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Abstract

The purpose of this thesis is to understand “non-self-averaging” phenomena. The

definition of self-averaging is that a physical quantity divided by the system size

is equal to its ensemble average. In particular, influences of non-self-averaging are

investigated in time and frequency domains. To achieve this purpose, Polya’s urn

model is examined because this model has been applied to many phenomena in the

fields of physics, economics and biology. Polya’s urn model is a stochastic model

consisting of white and black balls, where the numbers of white and black balls in

the urn increase with time. This model has two parameters a and b that represent

the amounts of the increases of the number of white and black balls at each step.

When a = b in this model, the process shows non-self-averaging. This thesis consists

of two parts. First, I study (linear) Polya’s urn model by a perturbation analysis.

Second, I investigate the properties of non-linear Polya’s urn.

In the first part, to study Polya’s urn model analytically, I employ the continuum

approximation. I find a certain scaling law for the distribution of the number of

black balls, and the obtained results agree with those obtained by Monte Carlo

simulations. By a perturbation analysis, I find that the average of the reduced

response function ⟨ϕ(t, t− τ)⟩/t does not decay to 0 when self-averaging is violated.

In the second part, I investigate non-linear Polya’s urn model, where the prob-

ability of drawing a black ball is generalized by a non-linear function Q(xb). Here,

the xb is the fraction of black balls in the urn. I show that the steady distribution

of xb is given by
∑

i ρiδ(xb − xsti ), where x
st
i ’s are the stable fixed points of the urn.

The property of self-averaging is determined by the number of stable fixed points.

Even if the process is non-self-averaging, the reduced response function for a finite

number of xsti ’s vanishes in the long time limit. In contrast, the reduced response

function for an infinite number of xsti ’s does not vanish in the long time limit. By

these results, I propose that non-self-averaging has two classes.
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Chapter 1

Introduction

Since Newton’s laws of motion were established, physicists have attempted to ex-

plain the real world using the equations of motion and these plans have succeeded in

natural science. Based on the basic physics laws, all physical phenomena can be pre-

dicted basically. In particular, some physicists or mathematicians (one of the most

representative persons is Laplace) considered that all physical phenomena could be,

in principle, investigated by solving the equations of motion. Thus, these scientists

believed that thermodynamics explaining phenomena of macroscopic systems should

be derived from the equations of motion.

However, in systems consisting of many particles whose number is typically 1023,

these attempts were impractical and unsuccessful. Macroscopic theories cannot be

derived from microscopic theories such as the equations of motion. Different ideas

were needed to connect microscopic equations of motion with macroscopic theories,

such as thermodynamics.

One way of linking microscopic theories and macroscopic theories is through

the law of large numbers in probability theories. Probability theories have been

developed since the 17th century to choose wise strategies in gambles. In contrast to

deterministic equations of motion, in probability theories, each microscopic physical

quantity is regarded as a random variable σ(i) where i labels a step in a certain

stochastic process. Its value cannot be predicted for sure. However, by repeating

many trials, a random variable µ = (1/N)
∑N

i σ(i) is close to the average calculated

by the distribution, where N is the number of steps. This statement is called the law

of large numbers. It has been applied to the fields of gambling, insurance, etc., and

guaranteed long-time benefits to its users even if they suffer damages in a short-time

scale.

This application of probability theories is not limited to the discipline of mathe-

matics and economics, and the idea of probability theories was introduced in physics
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8 CHAPTER 1. INTRODUCTION

by Maxwell and Boltzmann at the end of the nineteenth century. To explain the

nature of macroscopic systems Boltzmann replaced the many degrees of freedom in

systems with a set of random variables. The motion of each element is probabilistic

and unpredictable. However, in sufficiently large systems the fluctuations of each

particle are canceled and the deterministic average value can be obtained. This idea

is an application of the law of large numbers to physical systems.

The physics introduced by Boltzmann is called statistical physics today. In the

early days, many physicists criticized his theory. However in the mid-20th century,

statistical physics was accepted by the community of physicists as a theoretical tool

to explain the behavior of the thermal equilibrium in a macroscopic system because

the theory describes many properties of actual systems.

The applicability of such statistical ideas is not limited to physics. For example,

financial theories can introduce such statistical ideas, because many people partic-

ipate in a financial market. Statistical physics and financial theories based on the

law of large numbers give us methods which explain macroscopic systems. For in-

stance, the order-disorder transition and the price determination of insurance have

been discussed in the framework of the law of large numbers.

In 1907, Markov had a question about the assumption on which the law of large

numbers was based. The law of large numbers requires independence of each random

variable. Even when this assumption does not hold, “the law of large numbers” does

not always break. When this presupposition of independence is removed then, is the

law of large numbers true in any stochastic processes[1]? This question is the first

starting point of “non-self-averaging”. Markov’s argument is as follows: Consider

N flips of a coin. When flips are independent, the law of large numbers is true. On

the other hand, the law of large numbers does not necessarily hold when flips are

correlated. By the degree of the correlation, the process shows “non-self-averaging”

which means that the law of large numbers does not hold. One example in which

the law of large numbers breaks down is that probability of heads of the coin is

proportional to the number of heads in the previous flips.

In physics, Lifschitz firstly introduced the notion of ”self-averaging”[2]. When

the deviation of a particular physical quantity from the average vanishes as the sys-

tem size goes to infinity (thermodynamic limit), the quantity is called self-averaging.

Most of the extensive physical quantities are self-averaging in usual probrems of sta-

tistical physics. However, in disordered systems such as spin glass systems[3], this

property does not always hold.

In addition to the above insight by Lifschitz, Mandelbrot discovered “fractal”

power-law distributions of prices in financial markets. Since many people participate

in a financial market, the law of large numbers might be expected to hold there.
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However, he showed that this naive expectation is violated; fractal distributions do

not yield self-averaging.

Non-self-averaging has conventionally been studied on stationary systems[3, 4, 5,

6, 7, 8]. Non-self-averaging phenomena, however, emerge in time-evolving systems.

Aoki introduced such examples in an economic growth model[9]. Modern economic

theories are basically founded on the assumption of self-averaging. If economic

growth is non-self-averaging, then today’s economic policies are forced to be changed

fundamentally. Hence it is important for us to understand non-self-averaging in the

time domain.

In this thesis, I investigate the influence of non-self-averaging in time domain

using Polya’s urn model. Polya’s urn model was introduced by Polya and Eggen-

berger in 1923[10]. This model is equivalent to that of Markov in 1907, and is

the most popular in models exhibiting non-self-averaging. In addition, this simple

model has wide applications in physics, biology, economics and graph theories. In

order to study the above influence, I carry out a linear response analysis in Polya’s

urn model.

This thesis is organized as follows. Firstly, self-averaging and non-self-averaging

are defined using the extension of the law of large numbers in Chapter 2. Using the

definition, one can study non-self-averaging properties, by associating them with

the fluctuations of a system. In Chapter 3, we review previous investigations and

applications of Polya’s urn model. These studies have shown that urn models play

an important role in wide fields. In Chapter 4, I apply perturbations to Polya’s urn

model. The response functions, the relaxation functions and the complex admit-

tances are studied by analytical calculations and Monte Carlo simulations. Next, in

Chapter 5, I investigate the response of non-linear Polya’s urn model to an applied

perturbation by analytical calculations and Monte Carlo simulations. According to

the results of this chapter, temporal properties of non-self-averaging can be classified

into the following two types: the average of the response function divided by time

decays to zero in one type, and it does not in the other. Finally, in Chapter 6, I

give discussions and conclusions.





Chapter 2

Self-averaging and

non-self-averaging

In this chapter, I give two definitions of non-self-averaging. For this purpose, I give a

brief proof of the law of large numbers. The law of large numbers is the simplest case

of self-averaging. By proving the law of large numbers, I show a relation between

the variance and non-self-averaging. Finally, I explain stochastic processes having

the property of non-self-averaging.

2.1 The law of large numbers and two definitions

of non-self-averaging

The law of large numbers is a basic theorem in probability theories. This theorem

plays an important role in systems consisting of many elements, and therefore guides

statistical physics.

Consider a sequence of random variables x1, · · · , xN , where each variable follows

independent and identical distributions {p(xi)}. By using this notation, the average

⟨xi⟩ and the variance V (xi) is defined by

⟨xi⟩ =
∫
p(xi)xidxi, (2.1)

and

V (xi) =

∫
p(xi)x

2
i dxi − ⟨xi⟩2, (2.2)

respectively.

When xi is independent and identically distributed, the law of large numbers

is proved using Chebyshev’s theorem: for an arbitrary random variable x, this

11



12 CHAPTER 2. SELF-AVERAGING AND NON-SELF-AVERAGING

statement reads

P [|x− ⟨x⟩| ≥
√
V (x)k] ≤ 1

k2
, (2.3)

where k is an arbitrary positive real number and P [event] means the probability of

occurring the event.

The law of large numbers:

The arithmetic average of N stochastic variables

x ≡ x1 + x2 + · · ·+ xN
N

(2.4)

and its ensemble average ⟨x⟩ obey

P [|x− ⟨x⟩| < ϵ] → 1 (2.5)

in the limit of large N , where ϵ is an arbitrary positive real number.

