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Abstract

Matters in our world are composed of the quarks that interact with each

other through the strong interaction mediated by gluons. The Quantum

Chromodynamics (QCD) is the non-abelian gauge theory that describes the

dynamics of quarks and gluons. One of remarkable properties of the QCD

is asymptotic freedom, which makes coupling constant of the strong inter-

action decrease as increasing the energy scale and vice versa. In virtue of

the asymptotic freedom, it is expected that the quark-gluon system takes

various states, in response to the change of external parameters. It is chal-

lenging and interesting in hadron physics to clarify properties of the QCD

under various external parameters, which leads to understanding of the early

universe, neutron star physics and so on. In particular, toward understand-

ing of the inner structure of neutron star, it is essential to study the QCD

and its phase diagram under finite light-quark chemical potential µl, isospin

chemical potential µiso, and strange-quark chemical potential µs.

Among the theoretical approaches, lattice QCD (LQCD) simulations are

the most reliable framework, since it is the first-principle calculation of the

QCD. LQCD simulation, however, suffers from the sign problem and thereby

the simulation is difficult to work. It is thus important to gather solid infor-

mation from the regions where the sign problem does not occur.

In this thesis, we focus on the following three imaginary chemical potential

regions; (A) the imaginary µl region, (B) the imaginary µl and µs region, (C)

the imaginary µl and µiso region. In these regions, LQCD simulations can

be performed since there is no sign problem. Information on real µl, µiso, µs

regions is extracted by the analytic continuation from the imaginary region to

the real one. We call this procedure “imaginary chemical potential method”.

It is thus important to know the analyticity of the QCD in order to apply

the imaginary chemical potential method.

For region (A), the phase structure of the QCD has been investigated in

detail, and it was found that the first-order Roberge-Weiss phase transition

prevents the analytic continuation. Due to this, information on the real-µl

dependence of physical quantities is limited up to µl/T ≲ 1, where T is

temperature. To analyze the region µl/T ≳ 1, it is convenient to use the

effective models that are consistent with LQCD data in µl/T ≲ 1. Our

purpose in region (A) is to construct a reliable effective model to describe

the quark degree of freedom. We aim at determining the strength of the
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ii ABSTRACT

vector-type four-quark interaction in an effective model, since the interaction

largely affects on neutron-star masses and the QCD phase structure. For this

purpose, we use LQCD data on the light-quark number density derived with

the imaginary chemical potential method. Based on the constructed model,

we analyze the QCD phase diagram and the inner core of neutron star.

As for region (B) and (C), there are little studies and it is therefore

desirable to explore properties of the QCD there. In region (B), we take

two approaches; one is a theoretical approach based on the QCD and the

other is a model approach with the same properties as the QCD as possible.

The latter is a qualitative approach, but it allows us flexible investigation.

In region (A), the analyticity is lost by the presence of the first-order phase

transition. We thus study the location of the first-order transition in region

(B). Furthermore, we search the condition imposed on imaginary µl and µs,

in order to obtain the region where no first-order transition takes place. If

such a region exists, it is useful for the imaginary chemical potential method.

In the real µiso region, the QCD has a characteristic phase, called the

charged-pion condensate phase. In the phase, flavor UI3(1) symmetry of the

QCD is spontaneously broken and the sign problem is expected to be severe.

This means that LQCD simulations become unfeasible there. Meanwhile, it

is predicted that the charged-pion condensate does not occur in the imaginary

µiso, at least for µl = 0. We show that this prediction is true also for non-zero

µl, i.e., in region (C). For the proof, we use QCD inequalities. This approach

enables us to see which symmetry is spontaneously broken or not, based on

the QCD. The proof is done by demonstrating that UI3(1) symmetry is not

spontaneously broken in region (C).

This thesis is based on the following three papers:

• Determination of hadron-quark phase transition line from lattice QCD

and two-solar-mass neutron star observations,

J. Sugano, H. Kouno, and M. Yahiro, Phys. Rev. D 94, 014024 (2016).

• Properties of 2+1-flavor QCD in the imaginary chemical potential re-

gion: A model approach,

J. Sugano, H. Kouno, and M. Yahiro, Phys. Rev. D 96, 014028 (2017).

• QCD-inequality analyses on pion condensate at real and imaginary

isospin chemical potentials under finite imaginary quark chemical po-

tential,

J.Sugano, H. Kouno, and M. Yahiro, arXiv:1711.00663 (to be published
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Chapter 1

Introduction

1.1 QCD in Minkowski space-time

The QCD in Minkowski space-time is constructed so that its Lagrangian is

invariant under local gauge transformation, belonging to color SU(Nc) group,

where Nc is the number of color. From any function U(x) ∈ SU(Nc), color

SU(Nc) gauge transformation is defined by

q(x) → U(x)q(x),

Aµ(x) → U(x)Aµ(x)(U(x))
−1 + i(∂µU(x))(U(x))

−1,
(1.1)

where q = (q1, · · · , qNf
) is the quark field with Nf flavors and Aµ is the gluon

field. The function U(x) is written as U(x) = exp(iθa(x)T a) with any real

function θa(x), the generators T a, and color indices a = 1, · · · , N2
c −1. In the

gluon field, the notation Aµ = gAa
µT

a is used, i.e., the field Aµ includes the

gauge coupling g in itself. Hereafter, we set Nc = 3. In this case, T a = λa/2

with the Gell-Mann matrices λa.

Imposing the invariance under Eq. (1.1), the QCD Lagrangian is given

by 1)

LQCD = q̄(iγµDµ − m̂)q − 1

2g2
TrcF

µνFµν . (1.2)

In Eq. (1.2),Dµ = ∂µ+iAµ is the covariant derivative and m̂ = diag(m1, · · · ,mNf
)

is the current quark-mass matrix in flavor space. The field strength of the

gluon field is defined by

Fµν =
1

i
[Dµ, Dν ] = ∂µAν − ∂νAµ + i [Aµ, Aν ] . (1.3)

The symbol Trc in the right side of Eq. (1.2) denotes the trace in color space.

In experiments, six quarks have been confirmed so far, i.e., up (u), down

(d), strange (s), charm (c), beauty (b), and top (t). The values of the current

masses are tabulated in Table 1.1. The masses of c-, b-, and t-quarks are

1)We do not consider the so-called θ term that violates CP symmetry [1, 2, 3].

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Summary of the current quark mass [4].

mu [MeV] md [MeV] ms [MeV] mc [GeV] mb [GeV] mt [GeV]

2.2 4.7 96 1.27 4.18 160

Figure 1.1: The energy scale Q dependence of the coupling constant αs(Q
2)

of strong interaction. The experimental data are presented with the error

bars, and band means the theoretical prediction from the QCD. Figure is

taken from [4].

much heavier than those of u-, d-, and s-quarks. In this thesis, we concentrate

on the energy scale in which contributions of the heavy quarks can be ignored,

and take into account only u-, d-, and s-quarks. Among these three quarks,

u- and d-quarks have almost the same masses as each other, and hence we can

set mu = md = ml as a good approximation. Under this approximation, we

call the QCD with u- and d-quarks “2-flavor QCD”. Meanwhile, s-quark has

a relatively large mass compared with u- and d-quarks, and consequently, the

approximation ms = ml may not work well. Whenever we consider the QCD

with the conditions of mu = md = ml and ms > ml, we call it “2+1-flavor

QCD”.

One of the most important properties of the QCD is the asymptotic free-

dom. Due to this property, the strength αs(Q
2) of the quark-quark inter-

action decreases as increasing the energy scale Q. The Q dependence can

be calculated from the renormalization group equation. Up to the one-loop

order, the result is given by [5, 6]

αs(Q
2) =

g2(Q2)

4π2
=

12π

(33− 2Nf) log(Q2/Λ2
QCD)

. (1.4)

In Eq. (1.4), ΛQCD ∼ 200 MeV is the characteristic energy scale of the QCD.

The validity of Eq. (1.4) has already been confirmed from the comparison



1.2. QCD PHASE DIAGRAM 3

with various experimental data, measured such as in the deep inelastic scat-

tering between lepton; see Fig. 1.1.

1.2 QCD phase diagram

It can be seen in Fig. 1.1 that the strength αs(Q
2) becomes quite large as

decreasing Q. This means that the non-perturbative nature comes out as

decreasing temperature T and quark chemical potential µq. Here, µq is given

by the average of the chemical potential for each quark, 2)

µq =
1

Nf

Nf∑
i=1

µi, (1.5)

where Nf = 2 for the 2-flavor QCD and Nf = 3 for the 2+1-flavor one.

The non-perturbativeness causes two characteristic phenomena; one is

the confinement of quark and the other is the spontaneous chiral symmetry

breaking. Meanwhile, the asymptotic freedom predicts that the deconfine-

ment of quarks and the chiral symmetry restoration takes place at some T

and µq, which are regarded as phase transitions. This prediction leads to the

QCD phase diagram.

From this section, temperature and quark chemical potential are taken

into account. The Euclidean space-time formalism is then used. Based on the

Euclidean QCD, we explain the confinement of quarks and the spontaneous

chiral symmetry breaking, introducing Z3 symmetry and chiral symmetry

that are closely related to these phenomena. We also present the fundamental

structure of the QCD phase diagram and summarize the current status of

the diagram.

1.2.1 QCD in Euclidean space-time

The Euclidean space-time formalism enables us to treat the QCD at finite

T and µq. The starting point is to introduce a Euclidean time τ by the

replacement xE4 = τ = ix0 [7]. Then, the QCD Lagrangian in Euclidean

space-time is given by

LE
QCD = q̄E(γEµD

E
µ + m̂)qE +

1

2g2
TrcF

E
µνF

E
µν . (1.6)

As for the detail of notations, see Appendix. A.

In the Euclidean formalism, the τ -direction is compactified and limited

into the region [0, β], where β = 1/T . Then, the fields qE(τ,x) and AE
µ(τ,x)

should satisfy the boundary conditions,

qE(τ + β,x) = −qE(τ,x), (1.7)

AE
µ(τ + β,x) = AE

µ(τ,x), (1.8)

2)If we regard u- and d-quarks as degenerate particles, µu = µd should be imposed.



4 CHAPTER 1. INTRODUCTION

respectively. The anti-periodic boundary condition is imposed on the quark

field, while the gluon field satisfies the periodic boundary condition. This

difference comes from statistics, i.e., the quark field obeys the Fermi-Dirac

statistics and the gluon field does the Bose-Einstein statistics. Hereafter, we

use the Euclidean representation and drop the superscript “E”.

1.2.2 Confinement and deconfinement of quark

In our world, the quarks form hadrons by strong interaction and are not

observed alone. Therefore, the fundamental degree of freedom at the low-

energy regime is not quark but hadron, such as nucleon and pion. This

phenomenon is called the confinement of quark. It is possible, however, that

quark can be free from the confinement in the high T and/or µq region,

because the interaction between quarks is weaken. Then, the transition from

the confinement state to the deconfinement one takes place at some value of

T and µq, and the fundamental degree of freedom is switched from hadron to

quark. In the following, we introduce the Polyakov loop that is an indicator

to distinguish the confinement and deconfinement states at finite T and µq.

Now, we consider the gauge transformation (1.1) generated by U(τ,x)

with the twisted-boundary condition,

U(τ + β,x) = zkU(τ,x), (1.9)

where zk is defined by

zk = exp

[
2πik

3

]
(1.10)

with k = −1, 0, 1. Indeed, we can construct U(τ,x) satisfying the condi-

tion (1.9) as

U(τ,x) = (zk)
τ
β1c = exp

[
2πik

3

τ

β

]
1c. (1.11)

Here, the unit matrix in color space is expressed by 1c. The factors zk
belongs to the Z3 group which is a center of color SU(3) group. The gauge

transformation by Eq. (1.11) is thus called Z3 transformation.

Let us perform the Z3 transformation for the QCD Lagrangian (1.6). The

Z3 transformation is a kind of gauge transformations and hence makes the

QCD Lagrangian invariant. From the gauge-transformation law of Aµ shown

in Eq. (1.1), the boundary condition (1.8) is also unchanged. Therefore, the

QCD without dynamical quark, such as in the pure gauge limit, is exactly

symmetric under Z3 transformation. This symmetry is called Z3 symmetry.

Now, we define the Polyakov-loop operator by

L(x) =
1

3
P exp

[
i

∫ β

0

dτ A4(τ,x)

]
, (1.12)
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where P denotes the path ordering. The Z3 transformation changes the gluon

field A4 into

A4(τ,x) → A4(τ,x) +
2πk

3

1

β
1c (1.13)

and therefore

L(x) → zkL(x) (1.14)

is deduced. Furthermore, the free energy Fq of the single heavy quark can

be written by

e−βFq = ⟨Φ(x)⟩ , (1.15)

where Φ(x) is the Polyakov loop Φ(x) = TrcL(x) and ⟨· · ·⟩ denotes the

expectation value [8]. The Z3 transformation changes Φ(x) as

Φ(x) → zkΦ(x), (1.16)

which is the same as in L(x). From this fact, its expectation value suggests

⟨Φ⟩ = 0 → Z3 symmetry is preserved and Fq = ∞, ∴ confinement

⟨Φ⟩ ̸= 0 → Z3 symmetry is broken and Fq is finite value, ∴ deconfinement

It is thus concluded that ⟨Φ⟩ is available for the order parameter of Z3 sym-

metry, and we can distinguish the confinement and deconfinement phases by

the value of ⟨Φ⟩.
Meanwhile, it is found from the transformation law q → Uq that the

quark field satisfies the new boundary condition

q(τ + β,x) = −zkq(τ, β), (1.17)

instead of Eq. (1.7). This means that Z3 symmetry of the QCD is explic-

itly broken through the boundary condition of quark field, although the La-

grangian itself is symmetric. Therefore, the discussion mentioned above does

not hold for the system with the dynamical quark, and the Polyakov loop is

thus not an exact order parameter in the situation. However, ⟨Φ⟩ is com-

monly used for the order parameter of Z3 symmetry, even if we take into

account the dynamical quark. In this thesis, we judge the confinement and

deconfinement phases through ⟨Φ⟩, and simply denote ⟨Φ⟩ as Φ.

1.2.3 Spontaneous chiral symmetry breaking

Due to the confinement mechanism, quarks form hadrons, such as nucleon,

in the low-T and -µq region. Proton is composed of two u-quarks and one

d-quark. The mass of proton is about 15 MeV under naive consideration, but

the actual value is about 940 MeV. As for the mesonic sector, the mass of
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pion ∼ 140 MeV is much lighter than the other mesons, e.g., ρ-meson mass

∼ 770 MeV, although ρ-meson has the same quark-composition as pion. The

spontaneous chiral symmetry breaking is a key to understanding these mass

gaps.

