before the peaks).
In model with r̂H ≤ 0.77 (Fig. 5.5 to 5.9), the second peak exists before the sharp
decrease. The fluctuation gradually increases between two peaks.

The gas in the accretion disk is supported by centrifugal and radial pressure gradient
forces againt the gravity of the protoplanet. Thus the angular momentum should be
redistributed by gravitational and pressure torques, and the gradient in the angular
momentum smoothly changes in the inner region. On the contrary, in the outer
region having a constant angular momentum, the angular momentum may not be
redistributed, while the angular momentum in the infalling gas directly transports
outward.

5.1.2 Radial velocity and radial mass flux

Figures 5.10 to 5.18 show the averaged radial velocity given by

¯̂vr(r̂) =

∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 ρ̂v̂rdrdzdθ∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 ρ̂drdzdθ
, (5.2)

and the radial mass flux given by

¯̂
Fr =

∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 ρ̂v̂rdrdzdθ

∆r∆z
. (5.3)
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Figure 5.1. Azimuthally averaged non-dimensional angular momentum (top panel)
and gradient of it (bottom panel) for model with r̂H = 0.36. The solid, dashed, and
dash-dotted line show the time averaged, maximum and minimum value, respectively.
The dotted line on the top panel denotes the Keplerian angular momentum. The
horizontal dotted line in the bottom panel means ∂L/∂r = 0, while the vertical lines
correspond to the radius of ∂L/∂r = 0.
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Figure 5.2. Same as in Figure 5.1, but for model with r̂H = 0.54.

These values are also averaged in last one orbital period. In these figures, the vertical
dotted line denotes the position ∂L/∂r = 0, which is same as the figures of the
angular momentum profile (Figs. 5.1 to 5.9). For model with r̂H = 0.36 (Figure 5.10),
the radial velocity is positive inside the vertical line, and it is negative outside it.
Therefore, the angular momentum is excessive in the inner region and not enough to
support gas fluid against the gravity of the protoplaent in the outer region. Thus,
the gas fluid cannot stay in the outer region. Also, for model with r̂H = 0.54, the
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Figure 5.3. Same as in Figure 5.1, but for model with r̂H = 0.64.

vertical line divides into the inner and outer region. However, the inward mass flux
disappears in the outer region because of the low density. Therefore, the inward mass
flux is negligible on the midplane. The fluctuations in the radial velocity (top panel)
sharply spreads from the vertical line, while the fluctuation in the radial mass flux
increases inside the vertical line. These trends also exist in larger r̂H models (≥ 0.64;
Figure 5.12 to 5.18).
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Figure 5.4. Same as in Figure 5.1, but for model with r̂H = 0.70.

5.1.3 Density

Radial density profile, which is calculated as

¯̂ρ(r̂) =

∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 r̂ρ̂drdzdθ∫ π

−π

∫ ∆z

0
∫ r+∆r/2

r−∆r/2 drdzdθ
(5.4)
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Figure 5.5. Same as in Figure 5.1, but for model with r̂H = 0.77.

is shown in Figures 5.19 to 5.27. Each model has the same trend; the density has
a peak in the inner Keplerian rotating region and gradually decreases outward. The
fluctuations in density profile spread as the distance from the protoplanet increase.
This indicates that the fluctuation is excited due to the time variation of the removing
mass by the sink cell. A clear boundary between the circumplanetary disk and the
turbulent region can not be confirmed in the density profile. Thus, it is concluded
that the velocity distribution, not the density distribution should be used to identify
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Figure 5.6. Same as in Figure 5.1, but for model with r̂H = 0.87.

the circumplanetary disk.