The law of large numbers is proven as follows. Let us set k = ϵ/
√
V (x). Cheby-

shev’s theorem is transformed as follows:

P [|x− ⟨x⟩| < ϵ] ≥ 1− V (x)

ϵ2
. (2.6)

The variance V (x) is

V (x) = ⟨x2⟩ − ⟨x⟩2 = v

N

where v =
∫
p(xi)x

2
i dxi − ⟨xi⟩2. Note that v is independent of the index i because

xi’s obey identical distributions. In the limit of large N , the right hand side of eq.

(2.6) converges to 1.

The law of large numbers holds when xi’s are independent of each other. How-

ever, even if each xi correlates, eq. (2.5) can be considered as the criterion applicable

to any stochastic processes for the validity of the law of large numbers. With this

in mind, one defines non-self-averaging as follows:

The definition of self-averaging

The x(N) depending on the system size N is defined by the average

x(N) =
x1 + x2 + · · ·+ xN

N
. (2.7)

Given the probability p(x1, x2, · · · , xN), the ensemble average of x(N) is de-

noted as ⟨x(N)⟩. When P (|x(N)− ⟨x(N)⟩| < ϵ) → 1 in the limit of N → ∞,

the sequence {xi} is called self-averaging. Otherwise this sequence is non-self-

averaging.

According to Chebyshev’s theorem, if the variance of x(N) is 0 at N → ∞,

self-averaging holds and vice versa. From eq. (2.3), the probability P [|x− ⟨x⟩| > ϵ]
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tends to zero for any given positive ϵ when V (x) → 0. In other words, we call

x(N) non-self-averaging if the variance of x(N) does not converge to 0 (V (x(N)) =

⟨x(N)2⟩ − ⟨x(N)⟩2 ̸= 0 as N → ∞).

In some previous papers[12], non-self-averaging was defined in a different manner:

P [|x(N)/⟨x(N)⟩ − 1| < ϵ] < 1 (2.8)

in the limit of large N . Note that in above definition x(N) is divided by the average

of x(N) instead of the system size N . This condition is equivalent to non-zero

CV (x) defined by

CV (x) = lim
N→∞

V (x(N))

(⟨x(N)⟩)2
(2.9)

In this thesis, my analysis adopt exclusively the former definition.

2.2 Magnitude of Gross Domestic Product (GDP)

in a simple model

What actual phenomena exhibit non-self-averaging? Aoki studied an economic

growth model to show that the self-averaging is violated in economic phenomena[11].

I review the study of Aoki in the field of economics in this subsection.

2.2.1 Model

I consider a simple model of economic growth. I particularly focus on the GDP. The

number of industries at time t is Kt and the size of each industry i is represented

by ni(t). At the initial time t = 1, let us set K1 = 1 and n1(1) = 1. At each time

step, I assume that
∑Kt

i=1 ni increases by 1. Therefore,
∑Kt

i=1 ni = t. The size of one

of the industries is increased by 1 at each time step. Here, by using two parameters

α, θ (0 ≤ α < 1 and 0 ≤ α + θ)1, the probability of increasing the size of the i-th

industry is given by

pi =
ni(t)− α

t+ θ
. (2.10)

The probability of creating a new industry is

1−
Kt∑
i=1

pi =

∑Kt

i=1 ni(t)−Ktα

t+ θ
=
θ +Ktα

t+ θ
. (2.11)

When the new industry is created, Kt+1 = Kt+1 and the Kt+1-th industry is newly

defined as nKt+1(t+ 1) = 1.
1The condition 0 ≤ α+ θ is required because the probability of eq.(2.11) must not be negative

at any time.



14 CHAPTER 2. SELF-AVERAGING AND NON-SELF-AVERAGING

2.2.2 Analysis of non-self-averaging

By using Kt and ni(t), Aoki defined the GDP as Y (t) =
∑Kt

i=1 γ
ni(t) where γ ≥

1. Now, is Y (t) self-averaging? Aoki defined that Y (t) is self-averaging when

limt→∞CV (Y (t)) = 0.

In the present thesis, the discussion is restricted to the case of γ = 1, where

Y (t) = Kt. (2.12)

Here, I define the following random variables di:

di =

{
1 when a new industry is created

0 otherwise,

where i represents time. Thus,

Y (t)

t
=
Kt

t
= 1 +

∑t
i=1 di
t

. (2.13)

This equation corresponds to eq. (2.7). Therefore, I only need to consider CV (Y (t))

because CV (Y (t)) = CV (Y (t)/t).

The distribution of k = Kt is represented by P (k, t), and I can obtain the master

equation

P (k, t+ 1) =
θ + α(k − 1)

θ + t
P (k − 1, t) +

{
1− θ + αk

θ + t

}
P (k, t) (2.14)

where the first term in the right hand side represents the probability of creating a

new industry at time t, and the second term represents the probability that a new

industry is not created at time t. When t≫ 1, and k ≫ 1, the master equation can

be approximated as

∂P (k, t)

∂t
= − ∂

∂k

{
θ + αk

θ + t
P (k, t)

}
. (2.15)

From eq. (2.15), I have

d⟨Kt⟩
dt

=
θ + α⟨Kt⟩
θ + t

≃ θ + α⟨Kt⟩
t

. (2.16)

The solution is given by

⟨Kt⟩ =
(α + θ)tα − θ

α
. (2.17)

Note that the initial condition is given by K1 = 1.
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Likewise, the differential equation for the average of K2
t is

d⟨K2
t ⟩

dt
= 2

θ⟨Kt⟩+ α⟨K2
t ⟩

θ + t

≃ 2
θ⟨Kt⟩+ α⟨K2

t ⟩
t

. (2.18)

From eqs. (2.16) and (2.18), the variance of Kt must satisfy the following differential

equation

dV (Kt)

dt
=

d⟨K2
t ⟩

dt
− 2⟨Kt⟩

d⟨Kt⟩
dt

= 2
αV (Kt)

t
. (2.19)

Thus, V (Kt) ∝ t2α, and CV (Kt) defined by

CV (Kt) =
V (Kt)

⟨Kt⟩2
(2.20)

is proportional to
αtα

(α + θ)tα − θ
. (2.21)

Therefore, limt→∞CV (Kt) ̸= 0 when 0 < α < 1. If limt→∞CV (Kt) at α = 0 is de-

fined by limα→0 limt→∞CV (Kt), then limt→∞CV (Kt) = 0 at α = 0. Consequently,

Kt is non-self-averaging (self-averaging) for 0 < α < 1 (α = 0).

By using eq. (2.12), one can show that the relative variance CV (Y (t)) dose

not go to 0 unless α = 0. A random variable Nxi in eq. (2.7) corresponds to di.

Finally, from the definition of non-self-averaging of Aoki, one can find that Y (t) is

non-self-averaging when α ̸= 0.

This result can be understood intuitively as follows. The probability of creating

a new industry is

1−
Kt∑
i=1

pi =
θ + αKt−1

θ + t
. (2.22)

When α = 0, this probability is
θ

θ + t
(2.23)

and does not depend on Kt−1. The correlation between ∆Kt = Kt − Kt−1 and

∆Kt−1 = Kt−1 − Kt−2 does not exist. This means that Kt does not depend on

the previous history of the system. Therefore, self-averaging holds. In contrast,

for α ̸= 0, the probability given by eq. (2.22) includes Kt−1. Since Kt depends

on the previous number of industries, the correlation between Kt and Kt−1 exists.

Therefore, for α ̸= 0, self-averaging can be violated.





Chapter 3

Urn models and their applications

As mentioned in the previous chapter, phenomena exhibiting non-self-averaging

emerge in a variety of fields. However, the properties of non-self-averaging in the

time domain are not sufficiently understood. Analysis of these properties in a general

framework is difficult. I limit the subject of my study to stochastic urn models.

Urn models are simple stochastic models and are easy to analyze. Moreover, it

is surprising that urn models can describe phenomena in many fields[14, 15, 16, 17].

In this chapter, I review some applications of urn models.

3.1 The framework of an urn model

Urn models basically consist of colored balls and an urn[18]. The state of the urn

at time t is represented by a set of the number of each colored ball:

n(t) = (n1(t), n2(t), · · · , nK(t)) (3.1)

where K denotes the number of colors, and ni(t) represents the number of the balls

of color i at time t. The initial state of the urn is

n(0) = (n1(0), n2(0), · · · , nK(0)). (3.2)

At time t, the urn’s state is determined by the following recursive processes: (1)

One draws a ball from the urn at time t − 1 and the probability that the color of

the ball is i is the fraction of balls of color i in the urn. (2) Check the color of the

ball, and if this color is i, urn’s state n(t) is given by

n(t) = (n1(t− 1) + ai1, n2(t− 1) + ai2, · · · , nK(t− 1) + aiK) (3.3)

where (aij) is called the matrix of the urn, and its elements are integers.

17



18 CHAPTER 3. URN MODELS AND THEIR APPLICATIONS

When all aij’s are non-negative, this model is called Polya’s urn model. For

Polya’s urn, the number of colors K is assumed to be constant. In some models,

one assumes that K increases stochastically. As such models, Simon’s urn model

and Hoppe’s urn model are well known. These two models obey similar rules. At

the end of this chapter, I explain Simon’s urn.