We begin with the 2-flavor QCD Lagrangian,

LQCD = q̄(γµDµ +ml)q +
1

2g2
TrcFµνFµν . (1.18)

The mass matrix is proportional to the unit matrix of flavor space and hence

we simply denote the mass term as mlq̄q. We first take the case of ml = 0,

i.e., the chiral limit. In the chiral limit, it is convenient to introduce two-

component right- and left-handed spinor fields, qR,L. With the projection

operators PR,L = (1± γ5)/2 for γ5 = γ1γ2γ3γ4, the field q is decomposed into

q = PRq + PLq = qR + qL. (1.19)

The expression (1.18) with ml = 0 thus becomes

LQCD = q̄RγµDµqR + q̄LγµDµqL +
1

2g2
TrcFµνFµν , (1.20)

where Dirac conjugates q̄R,L are defined by

q̄R = q̄PL, q̄L = q̄PR. (1.21)

The kinetic term of quark field in Eq. (1.20) is separated into the right-

handed and the left-handed parts of q. Hence, Eq. (1.20) is invariant under

the global U(2)R ⊗ U(2)L transformation defined by

qR → eiθ
a
RτaqR, qL → eiθ

a
Lτ

a

qL (1.22)

with the independent transformation parameters θaR,L and flavor indices a =

0, · · · , 3. Here, τ 0 is the 2×2 unit matrix in flavor space and the Pauli matri-

ces are given by τ⃗ . U(2)R⊗U(2)L symmetry is rewritten into U(1)V⊗U(1)A⊗
SU(2)V ⊗ SU(2)A and hence we obtain four subgroups; see Appendix B. In

these subgroups, U(1)A symmetry is explicitly broken by a quantum anomaly

[9, 10]. The 2-flavor QCD Lagrangian thus has U(1)V ⊗ SU(2)V ⊗ SU(2)A
symmetry in the chiral limit at the Lagrangian level.

If the current mass ml is finite, the mass term breaks chiral symmetry

explicitly. To see this, let us rewrite the mass term mlq̄q as

mlq̄q = ml(q̄LqR + q̄RqL). (1.23)

This expression shows that the mass term mixes the right- and left-handed

components of quark and hence chiral symmetry is explicitly broken. In

the case that the Lagrangian includes only the light quarks, however, chiral

symmetry is still good approximation, because the value ofml is much smaller
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than a typical energy scale of the QCD; ml/ΛQCD ∼ O(10−3). Therefore, the

2-flavor QCD Lagrangian (1.18) approximately possesses chiral symmetry.

In Ref. [11], Nambu and Jona-Lasinio showed that if the quark-quark in-

teraction is sufficiently strong, chiral symmetry is broken by the appearance

of a non-trivial vacuum, even though the symmetry is preserved at the La-

grangian level. Then, only U(1)V⊗SU(2)V symmetry is left in the low-energy

region 3). In the realized vacuum, the quantity σf = ⟨q̄fqf⟩, called chiral con-

densate, does not vanish and yields an additional mass to the quark. This is

referred to as the spontaneous chiral symmetry breaking. The acquirement

of mass through σf explains why nucleon mass is much heavier than the

naively estimated value ∼ 15 MeV.

Furthermore, they demonstrated that massless particle is accompanied

with the spontaneous chiral symmetry breaking. Since Goldstone reached the

same result [13], massless particle is called Nambu-Goldstone (NG) boson.

Pion is just a NG boson and hence its mass is very light. In this way, the

spontaneous chiral symmetry breaking well explains the mass spectrum of

hadron. The asymptotic freedom predicts that the quark-quark interaction

becomes very strong in the low-energy region, and it is believed that the

chiral symmetry breaking takes place there 4).

On the contrary, it is expected from the asymptotic freedom that chiral

symmetry is recovered in the high-T and/or -µq region. To see whether the

chiral symmetry breaking or not, it is useful to take the chiral condensate

σf as an order parameter of the chiral symmetry breaking. Then, we can

characterize the phase of system at finite T and µq as

σf ̸= 0 → chiral symmetry broken phase ,

σf = 0 → chiral symmetry restored phase ,

respectively. If we replace the group U(2)R ⊗U(2)L with U(3)R ⊗U(3)L, the

same discussion is applicable to the 2+1-flavor case.

1.2.4 Structure of QCD phase diagram

From the order parameters σf and Φ, we can classify phases of the QCD and

draw the QCD phase diagram in T -µq plane in which hadron and quark-gluon

states are represented. A sketch of the QCD phase diagram is presented in

Fig. 1.2; See also Refs. [15, 16, 17, 18] for further details of the QCD phase

diagram.

In the figure, there are two representative phases 5). One is the hadron

phase that is realized in the low T and the low µq region. In this phase, quarks

3)It was proved in Ref. [12] that vector-type symmetry, such as U(1)V and SU(2)V, is

not spontaneously broken in the QCD (Vafa-Witten theorem).
4)In Ref. [14], it was numerically confirmed that σf is indeed finite.
5)Throughout this thesis, we do not consider color superconductor phase, where quarks

form cooper pair in color space. For the review, see Ref. [19] and references therein.
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Figure 1.2: The QCD phase diagram in T -µq plane.

and gluons are confined into hadron and the spontaneous chiral symmetry

breaking also takes place; σf ̸= 0 and Φ = 0. Another phase is called Quark-

Gluon Plasma (QGP) phase, or simply quark phase, that appears at large T

and/or µq. The feature of this phase is that quarks and gluons are free from

the confinement (Φ = 0) and behave as free particles. In addition, chiral

symmetry is restored in this phase (σf ∼ 0).

The change from the hadron phase to the QGP phase can be regarded

as a phase transition and occurs at some critical T and µq. Then, two-

types of boundary exist, one being the chiral transition line and the other

the deconfinement transition line. In particular, the latter is also referred

to as a hadron-quark phase transition line, firstly predicted by Cabibbo and

Parisi in Ref. [20] based on Hagedorn theory [21]. At µq/T = 0, the hadron-

quark phase transition is crossover and takes place at Tc ∼ 171 MeV for

the 2-flavor system [22], at Tc ∼ 160 MeV for the 2+1-flavor system [23,

24], respectively. On the other hand, the transition may be first-order for

moderate µq, predicted by Asakawa and Yazaki [25]. If this scenario is true,

there should be a critical end point (CEP) somewhere in the diagram. The

search of a CEP is extensively done [15].

Recently, theoretical investigations of the QCD phase diagram have been

made, particularly at µq/T = 0, because of progress of lattice QCD simula-

tions explained in Sec. 1.3. In addition to the property of the hadron-quark

transition, the behavior of the equation of state (EoS) is also mostly de-

termined [26]. Along these lines, thermal properties of hadron and quark

matters are steadily clarified at µq/T = 0.

As for µq/T = ∞, the EoS for cold and dense matter is essential tool of

understanding properties of neutron star physics. In the nucleonic regime,

robust studies on EoS of the symmetric and asymmetric nuclear matter were

made, and various properties were understood, such as a role of many-body

nuclear force [27, 28, 29]. In addition to the nuclear matter, possibility of the
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hyperonic matter [29, 30] and the quark matter [31] may exist in the inner

core of neutron star. This means that not only light-quark chemical potential

µl = (µu + µd)/2 but also isospin chemical potential µiso = (µu − µd)/2 and

strange-quark chemical potential µs become finite. In particular, due to the

observations of two-solar-mass neutron star in Refs. [32, 33], whether the

quark matter exists in the inner core of neutron star or not is extensively

discussed. To answer this, it is important to know the phase structure and

the interaction between quarks in the finite (µl, µiso, µs) region.

In the theoretical approach, lattice QCD simulations are the most pow-

erful tool of extracting information on the quark matter, but the simulations

are difficult due to the sign problem. One of solutions to this difficulty is to

consider the regions where the sign problem does not occur and information

on finite (µl, µiso, µs) are included. From the next section, we discuss lattice

QCD simulations with finite (µl, µiso, µs).

1.3 Lattice QCD

LQCD simulations are the first-principle calculation of the QCD formulated

by Wilson [35]. It enables us to treat non-perturbative nature of the QCD.

This is the strong points of LQCD simulations and we can obtain solid in-

formation on thermal properties of quark matter. In the simulations, the

integrand of the QCD grand-canonical partition function ZQCD determines

whether the simulations can be performed or not. After introducing the

expression of ZQCD to be evaluated, we briefly review framework of LQCD

simulations.

1.3.1 QCD grand-canonical partition function

By using the imaginary-time formalism [7] and Eq. (1.6), we can define the

QCD grand-canonical partition function as

ZQCD =

∫
DADq̄Dq exp

[
−
∫ β

0

dτ

∫
d3x (LQCD − q̄µ̂γ4q)

]
, (1.24)

where µ̂ = diag(µu, µd, µs) in flavor space and the functional integral DA
means

DA =
4∏

µ=1

DAµ. (1.25)

The quark field is included in Eq. (1.24) as a bilinear form, and hence we can

perform the gauss integral for a Grassmann variable. The integral yields

ZQCD =

∫
DA detM(µ̂)e−SG , (1.26)
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Figure 1.3: Sketch of the link variable. The variable Un,µ goes from lattice

point n to n + µ̂, while U †
n,µ does the inverse direction. The quark field on

the point n and n+ µ̂ is denoted by qn and qn+µ.

where SG is the pure gauge action and M(µ̂) is the fermion matrix

M(µ̂) = M(µu, µd, µs) = γµDµ + m̂− µ̂γ4, (1.27)

and its determinant is called the fermion determinant.

The QCD thermodynamic potential ΩQCD (per unit volume) is obtained

from

ΩQCD = − 1

β
logZQCD. (1.28)

Other thermodynamic quantities can be derived from ΩQCD. Also for the

expectation value of any physical quantity O, we can take the path-integral

representation [7] as

⟨O⟩ = 1

ZQCD

∫
DA OdetM(µ̂)e−SG . (1.29)

1.3.2 Sign problem

In LQCD, the QCD is discretized and formulated on a four-dimensional lat-

tice with lattice spacing a. The quark field is putted on each lattice site and

the gluon field is expressed by a link variable

Un,µ ≡ U(n, n+ µ̂a) = exp [iaAµ(n+ µ̂/2)] , (1.30)

where n is the lattice point and µ̂ is the unit vector of µ-direction. The

link variable describes the gluon propagating from x to x+ µ̂. The Hermite

conjugate of Eq. (1.30) is written by

U †
n,µ = Un+µ,−µ (1.31)

and means the gluon propagating the inverse direction of Un,µ. The gluon

field is thus treated so that it connects the neighborhood site; see Fig. 1.3.

By using the link variables, the grand-canonical partition function on the

lattice is given by

ZQCD =

∫
DU detM(µ̂)e−SG , (1.32)
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i.e., ZQCD is the sum of link variables. In LQCD simulations, the inte-

grand P (U) ≡ detM(µ̂)e−SG is interpreted as a probability function. With

this function, the link variable U is generated with the importance-sampling

method of Monte-Carlo technique. Hence, we can directly generate the con-

figuration of U from the QCD without any approximation.

The probability function P (U) should have positivity in applying the

Monte-Carlo technique and it depends on whether the fermion determinant

has positivity. For µq = (µu + µd + µs)/3 = 0, the fermion matrix satisfies

γ5-hermiticity:

γ5M(0)γ5 = (M(0))†. (1.33)

Positivity of the fermion determinant detM(0) is thus ensured and the

Monte-Carlo method is available. However, the fermion determinant can

be complex when µq ̸= 0, since the relation

(M(µ̂))† = γ5M(−µ̂∗)γ5, (1.34)

or equivalently,

(M(µu, µd, µs))
† = γ5M(−µ∗

u,−µ∗
d,−µ∗

s)γ5 (1.35)

does not guarantee positivity of the fermion determinant. Hence, it is difficult

to access to the finite µq region with LQCD. This is the well-known sign

problem [34] and the shortcoming of LQCD.

Some methods of circumventing the sign problem were proposed so far,

e.g., the imaginary chemical potential method, the reweighting method, the

Taylor expansion method, and so on. Among these methods, we pick up the

imaginary chemical potential method.

1.4 Imaginary chemical potential method

In this section, we discuss the imaginary chemical potential method [36, 37].

In particular, we focus on the three regions; (A) imaginary µl region, (B)

imaginary µl and µs region, (C) imaginary µl and µiso region. For each

region, our main purpose is also presented.

1.4.1 Region (A): 2-flavor case

We first take µu = µd = µl and µs = 0. The imaginary chemical potential is

introduced by the replacement µl → iθlT , where θl is a dimensionless light-

quark chemical potential. The biggest merit of considering the finite θl region

is that there is no sign problem. Indeed, Eq. (1.35) ensures the relation

(M(iθlT, iθlT, 0))
† = γ5M(iθlT, iθlT, 0)γ5, (1.36)
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Figure 1.4: Sketch of the phase diagram in T -θl plane. The symbols Tpc, TRW
mean the deconfinement transition temperature at θl = 0, the RW transition

temperature at θl = π/3, respectively. The solid vertical line is the RW

transition line and the dotted line stands for the crossover deconfinement

transition line.

and the fermion determinant has positivity. Therefore, the integrand of ZQCD

can be interpreted as a probability function, and the usual Monte-Carlo

technique works well. Then, we can obtain the θl dependence of physical

quantity O from LQCD simulations. The real µl dependence of O is deduced

from the analytic continuation, i.e., by replacing θl by µl/T . This is the basic

strategy of the imaginary chemical potential method. When performing the

analytic continuation, analyticity of all physical quantities is assumed. It

is thus important to know how broad the analytic region is in the finite θl
region.

Analyses on the finite θl region were firstly performed by Roberge and

Weiss in Ref. [38]. They showed that ZQCD has the periodicity of 2π/3, that

is now called Roberge-Weiss (RW) periodicity. It was also proved by Roberge

and Weiss that for T < Tpc the thermodynamic quantity is a smooth function

of θq, while the first-order phase transition takes place at θq = (2k−1)π/3 for

T > Tpc, where Tpc is deconfinement-transition temperature at θq = 0. This

first-order transition is called the Roberge-Weiss (RW) phase transition. The

phase diagram and the quantity deduced from ZQCD thus become periodic in

the θq region and have singularity at θq = (2k−1)π/3; See Fig. 1.4 for a sketch

of the phase diagram. The available region to the analytic continuation is

thus limited to [0, π/3], due to the RW phase transition for T > Tpc and the

RW periodicity for T < Tpc. Then, the imaginary chemical potential method

enables us to extract the real µl/T dependence of physical quantity up to the

region µl/T ∼ 1, with small error bars.

To investigate µl ≳ 1, we can consider effective models, but we need to

fix a parameter in the models. In virtue of small error bars, LQCD data
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obtained by using the imaginary chemical potential method have a potential

to determine a parameter sharply. In particular, the determination of the

strength Gv of the vector-type four-quark interaction

−Gv(q̄γµq)
2 (1.37)

is important, since the location of the hadron-quark phase transition line is

sensitive to its strength Gv. In Chapter 2, we try to determine the value of

Gv from LQCD data on the light-quark number density calculated by the

imaginary chemical potential method.