5.2 Stable disk region
Although the convergence of surface density in models with large r̂H was not clearly

confirmed in the region far from the protoplanet, the averaged azimuthal velocity on
the midplane shows well convergence in all models. In addition, I confirmed that the
high density region is highly stable and rarely changes with time. In order to confirm
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Figure 5.7. Same as in Figure 5.1, but for model with r̂H = 1.00.

the radial dependence of the disk stability, the radial distribution of the averaged
specific angular momentum which is normalized by the Keplerian angular momentum,
and the fluctuations of the averaged specific angular momentum are shown in Figures
5.28 to 5.36. The fluctuation corresponds to the difference between the time averaged
values and maximum, or minimum during one orbital period, in which the azimuthal
velocity is averaged in the azimuthal direction. In each panel, the vertical dotted line
indicates the radius at which the velocity corresponds to 0.95, 0.9, 0.8, 0.7, 0.6, and
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Figure 5.8. Same as in Figure 5.1, but for model with r̂H = 1.15.

0.5 times the Keplerian velocity, vKep.
For models with r̂H = 0.36 and r̂H = 0.54 (Figures 5.28 and 5.29), both the positive

and negative fluctuations continue to increase as the normalized animuthal velocity
decreases. However, for model with r̂H = 0.64, only the positive fluctuation exists and
begins to increase at ∼ 0.6vKep. The increase rate of the fluctuation is amplified as
the radius increases. Figure 5.31 also shows the moderate increase of the fluctuation,
which is apparent in the regoion at vθ ∼ 0.95vKep. In addition, for this model,
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Figure 5.9. Same as in Figure 5.1, but for model with r̂H = 1.35.

the fluctuation in the nomarlized azimuthal velocity is rapidly amplified between
0.80vKep < vθ < 0.50vKep.

For model with r̂H ≥ 0.77, the region, in which fluctuations increase, can be clearly
divided into three regions: the region has (i) an almost Keplerian motion inside
the radius vθ = 0.95vKep, (ii) a constant amplitudes of fluctuation from the radii
vθ = 0.95vKep to vθ = 0.50vKep, and (iii) a large increasing fluctuation in the outer
region. The constant amplitude section and the outer highly fluctuated regions are
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Figure 5.10. Averaged non-dimensional radial velocity and radial mass flux for model
with r̂H = 0.36. Solid, dashed, and dash-dotted lines are time averaged, maxima and
minima of each quantity during one orbital period, respectively. The vertical dotted
line is the position of ∂L/∂r = 0 as in Figure 5.1.
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generally seen in Figures 5.32, 5.33, 5.34, 5.35, and 5.36. Notably, the outer fluctuated
region is clearly seen in the top panel of the figures in which the fluctuation in the
outer region is obviously larger than that in the inner region. The transition to the
fluctuated region from the stable region occurs in r̂ = 0.3 to 0.5 approximately.

Thus, the region of radius in the range of vθ = 0.95vKep to vθ = 0.80vKep may be
able to determine the region which is assumed to be a Keplerian rotating disk. On
the other hand, the radius in the range of vθ = 0.70vKep to vθ = 0.50vKep may be
regarded as the transitional region.

5.3 Scaling
In previous chapter, I showed two types of characteristic radius of the circum-

planetary disk. One is a qualitative boundary where the gradient of radial angular
momentum becomes zero, which is hereafter described as r̂c. The radius r̂c corre-
sponds to the outer edge of the circumplanetary disk. This radius is plotted against
the normalized Hill radius (i.e., against each model) in Figure 5.37, in which the
fitting of r̂c is also plotted. The fitting formula is described in the caption. In the
figure, two triangles are plotted in order to compare the standard models with the
different models which have different spatial resolutions. The parameters for models
H064R7 (lmax = 7) and H064R9 (lmax = 9) are listed in Table 3.2. The triangles
located at the upper and lower position correspond to the models with lmax = 7 and
lmax = 9, respectively. The figure indicates that the higher spatial resolution results
in a smaller radius of circumplanetary disk. From this figure we can see that the
power law function well traces the simulation result.

Another characteristic radius is defined by the azimuthal velocity normalized by
the Keplerian velocity. Figures 5.38, 5.39, 5.40, 5.41, 5.42, and 5.43 show the radii
respect to the normalized Hill radius r̂H, in which the criteria of normalized velocity
is different and has, respectively, vθ/vKep = 0.95, 0.9, 0.8, 0.7, 0.6, and 0.5 in each
figure. The approximated power-low function is also plotted in these figures. The
figures show that the critical radius of each model is well described by the fitting
formula. However, some differences between calculation results and fitting formulae
are seen especially in models with smaller r̂H.