3.2 Distribution of growth rate of firms: Bottazzi-

Secchi model

Amaral et al. (2001) discovered that the distribution of the growth rate g of a firm

follows the Laplace distribution[19]. Here, the growth rate is defined by

g =
St+1 − St

St

, (3.4)

where St is the size of the firm at time t, and the firm size is measured by the

cost of goods sold or a sales volume. When g is small, the above equation can be

approximated1 by

g ≃ lnSt+1 − lnSt. (3.5)

The Laplace distribution PL(g) is

PL(g) =
1

2σ
exp

(
−|g − µ|

σ

)
, (3.6)

where µ is the average of g, and 2σ2 is the variance of g.

Bottazzi and Secchi proposed a model of Polya’s urn in order to explain the

observation of Amaral et al.[20] First, they assumed that each firm i has a value of

“business opportunities”, which is a positive integer given by a stochastic process.

A firm size is determined by the business opportunities. If the size and business

opportunity of a firm i at time t− 1 are Si
t−1 and ni(t− 1), respectively, the size at

time t, Si
t , is assumed to be calculated by

lnSi
t = lnSi

t−1 +

ni(t−1)∑
j=1

ϵj, (3.7)

where ϵj is a random variable following the normal distribution with the average

being 0, and the variance being v.

Next, ni(t) is assumed to obey Polya’s urn model whose matrix is (aij) = (δij).

A firm i corresponds to color i of Polya’s urn model. An initial state is set to

n(0) = (1, 1, · · · , 1). (3.8)
1When ∆x ≪ 1, the formula ln(1 + ∆x) ≃ ∆x holds for O(∆x)
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By using Polya’s urn processes, business opportunities of firm i are obtained as the

number of balls of color i, ni(t).

Under these assumptions, from eqs. (3.4) and (3.5), the growth rate gi(t) is

determined by

gi(t) =

ni(t)∑
j=1

ϵj. (3.9)

Bottazzi and Secchi showed that the growth rate gi(t) obtained by the method

presented above obeys the Laplace distribution.

To prove this, let us consider the probability PN(n, t) that the business opportu-

nity of a given firm is n at time t when the number of firms is N . The total number

of drawing from the urn is t and the given firm is chosen n− 1 times. At the initial

time t = 0, n(0) = 1 and the number of the other firms is N − 1. First, I consider

the special order of the choices that the given firm is chosen n − 1 times in a row

before the other firms are chosen t− n+ 1 times. This probability is given by

(n− 1)!(N − 1) ·N · · · (N + t− n− 1)

N · (N + 1) · · · (N + t− 1)
. (3.10)

Next, I consider the probability of choosing the firms at an arbitrary order PN(n, t).

The probability of a certain order is equal to eq. (3.10) [21]. Therefore, PN(n, t) is

eq. (3.10) multiplied by combination tCn−1. Hence, I obtain

PN(n, t) =
(n− 1)!(N − 1) ·N · · · (N + t− n− 1)

N · (N + 1) · · · (N + t− 1)
tCn−1 (3.11)

=
Γ(N + t− n− 1)Γ(t)Γ(N − 1)

Γ(N − 2)Γ(N + t− 1)Γ(t− n+ 1)
, (3.12)

where Γ(x) is the gamma function. Let us set λ = t/N . When N ≫ 1, and t ≫ 1,

using the formula Γ(x+ a)/Γ(x) ∼ xa for x≫ 1, eq. (3.12) is approximated as

PN(n, t) ∼
λn−1

(1 + λ)n
. (3.13)

Thus the distribution of the growth rate g is given by

fN(g, t) =
t∑

n=1

PN(n, t)

(
1√
2πv

)n

Πn
i=1

∫ ∞

−∞
dgiδ(

n∑
j=1

gj − g) exp

[
− g2i
2v

]
. (3.14)

The characteristic function of fn(g, t) is defined by

f̂N(h, t) =

∫ ∞

−∞
dg exp [−ihg] fN(g, t). (3.15)
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As t→ ∞, N → ∞ with λ fixed,

f̂(h, λ)
def
= lim

t→∞, λ=const.
f̂N(h, t) (3.16)

≃ 1

1 + λ

∞∑
n=1

(
λ

1 + λ

)n−1

exp

[
−vh

2

2λ

]n

=
exp

[
−vh2

2λ

]
1 + λ− λ exp

[
−vh2

2λ

] . (3.17)

If λ≫ 1 (N ≫ t),

f̂(h, λ) ≃ 1

1 + vh2

2

+O

(
1

λ

)
. (3.18)

The above characteristic function is the same as that of the Laplace distribution

with the average being 0, and the variance being
√
v/2 in the limit λ→ ∞. Q.E.D.

3.3 Bagchi and Pal model

Bagchi and Pal studied the asymptotic behavior of n1(t) in Polya’s urn model when

K = 2 and a11 + a12 = a21 + a22 = b [22]. They demonstrated that the distribution

of the random variable

z(t) =
n1(t)− ⟨n1(t)⟩√
⟨n1(t)2⟩ − ⟨n1(t)⟩2

(3.19)

converges to the normal distribution with the average being 0, and the variance

being 1 in the long time limit.

Their proof is obtained by the calculations of the r-th moment of z(t). Now, it

is clear that two basic relations

P [n1(t+ 1) = n1(t) + a11 | n1(t)] =
n1(t)

n1(0) + n2(0) + bt
(3.20)

P [n1(t+ 1) = n1(t) + a21 | n1(t)] = 1− n1(t)

n1(0) + n2(0) + bt
(3.21)

hold, where P [x|y] represents the probability of x for given y. Note that the total

number of balls at t is n1(0) + n2(0) + bt. Here, they defined y1(t) as

y1(t) = n1(t)− (n1(0) + n2(0) + bt)
a21

a12 + a21
. (3.22)

By using eq. (3.22), z(t) is rewritten as

z(t) =
y1(t)− ⟨y1(t)⟩√
⟨y1(t)2⟩ − ⟨y1(t)⟩2

. (3.23)
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To calculate an arbitrary moment of z(t), the conditional average ⟨x⟩y is defined as

⟨x⟩y =
∫
xP [x|y]dx. (3.24)

From eqs. (3.20) and (3.21),

⟨yr1(t+ 1)⟩y1(t)

=

(
y1(t) + a11 − a21

a11 + a12
a12 + a21

)r (
a21

a12 + a21
+

y1(t)

n1(0) + n2(0) + bt

)
+

(
y1(t) + a21 − a21

a11 + a12
a12 + a21

)r (
a12

a12 + a21
− y1(t)

n1(0) + n2(0) + bt

)
,(3.25)

where r is a natural number. Averaging eq. (3.25) with respect to y1(t), they

obtained

⟨yr1(t+ 1)⟩ −
(
1 + r

a11 − a21
n1(0) + n2(0) + bt

)
⟨yr1(t)⟩

=
r∑

i=1

(
pr,r−i +

qr,r−i

n1(0) + n2(0) + bt

)
⟨yr−i

1 (t)⟩, (3.26)

where

pr,r−i = rCi

(
a11 − a21
a12 + a21

)i
a12a21
a12 + a21

[ai−1
12 + (−1)iai−1

21 ] (3.27)

qr,r−i = rCi+1

(
a11 − a21
a12 + a21

)i+1

[ai+1
12 + (−1)iai+1

21 ]. (3.28)

Solving eq. (3.26), for even r ≥ 2, they found

⟨yr1(t)⟩ = 1 · 3 · · · (r − 1)Er/2(n1(0) + n2(0) + bt)r/2 + o(tr/2) (3.29)

where

E =
a12a21(a11 − a21)

2

(a12 + a21)2(a11 − 2a12 − 2a21)
. (3.30)

On the other hand, when r is odd,

⟨yr1(t)⟩ = o(tr/2). (3.31)

From eqs. (3.29) and (3.31), all the arbitrary moments of z(t) in the long time

limit are calculated as

lim
t→∞

⟨z(t)r⟩ =

{
1 · 3 · · · (r − 1) (for even r)

0 (otherwise).
(3.32)

Note that ⟨z(t)⟩=0. Recall that the r-th moment of the normal distribution with

the average being 0 and the variance being 1 is the same at that given by eq. (3.32).

Because all the arbitrary moments agree with those of the normal distribution, z(t)

converges to the normal distribution in the limit t→ ∞.
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3.4 Simon’s urn model

In contrast to the above models, K of Simon’s urn model increases stochastically.

Simon’s urn is proposed by Simon [23] to explain the origin of Zipf’s law:

Zipf’s law

Let ki denote the frequency of the i-th most frequent events. Then, Zipf’s law

states that

ki ∝
1

i
. (3.33)

If C(ki > k) is defined as the number of the types of events whose frequency is

larger than k, from eq. (3.33), one can obtain

C(ki > k) ∝ 1

k
. (3.34)

Zipf’s law was observed by a linguist Zipf in the 20th century, and holds in a wide

variety of data sets, such as the frequency of words in a book, the size of cities in

U. S. A., the magnitude of earthquakes, and chess openings.

In Simon’s urn, there is only one ball at the initial time. At time t, with prob-

ability α (0 ≤ α ≤ 1) one adds a new color ball in the urn. The new color means

that this color differs from those of other balls contained in the urn up to time t−1.