1.4.2 Region (B): 2+1-flavor case

Next, let us consider the imaginary chemical potential method for the 2+1-

flavor case. In this case, the s-quark chemical potential µs is newly introduced

as an external parameter, in addition to the light-quark chemical potential.

Even for the 2+1-flavor case, the fermion determinant still possesses positiv-

ity for µl = iθlT and µs = iθsT , because

(M(iθlT, iθlT, iθsT ))
† = γ5M(iθlT, iθlT, iθsT )γ5. (1.38)

Hence, the method is useful and applied to the 2+1-flavor case, such as in

Refs. [39, 40, 41].

The different point from the 2-flavor case is that the RW periodicity

can be lost in the 2+1-flavor case, as shown in Chapter 3. The lack of the

periodicity depends on the choice of imaginary θs. In Ref. [39], Bonati et al.

showed that the RW periodicity does not exist when θl ̸= 0 and θs = 0, by

calculating the thermodynamic potential in the high-T limit perturbatively.

They also presented a possible phase diagram in T -θl plane, illustrated in

Fig. 1.5. In Fig 1.5, it should be noted that the first-order phase transition

occurs at θl > π/3, i.e., the transition is delayed when θs = 0, compared with

the 2-flavor case. This indicates that the analytic region can be expanded

by breaking the periodicity deliberately and makes the analytic continuation

more informative. It is thus interesting to explore when the periodicity is

lost, how the actual phase structure is, and how broad the analytic region is.

In Chapter 3, we discuss these questions.

1.4.3 Region (C): 2-flavor case with finite isospin chem-

ical potential

We return to the 2-flavor case and consider finite isospin chemical potential

µiso. In this case, u- and d-quarks are not degenerate any more and these

chemical potentials µu and µd are given by

µu = µl + µiso, µd = µl − µiso. (1.39)
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Figure 1.5: The predicted phase diagram in T -θl plane in the 2+1-flavor

QCD. Figure is taken from Ref. [39].

For µiso = 0, the relation µl = µu = µd is then recovered, i.e., the system

returns to the 2-flavor case. When µiso is finite, the number densities of u-

and d-quark are unbalance. This situation can be realized in the inner core

of neutron star, where the number density of d-quark is larger than that of

u-quark due to the charge neutral condition.

The fermion matrix with finite µiso is obtained as

M(µl, µiso) = γµDµ + m̂− µlγ4 − µisoγ4τ
3, (1.40)

where τ 3 is the third component of the Pauli matrix. We first set µl = 0

for simplicity and consider real µiso. Equation (1.40) with µl = 0 does not

satisfy the usual γ5-hermiticity, but for the case of mu = md = ml, the new

relation

(M(0, µiso))
† = τaγ5M(0, µiso)γ5τ

a, a = 1, 2 (1.41)

guarantees that the fermion determinant detM(0, µiso) has positivity. Here,

τa is the first or second components of the Pauli matrix that anticommutes

with τ 3.

Positivity of the fermion determinant makes LQCD simulations feasible.

Indeed, some works were performed with LQCD simulations at finite real

µiso [42, 43]. However, Son and Stephanov demonstrated in Ref. [44] that

the charged-pion condensate takes place at µiso = mπ/2 with the pion mass

mπ ∼ 138 MeV at vacuum, by using QCD inequalities [45, 46, 47, 48, 12,

49, 50, 51, 52]. Furthermore, it was suggested in Refs. [53, 54] that the

charged-pion condensate is related to the severity of the sign problem. LQCD

simulations with finite µiso are thus difficult to work when the charged-pion

condensate occurs.
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On the contrary, there is no pion condensate at the imaginary µiso region

shown in Ref. [55], applying the chiral perturbation theory. LQCD simula-

tions can also be handled in the imaginary µiso region, because of no sign

problem there; see Refs. [56, 57]. However, there is no discussion on how the

γ5-hermiticity and QCD inequalities are modified, compared with the case of

real µiso. In addition, contributions of µl are not included in Refs. [44, 55].

Chapter 4 is devoted to the discussion of the pion condensate not only with

real and imaginary µiso but also with imaginary µl.

1.5 Purpose

The purpose of this thesis is summarized as follow:

• In region (A), the strength Gv of the vector-type four-quark interaction

is determined from LQCD data on the light-quark number density cal-

culated with the imaginary chemical potential method. Furthermore,

we study the impact of Gv on neutron-star masses and the hadron-

quark phase transition line. These analyses will be done in Chapter

2.

• In region (B), properties of the QCD with imaginary µl and µs are

investigated. We first study the condition needed to realize the RW

periodicity, inversely, the condition to break the periodicity. After this,

we introduce the effective model that possesses the same properties

as the QCD. By using the model, we discuss how largely the analytic

region can be expanded. These analyses will be performed in Chapter

3.

• In region (C), it is demonstrated that the charged-pion condensate does

not occur. In the proof, QCD inequalities are used. In particular, we

clarify what determines the presence or absence of the condensate. The

proof will be shown in Chapter 4.

Finally, Chapter 5 is devoted to a summary.



Chapter 2

Hadron-quark phase transition

line

2.1 Introduction

In this chapter, we analyze the hadron-quark phase transition line in the QCD

phase diagram for the 2-flavor case, constructing reliable effective models. As

a model of the quark phase, we use the 2-flavor entanglement PNJL (EP-

NJL) model [58], which well reproduces LQCD results not only at µl/T = 0

but also at imaginary µl. Therefore, the EPNJL model is a good starting

point. Typically, the EPNJL model is composed of the quark part with

the scalar-type four-point interaction and the gluon part described by the

Polyakov-loop potential. To analyze the hadron-quark phase transition line

at high µl, in addition, it is essential to take into account a vector-type four-

point interaction with the strength Gv, since the interaction largely affects

on properties of the quark matter there. If we include the vector-type inter-

action into the model, the strength Gv becomes an undetermined parameter.

Therefore, we first determine the value of Gv at µl = 0 from LQCD data on

the T dependence of the quark number density [59].

The EPNJL model works well to describe not only the quark phase but

also the mesonic degree of freedom [60, 61, 62, 63, 64], while cannot treat

the baryonic degree of freedom. Therefore, we adopt the two-phase model

approach [65, 66] in which the baryonic model is introduced independently.

The two models are connected so as to preserve thermodynamic consistency.

Determination of reliable baryonic model is made from whether the adopted

model can reproduce the experimental value of the saturation properties and

the observed neutron-star mass with two-solar-mass (2M⊙) [32, 33]. By using

the obtained two-phase model, we draw the hadron-quark phase transition

line and discuss what can be deduced if we assume that the quark matter

exists in the 2M⊙ neutron stars.

16
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2.2 EPNJL model with vector-type interac-

tion

We first formulate the EPNJL model with the vector-type four-quark inter-

action. The Lagrangian in Euclidean space-time is defined as

LEPNJL =q̄(γµDµ +ml)q + U(Φ, Φ̄)
−Gs(Φ, Φ̄)[(q̄q)

2 + (q̄iγ5τ⃗ q)
2] +Gv(Φ, Φ̄)(q̄γµq)

2, (2.1)

where q = (u, d)T is the quark field, Dµ = ∂µ + iAµδµ4 is the covariant

derivative, and Gs(ϕ, ϕ̄) and Gv(ϕ, ϕ̄) are the strength of the scalar- and

vector-type interactions with the entanglement vertex [58, 67]:

Gs(Φ, Φ̄) = Gs

[
1− α1ΦΦ̄− α2(Φ

3 + Φ̄3)
]
, (2.2)

Gv(Φ, Φ̄) = Gv

[
1− α1ΦΦ̄− α2(Φ

3 + Φ̄3)
]
. (2.3)

In these expressions, α1 and α2 denote entanglement parameters. In this

thesis, we set α1 = α2 = 0.2.

For the Polyakov-loop potential U(Φ, Φ̄), we use the logarithmic type [?,

68]:

U(Φ, Φ̄) = T 4

[
−a(T )

2
ΦΦ̄ + b(T ) logH(Φ, Φ̄)

]
, (2.4)

where

a(T ) = a0 +

(
T0
T

)
+ a2

(
T0
T

)2

, b(T ) = b3

(
T0
T

)3

(2.5)

H(Φ, Φ̄) = 1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2. (2.6)

In the potential U(Φ, Φ̄), the parameter T0 is originally taken to be 270

MeV. This value, however, cannot reproduce LQCD prediction [22, 69] in

which the chiral transition temperature Tσ and the deconfinement transition

temperature TΦ almost coincide with each other, Tσ ∼ TΦ = Tpc, at µl =

0. We thus rescale T0 from 270 MeV to 190 MeV. Under this rescale, the

EPNJL model predicts that the chiral and deconfinement transitions take

place simultaneously, which is consistent with LQCD data. In Table 2.1, we

tabulate the parameters in the EPNJL model.

We comment on the µl dependence of T0. In Ref. [70], it is shown by using

the quark-meson model and the functional renormalization group method

that T0 depends on µl as

T0(µl) = Tτ exp

[
− 1

α0b(µl)

]
,

b(µl) =
29

6π
− 32µ2

l

πT 2
τ

, α0 = 0.304, Tτ = 1.770(GeV).

(2.7)
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Table 2.1: The parameters included in the Polyakov-loop potential. The

value of T0 is rescaled from the original value 270 MeV to 190 MeV. The

other parameters are taken from Ref. [68].

a0 a1 a2 b3 T0 [MeV]

3.51 −2.47 15.2 −1.75 190

This represents the backreaction of the quark sector to the gluon sector.

However, the phase structure is not changed qualitatively [71] even if we

take into account the dependence. We thus treat T0 as a constant in this

thesis.

2.2.1 Thermodynamic potential of EPNJL model

Now, let us perform the mean-field approximation (MFA) to the Lagrangian (??).

We first decompose the bilinear A = q̄Γq into the expectation value ⟨A⟩ and
its fluctuation δA around ⟨A⟩ as

A = ⟨A⟩+ δA, (2.8)

where Γ = 1, iγ5τ⃗ , γµ. In the MFA, up to the first order of δA is taken into

account:

A2 ∼ ⟨A⟩2 + 2δA ⟨A⟩
= ⟨A⟩2 + 2 ⟨A⟩ (A− ⟨A⟩)
= 2 ⟨A⟩A− ⟨A⟩2 . (2.9)

Furthermore, the rotational invariance in three-dimensional space yields the

relation q̄γµq = δµ4q̄γ4q = δµ4q
†q, and the parity invariance of vacuum leads

to ⟨q̄iγ5τ⃗ q⟩ = 0 1). The bilinear included in the Lagrangian (??) thus become

(q̄q)2 = 2σq̄q − σ2, (q̄iγ5τ⃗ q)
2 = 0, (q̄γµq)

2 = 2nlq
†q − n2

l . (2.10)

Here, σ = ⟨q̄q⟩ is the chiral condensate and nl = ⟨q†q⟩ is the quark number

density of the light quark.

By using Eq. (2.10), we can reach the Lagrangian under the MFA:

LMFA
EPNJL =q̄(γµDµ +Ml)q + U(Φ, Φ̄) +Gs(Φ, Φ̄)σ

2 −Gv(Φ, Φ̄)n
2
l , (2.11)

where Ml = ml − 2Gs(Φ, Φ̄)σ is the constituent quark mass. Substituting

the Lagrangian (2.11) for Eq. (1.24) and using Eq. (1.28), we can obtain the

1)When we consider the isospin chemical potential µiso, ⟨q̄iγ5τ⃗ q⟩ becomes non-zero for

µiso ≥ mπ/2 with the pion mass mπ at vacuum. See Refs. [55, 58, 71, 72] for the model

analyses under finite µiso.
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Table 2.2: The values of Λ,ml, and Gs in the NJL part. The actual values

are taken from Ref. [61].

Λ [MeV] ml [MeV] Gs [GeV−2]

631.5 5.5 5.498

thermodynamic potential (per unit volume) as

ΩEPNJL =UM + U − 2
∑
i=u,d

∫
d3p

(2π)3

[
3E

+
1

β
log
(
1 + 3(Φ + Φ̄e−β(E−µ̃i))e−β(E−µ̃i) + e−3β(E−µ̃i)

)
+

1

β
log
(
1 + 3(Φ̄ + Φe−β(E+µ̃i))e−β(E+µ̃i) + e−3β(E+µ̃i)

) ]
, (2.12)

where β = 1/T and

UM = Gs(Φ, Φ̄)σ
2 −Gv(Φ, Φ̄)n

2
q,

E =
√

p2 +M2,

µ̃i = µi − 2Gv(Φ, Φ̄)nl,

(2.13)

respectively. The effect of the vector-type interaction is thus incorporated

through the shift of µi and its magnitude is proportional to nl.

The vacuum term in Eq. (2.12) diverges in the limit |p| → ∞. We thus

apply the three-dimensional cutoff scheme to reguralize the term in which

the upper bound of the momentum integral is limited by the parameter Λ.

Then, the vacuum term becomes∫
d3p

(2π)3
E →

∫
|p|≤Λ

d3p

(2π)3
E (2.14)

and converges 2). The introduced parameter Λ is fixed so as to reproduce

experimental values of the pion mass and its decay constant, together with

ml and Gs. The actual values are tabulated in Table 2.2. The strength Gv

is determined in the next subsection.

The variables X = σ,Φ, Φ̄, nl are determined from the stationary condi-

tion of

∂ΩEPNJL

∂X
= 0. (2.15)

The stationary condition for nl yields

nl = 6
∑
i=u,d

∫
d3p

(2π)3

{ Φe−β(E−µ̃i) + 2Φ̄e−2β(E−µ̃i) + e−3β(E−µ̃i)

1 + 3Φe−β(E−µ̃i) + 3Φ̄e−2β(E−µ̃i) + e−3β(E−µ̃i)

− (Φ ↔ Φ̄, µ̃i ↔ −µ̃i)
}
. (2.16)

2)We do not introduce the cutoff parameter Λ to the momentum integral in the thermal

term. As for the model including Λ in the thermal term, see Ref. [74].
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It is seen that nl is a function of µ̃i and hence sensitive to the value of Gv.

This is the reason why the value of Gv can be determined by LQCD data on

nl sharply.

Finally, we adopt the approximation Φ = Φ̄ for the Polyakov loop and its

validity has been confirmed in Ref. [58, 73]. If we use this approximation, the

condition (2.15) for Φ̄ is not needed. We determine nl by solving Eq. (2.16)

self-consistently, while the other variables σ,Φ are numerically evaluated.

2.2.2 Determination of the value of Gv

Now, we move to pin down the value of Gv. Considering the chiral symme-

try restored phase, i.e., T > Tpc, we can show that the chiral condensate

σ is nearly equal to zero and thereby the scalar-type interaction becomes

negligible. Only the vector-type interaction thus survives as the four-point

interaction, and the value of Gv can be determined sharply at T > Tpc.