I adopted the radius at vθ/vKep = 0.80 (Figure 5.40) as the characteristic ra-
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Table 5.1. Circumplanetary disk radius taken from this study and the parameters
of planets and their satellite in the solar system. The radii are approximated by the
function 0.19279764757795×r̂ 2.36023412285795

H , which is derived from v̄θ(rCP D)/vKep =
0.80.

Planet Mass[MJup] rp [AU] r̂Hill rCP D [km] Satellite rsat[km]
Jupiter 5.203 1.00 1.35 1.541 × 107 Himalia 1.146 × 107

Saturn 9.555 0.299 0.78 8.911 × 106 Iapetus 3.56 × 106

Uranus 19.218 0.0457 0.35 3.223 × 106 Oberon 5.84 × 105

Neptune 30.11 0.0540 0.33 4.938 × 106 Nereid 5.513 × 106

dius of the circumplanetary disk, because the simulation results fit well with the
power law functions. In addition, this radius agrees well with the radius defined by
∂L(r̂c)/∂r = 0 (the former one; Figure 5.37). Applying the approximate function
for the parameters of present solar system, we can estimate the circumplanetary disk
radius of each planet. The estimated radius and orbital radius of an outer regular
satellite is summarized in Table 5.1 as a reference for each giant planet. In the cases
of Jupiter, Saturn and Neptune, the satellite orbital radius is consistent with the
estimated circumplanetary disk radius. On the other hand, for the case of Uranus,
rsat is an order of magnitude smaller than the estimated value, which may imply
that Uranus had migrated from the inner orbital radius, or the outer satellites are
scattered due to the gravitational interaction among the inner satellites.
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Figure 5.11. Same as Fig. 5.10, but for model with r̂H = 0.54.

50



Ra
di

al
ve

lo
ci

ty
Ra

di
al

ve
lo

ci
ty

Ra
di

al
m

as
s

flu
x

–1

–0.5

0

0.5

1

r/rH

-100

-50

0

50

10–3 10–2 10–1 100 101

Figure 5.12. Same as Fig. 5.10, but for model with r̂H = 0.64.
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Figure 5.13. Same as Fig. 5.10, but for model with r̂H = 0.70.
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Figure 5.14. Same as Fig. 5.10, but for model with r̂H = 0.77.
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Figure 5.15. Same as Fig. 5.10, but for model with r̂H = 0.87.