When the event of adding a new color ball occurs,

K(t+ 1) = K(t) + 1, (3.35)

where K(t) represents the number of colors at time t. The initial condition is given

by K(1) = 1. With probability 1− α, a ball is added under the rule of Polya’s urn

with aij = δij (see Section 3.1). Here, α is a model parameter.

To investigate the distribution of the number of balls of new color that appear

for the first time at time k, one can consider the following master equation:

Pk(n, t+ 1) = (1− α)

{
n− 1

1 + t
Pk(n− 1, t) +

(
1− n

1 + t

)
Pk(n, t)

}
+ αPk(n, t)

(3.36)

where Pk(n, t) is the distribution of n at time t, and n is the number of balls of that

color. As time increases, Pk(n, t)/t converges to a stationary distribution as long as

t > k.

Now I derive Zipf’s law from eq. (3.36). When n ≫ 1, and t ≫ 1, eq. (3.36) is

regarded as a differential equation

∂Pk(n, t)

∂t
= −1− α

t

∂

∂n
{nPk(n, t)} . (3.37)
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To solve the above equation, I assume the following form:

Pk(n, t) = Fk(n)t. (3.38)

Substituting Fk(n)t for Pk(n, t), I obtain

Fk(n) = −(1− α)
d

dn
{nFk(n)} . (3.39)

The equation (3.39) becomes

dF

Fk(n)
=

dn(
−1− 1

1−α

)
n
. (3.40)

Thus, I have

Fk(n) ∝ n−1− 1
1−α (3.41)

in the long time limit. If α ≪ 1, Fk(n) ∝ n−2, and the cumulative distribution

function C(n > k) is given by

C(n > k) =

∫ ∞

k

n−2dn = k−1. (3.42)

This distribution obeys a power-law of the exponent −1, and exhibits Zipf’s law.

3.5 Summary

In the previous investigations of Polya’s urn, researchers have studied mainly asymp-

totic behaviors in the long time limit[22, 24]. According to these papers, Polya’s

urn has the property of non-self-averaging in a certain region of parameters. How-

ever, non-self-averaging phenomena can be observed in the short time range as well

as in the asymptotic behaviors. Non-self-averaging phenomena in such short time

range have not been studied yet. Therefore, in the next chapter I study short-time

behavior of non-self-averaging by dealing mainly with perturbed Polya’s urn pro-

cesses. By investigating the perturbation of the process, I relate the property of

non-self-averaging to the response to the perturbation.





Chapter 4

Balanced Polya’s urn and a

perturbation analysis

In Chapter 3, I introduced the urn models and showed their features. In this chapter,

the number of colors in the model treated is limited to two. Our model is equivalent

to setting K = 2 in eq. (3.1) and (aij) is a 2× 2 matrix.

4.1 Definition of balanced Polya’s urn and its fea-

tures

Polya’s urn with K = 2 is a stochastic model defined by two variables {na(t), nb(t)}
and characterized by non-negative four parameters (α, β, γ, δ). The two variables

na(t) and nb(t) represent the states of Polya’s urn and evolve according to stochastic

processes represented by the following equations:

na(t+ 1) = na(t) + ασt + γ(1− σt)

nb(t+ 1) = nb(t) + βσt + δ(1− σt), (4.1)

where σt is a random variable taking either 0 or 1. Here, the probability of σt = 0

(σt = 1) is proportional to na(t) (nb(t)). The initial state of the urn at t = 1 is set

as na(1) = nb(1) = 1. In the following, the two variables {na, nb} are considered to

represent the numbers of white balls and black balls, respectively.

When the four parameters α, β, γ, δ satisfy

α + β = γ + δ, (4.2)

this model is referred to as balanced Polya’s urn. Furthermore, I choose the following

25
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specific parameters

α = b (4.3)

β = 0 (4.4)

γ = b− a (4.5)

δ = a. (4.6)

In this case, the whole number of balls is

N(t) ≡ na(t) + nb(t) = 2 + b(t− 1). (4.7)

From (4.1), one obtains

nb(t) = 1 + a

t∑
i=1

(1− σt). (4.8)

Therefore, the number of black balls nb(t) is represented by the summation of many

stochastic variables σi. In contrast to the case where the law of large numbers holds,

σi is not independent or identically distributed.

4.2 Monte Carlo simulation

In this section, the distribution of nb at time t is obtained by numerical calculations

[25], whose method is as follows:

Monte Carlo method:

Here I explain this method for an urn with white balls and black balls. Let

the initial numbers of white and black balls be na(1) = nb(1) = 1. Suppose

that at Monte Carlo step t, the numbers of white and black balls are na(t)

and nb(t), respectively. Time development is defined by the following recursive

procedure. If a white ball is drawn (this probability is na(t)/(na(t) + nb(t))),

then

na(t+ 1) = na(t) + b

nb(t+ 1) = nb(t). (4.9)

If a black ball is drawn (this probability is 1−na(t)/(na(t)+nb(t)) = nb(t)/(na(t)+

nb(t))), then

na(t+ 1) = na(t) + b− a

nb(t+ 1) = nb(t) + a. (4.10)

The distribution of the number of black balls nb at time t, P (nb, t), is calculated by

the iterations of the above processes.
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4.2.1 Results of the simulations

To obtain P (nb, t), the number of black balls nb(t) recorded in each simulation is

summed over all samples and divided by the sample number, 106.

Figure 4.1 shows P (nb, t) at t = 10, 20, 30, 40, and 50 when a = b = 1. The

distributions are flat and become broader as time increases. Figure 4.2 shows P (nb, t)

at t = 10, 20, 30, 40, and 50 when a ̸= b. The distributions have a well-defined

maximum with a rapidly decaying tail in contrast to the previous case, and become

broader with increasing time.

4.3 Master equation of Polya’ s urn and its con-

tinuum approximation

In this section, a master equation is considered in order to obtain an analytical

solution of the distribution for Polya’s urn model [25]. To determine P (nb, t), one

can derive the master equation from eq. (4.9) and eq. (4.10):

P (nb, t+ 1) =
nb − a

N(t)
P (nb − a, t) +

N(t)− nb

N(t)
P (nb, t). (4.11)

Since it is difficult to solve this discrete equation, I employ the continuous vari-

able approximation of eq. (4.11). When t≫ 1, and na ≫ a, one can obtain

P (nb, t+ 1) ≃ P (nb, t) +
∂P (nb, t)

∂t
, (4.12)

and

nb − a

N(t)
P (nb − a, t) +

N(t)− nb

N(t)
P (nb, t) ≃ P (nb, t)−

a

bt

∂[nbP (nb, t)]

∂nb

. (4.13)

Thus the master equation in the continuum approximation is

∂P (nb, t)

∂t
= − a

bt

∂[nbP (nb, t)]

∂nb

. (4.14)

A general solution to this partial differential equation (PDE) is obtained by

P (nb, t) = t−a/bf(nb/t
a/b), (4.15)

where f(x) is a non-negative arbitrary differentiable function.

As shown in Figs. 4.3 and 4.4, scaling laws hold. The results obtained by

the simulations show that scaled distributions ta/bP (nb, t) at t = 10, 30 and 50 are

represented by one curve f(nb/t
a/b). This shows that the continuum approximation

is valid.
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Figure 4.1: The distribution function P (nb, t) as a function of nb at t = 10, 20, 30, 40,

and 50 for a = b = 1.
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Figure 4.2: The distribution function P (nb, t) as a function of nb at t = 10, 20, 30, 40,

and 50 for a = 1 and b = 2.
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Figure 4.3: The scaled probabilities ta/bP (nb, t) obtained by the same data as fig. 4.1

at t = 10(+), 30(×), and 50(∗) are plotted against the scaled time nb/t
a/b for a =

b = 1.
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Figure 4.4: The scaled probabilities ta/bP (nb, t) obtained by the same data as fig. 4.2

at t = 10(+), 30(×), and 50(∗) are plotted against the scaled time nb/t
a/b for a = 1

and b = 2.
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4.4 Non-self-averaging

By using the master equation in the previous section, I will investigate non-self-

averaging appearing in the balanced Polya’s urn defined by eq. (4.3). Here, I will

show that non-self-averaging is violated when a = b.

In order to study the property of self-averaging in the system, I must calculate1

limt→∞ V (nb(t))/t
2, where the variance is defined by V (nb(t)) = ⟨n2

b(t)⟩ − ⟨nb(t)⟩2.
The variance of Polya’s urn is calculated for eq. (4.15) to investigate whether self-

averaging holds or not. Using eq. (4.15), the variance of nb(t) is given by

⟨n2
b(t)⟩ − ⟨nb(t)⟩2 = t2a/b

∫ ∞

0

x2f(x)dx− t2a/b
{∫ ∞

0

xf(x)dx

}2

(4.16)

≡ t2a/bA (4.17)

where A is a constant independent of t. Eq. (4.7) shows that the total number of

balls in Polya’s urn is 2+ b(t− 1). Thus, the system size of the urn is bt in the limit

of t → ∞. The property of self-averaging can be analyzed by the variance divided

by t2,

V (nb(t))/t
2 = t2a/b−2A. (4.18)

Consequently, when a = b, self-averaging is broken. This result agrees with the

variance obtained from the exact solution of eq. (4.11) [26].