There is another advantage to focus on the chiral symmetry restored

phase. In Ref. [59], the nl were calculated from LQCD simulations with the

imaginary µl method. In the actual simulations, a Wilson-type fermion was

used as an action for the quark, and the current-quark mass are thus much

heavier ∼ 130 MeV than the realistic value (∼ 5 MeV). In the high-T region,

contributions of the current-quark mass can be ignored since the ratio ml/T

becomes small. Therefore, we can obtain the value of Gv, not depending on

ml there.

To extract the value of Gv at µl = 0, we define a quantity nl/nSB with

the quark number density nSB in the Stefan-Boltzmann limit:

nSB = 2(T 2µl + µ3
l ). (2.17)

The quantity nl/nSB is µl-even. Figure 2.1 presents the T dependence of

nl/nSB. In the model calculations, we refit ml to 130 MeV to match LQCD

setup in Ref. [59]. We also plot LQCD data taken from Ref. [75] for the com-

parison. Note that the error bars are quite small in the imaginary chemical

potential method. The value Gv = 0.36Gs (solid line) yields good agreement

between the model result and LQCD data. This value is consistent with

the one obtained in Ref. [76] in which the vector-type interaction was deter-

mined so as to reproduce the deconfinement transition line in the imaginary

µl region. If we do not consider the vector-type interaction, then the model

calculation largely overestimates LQCD data (dot-dashed line). Meanwhile,

the underestimated result is obtained for the case without the entanglement

vertex (dashed line). It is thus found that the vector-type interaction and

the entanglement vertex are essential.

The dotted line presents the model result with ml = 5.5 MeV. As ex-

pected, this result almost agrees with the solid-line one. Therefore, the value

Gv = 0.36Gs is reliable even at ml = 5.5 MeV, although the value is deter-

mined by LQCD data obtained at unphysical point.
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Figure 2.1: Temperature dependence of nl/nSB at µl = 0. The temperature T

is normalized by Tpc = 171 MeV. LQCD data are taken from Refs. [59, 75].

The lines mean the EPNJL model calculations with Gv(Φ, Φ̄) (solid), Gv

(dashed), and without the vector-type interaction (dotted-dashed), respec-

tively. In these calculations, ml is fitted to 130 MeV. On the other hand, the

dotted line denotes the result with ml = 5.5 MeV.

2.3 Relativistic mean field theory

In the two-phase model approach, we need to use another method to de-

scribe the hadron phase realized in the low-T and -µl region. So far, various

methods were developed for the treatment of the hadron phase; for the low-

T region, e.g., we can consider the Brueckner-Hartree-Fock theory [77, 78],

its relativistic version [79], the variational method [80, 81, 82, 83], and the

relativistic mean field (RMF) theory [84, 85]. As for the high-T and low-

µl region, the hadron-resonance-gas model quantitatively reproduces LQCD

results on some thermodynamic quantities [26, 86, 87, 88]. Among these

methods, we take the RMF theory, since it is easy to treat. This also al-

lows us to describe properties of the nuclear matter near the normal nuclear

density ρ0 quantitatively.

The RMF theory is constructed on the basis of the one-meson exchange

picture and the Lorentz invariance is imposed on its Lagrangian. The La-

grangian of the RMF theory in Minkowski space-time is defined by

LRMF =ψ̄(iγµ∂µ −mN − gφφ− gωγ
µωµ − gργ

µρaµτa)ψ

+
1

2
∂µφ∂µφ− 1

2
m2

φφ
2 − 1

3
g2φ

3 − 1

4
g3φ

4

− 1

4
ΩµνΩµν +

1

2
m2

ωω
µωµ +

1

4
c3(ω

µωµ)
2 − 1

4
Rµν

a R
a
µν +

1

2
m2

ρρ
µ
aρ

a
µ,

(2.18)
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where ψ is the nucleon (N) field, Ωµν and Rµν
a are the field strength of ω,

ρ mesons, respectively. The mass of each particle is represented by mi with

i = N, φ, ω, ρ. The Yukawa-coupling constants are denoted by gφ, gω, gρ and

self-interaction constants of φ and ω mesons are by g2, g3 and c3. In Table ??,

we present the interaction channel that each meson mediates.

2.3.1 Thermodynamic potential of RMF theory

We apply the MFA to the RMF theory and derive the expression of the

thermodynamic potential. Under the MFA, the meson fields are replaced by

the expectation values,

φ→ ⟨φ⟩ , ωµ → ⟨ω0⟩ δµ0, ρaµ → ⟨ρ30⟩ δµ0δa3. (2.19)

Here, we have used the rotational invariance in the three-dimensional and

the isospin spaces. In the following, we simply denote the expectation values

as φ, ω, ρ, respectively. The (expectation values of) meson fields obey the

equations

m2
φφ+ g2φ

2 + g3φ
3 = −gφρs,

m2
ωω + c3ω

3 = gωρB,

m2
ρρ = gρρI,

(2.20)

where ρs, ρB, ρI are the scalar, baryon, and isospin densities, respectively.

The relations ρB = ρp + ρn and ρI = ρp − ρn are satisfied for proton and

neutron densities. The former is the baryon number density and the latter

is the isospin number density.

The thermodynamic potential (per unit volume) is given by

ΩRMF = Umeson −
2

β

∑
i=p,n

∫
d3p

(2π)3

[
log(1 + e−β(E−µ̃i)) + log(1 + e−β(E+µ̃i))

]
,

(2.21)

together with the meson fields determined by Eq. (2.20). In Eq. (2.21),

Umeson =
1

2
m2

φφ
2 +

1

3
g2φ

3 +
1

4
g3φ

4 − 1

2
m2

ωω
2 − 1

4
c3ω

4 − 1

2
m2

ρρ
2 (2.22)

stands for the mesonic potential and E =
√

p2 +M2
N with MN = mN + gsφ.

The effective chemical potentials for neutron (n) and proton (p) are µ̃n,p =

µn,p − gωω ± gρρ.

2.3.2 Parameter set and saturation properties

In the RMF theory, there are too many parameter sets [89]. In this the-

sis, among them, we take three parameter sets of TM1 [90], NL3 [91], and

the parameter set [92] proposed by Maruyama, Tatsumi, Endo, and Chiba
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Table 2.3: Three parameter sets of RMF theories. The saturation properties

predicted by these parameter sets are also summarized. Shown are the satu-

ration density ρ0, binding energy E0, incompressibility K, symmetry energy

S0, and the ratio of the effective nucleon mass MN to nucleon mass mN.

parameter MTEC TM1 NL3

mN [MeV] 938 938 939

mφ [MeV] 400 511.198 508.194

mω [MeV] 783 783 782.501

mρ [MeV] 769 770 763

gφ 6.3935 10.0289 10.217

gω 8.7207 12.6139 12.868

gρ 4.2696 4.6322 4.474

g2 [fm−1] −10.757 −7.2325 −10.431

g3 −4.0452 0.6183 −28.885

c3 0 71.3075 0

saturation property MTEC TM1 NL3

ρ0 (fm−3) 0.153 0.145 0.148

E0 [MeV] −16.3 −16.3 −16.3

K [MeV] 240 281 271

S0 [MeV] 32.5 36.9 37.4

MN/mN 0.78 0.63 0.60

(MTEC). The parameter sets are tabulated in Table 2.3. The saturation

properties predicted from these parameter sets are also shown in Table 2.3.

Now, we consider the equation of state (EoS) at T = 0 that gives the

relation between the energy per nucleon E/A and ρB. Figure 2.2 presents

the EoSs derived from three parameter sets. It is found that all the EoSs yield

a universal line up to ρB ∼ ρ0, while a remarkable difference is seen for the

high density region. This means that the behavior of the EoS at high density

cannot be determined from the saturation properties only. Fortunately, a

mass-radius (MR) relation of neutron star is sensitive to the EoS there, and

hence we can select a preferable EoS from the MR relation obtained by the

neutron star observations. In this section, we calculate the MR relations from

the three parameter sets and compare them with the observed results [32, 33]

and statistically estimated ones [93].
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Figure 2.2: The equations of state calculated from three RMF theories. The

left panel shows the EoSs for symmetric matter, while the right panel does

for neutron matter. In both the panels, the results of MTEC, TM1, and NL3

are denoted by the solid, dotted, and dot-dashed lines, respectively. The

open square in the left panel means the empirical saturation point [78].

2.3.3 RMF theory and neutron star observations

The MR relation of neutron star has one-to-one correspondence to the EoS

through the Tolman-Oppenheimer-Volkoff (TOV) equation [94]:

dP

dr
= −GMϵ

r2

(
1 +

P

ϵ

)(
1 +

4πPr3

M

)(
1− 2GM

r

)−1

, (2.23)

dM

dr
= 4πr2ϵ, (2.24)

where G is the gravitational constant and ϵ is an energy density.

In the inner core of neutron star, the charge-neutral and β-equilibrium

conditions should be imposed. The former is described as

np = ne + nµ− . (2.25)

Here, ne and nµ− are the number densities of electron and muon, which are

treated as massless free particles. The latter condition restricts the number

of independent chemical potentials:

µi = biµB − qiµe, i =
{
p, n, e, µ−} , (2.26)

where bi, qi are the baryon number and the electric charge of each particle

and µe is an chemical potential of electron. Solving the TOV equation with

the EoS that satisfies the conditions (2.25) and (2.26), we can obtain the

desired MR relation.

Figure 2.3 presents the obtained MR relations from the three parameter

sets. We tabulate the maximum mass (Mmax) and radius (Rmax) in Table 2.4

for each line. In three results, NL3 EoS is too stiff to be consistent with the

observational data. On the other hand, MTEC EoS is most consistent with

all the data and TM1 EoS is considerably good. In the following, we take

MTEC and TM1 as parameter sets of the RMF theory and discard NL3.
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Figure 2.3: MR relations calculated from RMF EoSs with the condi-

tions (2.25) and (2.26). The solid, dotted, and dot-dashed lines correspond

to the results for MTEC, TM1, NL3, respectively. The two horizontal boxes

denote the 2M⊙ observational data reported in Refs. [32, 33]. In addition, the

two areas mean the 68% and 95% confidence counters evaluated in Ref. [93].

Table 2.4: The maximum mass (Mmax) and the radius (Rmax) predicted from

three RMF models. The mass is normalized by the mass of sun Msun.

MTEC TM1 NL3

Mmax/Msun 2.02 2.18 2.77

Rmax [km] 10.8 12.3 13.2

2.4 Two phase model

The EPNJL model is inapplicable for the description of baryonic degree free-

dom, although it well explains mesonic properties. We therefore take two-

phase model approach in which the RMF theory is used for the hadron phase

and the EPNJL model for the quark phase. The transition point from the

hadron phase to the quark phase is determined by the Gibbs criterion.

Pressures of the RMF theory and the EPNJL model are given by

PEPNJL(µB, T ) = −{ΩEPNJL(µB, T )− ΩEPNJL(0, 0)} −B, (2.27)

PRMF(µB, T ) = −ΩRMF(µB, T ), (2.28)

respectively. We have introduced the bag constant B in Eq. (2.27) in order to

describe the difference of vacuums between the hadron phase and the quark

phase. The actual value of B is fixed so that the hadron-quark deconfinement

transition temperature becomes Tpc = 171 MeV at µB/T = 0. From the

Gibbs criterion, the hadron phase is realized when PRMF > PEPNJL, while
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Table 2.5: The label of the two-phase model we consider.

hadron phase quark phase label

MTEC EPNJL model with Gv = 0 TPMa1

MTEC EPNJL model with Gv = 0.36Gs TPMa2

TM1 EPNJL model with Gv = 0 TPMb1

TM1 EPNJL model with Gv = 0.36Gs TPMb2

the system is in the quark phase for PRMF < PEPNJL. With this prescription,

Tpc = 171 MeV is predicted at µB/T = 0 when we take B = 100 MeV4, even

if we use MTEC or TM1 for the hadron phase.

In the Gibbs criterion, the hadron-quark phase transition is the first-order

and this order is inconsistent with LQCD prediction in which the transition

is crossover at µB/T = 0 [22]. In the following analyses on neutron star

property, we focus on the low-T and high-µB region where the hadron-quark

phase transition may be the first-order [25]. Our approach is thus valid for the

region. See also Refs. [95] on the possibility that the transition is crossover

in the low-T and high-µB.

2.5 Phase transition line without Gv

In the previous section, we picked up MTEC and TM1 as the RMF theory.

Hence, we can take two types of two-phase model; see Table 2.5. Now, we first

consider the case of TPMa1 and TPMb1, i.e., the case that the vector-type

interaction is switched off, and investigate whether the quark matter exists

in the inner core of 2M⊙ neutron star. In the EoS of two-phase model, the

charge neutral and β-equilibrium conditions are also imposed on the quark

phase. The former is given by

µu =
1

3
µB − 2

3
µe, µd =

1

3
µB +

1

3
µe, (2.29)

and the latter is by

2

3
nu −

1

3
nd − ne − nµ− = 0. (2.30)

Under the quark-matter EoS and the hadron-matter EoS, the EoS of the

two-phase model is constructed according to the Gibbs criteria.

The panel (a) of Fig. 2.4 presents the MR relations of TPMa1 and

TPMb1. The results obtained from MTEC and TM1 only are also plot-

ted for the comparison. The Fermi energy decreases when the quark matter

appears. Then, the derivative ∂M/∂ρB, or ∂M/∂R becomes negative. In-

deed, the mass of neutron star starts to decrease atM = 1.97M⊙ for TPMa1
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Figure 2.4: (a) The MR relation calculated from TPMa1 and TPMb1. For

the comparison, we also plot the results from MTEC and TM1. The meaning

of two horizontal boxes and the two areas are the same as in Fig. 2.3. (b) The

hadron-quark phase transition line drawn by using TPMa1 and TPMb1. The

vertical axis is temperature T and the horizontal axis is the baryon chemical

potential µB = 3µl.

and at M = 2.04M⊙ for TPMb1, but these values are consistent with the

observational data.

The panel (b) of Fig. 2.4 illustrates the hadron-quark phase transition line

drawn by TPMa1 and TPMb1 in which the matter is taken to be symmetric,

i.e., the number densities of u- and d-quarks (neutron and proton) are equal.

The vertical axis is T and the horizontal axis corresponds to baryon chemical

potential µB = 3µq. The critical baryon chemical potential µc
B at T = 0 is

1750 MeV for TPMa1, but 1560 MeV for the TPMb1. If the vector-type

interaction switches on, the quark-matter EoS becomes stiff. Therefore, it

is predicted that the transition line is shifted toward the high µB direction

and TPMa1 and TPMb1 yields the lower bound of µc
B for each class of the

two-phase models.

2.6 Effects of Gv on hadron-quark transition

line

Next, we consider two kinds of two-phase models, TPMa2 and TPMb2, where

TPMa2 has no vector-type interaction but TPMb2 has it. In these models,

we numerically checked that the quark matter does not take place in the

inner core of neutron star, i.e., the pressure of the hadron phase is always

larger than that of the quark phase. This fact suggests that the strength

Gv = 0.36Gs is too strong and a possibility of the existence of the quark

phase is excluded.