54



Ra
di

al
ve

lo
ci

ty
Ra

di
al

ve
lo

ci
ty

Ra
di

al
m

as
s

flu
x

–1

–0.5

0

0.5

1

r/rH

-100

-50

0

50

10–3 10–2 10–1 100 101

Figure 5.16. Same as Fig. 5.10, but for model with r̂H = 1.00.
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Figure 5.17. Same as Fig. 5.10, but for model with r̂H = 1.15.
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Figure 5.18. Same as Fig. 5.10, but for model with r̂H = 1.35.
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Figure 5.19. Radial profile of averaged density for model with r̂H = 0.36. The solid,
dashed, and dash-dotted line denotes time averaged, maxima, and minima during one
orbital period after the steady state is realized around the protoplanet, respectively.
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Figure 5.20. Same as in Fig. 5.19, but for model with r̂H = 0.54.
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Figure 5.21. Same as in Fig. 5.19, but for model with r̂H = 0.64.
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Figure 5.22. Same as in Fig. 5.19, but for model with r̂H = 0.70.
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Figure 5.23. Same as in Fig. 5.19, but for model with r̂H = 0.77.
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Figure 5.24. Same as in Fig. 5.19, but for model with r̂H = 0.87.
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Figure 5.25. Same as in Fig. 5.19, but for model with r̂H = 1.00.
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Figure 5.26. Same as in Fig. 5.19, but for model with r̂H = 1.15.
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Figure 5.27. Same as in Fig. 5.19, but for model with r̂H = 1.35.
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Figure 5.28. Time averaged radial profile of the azimuthal velocity for model with
r̂H = 0.36 normalized by the Keplerian angular velocity. The profiles are also averaged
in the azimuthal direction during one orbital period.
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Figure 5.29. Same as in Figure 5.28, but for model with r̂H = 0.54.
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Figure 5.30. Same as in Figure 5.28, but for model with r̂H = 0.64.
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Figure 5.31. Same as in Figure 5.28, but for model with r̂H = 0.70.
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Figure 5.32. Same as in Figure 5.28, but for model with r̂H = 0.77.
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Figure 5.33. Same as in Figure 5.28, but for model with r̂H = 0.87.
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Figure 5.34. Same as in Figure 5.28, but for model with r̂H = 1.00.
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Figure 5.35. Same as in Figure 5.28, but for model with r̂H = 1.1465.
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Figure 5.36. Same as in Figure 5.28, but for model with r̂H = 1.35.
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Figure 5.37. Characteristic radius r̂c defined by ∂L(r̂c)/∂r = 0 and the approximate
power function 0.220601174193696 × r̂ 2.456401012428390

H . The circles are for the stan-
dard models described in the previous chapter, while the triangles are for the models
with different spatial resolutions for models with r̂H = 0.64. The higher one corre-
sponds to lmax = 7 and the lower corresponds to lmax = 9. The standard model has
lmax = 8.
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Figure 5.38. Circumplanetary disk radius defined by vθ = 0.95 vKep and the ap-
proximate power function 0.0818096341041719 × r̂ 2.47570857114876

H . The velocities are
averaged in the azimuthal direction during one Keplerian orbit. The circles are for
the standard models shown in the previous chapter, while the triangles are models
with different resolutions for r̂H = 0.64. The higher one corresponds to lmax = 7 and
the lower corresponds to lmax = 9. The standard model has lmax = 8.
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Figure 5.39. Circumplanetary disk radius defined by vθ = 0.90 vKep and the ap-
proximate power function 0.124645062905014 × r̂ 2.46384577422025

H . The velocities are
averaged in the azimuthal direction during one Keplerian orbit. The circles are for
the standard models shown in the previous chapter, while the triangles are models
with different resolutions for r̂H = 0.64. The higher one corresponds to lmax = 7 and
the lower corresponds to lmax = 9. The standard model has lmax = 8.
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10–3

10–2

10–1

100

0.36
0.54

0.64
0.70

0.77
0.87

1.00
1.15

1.35

Figure 5.40. Circumplanetary disk radius defined by vθ = 0.80 vKep and the ap-
proximate power function 0.19279764757795 × r̂ 2.36023412285795

H . The velocities are
averaged in the azimuthal direction during one Keplerian orbit. The circles are for
the standard models shown in the previous chapter, while the triangles are models
with different resolutions for r̂H = 0.64. The higher one corresponds to lmax = 7 and
the lower corresponds to lmax = 9. The standard model has lmax = 8.
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Figure 5.41. Circumplanetary disk radius defined by vθ = 0.70 vKep and the ap-
proximate power function 0.255911907609848 × r̂ 2.32377074546421

H . The velocities are
averaged in the azimuthal direction during one Keplerian orbit. The circles are for
the standard models shown in the previous chapter, while the triangles are models
with different resolutions for r̂H = 0.64. The higher one corresponds to lmax = 7 and
the lower corresponds to lmax = 9. The standard model has lmax = 8.
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Figure 5.42. Circumplanetary disk radius defined by vθ = 0.60 vKep and the ap-
proximate power function 0.32030581052405 × r̂ 2.26593189336104

H . The velocities are
averaged in the azimuthal direction during one Keplerian orbit. The circles are for
the standard models shown in the previous chapter, while the triangles are models
with different resolutions for r̂H = 0.64. The higher one corresponds to lmax = 7 and
the lower corresponds to lmax = 9. The standard model has lmax = 8.
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Figure 5.43. Circumplanetary disk radius defined by vθ = 0.50 vKep and the ap-
proximate power function 0.413212053413054 × r̂ 2.15122957176898