4.5 Perturbation analysis

To study the property of self-averaging of Polya’s urn, I perform a perturbation

analysis for this model [25]. Although the number of balls and the parameters in

original Polya’s urn are integers, it is natural that they may be extended to real

numbers. I introduce a perturbed Polya’s urn process by

na(t+ 1) = na(t) + bσt + (b− a+ δa(t))(1− σt)

nb(t+ 1) = nb(t) + (a+ δa(t))(1− σt), (4.19)

where δa(t) ≥ 0, and σt is a random variable defined as follows: Let σn.p.
t denote the

random variable at t for a non-perturbed process. The perturbed σt is 1 if σn.p
t = 1.

If σn.p
t = 0, σt = 1 with the probability of

nb(t−1)−nn.p.
b (t−1)

bt
. Otherwise, σt = 0. In

Monte Carlo simulations, the sequence of random numbers determining σi is the

same as that of the non-perturbed process.

1If limt→∞ V (nb(t))/t
2 = 0, the condition of eq. (2.5) is satisfied automatically. This statement

is easily proved by using Chebyshev’s theorem.
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As with non-perturbed Polya’s urn, a continuum approximation is applied to the

above equation. The master equation of perturbed Polya’s urn is given by

∂P (nb, t)

∂t
= −a+ δa(t)

bt

∂

∂nb

(nbP (nb, t)) . (4.20)

A general solution of this equation is

P (nb, t) =
g
(
nb/{t

a
b exp

(∫ t

1
δa(τ)
bτ

dτ
)
}
)

t
a
b exp

(∫ t

1
δa(τ)
bτ

dτ
) (4.21)

=
g(nb/t

a
b )

t
a
b

− nbg
′(nb/t

a
b )

bt
2a
b

∫
δa(τ)

τ
dτ − g(nb/t

a
b )

bt
a
b

∫
δa(τ)

τ
dτ (4.22)

where I neglected terms which are higher than δa, and g′(x0) represents dg/dx|x=x0 .

Here, if δa = 0, eq. (4.22) must be equal to eq. (4.15). Therefore, I obtain g(x) =

f(x). Hence, the general solution is rewritten as

P (nb, t) =
f(nb/t

a
b )

t
a
b

− nbf
′(nb/t

a
b )

bt
2a
b

∫
δa(τ)

τ
dτ − f(nb/t

a
b )

bt
a
b

∫
δa(τ)

τ
dτ. (4.23)

Consider a time-discrete Polya’s process that has the above asymptotic solution.

One can define its response function, relaxation function and complex admittance,

and investigate how the perturbation effect appears.

4.5.1 Response function

For perturbation:

δa(t) =

{
δa > 0 (t = τ),

0 (otherwise),
(4.24)

the response function ϕ(t, t−τ) is defined by the difference δnb(t) between nb(t) and

nn.p.
b (t)

δnb(t) =
t∑

τ=1

ϕ(t, t− τ)δa(τ) (4.25)

where nn.p.
b (t) is a non-perturbed process. The response function depends on two

variables t and τ because there is no time translational symmetry in Polya’s urn

model. Using the continuum approximation, the ensemble average of ϕ(t, t − τ) is

easily obtained as

⟨ϕ(t, t− τ)⟩ = B
t
a
b

bτ
(4.26)

where

B =

∫ ∞

0

xf(x)dx. (4.27)
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Derivation

By the definition of the response function, one obtains

⟨ϕ(t, t− τ)⟩ = ⟨nb(t)⟩ − ⟨nn.p.
b (t)⟩

δa
(4.28)

for δa(t) = δaδ(t− τ). From eq. (4.23), ⟨nb(t)⟩ is given by

⟨nb(t)⟩ = ⟨nn.p.
b (t)⟩ − t

a
b

∫
df

dx

x2

b
dx

∫
δaδ(t′ − τ)

t′
dt′

−t
a
b

∫
f(x)

x

b
dx

∫
δaδ(t′ − τ)

t′
dt′

= ⟨nn.p.
b (t)⟩+ t

a
b

∫
xf(x)dx

δa

bτ
. (4.29)

Thus, eq. (4.26) holds.

Time dependence of the average of response function is given by ta/b. Since I

define non-self-averaging by the variance divided by the size, the reduced response

function is defined by ϕ(t, t − τ)/t. Now, the system size is given by ∼ O(t). The

average of the reduced response function ⟨ϕ(t, t − τ)⟩/t decreases with increasing

time when a < b. For a = b, the average of the reduced function does not decay to

0.

Figures 4.5 and 4.6 show a few samples of reduced response functions ϕ(t, t−10)/t

and the averages of all samples for a = b = 1 and a = 1, b = 2. The number of

samples is 105. The reduced response function of each sample has discontinuous

increasing points. For a = 1 and b = 2, the average of ϕ(t, t − 10)/t decays to

0 as t → ∞. In contrast, in a = b, the average of ϕ(t, t − 10)/t does not decay

to 0. Discontinuous increases play an important role in the absence of decay in

the average of the reduced response function. For some samples, ϕ(t, t − 10)/t

sometimes increases discontinuously. If such increases do not occur, the average

of the reduced response function will eventually vanish. However, the frequency

of discontinuous increases is larger than the decay rate of the reduced response

function, and ⟨ϕ(t, t− τ)⟩/t does not decay to 0.

4.5.2 Relaxation function

Here, I consider the process with the following step-function type perturbation:

δa(t) =

{
δa (1 < t < τ)

0 (τ < t).
(4.30)
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Figure 4.5: The response function ϕ(t, τ) divided by time t (the reduced response

function) for a = b = 1 at τ = 10. The solid curve is the average over 105 samples.

Various symbols represent the time series for five typical samples.
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For this perturbation, the relaxation function is defined by

δnb(t) = ψ(t, t− τ)δa. (4.31)

From eq. (4.22), the average of the relaxation function is

⟨ψ(t, t− τ)⟩ =

{
B
b
t
a
b ln t (t < τ)

B
b
t
a
b ln τ (t > τ).

(4.32)

Derivation

Here, I only consider the casea t < τ . By the definition of the function,

⟨ψ(t, t− τ)⟩ = ⟨nb(t)⟩ − ⟨nn.p.
b (t)⟩

δa
(4.33)

for the perturbation defined as eq. (4.30). From eq. (4.23), ⟨nb(t)⟩ is given by

⟨nb(t)⟩ = ⟨nn.p.
b (t)⟩ − t

a
b

∫
df

dx

x2

b
dx

∫ t

1

δa

t′
dt′

−t
a
b

∫
f(x)

x

b
dx

∫ t

1

δa

t′
dt′

= ⟨nn.p.
b (t)⟩+ t

a
b

∫
xf(x)dx

δa

b
ln t. (4.34)

Thus, eq. (4.32) is obtained.

aThis derivation holds also for t > τ .

For later convenience, a reduced relaxation function is defined by ψ(t, t− τ)/t.

Figures 4.7 and 4.8 show reduced relaxation functions ψ(t, t− τ)/t for a = b = 1

and a = 1, b = 2. The relaxation function is similar to the reduced response function

in that they do not decay to zero for a = b = 1 and decay to zero for a = 1, b = 2.

Figure 4.8 shows a discontinuous increase even for a = 1 and b = 2. The

probability of the discontinuous increase is larger in the relaxation function than

that in the response function within t ≤ 10. This is because the perturbation in the

relaxation function is given by the step function.

4.5.3 Complex admittance

The complex admittance χ(t, ω) is defined by

δnb(t) = χ(t, ω)δa exp(−iωt) (4.35)

where the perturbation δa(t) is

δa(t) = δa exp(−iωt). (4.36)



38CHAPTER 4. BALANCED POLYA’S URN ANDA PERTURBATION ANALYSIS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100

a=b=1

ψ
(t

,t
-τ

)/
t

t

Figure 4.7: The relaxation function ψ(t, t−τ) divided by time t for a = b = 1 where

τ = 10. The solid curve is the average over 105 samples. Various symbols represent

the time series for five typical samples.
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With the continuum approximation, an analytic form of the average of the complex

admittance is obtained:

⟨χ(t, ω)⟩ = t
a
bB

b

∫ t

1

exp(iω(t− τ))

τ
dτ. (4.37)

Derivation

By the definition of the function,

⟨χ(t, t− τ)⟩ = [⟨nb(t)⟩ − ⟨nn.p.
b (t)⟩] exp(iωt)
δa

(4.38)

for the perturbation defined as δa exp(−iωt). From eq. (4.23), ⟨nb(t)⟩ is given
by

⟨nb(t)⟩ = ⟨nn.p.
b (t)⟩ − t

a
b

∫
df

dx

x2

b
dx

∫
δa exp(−iωτ)

τ
dτ

−t
a
b

∫
f(x)

x

b
dx

∫
δa exp(−iωτ)

τ
dτ

= ⟨nn.p.
b (t)⟩+ t

a
b

∫
xf(x)dx

∫
δa exp(−iωτ)

τ
dτ (4.39)

Thus, eq. (4.32) is obtained.