The hadron-quark phase transition line predicted by TPMa2 is shown in

Fig 2.5. From the comparison with the result of the TPMa1, the vector-type
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Figure 2.5: The hadron-quark phase transition line calculated by TPMa2.

interaction with the strength Gv = 0.36Gs largely delays the transition. The

critical value µc
B for TPMa2 is 2600 MeV and the corresponding density is

ρB ∼ 13ρ0, where ρ0 is 0.153fm−3. Such a high density is not realized in

the inner core of neutron star. As for TPMb2, we found that the transition

line never reach the µB axis. In the RMF theory with the TM1 parameter

set, the self-interaction (ωµωµ)
2 of ω-meson makes the hadron phase favor as

increasing µB. Furthermore, the quark phase is more difficult to appear if

the vector-type interaction is non-zero. Due to these effects, the transition

line cannot reach the µB axis.

2.7 Density dependence of Gv

In the previous section, it was seen that the quark phase does not take place in

the inner core of neutron star. The reason is that the vector-type interaction

is very strong. In this section, we consider the density-dependent vector-type

interaction in which the strength is weaken with ρB.

2.7.1 Density-dependent vector-type interaction

We now introduce the density-dependent vector-type interaction as

Gv(nl) = Gv exp

[
−b
(
nl

ρ0

)2
]
, (2.31)

where b is a free parameter. The case of b → ∞ corresponds to the EPNJL

model without the vector-type interaction, whereas the EPNJL model with

Gv = 0.36Gs is obtained for b = 0. The thermodynamic potential is obtained

by the replacement Gv → Gv(nl) in Eq. (2.12). By using EPNJL model with

Eq. (2.31), we define two types of models presented in Table. 2.6.



2.7. DENSITY DEPENDENCE OF GV 29

Table 2.6: The label of the two-phase model with the density-dependent

vector-type interaction.

hadron phase quark phase label

MTEC EPNJL model with Gv(nl) TPMa3

TM1 EPNJL model with Gv(nl) TPMb3
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Figure 2.6: The MR relation calculated from TPMa3 (left panel) and TPMb3

(right panel). For TPMa3, Gv(7.2ρ0) = 0.12Gs is used and Gv(6ρ0) = 0.18Gs

for TPMb3.

As already mentioned above, TPMa1 and TPMb1 predict the appearance

of the quark matter in the inner core of neutron star, while TPMa2 and

TPMb2 do not due to the strong vector-type interaction. This fact indicates

that the quark matter can appear at some critical value bc with increasing

b. To determine the value of bc, we assume that the quark phase is realized

in the inner core of stable neutron star. If the quark phase appears in the

inner core of neutron star, the mass decreases, i.e., neutron star becomes

unstable; see Fig. 2.4. Hence, we search the value of Gv and the density

when the maximum mass predicted by TPMa3 (TPMb3) coincides with that

of MTEC (TM1).

The left panel of Fig. 2.6 shows the MR relation of TPMa3. The quark

phase appears at 2.02M⊙ and nl = 7.2ρ0, when we set Gv(7.2ρ0) = 0.12Gs.

This value is the upper value of Gv(nl) when the quark phase is realized in

the core of neutron star. By inserting nl = 7.2ρ0 and Gv(nl) into Eq. (2.31),

we can obtain the minimum value of b, i.e., bc = 0.001. The right panel is

the same as the left panel but TM1 and TPMb3 is taken instead of MTEC

and TPMa3. In the case of TPMb3, the maximum mass 2.17M⊙ is achieved

at nl = 6ρ0 and Gv(6ρ0) = 0.18Gs, which leads to bc = 0.001. Therefore, the

value of bc is common for TPMa3 and TPMb3.
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Figure 2.7: The band of the hadron-quark phase transition line predicted by

TPMa3 (left panel) and TPMb3 (right panel). In the calculation, we assume

that the quark phase exists in the inner core of neutron star.

2.7.2 Hadron-quark phase transition line with Gv(nl)

In Fig. 2.7, we draw the hadron-quark phase transition line for symmetric

matter. In the left panel, the lower line is obtained from TPMa1, while the

upper line is from TPMa3 with bc = 0.001. Hence, the transition line should

lie within the red band if the quark phase exists in the inner core of neutron

star. The right panel presents the same result but the lower line is drawn

by TPMb1 and the upper line is by TPMb3 with bc = 0.001. The critical

baryon chemical potential µc
B at T = 0 is in 1750 MeV ≤ µc

B ≤ 1910 MeV for

the left panel and in 1560 MeV ≤ µc
B ≤ 1860 MeV for the right panel. This

indicates that the upper line has little dependence on the parameter set of

the RMF theory.

2.8 Short summary

In this chapter, we have investigated the hadron-quark phase transition line

based on some two-phase models. For the quark phase, we used the EPNJL

model with the vector-type interaction. The strength Gv of the vector-type

interaction at µl = 0 was determined from LQCD data on the quark num-

ber density calculated by the imaginary chemical potential method. The

obtained value is Gv = 0.36Gs, where Gs is the scalar-type interaction.

As for the hadron phase, the relativistic mean field (RMF) theory was

applied with the three parameter sets; TM1 [90], NL3 [91], and MTEC [92].

All the parameter sets yield almost the same equation of state (EoS) for

ρB ≤ ρ0. On the contrary, the behavior of the EoS in the large ρB region is

quite different among them. Hence, we calculated the MR relation of neutron

star from the three parameter sets and compared with the observational data

and the statistically estimated one. We thus selected MTEC and TM1 as

suitable parameter sets.

Next, we constructed four two-phase models, i.e., TPMa1, TPMa2, TPMb1,
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and TPMb2. By using these models, we calculated the MR relation. Among

these models, TPMa1 and TPMb1 predict that the quark phase appears in

the inner core of neutron star, while the quark phase is not realized for the

other models. As for the hadron-quark phase transition line, the transition

point is shifted toward large µB direction.

Finally, the density-dependent vector-type interaction was considered.

We took a Gaussian form for the density dependence in which one param-

eter b is introduced. We then constructed TPMa3 and TPMb3, i.e., the

density-dependent vector-type interaction is equipped in the quark part. By

assuming that the quark phase exists in the inner core of neutron star, we

showed that the lower value of b is 0.001 for both TPMa3 and TPMb3. From

TPMa1 and TPMa3, the hadron-quark phase transition line was drawn. As

a result, the critical baryon chemical potential µc
B at T = 0 lies in the re-

gion 1750 MeV ≤ µc
B ≤ 1910 MeV, if the quark phase appears in the inner

core of neutron star. As for TPMb1 and TPMb3, the obtained result is

1560 MeV ≤ µc
B ≤ 1860 MeV. These suggest that the upper value of µc

B has

little dependence on the RMF theory taken.



Chapter 3

2+1-flavor QCD in the

imaginary region

3.1 Introduction

In this chapter, we consider the 2+1-flavor QCD in the imaginary chemical

potential region, where the light- and s-quark chemical potentials, µl = iθlT

and µs = iθsT , are introduced. In this region, the QCD does not encounter

the sign problem shown in Eq. (1.38). Therefore, information on finite real

(µl, µs) can be extracted from LQCD simulations, by employing the analytic

continuation. Along this strategy, it is important to know the analyticity

of the imaginary chemical potential region. For the 2-flavor case, it is well-

known that the first-order RW transition takes place at θl = π/3 and the

analyticity is breakdown there. On the contrary, as shown in Ref. [39], the

RW transition point is shifted to high θl direction when the RW periodicity

is broken.

This previous work encourages us to study properties of the QCD in the

imaginary chemical potential region, µl = iθlT and µs = iθsT . We clarify

conditions imposed on (θl, θs) to realize the RW periodicity, and inversely,

to break the periodicity. Next, we introduce the Polyakov-loop extended

Nambu–Jona-Lasinio (PNJL) model [98] that possesses the same properties

as the QCD in the (θl, θs) region. By using the PNJL model, we calculate

some thermodynamic quantities and draw the QCD phase diagram, in order

to check the prediction of Ref. [39]. We also investigate how the analytic

region can be expanded by breaking the RW periodicity. We will show that

no first-order transition occurs for some choices of θl and θs.

3.2 RW periodicity in the QCD

We first consider the case that all the imaginary chemical potentials µf =

iθfT (f = u, d, s) are treated as independent variables. The 2+1-flavor QCD

is recovered when we set θu = θd = θl. Our starting point is the grand-

32
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canonical partition function

ZQCD =

∫
DADq̄Dq exp [−SQCD] (3.1)

with the action

SQCD =

∫ β

0

dτ

∫
d3x

[
q̄

(
γµDµ + m̂− i

θ̂

β
γ4

)
q +

1

2g2
TrcFµνFµν

]
, (3.2)

where θ̂ = diag(θu, θd, θs) is the dimensionless imaginary chemical potential

matrix. The definition of the other symbols is the same as in Eq. (1.2). Note

that the anti-periodic boundary condition is imposed on the quark fields,

qf (β,x) = −qf (0,x). (3.3)

We transform the quark fields as

qf → exp

[
i
θf
β
τ

]
qf . (3.4)

The integral measure in Eq. (3.1) is unchanged, but the action SQCD becomes

ZQCD =

∫ β

0

dτ

∫
d3x

[
q̄ (γµDµ + m̂) q +

1

2g2
TrcFµνFµν

]
, (3.5)

i.e., the chemical potential term is removed. Instead, the boundary condition

of qf is twisted as

qf (β,x) = −eiθf q(0,x). (3.6)

Now, let us remember the Z3 transformation generated by Eq. (1.9). The

Z3-transformed quark field satisfies the new boundary condition twisted by

an element of the Z3 group,

qf (β,x) = − exp

[
i

(
θf +

2πk

3

)]
qf (0,x), (3.7)

shown in Eq. (1.17). Here, k = −1, 0, 1. In Eq. (3.7), the additional shift

2πk/3 can be compensated by the shift θf → θf − 2πk/3, and thereby we

can obtain the equality

ZQCD(θf + 2πk/3) = ZQCD(θf ). (3.8)

The QCD grand-canonical partition function thus has the periodicity of 2π/3

in θf , i.e., the RW periodicity.

From the discussion mentioned above, it is found that the RW periodicity

is a consequence of the invariance under the Z3 transformation and the shift

θf → θf + 2πk/3. This is called the extended Z3 transformation [96, 97]. In

the 2+1-flavor case, θu = θd = θl, the RW periodicity is seen for the condi-

tion θl = θs. Meanwhile, if we set any one of θf to a constant, e.g., θs = 0

in Ref. [39], the periodicity disappears since the shift of θf is unavailable.

The thermodynamic potential ΩQCD of the QCD also has the same proper-

ties, because of the relation ΩQCD = −T logZQCD. In the next section, we

introduce the 2+1-flavor PNJL model.
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3.3 2+1-flavor PNJL model

We formulate the 2+1-flavor Polyakov-loop extended Nambu–Jona-Lasinio

(PNJL) model [98]. The Lagrangian is defined by

LPNJL =q̄(γµDµ + m̂)q + U(Φ, Φ̄)−Gs

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2

]
+K [detf,f ′ q̄(1 + γ5)q + detf,f ′ q̄(1− γ5)q] , (3.9)

where q = (u, d, s)T is the quark field and the mass matrix m̂ = diag(ml,ml,ms)

is is composed of the u- and d-quark masses ml and the s-quark current mass

ms. The covariant derivative Dµ, the Polyakov-loop potential U(Φ, Φ̄) have
the same form as the 2-flavor case, respectively. The quark fields interact with

each other through two-types of interactions; one is the four-point scalar-type

interaction and the other is the Kobayashi-Maskawa-’t Hooft (KMT) interac-

tion [2, 3, 99]. The former preserves U(3)R⊗U(3)L symmetry, while the latter

breaks U(1)A symmetry and causes the flavor mixing, which is an essential

ingredient to reproduce the mass of η′-meson.

Also for the 2+1-flavor case, we can consider the EPNJL model [102], i.e.,

the PNJL model with the entanglement vertex in Eq. (2.2). However, the

2+1-flavor EPNJL model cannot explain the weak correlation between the

chiral and the deconfinement transitions, suggested by LQCD simulation [24].

At present, there is no effective model that can explain the weak correlation,

and hence we perform a qualitative analysis on the 2+1-flavor QCD in the

imaginary chemical potential region by using the PNJL model.

3.4 Thermodynamic potential

As for the 2-flavor case, we apply the MFA to the Lagrangian (3.9). For

the 2+1-flavor case, we also assume that the pseudo-scalar type condensate

does not occur. Furthermore, if we neglect the Fock term and the condensate

⟨q̄fqf ′⟩ for f ̸= f ′, the scalar-type interaction is replaced as

−Gs

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2

]
→ −4Gs

∑
f

σf q̄fqf + 2Gs

∑
f

σ2
f . (3.10)

In the KMT interaction, we have to calculate the determinant in flavor space,

det

ūΓ±u ūΓ±d ūΓ±s

d̄Γ±u d̄Γ±d d̄Γ±s

s̄Γ±u s̄Γ±d s̄Γ±s

 , (3.11)

for Γ± = 1± γ5. However, by using the assumption employed in the scalar-

type interaction, the determinant term becomes simple as

K [detf,f ′ q̄(1 + γ5)q + detf,f ′ q̄(1− γ5)q] = 2K(ūu)(d̄d)(s̄s). (3.12)
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We finally reach the replacement

K
[
detf,f ′ q̄(1 + γ5)q + detf,f ′ q̄(1− γ5)q

]
→ 2Kσdσsūu+ 2Kσuσds̄s+ 2Kσuσd − 4Kσuσdσs. (3.13)

See Appendix C for more detail. Note that σu = σd = σl in the 2+1-flavor

case.

By using Eqs. (3.10) and (3.13), we can obtain the Lagrangian under the

MFA as

LMFA
PNJL = q̄(γµDµ + M̂)q + U(Φ, Φ̄) + 2Gs(2σ

2
l + σ2

s )− 4Kσ2
l σs, (3.14)

where M̂ = diag(Ml,Ml,Ms) is the constituent quark-mass matrix composed

of

Ml = ml − 4Gsσl + 2Kσlσs, (3.15)

Ms = ms − 4Gsσs + 2Kσ2
l . (3.16)

Substituting Eq. (3.14) into the expression Eq. (1.24) and using Eq. (1.28),

we obtain the thermodynamic potential of the 2+1-flavor PNJL model:

ΩPNJL =UM + U(Φ, Φ̄)− 2
∑
f

∫
d3p

(2π)3

[
3Ef

+
1

β
log
(
1 + 3(Φ + Φ̄e−β(Ef−µf ))e−β(Ef−µi) + e−3β(Ef−µf )

)
+

1

β
log
(
1 + 3(Φ̄ + Φe−β(Ef+µf ))e−β(Ef+µi) + e−3β(Ef+µf )

)]
. (3.17)

In Eq. (3.17), we have defined the following expressions:

UM = 2Gs

∑
f

σ2
f − 4Kσuσdσs, (3.18)

Ef =
√

p2 +M2
f . (3.19)

Also for the 2+1-flavor case, the vacuum term is regularized by the three-

dimensional cutoff scheme; see Eq. (2.14).