H . The velocities are
averaged in the azimuthal direction during one Keplerian orbit. The circles are for
the standard models shown in the previous chapter, while the triangles are models
with different resolutions for r̂H = 0.64. The higher one corresponds to lmax = 7 and
the lower corresponds to lmax = 9. The standard model has lmax = 8.
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(b) Radial angular momentum flux

Figure 5.44. Radial velocity (left) and angular momentum advection in the radial
direction (right) for model with r̂H = 0.36. Gas outflowing and inflowing regions are
divided. There exists a boundary from which the disk mass is transferred.

5.4 Radial velocity distributions
As a reference, two-dimensional distribution of the radial velocity and radial angular

momentum advection on the mid-plane are shown in Figures 5.44, 5.45 and 5.46
with color. In the figure, we can see clear spirals near the protoplanet. In the
outer edge of the spirals in the circumplanetary disk, an interface between outgoing
and inflowing flows, which corresponds to the radii shown in Figure 5.37. However,
the outer turbulent region varies with time, thus I cannot easily acquire qualitative
information from simulation results in the radial velocity profiles.

5.5 Vortex filaments in small Hill radius models
Figure 5.47 shows the vertical velocity component for model with rH= 0.64 on the

plane of different altitudes. The altitude of panel (a), z = 0.0037, corresponds to the
lowest cell of the sixth grid. Therefore, compared with other panels, the distribution
of velocities are flat, which indicates the gas fluid on the plane does not have a
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Figure 5.45. Radial velocity (left) and angular momentum advection in the radial
direction (right) for model with r̂H = 0.64. Gas outgoing velocity fields is confirmed
in the disk outer region, and the outgoing velocity region connects to spiral arms.
The inflow and outflow are compartmented.
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Figure 5.46. Radial velocity (left) and angular momentum advection in the radial
direction (right) for model with r̂H = 1.35. The disk arm is elongated to near the
outer shock surface which is formed by the global flow.
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significantly large vertical velocity component in the z-direction.
Around z = 0.2, two pairs of positive and negative velocity lines can be observed

and are advected toward the directions of circumplanetary disk’s shear flow. The lines
imply that a vortex tube lies between them. The vortex is clearly seen in Figure 5.48,
which shows x–z slices of the density with color and in-plane component of the velocity
field with arrows for y = 0.0,−0.5,−1.0,−5.0, and −10.0. The vortex is strong, hence
it makes the gas density lower than the surrounding environment (Figure 5.48[a]–
[c]). However, the vortex diffuses in the region far from the protoplanet and finally
disappears.

Source of the vortex tubes is necessarily associated with the meridional circulation
around the protoplanet. Figure 5.48(a) indicates that this circulation is generated
by the interaction between the shock surface and the outflow from the outer edge
of circumplanetary disk. Such circulations are a consequence of gas flow around
circumplanetary disk, because such shock surface and outflow generally exist around
a protoplanet embedded in the protoplanetary disk. However, the strong vortex is
not always formed.

Figure 5.49, which plots a smaller Hill radius model rH = 0.36, shows that the
same vortex exists slightly inside the Hill region. However, this vortex is weak and
the tube-like low density region is not clear. In addition, it dissipates rapidly (Figure
5.49[b]). On the other hand, for a large Hill radius model rH = 1.15 (Figure 5.50),
a strong meridional circulation is excited, while it’s structure is compressed toward
the z-direction. Thus, the circulation cannot produce a stable vortex. Among the
models, the distance of the circulation center from the protoplanet is approximately
equal to rH. On the contrary, the shock surfaces are always located in the region
much far from the protoplanet, i.e. x > 1.0. Note that the shape of shock surfaces
for the larger Hill radius models differs from those of the smaller Hill radius models.