In the calculation of χ(t, ω), instead of calculating the Fourier transformation of

δnb(t), I use the following identity

χ(t, ω) = χR(t, ω) + χI(t, ω)

=
δncos

b

δa
cos(ωt) +

δnsin
b

δa
sin(ωt)

+ i

{
δnsin

b

δa
cos(ωt)− δncos

b

δa
sin(ωt)

}
(4.40)

where δncos
b (δnsin

b ) is calculated by applying perturbation δa cos(ωt) (δa sin(ωt)).

The reduced complex admittance is defined by χ(t, ω)/t.

In figs. 4.9, and 4.10 the absolute values of the average of the reduced complex

admittance ⟨χ(t, ω)⟩/t are plotted against ω at t = 10, 50, and 100. The absolute

values of χ(t, ω)/t have the peak at about 6.4. When a = b = 1, the amplitude

of the reduced admittance does not change with time. However, when a = 1 and

b = 2, the amplitude seems to decay to 0 as seen in fig. 4.11.

4.6 Conclusions

In the former of this chapter, the behavior of nb(t) was studied by using the contin-

uum approximation and Monte Carlo simulations. The calculation results show that
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Figure 4.9: The absolute value of ⟨χ(t, ω)⟩ divided by time t at t = 10 (solid line),

50 (dashed line), and 100 (dotted line) for a = b = 1.
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the variance of nb(t)/t ∝ t2a/b−2 does not decay to 0 only if a = b. Consequently, by

the discussion below the definition of self-averaging (section 2.1), one can find that

nb(t) is non-self-averaging when a = b.

In the latter of this chapter, new perturbed Polya’s urn processes were pro-

posed to investigate the effects of non-self-averaging on the time evolution of nb(t).

These properties were analyzed by considering the response function, the relaxation

function and the complex admittance. These analyses demonstrated the relation

between non-self-averaging properties in the Polya’s urn and the response function

or the relaxation function. If self-averaging is violated, then the averages of the re-

duced response function, the relaxation function, and the absolute values of complex

admittance do not decay to 0. When self-averaging holds, these functions converge

to 0. Some samples of the response functions and the relaxation functions increase

discontinuously. The averages of these functions do not decay to 0 because of the

discontinuous increases when these self-averaging is violated.



Chapter 5

Non-linear Polya’s urn model

5.1 Introduction

In the previous chapter, I showed the relation between non-self-averaging and the

linear response for balanced Polya’s urn processes. Balanced Polya’ s urn is featured

by the matrix of the urn

α = b (5.1)

β = 0 (5.2)

γ = b− a (5.3)

δ = a, (5.4)

where these parameters represent increments in the number of balls. The numbers of

white balls and black balls at time t are denoted by na(t) and nb(t), respectively, and

na(t+ 1) and nb(t+ 1) are given by eq. (4.1). It became clear that self-averaging is

violated when a = b. Non-self-averaging was related to the linear response functions,

such as the average of reduced response function, the reduced relaxation function

and the reduced complex admittance. Namely, if self-averaging is violated, the

average of the reduced functions do not decay to 0.

Does this relation hold universally? To answer this question, I consider more

general Polya’s urn models. One can generalize the rule of drawing balls by intro-

ducing a non-linear function Q(x) for the probability of drawing the black ball. For

Polya’s urn in the previous chapter, the probability of drawing black balls is simply

the fraction of the black balls xb. For non-linear Polya’s urn, the above probabil-

ity is replaced by a non-linear probability Q(xb) which satisfies 0 ≤ Q(x) ≤ 1 in

0 ≤ x ≤ 1.

Originally, Arthur et al. [27] proposed this model to study the market in which

two competitive products A and B exist. In this case, each person chooses only

45
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one product out of the two. For example, let us imagine the share of smart phones.

People buy mostly iPhone or Android, but usually do not get both of them. For

simplicity, Arthur et al. assumed that consumers do not have any information

on products A and B. However, at time t, the consumers know the numbers of

the products A (B) that have been sold up to time t, which will be described

by na(t) (nb(t)). Arthur et al. assumed that they choose the product B with the

probability Q(xb), where xb
def
= nb(t)/(na(t)+nb(t)); Q(xb) is the weighting function.

This assumption is natural, and one can imagine popular movies or songs. One of

the reasons for their popularity is that they are favored by many people. These

processes of decision-making were described by non-linear Polya’s urn using the

correspondence of na(t) and nb(t) with the number of while and black balls.

In this chapter, non-linear Polya’s urn model is investigated by the continuum

approximation and a perturbation analysis. I show the asymptotic behaviors in

the long time limit. The condition of self-averaging for non-linear Polya’s urn is

different from that for linear Polya’s urn. I study how this difference affects the

relation between non-self-averaging and linear response.

First, I formulate the master equation in the model using the continuum ap-

proximation. Second, I show that self-averaging is violated when the number of

the stable fixed points of the urn is larger than 1. Here, fixed points of the urn

correspond to the positions of peaks of the distribution P (xb, t) in the long time

limit. Third, I apply a delta-function-like perturbation to non-linear Polya’s urn

and study the response function. Finally, I summarize this chapter as follows: (1)

the equilibrium distribution of xb has several peaks. (2) Non-self-averaging is not

always related to the behavior of the reduced response function ϕ(t, t− τ)/t.

5.2 Definition of non-linear Polya’s urn and the

master equation

Non-linear Polya’s urn model is defined as follows: In Section 4.1, I have introduced

a random variable σt. The probability distribution of random variable now reads

Prob(σt = 0) = 1−Q(xb),

and

Prob(σt = 1) = Q(xb),
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where Prob(event) means the probability that the event occurs, and xb = nb/N(t) ≃
nb/bt. Therefore, the master equation is given by

P (nb, t+ 1) = Q

(
nb − a

N(t)

)
P (nb − a, t) +

(
1−Q

(
nb

N(t)

))
P (nb, t), (5.5)

where P (nb, t) represents the distribution of nb at t. The initial condition is given by

P (nb, 1) = δ1,nb
A boundary condition for this equation is P (0, t) = 0 when t > 1.

From eq. (5.5), I can find P (nb, t) = 0 for nb > 1 + b(t− 1).

When nb ≫ a, and t≫ 1, the discrete master equation can be approximated as

∂P (nb, t)

∂t
= −a ∂

∂nb

[
Q
(nb

bt

)
P (nb, t)

]
. (5.6)

5.3 Non-self-averaging

To study the property of self-averaging, I calculate the variance of nb/t in the long

time limit. Since xb = nb/bt, I consider the distribution of xb at t denoted by

G(xb, t) instead of P (nb, t). The behavior of the distribution in the long time limit

was studied by Arthur et al [27]. Here, I show the behavior using a different method.

First, I show that the distribution function G(xb, t) obeys

∂G(xb, t)

∂t
= − 1

bt

∂

∂xb
[aQ(xb)G(xb, t)− bxbG(xb, t)], (5.7)

where I restrict the range of xb to 0 ≤ xb ≤ 1, and require the boundary conditions

that the flux of the distribution, (aQ(xb) − bxb)G(xb, t), vanishes at xb = 1 and

xb = 0 because the probability distribution G(xb, t) is conserved.

Proof of eq. (5.7):

The relation between G(xb, t) and P (nb, t) is

G(xb, t) = P (nb, t)
dnb

dxb
= btP (btxb, t). (5.8)

Substitution of P (nb, t) = G(nb/t, t)/bt into eq. (5.6) leads to

∂

∂t

G(nb/bt, t)

bt
= − a

b2t2
∂

∂xb
Q(xb)G(nb/bt, t). (5.9)

The derivative on the left-hand side reads

− 1

bt2
G(xb, t)−

xb
t

∂G(xb, t)

∂xb
+

1

bt

∂G(xb, t)

∂t
. (5.10)

Therefore, eq. (5.7) is obtained. Q. E. D
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The fixed points of the urn are defined as the solutions of

aQ(xb)− bxb = 0, (5.11)

which will be denoted by {xi|i = 1, · · · , l} with l being the number of the fixed

points. Eq. (5.7) can be rewritten as

∂G(xb, t)

∂t
= − 1

bt

∂

∂xb
[f(xb)G(xb, t)], (5.12)

where f(xb)
def
= aQ(xb) − bxb. Now, I derive the asymptotic distribution Ge(xb)

def
=

lim
t→∞

G(xb, t) from the master equation (5.12). One can define the following Lyapunov

functional V [G]:

V [G] =

∫ 1

0

dxbG(xb, t)

∫ xb

0

dx′f(x′). (5.13)

Since ∫ xb

0

dx′f(x′) =

∫ xb

0

dxb{aQ(xb)− bxb}

≤ axb −
bx2b
2

≤ a2

2b
(5.14)

because Q(xb) ≤ 1, I have

V [G] ≤
∫ 1

0

dxbG(xb, t)
a2

2b
. (5.15)

Obviously,
∫ 1

0
dxbG(xb, t) is equal to 1 because of the normalization. Therefore,

V [G] has an upper bound a2/2b2. The time variation of V [G] is given by

dV [G]

dt
=

∫ 1

0

dxb
∂G(xb, t)

∂t

∫ xb

0

dx′f(x′)

= − 1

bt

∫ 1

0

dxb
∂f(xb)G(xb, t)

∂xb

∫ xb

0

dx′f(x′)

= −
[
1

bt
f(xb)G(xb, t)

∫ xb

0

dx′f(x′)

]1
0

+
1

bt

∫ 1

0

dxb{f(xb)}2G(xb, t)

=
1

bt

∫ 1

0

dxb{f(xb)}2G(xb, t). (5.16)

The right-hand side of eq. (5.16) is non-negative. Thus, for any initial function

G(xb, 0), the Lyapunov functional V [G] increases monotonically with time. Since
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V [G] has an upper bound, the existence of Ge(xb) is guaranteed
1, and

dV [G]

dt

∣∣∣∣
G(xb,t)=Ge(xb)

= 0. (5.17)

Hence, one can obtain

{f(xb)}2Ge(xb) = 0. (5.18)

Therefore, if f(xb) ̸= 0, Ge(xb) = 0.