For the parameter T0 of the Polyakov-loop potential, we set T0 = 270

MeV, i.e., the original value in Ref. [68]. The other parameters are the same

as in Table 2.1. The parameters in the quark part are determined so as

to reproduce the pion, kaon, η′ meson masses and the pion decay constant

[100]. The parameters thus obtained are tabulated in Table 3.1. Finally, the

variables Φ, Φ̄, σl, and σs are determined from the stationary conditions,

∂ΩPNJL

∂X
, X = Φ, Φ̄, σl, σs. (3.20)
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Table 3.1: The values of Λ,ml,ms, Gs, and K in the quark part. The values

are taken from Ref. [100].

Λ [MeV] ml [MeV] ms [MeV] GsΛ
2 KΛ5

602.3 5.5 140.7 1.835 12.36

3.5 RW periodicity and its breaking in the

PNJL model

To see that Eq. (3.17) has the same properties as the QCD thermodynamic

potential clearly, we introduce the flavor-dependent modified Polyakov loop

and its conjugate as

Ψf = eiθfΦ, Ψ̄f = e−iθf Φ̄. (3.21)

These quantities are extended-Z3 invariant, unlike the Polyakov loop. In

Eq. (3.17), the θf dependence is embedded in the second and third lines.

These can be rewritten by Ψf and Ψ̄f and become

1

β

[
log
(
1 + 3Ψfe

−βEf + 3Ψ̄fe
−2βEf e3iθf + e−3βEf e3iθf

)
+ log

(
1 + 3Ψ̄fe

−βEf + 3Ψfe
−2βEf e−3iθf + e−3βEf e−3iθf

)]
. (3.22)

The factors depending on θf are {Ψf , Ψ̄f , e
±3iθf}, i.e., all are the extended-Z3

invariant. Therefore, the thermodynamic potential ΩPNJL possesses the RW

periodicity in general. Once we fix any one of θf , however, the corresponding

modified Polyakov loop is not invariant under the extended Z3 transforma-

tion, since Ψf → Ψfe
2πik/3. Hence, ΩPNJL does not show the RW periodicity.

It is thus found that ΩPNJL has the same properties as ΩQCD on the RW

periodicity.

3.6 Numerical results

We present the numerical results calculated from the PNJL model. We first

calculate ΩPNJL and the quark number density nq under the conditions, (I)

θl = θs and (II) θl is varied with θs = 0. The QCD phase diagram in the

θl-T plane is also drawn for conditions (I) and (II). It is found that the RW

periodicity preserves for the condition (I), while not for the condition (II).

Finally, the u- and s-quark number densities are calculated. For the former,

we fix the d- and s-quark chemical potentials, and the u- and d-quark chem-

ical potentials are taken to be constants for the latter. In these situations,

we show that no first-order phase transition occurs in the quantities.
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Figure 3.1: The θl dependence of ΩPNJL (left panel) and the imaginary part

of nq (right panel) for condition (I). The dotted line denotes the result with

T = 200 MeV and the solid line means the one with T = 250 MeV.
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Figure 3.2: The θl dependence of ΩPNJL and the imaginary part of nq for

condition (II). The meaning of the lines is the same as in Fig. 3.1.

3.6.1 Behavior of thermodynamic quantities

The quark number density nq is defined from ΩPNJL as

nq =
∑
f

nf = −
∑
f

∂ΩPNJL

∂µf

= iβ
∑
f

∂

∂θf
ΩPNJL, (3.23)

where nf is the number density for each flavor. When ΩPNJL has the RW

periodicity, nq also does. Note that ΩPNJL is charge-even and hence nq is

charge-odd.

Figure 3.1 shows the θl dependence of ΩPNJL and the imaginary part of

nq for the condition (I). The dotted line is the result for T = 200 MeV and

the solid line is for T = 250 MeV. Both of them have the RW periodicity,

as expected, and are a smooth function of θl for T = 200 MeV. For T =

250 MeV, ΩPNJL has a cusp structure at θl = π/3 mod 2π/3, while nq is

discontinuous there. As for the types of the singularities, see Appendix D.

These singularities indicate the RW transition and its end point is located in

200 < T < 250 MeV.

The results for the condition (II) are plotted in Fig. 3.2. The lines are the
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same as in Fig. 3.1. The RW periodicity is lost, but the first-order transition,

which is the remnant of the RW transition, still occurs. We call it the first-

order “RW-like transition”. In the region of 0 ≤ θl ≤ 2π/3, the RW-like

transition takes place at θl = 0.42π, i.e., the point is larger than that of the

RW transition point θl = π/3. Hence, the analytic region becomes broad, as

pointed out in Ref. [39].

3.6.2 QCD phase diagram

Next, we aim at drawing the QCD phase diagram for the conditions (I) and

(II). To search the RW or RW-like transition points, charge-odd quantity is a

good indicator [103], since a discontinuity is seen at the transition points. We

thus use nq for this purpose. To draw the crossover chiral and deconfinement

transition lines, we define the dimensionless curvature matrix [104] as

C =


T 2cσlσl

T 2cσlσs T−1cσlΦ T−1cσlΦ̄

T 2cσsσl
T 2cσsσs T−1cσsΦ T−1cσsΦ̄

T−1cΦσl
T−1cΦσs T−4cΦΦ T−4cΦΦ̄

T−1cΦ̄σl
T−1cΦ̄σs

T−4cΦ̄Φ T−4cΦ̄Φ̄

 . (3.24)

Here, we have used the notation

cxy =
∂2ΩPNJL

∂x∂y
, x, y = {σl, σs,Φ, Φ̄}. (3.25)

The inverse of Eq. (3.24) yields the susceptibilities. We then determine the

crossover transition point by the peak position of the corresponding suscep-

tibilities.

Figure 3.3 presents the QCD phase diagram in the θl-T plane for the con-

dition (I). In this case, the RW periodicity exists and hence we only plot the

region 0 ≤ θl ≤ π/3. The dotted and the dot-dashed lines mean the crossover

deconfinement transition line and the crossover chiral transition line, respec-

tively. The vertical dashed line is the RW transition line at θl = π/3. The

remaining solid line stands for the first-order deconfinement transition line.

Then, the three first-order lines merge at the RW end point, which means

that the end point is a triple point. The RW end point can become a tricriti-

cal point, i.e., one first-order line and two second-order lines merge there. In

Refs. [55, 103], it was found that the end point is tricritical if we choose

U(Φ, Φ̄) = −bT
[
54e−aTΦΦ̄ + logH(Φ, Φ̄)

]
(3.26)

for the Polyakov-loop potential [98, 101], where a, b are the parameters and

H(Φ, Φ̄) is defined in Eq. (2.6). Furthermore, the 2+1-flavor EPNJL model

also predicts the tricritical point [102]. More robust study may be needed to

determine whether the end point is triple or tricritical point.

Now, let us move to the condition (II). We plot the QCD phase diagram

in Fig. 3.4. The three dashed lines denote the first-order RW-like transition
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Figure 3.3: The QCD phase diagram for condition (I). The vertical dashed

line is the first-order RW transition line. The dot-dashed line means the

crossover chiral transition line, while dotted line does the crossover decon-

finement transition line. The solid line denotes the first-order deconfinement

transition line.

lines, while the meaning of the other lines is the same as in Fig 3.3. The

symbols E1,E2, and E3 are the locations of the RW-like end points; see

Table 3.2. From the location of E1, the RW-like transition starts at θl =

0.42π, which is consistent with LQCD prediction θl ∼ 0.45π in Ref. [39].

It is clearly seen that the RW periodicity disappears also for the phase

diagram, and the analytic region is broader than that of the condition (I).

The diagram is symmetric with respect to the line θl = π. This property

comes from the trivial periodicity of 2π in θl; see Appendix D. Due to this

fact, the chiral and deconfinement transition lines are symmetric around E2.

On the contrary, the chiral transition line becomes discontinuous when it

hits the RW-like transition line. As for the deconfinement transition line,

the first-order region is asymmetric and it shrinks in comparison with the

case of condition (I).

Next, we compare the chiral transition lines Tchiral(θl) with LQCD calcu-

lations [40]. In Fig. 3.5, we present the ratio R = Tchiral(θl)/Tchiral(0) as a

function of (θl/π)
2 in which LQCD data are taken from Ref. [40]. The solid

lines are the results of the model calculation. The PNJL model thus repro-

Table 3.2: The values of T and θl at the RW-like end point.

Point E1 E2 E3

(T [MeV], θl) (236, 0.42π) (246, π) (236, 1.58π)
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Figure 3.4: The QCD phase diagram for condition (II). The meaning of

the lines is the same as in Fig. 3.4, except that the dashed line means the

first-order RW-like transition line. The points E1, E2, E3 correspond to the

RW-like end point, respectively.

duces LQCD data considerably for condition (I) and is almost consistent for

the condition (II).

Finally, let us concentrate on the region 0 ≤ θl ≤ 2π/3 and discuss the

behavior of the RW-like transition line. The RW-like transition line starts

at the point E1, i.e., (TRW′
, θRW

′

l ) = (236 MeV, 0.42π). In addition, the

transition point is located at θcl ∼ 0.483π in the high-T limit [39]. Hence, as

going away from the point, the transition line approaches θcl . The transition

line is well fitted by the polynomial function

θl = 0.42π + a1ξ + a2ξ
2, ξ =

T − TRW′

TRW′ , (3.27)

around E1 with a1 = −0.023 and a2 = 0.93, and its curvature ∂2θl/∂T
2

indeed positive.

3.6.3 Analyticity of number density

From the previous analyses, it was found that the analytic region is expanded

when we break extended Z3 symmetry, as shown for the condition (II). It is

thus expected that we can obtain a broader analytic region if extended Z3

symmetry is broken more strongly. In this section, we calculate the imaginary

part of the u- and s-quark number densities, Im(nu) and Im(ns), under the

situation that two of θf are fixed to constants. In the calculation of Im(nu),

we treat θu and θd independently, while take θu = θd = θl in the calculation

of Im(ns).

In Fig. 3.6, we plot the T and θu dependence of Im(nu). The left panel is

the result for the case of (θd, θs) = (π/4, 0) and the right panel corresponds
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Figure 3.5: The chiral transition line for condition (I) and (II). The vertical

axis is normalized by the transition temperature at θl = 0. The solid lines

are the model results, and the data with the error bars are LQCD results in

Ref. [40].

to (θd, θs) = (π/8, 0). The RW-like transition disappears in the right panel,

and we then numerically checked that this situation is realized for θd ≤ π/8

with θs = 0. Figure 3.7 presents Im(ns) as a function of T and θs. In the left

panel with θl = π/4, the RW-like transition still occurs, but it is not seen for

θl = π/5. We also numerically confirmed that no RW-like transition takes

place for θl ≤ π/5. These results indicate that the analytic continuation from

θu or θs is more informative than the case that the RW periodicity exists,

particularly for high T .

The extraction of s-quark number density at high T enables us to de-

termine the strength Gv,s of the vector-type interaction acting only on the

s-quark, −Gv,s(s̄γµs)
2. Under the MFA, this interaction shifts the s-quark

chemical potential as µ̃s = µs − 2Gv,sns, where ns is the s-quark number

density. Hence, ns is sensitive to the value of Gv,s and inversely we can pin

down the value of Gv,s from ns calculated by LQCD simulations, like Gv in

Chapter 2. The result in Fig. 3.7 suggests that the analytic continuation is

good to calculate ns at high T .

3.7 Short summary

In this chapter, we have studied properties of the QCD with finite µl = iθlT

and µs = iθsT . We first clarified the condition imposed on θl and θs to realize

the RW periodicity. The QCD exhibits the RW periodicity in general, but

the RW periodicity is broken when θl and/or θs is fixed to some constant

value. The fact can be interpreted as whether the QCD partition function is
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Figure 3.6: The T and θu dependence of the imaginary part of the u-quark

number density nu. The left panel is the result with (θd, θs) = (π/4, 0), and

the right panel corresponds to the one with (θd, θs) = (π/8, 0).
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Figure 3.7: The T and θs dependence of the imaginary part of the s-quark

number density ns. The left panel is the result with θl = π/4 and the right

panel corresponds to the one with θl = π/5.

invariant under the extended Z3 transformation or not. As a model with the

same properties as the QCD at finite θl and θs, we introduced the 2+1-flavor

PNJL model. Indeed, we showed that the thermodynamic potential of the

PNJL model has extended Z3 symmetry unless any one of θl and θs is taken

to be some constant.

By using the PNJL model, we calculated the thermodynamic potential

and the imaginary part of the quark number density, and drew the QCD

phase diagram for the conditions (I) θl is varied with θs = θl and (II) θl is

varied with θs = 0. The RW periodicity exists in all the results for condition

(I). The behavior of the phase diagram is the same as in the 2-flavor case,

i.e., the first-order RW transition takes place at θl = π/3 and the quantities

is a smooth function of θl at low T . As for condition (II), the RW periodicity

is not seen, but the analytic region is broader than that of condition (I),

as suggested in Ref. [39]. This property is advantageous for the analytic

continuation from the imaginary chemical potential region to the real one.

The results obtained for condition (II) show that the analytic region is

expanded by breaking the RW periodicity deliberately. Then, we considered
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the situation that two imaginary chemical potentials are fixed, i.e., the RW

periodicity is broken strongly. In such a situation, we calculated the imagi-

nary part of the u-quark and s-quark number densities, Im(nu) and Im(ns).

When θs = 0 and θd ≤ π/8, Im(nu) becomes smooth for any T and θu. For

Im(ns), analyticity is achived for any T and θs when θl ≤ π/5. If we perform

LQCD calculation under these conditions, nu and ns at real chemical poten-

tial region can be extracted for µu/T ≳ 1 or µs/T ≳ 1; note that information

is limited µu/T ≲ 1 or µs ≲ 1 for the case that the RW periodicity exists.



Chapter 4

QCD with isospin chemical

potential

4.1 Introduction

In this section, we return to the 2-flavor QCD and take into account the

isospin chemical potential µiso. In the inner core of neutron star, a highly

isospin-asymmetric environment is realized, and hence we need to know prop-

erties of the QCD with finite µiso, in order to discuss whether the quark mat-

ter exists there. Based on the extracted knowledge, it is possible to improve

the EPNJL model in Chapter 2 where the effects of µiso are not included in

the Lagrangian.

In both the real [42, 105, 106] and imaginary [55, 56, 57] µiso regions,

LQCD simulations become feasible because the fermion determinant has pos-

itivity, as shown later. Indeed, LQCD simulations were done so far, e.g., in

Refs. [42, 43, 56, 57]. In the finite µiso region, however, LQCD simulations

become unfeasible due to the occurrence of the charged-pion condensate,

i.e., the expectation value ⟨π±⟩ does not vanish. The condensate starts at

µiso = mπ/2 for zero temperature [44], while it occurs at mπ/2 ≤ µiso at

finite T [107]. It was suggested in Refs. [53, 54, 73] that the average phase

factor becomes almost zero in the condensed phase. The small value of the

average factor means that the sign problem is severe, and LQCD simulations

are thus hard to provide any results. Due to this, information on the quark

matter under finite µiso are limited. It is thus important to search the region

where LQCD simulations with µiso are easy to perform.