These characteristics indicate that flows in the vicinity of planets change qualita-
tively as the Hill radius increases (or the protoplanet grows), which implies that the
mass distributions and the accretion of the angular momentum onto the circumplan-
etary disk surface rapidly changes according to the increment of the Hill radius or the
mass of the protoplanet.
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Figure 5.47. Vertical component of gas velocity on the plane of different altitudes for
model with rH= 0.64.
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Figure 5.48. The y = 0.0,−0.5,−1.0,−5.0, and −10.0 cross section are plotted. Den-
sity (color) and velocity (arrows) distributions on the y=constant plane for model
with r̂H = 0.64
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Figure 5.49. The y = 0.0 and −0.36 cross section are plotted. Density (color) and
velocity (arrows) distributions on the y=constant plane for model with r̂H = 0.36
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Figure 5.50. The y = 0.0 and −1.15 cross section are plotted. Density (color) and
velocity (arrows) distributions on the y=constant plane for model with r̂H = 1.15
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Chapter 6

Summary

Circumplanetary disks are assumed to have important information about an ac-
creting or growing planet and satellite formation. In this study, I performed local
three-dimensional hydrodynamic simulations around accreting planet embedded in a
protoplanetary disk with a parameter of non-dimensional Hill radius in the range of
r̂H = 0.36 to 1.35. I adopted an isothermal equation of state to the simulations.

The nested grid method has been used to resolve the structure of the circumplan-
etary disk, in which the cell width of the finest grid is 28 times smaller than that of
the root grid. Thus, I could resolve a length comparable to the present Jovian ra-
dius. In addition, the finest grid was sufficiently large and includes both the forming
circumplanetary disk and the protoplanet itself. Thus, I also could removed bound-
ary effects of the grid in this simulations. I used non-dimensionalized equations and
adopted only a single parameter of non-dimensional Hill radius. I defined the origin of
local Cartesian coordinate as the position of protoplanet and calculated a quadrant
region because of symmetries of the equations. I developed a new sink method to
correctly estimate the properties of circumplanetary disk. I imposed two sink cells
in the finest grid. I assumed the gas onto the sink cell rapidly accretes onto the
protostar, and removed the gas from the computational domain. I also imposed a
threshold density of the sink cells, which is dynamically determined every numerical
timestep. The greatest merit of the sink method newly adopted in this study is that
an equilibrium state is realized inside the Hill radius. Thus, with this method, the
distribution of time and azimuthally averaged physical quantities converged near the
planet. After the convergence, I can identify the Keplerian rotating circumplanetary
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disk formed in the vicinity of the protoplanet and assumed it as a snapshot of forming
circumplanetary disk, because the timescale for the converge from initial condition is
comparable to an orbital period and is much shorter than the growth timescale of the
protoplanet.

In the simulations, after a steady state is accomplished, physical quantities still
oscillates with time and their amplitudes depend on the distance from the origin or
protoplanet. The density and the surface density strongly oscillate in the inner disk
region, and the oscillation may be caused by the treatment of sink cells. However, the
amplitudes of oscillation in the averaged specific angular momentum decrease in the
inner disk region. The large Hill radius models r̂H ≥ 0.77 indicate that the stable and
unstable (or turbulent) regions are clearly divided and there exists a threshold radius
above which the physical quantities strongly oscillates. The threshold radius, which
coincides with a weak shock surface, correspond to the outer edge of the circumplan-
etary disk. This predicts qualitative change of the circumplanetary disk radius as
a function of protoplanet’s mass, because the threshold radius changes as the Hill
parameter varies.

I also investigated the radial dependence of the azimuthal velocity normalized by the
Keplerian velocity and found that the radius of circumplanetary disks is approximately
proportional to r̂ 2.4

H . I estimated the size of the circumplanetary disk using the mass
of giant planets in our solar system using the fitting formula derived from this study,
and confirmed that my result is consistent with the satellites of Jupiter, Saturn, and
Neptune, but is not consistent with those of Uranus. Thus, we may need a special
attention to consider the formation of Uranus and its satellite system.
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