Although eq. (5.18) leads to Ge(xb) except at xi’s satisfying f(xi) = 0, the value

of Ge(xb) cannot be determined at xi’s, because the value of Ge(xi) depends on the

stability of xi. To obtain the value of Ge(xi), I expand G(xb, t) and f(xb) in eq. (5.7)

at xi. For the first order of xb = xi + δx, I obtain the equation

dG(xi, t)

dt
+
dG′(xi, t)

dt
δx = − 1

bt

(
∂

∂δx
[f ′δx(G(xi, t) +G′(xi, t)δx)]

)
, (5.19)

where G′(xi, t) = ∂G(xb, t)/∂xb|xb=xi
, and f ′(xi)

def
= df(xb)/dxb|xb=xi

. To obtain

eq. (5.19), I used f(xi) = 0. The zeroth order contribution of the above equation

reads
dG(xi, t)

dt
= −f

′(xi)

bt
G(xi, t). (5.20)

By integrating eq. (5.20), one can get

G(xi, t) = γ(xi)t
−f ′(xi)/b, (5.21)

where γ(xi) is a constant of integration. From eq. (5.21), one finds that

Ge(xi) → ∞. (5.22)

if xi is a stable fixed point, i.e., xi ∈ {xi|f(xi) = 0 and f ′(xi) < 0}.
Consequently, if the stable fixed points are isolated, I have

Ge(xb) =
∑
i

ρiδ(xb − xsti ), (5.23)

where ρi is a coefficient satisfying the condition
∑

i ρi = 1, and xsti is the stable fixed

point.

When the number of stable fixed points is larger than one, the variance of nb/t(=

bxb/t) does not decay to 0 in the long time limit:

V (nb/t) = b2V (xb)

= b2


k∑

i=1

ρi(x
st
i )

2 −

(
k∑

i=1

ρix
st
i

)2
 ,

(5.24)

1Even if G ̸= Ge, dV/dt → 0 in the long time limit because of the factor 1/bt in the right hand

side of eq. (5.16). However, at finite time, dV/dt is always larger than 0. Thus, the distribution G

approaches Ge at every time.
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where k represents the number of the stable fixed points. If k = 1, V (nb/t)=0

because ρ1 = 1. Equation (5.24) is not zero in the long time limit when k ≥ 2

and the number of non-zero ρi’s is larger than 1. Note that non-self-averaging is

determined by the number of stable fixed points for any values of a and b.

In the case of linear Polya’s urn, Q(xb) = xb. When a = b, this process is

non-self-averaging. In the case of a ̸= b, self-averaging holds. If Q(xb) = xb,

f(xb) = (a− b)xb. (5.25)

Therefore, when a ̸= b, fixed point is only xst = 0, that is, the number of stable

fixed points is one. However, for a = b, the number of stable fixed points is infinite

because an arbitrary xb ∈ [0, 1] satisfies f(xb) = 0.

Consequently, one can interpret the relationship between non-self-averaging and

the number of stable fixed points from a unified theoretical viewpoint. (1) When the

number of stable fixed point is 1, self-averaging holds. (2) If the number of stable

fixed points is higher than 1, self-averaging is violated. (3) In the case that a = b

and Q(xb) = xb, the number of stable fixed points is infinite, and self-averaging does

not hold.

5.4 Numerical example

In this section, I calculate numerically the distributions for two specific forms of

Q(x). Here, numerical calculations support the long-time behavior of the distribu-

tion G(xb, t) discussed in the previous section.

5.4.1 Example 1

In the first example, I choose

Q(x) =

{
2β−1(x− 1

2
)β + 1

2
(x ≥ 1/2)

−2β−1(1
2
− x)β + 1

2
(x < 1/2),

(5.26)

where β is a non-negative parameter. The master equation in the continuum ap-

proximation is

∂G(xb, t)

∂t
=

{
∂

∂xb

{(
a
[
2β−1(x− 1

2
)β + 1

2

]
− bxb

)
G(xb, t)

}
(x ≥ 1/2)

∂
∂xb

{(
a
[
−2β−1(1

2
− x)β + 1

2

]
− bxb

)
G(xb, t)

}
(x < 1/2).

(5.27)

Figure 5.1 shows the functional form of Q(x) for β = 0.5 and β = 2. If β > 1, and

a = b = 1, a stable fixed point is at x = 1/2. When β < 1, and a = b = 1, stable

fixed points are at x = 0 and 1. Figures 5.2 and 5.3 show the distributions G(xb, t)
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Figure 5.1: The x dependence of the probability of drawing the black ball Q(x)

given by eq. (5.26) for β = 0.5 and 2.
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at t = 100, 1000, and 10000. As time t increases, the distributions are localized

around stable fixed points.

5.4.2 Example 2

Let us choose

Q(x) =
1

2
tanh

{
β(x− 1

2
)

}
+

1

2
, (5.28)

where β ≥ 0. The master equation in the continuum approximation is

∂G(xb, t)

∂t
=

∂

∂xb

{(
a

[
1

2
tanh{β(x− 1

2
)}+ 1

2

]
− bxb

)
G(xb, t)

}
. (5.29)

Figure 5.4 shows the functional form of Q(x) for β = 0.1 and β = 5.

The form of Ge(xb) depends on the value of β. When β > 2a/b, the number of

the stable fixed points is two. Therefore, the stationary distribution is

Ge(xb) = ρδ(xb − xstl ) + (1− ρ)δ(xb − xsth ), (5.30)

where ρ is a coefficient determined by the initial condition of G(xb, t), and x
st
l and

xsth are stable fixed points. In the case of β < 2a/b, the number of the stable fixed

point is one. The stationary distribution is

Ge(xb) = δ(xb − xsto ), (5.31)

where xsto is a stable fixed point. If β = 2a/b, stable fixed points do not exist.

Figure 5.5 shows the behavior of G(xb, t) at time t = 50000 for various β. When

β = 0.1, and β = 5.0, fig. 5.5 agrees with the distributions given by eqs. (5.30) and

(5.31). When β = 2, the distribution G(xb, t) in fig. 5.5 is broad around a neutral

fixed point 1/2.

5.5 Perturbation analysis

If a perturbation is denoted by δa(t), the master equation (5.6) becomes

∂P (nb, t)

∂t
= −(a+ δa(t))

∂

∂nb

Q(
nb

bt
)P (nb, t). (5.32)

Generally, one cannot solve this equation analytically. However, it is possible to

discuss quantitatively the response function in the long time limit.

If the number of stable fixed points is finite, ϕ(t, t− τ)/t converges to 0 as time

increases. For simplicity, I consider a perturbation of delta-function type δaδ(t−τ).
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Figure 5.2: Distribution functions of black ball fraction G(xb, t) at t = 100, 1000,

and 10000 for β = 0.5 and a = b = 1 in eq. (5.27).
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Figure 5.3: Distribution functions of the black ball fraction G(xb, t) at t = 100, 1000,

and 10000 for β = 2 and a = b = 1 in eq. (5.27) when the probability of drawing

the black ball Q(x) is given by eq. (5.26).
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given by eq. (5.28) for β = 0.1 and 5.
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Figure 5.5: Distribution functions of the black ball fraction G(xb, t) at t = 5000 for

β = 0.1, 2 and 5 and a = b = 1 in eq. (5.29). Here, the probability of drawing the

black ball Q(x) is given by eq. (5.28).
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The fraction xb(t) calculated for the perturbed processes differs from xn.p.b (t) at time

t ≥ τ where xn.p.b (t) represents the fraction of black balls in the non-perturbed

processes. However, for t > τ , xb(t) is governed by the same dynamics of non-

perturbation processes. Thus, xb(t) is attracted to a certain stable fixed point xsti .

In the same way, xn.p.b (t) converges to xsti in the long time limit. For this reason,

xb(t)− xn.p.b (t) = (nb(t)− nn.p.
b (t))/bt decays to zero as t→ ∞.

The above discussion should hold generally. To confirm this result, I show the

reduced response functions for two specific examples using analytical and numerical

methods.

5.5.1 Example 3

The third example is represented by

Q(x) =


0 (x > 1/2)

1/2 (x = 1/2)

1 (x < 1/2),

(5.33)

na(1) = nb(1) = 1, and a = b. Stable fixed points of the urn are 0 and 1. Since the

number of the stable fixed points is two, this process is non-self-averaging.