The candidate is the imaginary µiso = iθisoT region. Here, θiso is a di-

mensionless isospin chemical potential. In Ref. [57], it was demonstrated

that the θiso region is free from the sign problem. In addition, by employing

the chiral perturbation theory and the PNJL model, Sakai et al. showed in

Ref. [55] that that no pion condensate occurs there, at least, without the

light-quark chemical potential µl. Our aim is to prove that the pion conden-

sate does not take place, even including the imaginary µl = iθlT , by using

44
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QCD inequalities.

In the following, we first explore the γ5-hermiticity of the fermion determi-

nant with real µiso or imaginary µiso in which imaginary µl is also considered.

Positivity of the fermion determinant enables us to use QCD inequalities. We

derive QCD inequalities and demonstrate that the charged-pion condensate

does not occur for imaginary µiso in the next section.

4.2 Fermion determinant and γ5-hermiticity

Toward deriving QCD inequalities, we first discuss the γ5-hermiticity of the

fermion matrix in some cases. Our starting point is the two-flavor QCD

Lagrangian with finite µl in Euclidean space-time:

LQCD = q̄(γµDµ + m̂− µlγ4)q +
1

2g2
TrcFµνFµν , (4.1)

where q = (u, d)T is the quark field and The current quark-mass matrix m̂

is given by m̂ = diag(mu,md) with current u- and d-quark masses. The

definition of the other symbols is the same as in Sec. 1.2.1. In the following

discussion, we do not consider the θ term that breaks CP symmetry [1, 2, 3]

since the term causes the sign problem [12, 102].

From Eq. (4.1), the QCD action and the QCD grand-canonical partition

function are defined as

SQCD =

∫ β

0

dτ

∫
d3xLQCD, (4.2)

ZQCD =

∫
DADq̄Dq exp [−SQCD] , (4.3)

where β = 1/T . In Eq. (4.3), the quark field has a bilinear form and can be

integrated out:

ZQCD =

∫
DADetM(µl)e

−SG ≡
∫

Dµ(A), (4.4)

Dµ(A) = DADetM(µl)e
−SG , (4.5)

where SG is the pure gauge action andM(µl) is the two-flavor fermion matrix

defined by

M(µl) = γµDµ + m̂− µlγ4. (4.6)

The symbol “Det” in Eq. (4.5) stands for the determinant for flavor, Dirac,

and color indices. For µl = 0 and µl = iθlT , positivity of the fermion deter-

minant is guaranteed; see Eqs. (1.33) and (1.36). We then keep imaginary µl

finite.
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Now, we consider the finite isospin chemical potential, i.e., µiso > 0 or

µiso < 0. In this case, u- and d-quarks do not degenerate and the correspond-

ing chemical potentials µu and µd yield the relation

µl =
µu + µd

2
, µiso =

µu − µd

2
. (4.7)

Inversely, µu and µd are represented by

µu = µl + µiso, µd = µl − µiso, (4.8)

respectively. For finite µiso, the QCD Lagrangian is changed into

L̃QCD = LQCD − µisoq̄γ4τ
3q (4.9)

and isospin SU(2) symmetry is explicitly broken to U(1)I3 , where I3 = τ 3/2

for the third component τ 3 of the Pauli matrix. The fermion determinant

thus becomes

M̃(µl, µiso) = γµDµ + m̂− µlγ4 − µisoγ4τ
3. (4.10)

4.2.1 γ5-hermiticity for real µiso

We first consider the case that µiso is real. Under the setting of mu = md =

ml, Eq. (4.10) satisfies the relation

τaγ5M̃(iθlT, µiso)γ5τ
a = M̃†(iθlT, µiso) (a = 1, 2), (4.11)

where τa means the first or the second component of the Pauli matrix. Here,

the summation is not taken over a. From Eq. (4.11), it can be proved that

the fermion determinant DetM̃(iθlT, µiso) possesses positivity [109], because{
DetM̃(iθlT, µiso)

}∗

=
{
detM′(iθlT + µiso)detM′(iθlT − µiso)

}∗

= detM′(iθlT − µiso)detM′(iθlT + µiso)

= |detM′(iθlT + µiso)|2

= DetM̃(iθlT, µiso) ≥ 0, (4.12)

where

M′(iθlT ± µiso) = γµDµ +ml − (iθlT ± µiso)γ4 (4.13)

is the one-flavor fermion matrix with iθlT ± µiso. In Eq. (4.12), the symbol

“det” means the determinant only for Dirac and color indices. Note that

γ5M′(iθlT ± µiso)γ5 = M′(iθlT ∓ µiso) (4.14)
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Table 4.1: In this table, we present whether positivity exists or not for two

cases. The word “not” means that positivity of the measure does not exist.

non-zero real µl imaginary µl

real µiso not has positivity for mu = md

imaginary µiso not has positivity for any mu and md

and hence

{detM′(iθlT ± µiso)}∗ = detM′(iθlT ∓ µiso). (4.15)

This relation means that the one-flavor fermion determinant itself does not

have positivity. From the discussions mentioned in Eq. (4.12), the measure

Dµ̃(A) = DADetM̃(iθlT, µiso)e
−SG (4.16)

maintains positivity. Along this line, we also call Eq. (4.11) the γ5-hermiticity.

4.2.2 γ5-hermiticity for imaginary µiso

Next, we show that the fermion determinant also keeps positivity for µiso =

iθisoT with the dimensionless isospin chemical potential θiso
1). For µiso =

iθisoT , the fermion matrix does not satisfy Eq. (4.11), but rather fulfills

γ5M̃(iθlT, iθisoT )γ5 = M̃†(iθlT, iθisoT ). (4.17)

Here, the Pauli matrix τa is not needed to prove Eq. (4.17).

From this, the determinant

DetM̃(iθlT, iθisoT ) = detM′(iθuT )detM′(iθdT ) (4.18)

have positivity, since the relation

γ5M′(iθfT )γ5 = (M′(iθfT ))
† (4.19)

is satisfied for f = u, d and this type of γ5-hermiticity guarantees positivity of

the fermion determinant [15]. Here, we have used Eq. (4.13) and introduced

θu, θd as

θu = θl + θiso, θd = θl − θiso. (4.20)

From the discussions mentioned above, we can apply QCD inequalities

to the case of imaginary µl and real µiso, and also for the case of imaginary

µl and imaginary µiso; see Table 4.1. In the next section, we formulate QCD

inequalities.

1)In this case, we need not to impose the condition mu = md for the proof of positivity.

However, we keep mu = md and do not discuss the case of mu ̸= md in this thesis. See,

e.g., Ref. [108] for the discussion of mu ̸= md.
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4.3 QCD inequalities and charged-pion con-

densate

The Lagrangian (4.1) has flavor U(1)I3 symmetry. Here, flavor U(1)I3 sym-

metry means that the Lagrangian is invariant under the following transfor-

mation:

q → eiϕvτ3q, (4.21)

where ϕv is a rotational angle. However, the charged-pion condensate ⟨π±⟩
breaks the symmetry, because the quantity ⟨π±⟩ is not invariant for q →
eiϕVτ3q. Then, flavor U(1)I3 symmetry is spontaneously broken and one

Nambu-Goldstone boson appears; the Nambu-Goldstone boson is π+ when

the condensate of π− is realized and vice versa. From this fact, we should

prove that π± cannot be the Nambu-Goldstone boson accompanied with the

spontaneous breaking of U(1)I3 symmetry in the imaginary µiso region.

4.3.1 QCD inequalities for general meson

QCD inequalities provide a powerful framework to see which symmetry is

spontaneously broken or not [12, 44, 49, 52]. Now, we derive QCD inequalities

for the meson operator Ja(x) = q̄(x)Γaq(x), where Γa is a product of the γ-

matrix and the Pauli matrix, which is taken so as to reproduce a quantum

number of the meson considered. The subscript a denotes the label of meson.

Hereafter, we impose the condition mu = md = ml.

The meson correlator is defined by

⟨Ja(x)J†
a(0)⟩q,A =

1

ZQCD

∫
DADq̄DqJa(x)J†

a(0) exp [−SQCD] , (4.22)

where J†
a(x) = q̄(x)Γ̄aq(x) for Γ̄a = γ4Γaγ4. The quark integral can be

performed by using the Matthews-Salam formula∫
Dq̄Dq q̄iqj q̄kql e−q̄Wq

= DetW
{
(W−1)ji(W

−1)lk − (W−1
li )(W−1)jk

}
, (4.23)

where W is any matrix with color, flavor, Dirac indices and the subscript i

represents all the three indices. After applying Eq. (4.23) to Eq. (4.22), we

obtain

⟨Ja(x)J†
a(0)⟩q,A =− ⟨Tr

[
S(x, 0)ΓaS(0, x)Γ̄a

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A

= ⟨Tr
[
S(x, 0)iΓaS(0, x)iΓ̄a

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A
, (4.24)
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where

⟨O⟩A =
1

ZQCD

∫
DAODetM. (4.25)

The first term on the right side of Eq. (4.24) is a connected piece and the

second term corresponds to a disconnected piece. The quark propagator

S(x, y) is defined by ⟨x|M−1 |y⟩.
If there is an operator P that yields the relation

M† = PMP−1, (4.26)

then the propagator satisfies

S(0, x) = PS†(x, 0)P−1. (4.27)

After inserting Eq. (4.27) into Eq. (4.24) and employing the Cauchy-Schwartz

inequality

Tr
[
AB†] ≤√Tr [AA†]

√
Tr [BB†], (4.28)

the right side of Eq. (4.24) can be rewritten into

⟨Ja(x)J†
a(0)⟩q,A ≤⟨Tr

[
S(x, 0)S†(x, 0)

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A
. (4.29)

This is QCD inequalities.

For the flavor non-singlet meson channel, a disconnected piece in Eq. (4.29)

vanishes. We will show in the next section that this is true for the charged-

pion channel. For such a case, we thus obtain

⟨Ja(x)J†
a(0)⟩q,A ≤⟨Tr

[
S(x, 0)S†(x, 0)

]
⟩
A
. (4.30)

The asymptotic behavior (as |x| → ∞) of ⟨Ja(x)J†
a(0)⟩q,A is described by

⟨Ja(x)J†
a(0)⟩q,A ∼ e−ma|x|, (4.31)

where ma is a ground-state mass of each channel a. Hence, a candidate of

Nambu-Goldstone boson is in channel such that Eq. (4.30) is saturated.

4.3.2 QCD inequalities for charged pion

Now, we consider the fermion matrix with imaginary µl and real µiso. In

this case, the matrix satisfies Eq. (4.11) and the quark propagator has the

relation

S(0, x) = τaγ5S
†(x, 0)γ5τ

a. (4.32)
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Eq. (4.24) can thus be transformed into

⟨Ja(x)J†
a(0)⟩q,A = ⟨Tr

[
S(x, 0)Γaτ

aiγ5S
†(x, 0)iγ5τ

aΓ̄a

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A

≤⟨Tr
[
S(x, 0)S†(x, 0)

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A
. (4.33)

For imaginary µiso, the inequality differs from Eq. (4.33) since the fermion

matrix M̃(iθlT, iθisoT ) satisfies Eq. (4.17), rather than Eq. (4.11). Then, the

quark propagator satisfies the relation

S(0, x) = γ5S
†(x, 0)γ5. (4.34)

Adopting the same procedure, we can obtain

⟨Ja(x)J†
a(0)⟩q,A = ⟨Tr

[
S(x, 0)Γaiγ5S

†(x, 0)iγ5Γ̄a

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A

≤⟨Tr
[
S(x, 0)S†(x, 0)

]
⟩
A

+ ⟨Tr [S(x, x)Γa]⟩A ⟨Tr
[
S(0, 0)Γ̄a

]
⟩
A

(4.35)

in the case of imaginary µiso.

Let us take Γπ± = iγ5τ
π±

and consider the correlator of charged pion. The

contribution of the disconnected piece vanishes for both real and imaginary

µiso, because

⟨Tr [S(x, x)iγ5τa]⟩A = ⟨Tr [S(x, x)iγ5τa(τ 3)2]⟩A
= −⟨Tr [S(x, x)iγ5τa]⟩A (4.36)

for πa. Here, we have used [S(x, x), τ 3] = 0. Therefore, the inequality (4.33)

is saturated for π±. The charged-pion condensate can thus come out for

real µiso. On the contrary, the inequality (4.35) is not saturated for π±,

and hence there is no charged-pion condensate for imaginary µiso. These

statements suggest that the results in Refs. [44, 55] still hold even when

imaginary µl is finite.

4.4 Short summary

In this chapter, we have derived QCD inequalities at real and imaginary

isospin chemical potential region (µiso). In the derivation, we also considered

the imaginary light-quark chemical potential (µl). We showed that positiv-

ity of the QCD partition function is ensured for each case, but the struc-

ture of the γ5-hermiticity is different. As a result, the charged-pion channel

can become a Nambu-Goldstone boson of the spontaneous UI3(1) symmetry

breaking at real µiso. The pion condensate can thus occur there. Meanwhile,
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this is not true for the case of imaginary µiso, and thereby the charged-pion

condensate does not occur. From these analyses, the results in Refs. [44, 55]

are not changed in the presence of imaginary µl.

As already mentioned in Sec. 4.1, the charged-pion condensate makes

LQCD simulations unfeasible. In the imaginary µiso region, however, not

only the sign problem but also the charged-pion condensate does not take

place, and hence the region is suitable to perform LQCD simulations to

extract information on isospin-asymmetric quark matter, which leads to un-

derstanding of the quark matter in the inner core of neutron star.



Chapter 5

Summary

In this thesis, we have studied the three imaginary chemical potential regions:

(A) the imaginary µl region, (B) the imaginary µl and µs region, (C) the

imaginary µl and µiso region.

In Chapter 2, we have considered region (A), and have drawn the hadron-

quark phase transition line by using some two-phase models. In the two-phase

models, we have taken the EPNJL model with the vector-type interaction

for the quark phase and the relativistic mean field (RMF) theory for the

hadron phase. In the hadron phase, the three parameter sets are taken, i.e.,

TM1 [90], NL3 [91], and MTEC [92]. For the EPNJL model, We determined

the strength Gv of the vector-type interaction at µl = 0 from LQCD data

on the quark number density calculated in region (A). The obtained value is

Gv = 0.36Gs, where Gs is the scalar-type interaction.

As for the hadron phase, three parameter sets taken in the RMF theory

yield almost the same equation of state (EoS) for ρB ≤ ρ0. On the contrary,

the behavior of the EoS in the large ρB region is quite different among them.