The average numbers of black balls for non-perturbed and perturbed processes

are

⟨nn.p.
b (t)⟩ = 1 +

a(t− 1)

2
, (5.34)

and

⟨nb(t)⟩ = 1 +
a(t− 1) + δaΘ(t− τ)

2
, (5.35)

respectively, where

Θ(t) =

{
0 (t < 0)

1 (t ≥ 0).
(5.36)

These results are exact because the stochastic effect is only at initial time t = 1.

At the initial time, if one draws a black ball, only black balls are drawn after that

because Q(xb) = 1, and vice versa. The average of the response function is

⟨ϕ(t, t− τ)⟩ = ⟨nb(t)⟩ − ⟨nn.p.
b (t)⟩

δa
. (5.37)

Consequently, one can obtain

⟨ϕ(t, t− τ)⟩
t

=
Θ(t− τ)

2t
. (5.38)

In the long time limit, the average of the reduced response function decays to zero

even if the process is non-self-averaging. Figure 5.6 shows the reduced response
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functions in this case. The average is calculated by Monte Carlo simulations. This

result supports eq. (5.38). This result differs from the result of the previous chapter.

In the previous chapter, when self-averaging is violated, the average of the reduced

response function does not decay to 0.

5.5.2 Example 4

Here, I consider the case

Q(x) = xm (5.39)

wherem is a natural number larger than 1. I set na(1) = nb(1) = 1, and a = b. Since

a stable fixed point is 0, this process is self-averaging. Using the master equation

(5.6), the averages of non-perturbed nn.p.
b (t) and perturbed nb(t) are described by

d⟨nn.p.
b (t)⟩
dt

= a
⟨(nn.p.

b (t))m⟩
amtm

≃ a
⟨nn.p.

b (t)⟩m

amtm
, (5.40)

and

d⟨nb(t)⟩
dt

= (a+ δaδ(t− τ))
⟨(nb(t))

m⟩
amtm

≃ (a+ δaδ(t− τ))
⟨nb(t)⟩m

amtm
, (5.41)

respectively. The approximation ⟨nb(t)
m⟩ ≃ ⟨nb(t)⟩m is valid for large t because of

self-averaging.

Equations. (5.40) and (5.41) can be integrated by using separation of variables;

thus

⟨nn.p.
b (t)⟩ = η(t)1/(m−1), (5.42)

and

⟨nb(t)⟩ = η(t)1/(m−1)

{
1 +

δaΘ(t− τ)

(m− 1)η(t)amτm

}
, (5.43)

where

η(t) =
tm−1

am−1
+ C (5.44)

and C is a constant of integration. Using eq.(5.37) one can obtain

⟨ϕ(t, t− τ)⟩
t

=
η(t)−m/(m−1)Θ(t− τ)

t(m− 1)

1

amτm
∼ Θ(t− τ)

tm−1
. (5.45)

I carried out Monte Carlo simulations for m = 3. Figure 5.7 shows that the

average of the reduced response function goes to zero at t → ∞. This behavior of

the reduced response function agrees with eq. (5.45).
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Figure 5.6: The reduced response functions ϕ(t, τ)/t at τ = 10, and a = b = 1 when

the probability of drawing the black balls Q(x) is given by eq. (5.33) . The dashed

curves are the average over 105 samples. Symbols represent the time series for a

typical sample.
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5.5.3 Classification of non-self-averaging

As shown by the last two examples, non-self-averaging does not correlate to behav-

iors of the reduced response function except for the case of the infinite number of

{xsti }. If there is only one fixed point, this process is self-averaging. Applying per-

turbation to this process, I showed that the reduced response function ϕ(t, t− τ)/t

decays to zero in the long time limit (see Section 5.5.2). In the case, self-averaging

processes correspond to the reduced response function decaying to 0 in the long time

limit. However, when the number of stable fixed points is larger than 1, such corre-

spondence does not exist. In this case, the reduced response function also converges

to zero (see Section 5.5.1) although self-averaging is violated. Thus, the decay of

ϕ(t, t− τ)/t does not correlate to non-self-averaging.

In contrast, if the number of stable fixed points is infinite and the points con-

stitute a dense set, this process is non-self-averaging. A typical example is linear

Polya’s urn process given by Q(x) = x when a = b. In this case, the reduced

response function does not go to 0 as time t increases.

From the above discussion, I find that there are two types of non-self-averaging

stochastic processes. If the number of stable fixed points is infinite, this pro-

cess is called strong non-self-averaging. In contrast, if the number of stable fixed

points is finite, this process is called weak non-self-averaging. The behavior of

ϕ(t, t − τ)/t in the long time limit depend on whether the non-self-averaging is

strong or weak. Therefore, I propose the following two classes. In the weak non-

self-averaging processes, limt→∞ ϕ(t, t − τ)/t = 0. In the strong non-self-averaging

process, limt→∞ ϕ(t, t− τ)/t ̸= 0.

I conjecture that this difference reflects the functional forms of the distribution

in the long time limit. For linear Polya’s urn cases, the form of the distribution of nb

is flat-shaped (see fig. 4.1) when the process is strong non-self-averaging. However,

for non-linear cases, the distribution of nb has keen peaks (see fig. 5.3) since the

process is weak non-self-averaging. If one observes only samples around a certain

peak, it seems that the behavior of nb(t) is self-averaging. Therefore, the processes

with an infinite number of stable fixed points give limt→∞ ϕ(t, t−τ)/t ̸= 0, and have

stronger non-self-averaging than other processes.

5.6 Conclusions

In this chapter, I introduced non-linear Polya’s urn and analyzed the master equa-

tion. By the continuous master equation (5.6), I found that the equilibrium dis-

tribution Ge(xb) has some attractors xsti which satisfy f(xi)
def
= aQ(xi) − bxi = 0
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and f ′(xi) < 0. Using these attractors, I obtained the exact distribution Ge(xb) =∑
i ρiδ(xb − xsti ) in the long time limit. Moreover, I confirmed numerically the form

of the distributions for specific examples. The results allow us to understand the

condition of non-self-averaging unifiedly by the functional form of Q(xb) irrespec-

tive of whether the urn model is linear or non-linear. The non-self-averaging is also

understood by the number of stable fixed points calculated by Q(xb). When the

number of stable fixed points is infinite, the long-time behavior of xb(t) differs from

that in the case of a finite number of stable fixed points. Thus, I define strong

non-self-averaging by processes with an infinite number of stable fixed points, and

weak non-self-averaging by processes with a finite number of stable fixed points.

The behavior of the reduced response function in the long time limit depends

on whether non-self-averaging is strong or weak. The perturbation analysis shows

that the reduced response function converges to 0 for weak non-self-averaging. Par-

ticularly, for specific forms of Q(xb), I derived the analytical form of the reduced

response function and calculated these functions numerically. For linear Polya’s urn,

if self-averaging is strongly violated, the reduced response function does not decay

to 0. In contrast, for non-linear Polya’s urn, in the case of weak non-self-averaging,

the reduced response function goes to 0.

However, if Q(xb) has a part equal to bxb/a, the number of stable fixed points

is infinite. Thus, the reduced response function does not decay to zero. In such

cases, the process is non-self-averaging, because the number of stable fixed points is

infinite. For this reason, I propose the following classification of non-self-averaging

processes: (1) the processes where limt→∞ ϕ(t, t − τ)/t ̸= 0 and (2) the processes

where limt→∞ ϕ(t, t− τ)/t = 0.



Chapter 6

Conclusions

I analyzed Polya’s urn that is a simple stochastic model to understand non-self-

averaging, and Polya’s urn model is known as a typical example exhibiting the

behavior of non-self-averaging. So far the behaviors of Polya’s urn model have been

studied by many researchers. However, Polya’s urn was not investigated in the time

and frequency domains. Thus, to study the property of non-self-averaging in the

time and frequency domains, I investigated the behavior of Polya’s urn by using the

perturbation analysis.

For linear Polya’s urn, I showed the relation between the linear responses and

non-self-averaging. If self-averaging is violated, several linear response functions do

not decay to 0 in the long time limit. These functions are the average of the reduced

response function, relaxation function, and complex admittance. These functions

converge to 0 in the long time limit when the processes are self-averaging.

Next, I studied non-linear Polya’s urn by using the perturbation analysis. From

these results, I found that the relation between non-self-averaging and the relaxation

of the reduced response function is not simple. When the number of stable fixed

points is finite, and are larger than 1, the reduced response functions decay to 0 in

non-self-averaging processes. However, if there are infinite stable fixed points, the

average of the reduced response function does not decay.

Consequently, I propose the classification of non-self-averaging processes: (1) the

strong class where the number of stable fixed points is infinite, and (2) the weak

class where the number of stable fixed points is finite. When a non-self-averaging

process belongs to the strong class, the average of the reduced response function

does not decay to 0 in the long time limit. It goes to 0 in the long time limit

for weak non-self-averaging processes. By classifying non-self-averaging processes

in this way, I believe that it is possible to relate non-self-averaging with the linear

response in general stochastic processes.
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