We then calculated the MR relation of neutron star with the three parameter

sets and compared the model results with the observational data and the

statistically estimated one. Eventually, we found that MTEC and TM1 are

suitable. We then reconstructed four two-phase models (TPMa1, TPMa2,

TPMb1, TPMb2) by using MTEC and TM1; see Table 2.5 for the definition.

Among these models, TPMa1 and TPMb1 predict that the quark phase

appears in the inner core of neutron star, while the quark phase is not realized

for the other models. The hadron-quark phase transition line is found to be

shifted toward large µB direction by the presence of Gv.

Next, we considered the density-dependent vector-type interaction Gv(nl)

by assuming a Gaussian form with a parameter b. The models TPMa3 and

TPMb3 with Gv(nl) are defined in Table 2.6. Assuming that the quark phase

exists in the inner core of neutron star, we showed that the lower value of b

is 0.001 for TPMa3 and TPMb3. Using the hadron-quark phase transition

line with TPMa1 and TPMa3, we found that the critical baryon chemical

potential µc
B at T = 0 lies in the region 1750 MeV ≤ µc

B ≤ 1910 MeV, if the

52
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quark phase appears in the inner core of neutron star. As for TPMb1 and

TPMb3, the corresponding is 1560 MeV ≤ µc
B ≤ 1860 MeV. These suggest

that the upper value of µc
B hardly depends on the RMF theory taken.

In Chapter 3, we have studied properties of the QCD in region (B) where

µl = iθlT and µs = iθsT . We first clarified the condition to realize the RW

periodicity. The QCD exhibits the RW periodicity in general, but the RW

periodicity is broken when θl and/or θs is fixed to some constant value. The

fact is closely related to whether the QCD partition function is invariant

under the extended Z3 transformation or not. As a model with the same

properties as the QCD at finite θl and θs, we introduced the 2+1-flavor PNJL

model. Indeed, we showed that the thermodynamic potential of the PNJL

model has extended Z3 symmetry unless any one of θl and θs is taken to be

some constant.

Taking the PNJL model, we calculated the thermodynamic potential and

the imaginary part of the quark number density, and drew the QCD phase

diagram for two conditions: (I) θl is varied with θs = θl and (II) θl is varied

with θs = 0. The RW periodicity exists in all quantities for condition (I). The

behavior of the phase diagram is the same as in the 2-flavor case. Namely, the

first-order RW transition takes place in θl = π/3 and higher T , whereas the

quantities are a smooth function of θl at lower T . As for condition (II), the

RW periodicity is not seen. This means that the analytic region is broader

than the case of condition (I), as suggested in Ref. [39]. This property is quite

useful for the analytic continuation from the imaginary to the real chemical

potential region.

The results obtained for condition (II) show that the analytic region is

expanded by breaking the RW periodicity deliberately. Then, we considered

the situation that two imaginary chemical potentials are fixed, i.e., the RW

periodicity is broken strongly. For this situation, we calculated the imaginary

part of the u-quark and s-quark number densities, Im(nu) and Im(ns). When

θs = 0 and θd ≤ π/8, Im(nu) becomes smooth for any T and θu. Analyticity

of Im(ns) is realized for any T and θs, when θl ≤ π/5. If we make LQCD

simulations under the conditions, nu (ns) can be obtained for µu/T ≳ 1

(µs/T ≳ 1); note that information is limited in µu/T ≲ 1 or µs/T ≲ 1 for

the case that the RW periodicity exists.

In Chapter 4, we investigated region (C). For this purpose, we aim at

deriving QCD inequalities at real and imaginary isospin chemical potentials

(µiso). In the derivation, we also considered the imaginary light-quark chem-

ical potential (µl). We showed that positivity of the QCD partition function

is ensured for each case, but the structure of the γ5-hermiticity is different.

As a result, the charged-pion channel can become a Nambu-Goldstone boson

of the spontaneous UI3(1) symmetry breaking for real µiso. The pion con-

densate can thus occur there. Meanwhile, this is not the case for imaginary

µiso, and thereby the charged-pion condensate does not occur. From these
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analyses, we found that the results of Refs. [44, 55] are not changed even in

the presence of imaginary µiso. The charged-pion condensate makes LQCD

simulations unfeasible. In the imaginary µiso region, however, not only the

sign problem but also the charged-pion condensate does not take place, and

hence the region is suitable to perform LQCD simulations to extract infor-

mation on isospin-asymmetric quark matter at real µiso. This information

is quite helpful for understanding of the quark matter in the inner core of

neutron star.



Appendix

A Notations in Euclidean space-time

We summarize the notations used in Euclidean space-time. We move to

Euclidean space-time by introducing new coordinates as

xE4 = τ = ix0, xEi = −xi. (A.1)

If we define Euclidean γ-matrices as

γE4 = γ0, γEi = iγi, (A.2)

then the operator γµDµ is converted into iγEµD
E
µ , where the covariant deriva-

tive is DE
µ = ∂Eµ + iAE

µ with the Euclidean gauge field,

AE
4 = −iA0, AE

i = Ai. (A.3)

The Euclidean field strength FE
µν is obtained from the relation:

FE
µν =

1

i

[
DE

µ , D
E
ν

]
. (A.4)

As for the Euclidean γ-matrices, it should be noted that all the matrices γEµ
are hermitian. Finally, the matrix γ5 is defined by

γE5 = γE1 γ
E
2 γ

E
3 γ

E
4 , (A.5)

which returns to the Minkowski one γ5 = iγ0γ1γ2γ3.

Under these preparations, Eq. (1.2) is transformed into

LQCD → −LE
QCD = −

[
q̄(γEµD

E
µ + m̂)q +

1

2g2
TrcF

E
µνF

E
µν

]
. (A.6)

Here, we define the Euclidean QCD Lagrangian LE
QCD, not including minus

sign.

B Chiral transformation

In this section, we discuss U(2)R⊗U(2)L transformation. The unitary group

U(N) can be represented as the direct product U(1)⊗ SU(N), and hence

U(2)R ⊗ U(2)L ≃ U(1)R ⊗ U(1)R ⊗ SU(2)R ⊗ SU(2)L. (B.7)
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Furthermore, the right side of Eq. (B.7) can be rewritten as vector- and

axial-types of transformations:

U(1)R ⊗ U(1)L ⊗ SU(2)R ⊗ SU(2)L

≃ U(1)V ⊗ U(1)A ⊗ SU(2)V ⊗ SU(2)A. (B.8)

The transformation parameters on the right side of Eq. (B.8) is given by the

linear combination of θaR,L. We thus obtain four subgroups:

1. U(1)V transformation

This is a simple phase transformation defined by

q → eiαq, q̄ → q̄e−iα. (B.9)

The corresponding Noether current is given by Jµ = q̄γµq, and the

conserved charge is the quark number.

2. U(1)A transformation

This transformation is the axial-type phase transformation:

q → eiγ
5βq, q̄ → q̄eiγ

5β. (B.10)

The Lagrangian (1.20) is invariant under the UA(1) transformation if

we persist in classical theory, and the Noether current is obtained as

J5
µ = q̄γµγ

5q. Once we move to quantum theory, the symmetry is

explicitly broken by quantum anomaly 1). This is well-known UA(1)

anomaly or chiral anomaly [9, 10].

3. SU(2)V transformation

SU(2)V transformation is called the isospin transformation. The defi-

nition is

q → eiθ⃗·τ⃗q, q̄ → q̄e−iθ⃗·τ⃗ , (B.13)

and corresponds to the rotation in 2-flavor space. The Noether current

is given by Ja
µ = q̄γµτ

aq.

4. SU(2)A transformation

This is chiral transformation. The chiral transformation is defined by

q → eiγ
5ϕ⃗·τ⃗q, q̄ → q̄eiγ

5ϕ⃗·τ⃗ . (B.14)

The Noether current is Ja,5
µ = q̄γµγ

5τaq. As an important point, the

symmetry is spontaneously broken in the low-energy region, even if the

Lagrangian preserves chiral symmetry at the beginning.
1)In the chiral limit, the divergence of Jµ,5 becomes

∂µJ5
µ = − 2Nf

16π2
Trc

[
Fµν F̃µν

]
, (B.11)

F̃µν =
1

2
ϵµνρσFρσ, (B.12)

with the number Nf of flavors.
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C Mean field approximation to the 2+1-flavor

PNJL model

We perform the mean-field approximation (MFA) to the scalar-type inter-

action and the KMT interaction in the 2+1-flavor PNJL model. First, we

focus on the scalar-type interaction defined by

−Gs

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2

]
. (C.15)

Hereafter, we omit the pseudo-scalar interaction, since we are interested only

in the case that the vacuum preserves parity symmetry.

The remaining term has the flavor structure as

8∑
a=0

(q̄λaq)2 =
8∑

a=0

q̄f (λ
a)ff ′qf ′ q̄g(λ

a)gg′qg′ . (C.16)

Here, flavor indices are denoted by f, f ′, g, g′. Equation (C.16) can be de-

composed into

q̄f (λ
0)ff ′qf ′ q̄g(λ

0)gg′qg′ +
8∑

b=1

q̄f (λ
b)ff ′qf ′ q̄g(λ

b)gg′qg′ , (C.17)

where λ0 =
√
2/31f for the unit matrix 1f in flavor space. After using the

complete relation of the Gell-Mann matrices,

8∑
b=1

(λb)ff ′(λb)gg′ = 2

[
δf ′gδfg′ −

1

3
δff ′δgg′

]
, (C.18)

we reach the expression

8∑
a=0

(q̄λaq)2 = 2q̄fqg q̄gqf . (C.19)

If we do not consider the Fock term, we can apply the replacement

q̄fqg q̄gqf → ⟨q̄fqg⟩ q̄gqf + ⟨q̄gqf⟩ q̄fqg − ⟨q̄fqg⟩ ⟨q̄gqf⟩ (C.20)

for Eq. (C.19) [60]. Furthermore, by assuming ⟨q̄fqf ′⟩ = 0 for f ̸= f ′, the

scalar-type interaction under the mean-field approximation is given by

−Gs

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2

]
→ −4Gs

∑
f

σf q̄fqf + 2Gs

∑
f

σ2
f , (C.21)

where σf = ⟨q̄fqf⟩, i.e., the chiral condensate for each flavor.

Next, we consider the KMT interaction,

K [detf,f ′ q̄(1 + γ5)q + detf,f ′ q̄(1− γ5)q] . (C.22)
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The explicit form of the determinant is

det

ūΓ±u ūΓ±d ūΓ±s

d̄Γ±u d̄Γ±d d̄Γ±s

s̄Γ±u s̄Γ±d s̄Γ±s

 (C.23)

for Γ± = 1±γ5. Dropping the term including γ5 and repeating the assumption

of ⟨q̄fqf ′⟩ = 0 for f ̸= f ′, we get

det

ūu 0 0

0 d̄d 0

0 0 s̄s

 = (ūu)(d̄d)(s̄s). (C.24)

For Eq. (C.24), the replacement

q̄fqf q̄gqg q̄hqh →
∑

f,g,h:cyclic

⟨q̄fqf⟩ ⟨q̄gqg⟩ q̄hqh − 2 ⟨q̄fqf⟩ ⟨q̄gqg⟩ ⟨q̄hqh⟩ (C.25)

is available when neglecting the Fock term [60]. In Eq. (C.25), the summation

is taken cyclicly for the flavor indices f, g, h. After applying Eq. (C.25) to

Eq. (C.24), we can obtain

K
[
detf,f ′ q̄(1 + γ5)q + detf,f ′ q̄(1− γ5)q

]
→ 2Kσdσsūu + 2Kσsσud̄d + 2Kσdσus̄s− 4Kσuσdσs. (C.26)

D Some properties of physical quantity at fi-

nite θl

We summarize some properties for some physical quantity O(θl) as a function

of θl. We denote Oeven(θl) if O(θl) is charge-even, while Oodd(θl) for charge-

odd. In the following, the quantity ϵ stands for an infinitesimal real and

positive number.

1. By definition,

Oeven(θl − ϵ) = Oeven(−θl + ϵ) (D.27)

are satisfied. The QCD has a trivial periodicity of 2π in θl, since the

boundary condition of the quark field is invariant under θl → θl + 2π.

We thus obtain

Oeven(θl − ϵ) = Oeven(−θl + 2π + ϵ). (D.28)

Substituting θl = π, it is found that charge-even quantities, such as the

chiral and deconfinement transition lines, are symmetric with respect

to the line θl = π.
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2. For charge-even quantity with the RW periodicity, the relation

Oeven(θl − ϵ) = Oeven(−θl + ϵ)

= Oeven(−θl + 2π/3 + ϵ) (D.29)

is satisfied due to the RW periodicity. For θl = π/3

Oeven(π/3− ϵ) = Oeven(π/3 + ϵ), (D.30)

and hence Oeven(θl) is line-symmetrical with respect to the line of θl =

π/3. In the limit ϵ→ 0, Oeven(θl) can have a cusp if

lim
ϵ→+0

Oeven(θl ± ϵ)−Oeven(θ)

ϵ
(D.31)

is neither zero nor infinity. This property is seen for the thermodynamic

potential of the PNJL model in the high-T region; see Fig. 3.1.

3. For charge-odd quantity with the RW periodicity, the relation

Oeven(θl − ϵ) = −Oeven(−θl + ϵ)

= −Oeven(−θl + 2π/3 + ϵ) (D.32)

is obtained, instead of Eq. (D.29). For θl = π/3, we then obtain

Oeven(π/3− ϵ) = −Oeven(π/3 + ϵ). (D.33)

This means that charge-odd quantity can become discontinuous when

ϵ→ +0 and the quantity is finite in the limit. For example, the quark

number density possesses a discontinuity on the line of θl = π/3; see

Fig. 3.1.



Bibliography

[1] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin,

Phys. Lett. B 59, 85 (1975).

[2] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).

[3] G. ’t Hooft, Phys. Rev. D 14, 3432 (1976); 18, 2199(E) (1978).

[4] C. Patrignani et al. (Particle Data), Chin. Phys. C 40, 100001 (2016).

[5] D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[6] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[7] M. Le Bellac, Thermal Field Theory, Cambridge Monographs on Math-

ematical Physics (2000).

[8] L. D. McLerran and B. Svetitsky, Phys. Rev. D 24, 450 (1981).

[9] S. L. Adler, Phys. Rev. 177, 2426 (1969).

[10] J. S. Bell and R. Jackiw, Nuovo Cim. 60A, 47 (1969).

[11] Y. Nambu and J. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246

(1961).

[12] C. Vafa and E. Witten, Nucl. Phys. B 234, 173 (1984).

[13] J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam,

and S. Weinberg, Phys. Rev. 127, 965 (1962).

[14] H. Fukaya et al., Phys. Rev. D 83, 074501 (2011).

[15] M. Stephanov, arXiv:0701002.

[16] P. Bruan-Munzinger and J. Wambach, Rev. Mod. Phys. 81, 1031 (2009).

[17] K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74, 014001 (2011).

[18] K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys. 72, 99 (2013).

[19] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev. Mod.
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