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Preface

In the field of economic structure analysis, a nature of economy as a network has been focused on. A

network is a discrete structure that consists of (weighted) vertices and (weighted) edges that connect

vertices. In the context of economic analysis, vertices represent industries, sectors, companies or

individuals, and edges represent transactions between them. In weighted cases, the weight of a

vertex or an edge represents its magnitude. For example, if a vertex corresponds to an industry, its

production volume is represented as the vertex weight, and if an edge corresponds to a transaction

between two industries, the amount of money or materials transferred between them is represented

as the edge weight.

In general, a graphical/network representation gives an intuitive observation about the lo-

cal/global structure of connections. Thus a typical usage of economic network model is to identify a

group of industries/transactions that play a key role in economy. This type of analyses are also use-

ful to capture flow of certain things on a network. In fact, in the field of environmental economics,

economic network analysis is used to discover industries and transactions with high environmental

burden of pollutants caused by economic activities.

The network analysis methods are roughly categorized into two approaches. One is graph opti-

mization approach, and the other is network indicator approach. The graph optimization approach

works as follows: We first model the task of analysis as a graph optimization problem. We then ap-

ply an algorithm to solve the problem, and obtain a solution. The solution implies analytical results

about the network to be considered.

The network indicators reflect the characteristics of the network. Typically, these indicators are

defined for vertices and/or edges, which represent their importance. The network indicator approach

quantitatively argues the features of the network via the indicators.

These approaches have been applied to economic network analysis and they are promising in the
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field of economic structure analysis. In this thesis, we reorganize and develop the graph optimization

approach and the network indicator approach from the viewpoint of economic structure analysis.

February, 2018

Tesshu HANAKA
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Chapter 1

Introduction

1.1 Background

A network is a pattern of interconnections among a set of things [21]. It consists of some

objects, called vertices or nodes, and some pairs of the objects, called edges or links. Networks

can express any “relationships” or “connections”. Typical examples are computer networks, which

represent the connection between computers, the World Wide Web, which represent the connections

between web pages, traffic networks, in which vertices represent intersections or stations and edges

represent roads or rails, friendship networks, which consist of vertices of persons and edges between

them, and trade networks in which vertices represent industries or companies and edges represent

direct transactions [21,86,87]. Also bioinformatics uses protein-protein interaction networks, which

represent the physical contacts between proteins in the cell [47, 99].

By expressing a set of relations as a network, we can intuitively understand structures of rela-

tions. For example, by using social networks, we can observe how complicated human relations are,

who is a key person in the group, which relationship between persons is strong, and so on. We can

also find which route is the shortest in a map by using transportation networks, and analyze trans-

action structures among industries by using trade networks. As above, observing networks gives us

a lot of insight and /or deep understanding.

On the other hand, the amount of information in the world rapidly increases nowadays, and

many networks become large and complicated. Consequently, it gets harder and harder to observe

the structure and the property of a network. To solve this situation, it is required to observe the
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network by extracting the key structure, or developing indicators that reflect the structures without

seeing the whole network.

For this, network analysis is studied in many research fields for a long time. Network analysis

is a research method that analyzes the structures and properties of a network by using mathematical

tools such as graph theory, linear algebra, and so on. Among them, the graph optimization approach

is a typical approach of network analysis. This approach uses graph optimization problems and

algorithms for solving them. Another well-known approach is network indicator approach, which

uses indicators that represent the characteristics of a network.

In this thesis, we develop analytical methods for economic networks based on the graph opti-

mization approach and the network indicator approach. An economic network consists of vertices

corresponding to industries, sectors or companies and edges corresponding to transactions. That is,

an economic network represents the economic structure and analyzing the economic network leads

to the grasp of economic structure. Consequently, economic network analysis is useful to carry out

appropriate economic policies and managements.

1.1.1 Graph optimization approach

In mathematical literature, a network is often called a graph. The graph optimization approach

is a typical network analysis approach based on graph optimization problems and algorithms. In

the graph optimization approach, we first model the task to discover a critical structure as a graph

optimization problem. We then solve the problem by using the algorithm and obtain the desired

structure.

For example, given a map, a person would like to go to the destination as fast as possible, he

or she needs to take the “best” route on the map. How can he/she find such a route? This can be

done by using the graph optimization approach: First, we describe the map as a graph. Next, we

model the task to find an optimal route in the map as a graph optimization problem. In an edge-

weighted graph, a shortest path from s to t is defined as a path from s to t with minimum weight.

The weight of an edge represents the distance between two points. The task to find an optimal route

can be modeled as the graph optimization problem to find a shortest path. This problem is called the

SHORTEST PATH problem [25]. Finally, by solving the SHORTEST PATH problem, we can obtain

an optimal route in the map.
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A shortest path is one of the important graph structures, and there are other structures in the

graph as well. In a graph, a separator is a subset of vertices that divides the graph into two parts.

Similarly, a cut is a subset of edges that divides the graph into two parts. The problems to find a

minimum separator and a minimum cut are well-studied as MINIMUM SEPARATOR and MINIMUM

CUT, respectively. Finding a minimum separator and a minimum cut correspond to finding a bottle-

neck in the network. Also, when a cut is small, the two divided sets are less related in the sense. By

dividing a network with minimum cuts iteratively, we can detect the dense structures that implies

strong relations between vertices, so-called communities in the network. Splitting a large network

into subnetworks also makes it easier to observe the network structure. The division of the network

is used in various aspects such as community analysis, image segmentation, and so on [36,101,102].

The generic name of that method is graph clustering. The task is grouping the vertices of the graph

into subsets of them, called clusters, such that there exist few edges between clusters [101]. A lot

of clustering methods have been proposed since the criteria of goodness of division depends on the

type of networks. Some of them are based on the graph optimization approach, such as finding

minimum cuts iteratively [17, 26, 46, 50, 73, 102, 104, 115].

In the graph optimization approach, we need to design the algorithm to solve the correspond-

ing graph optimization problem if any good algorithm is not known. From the aspect of algorithm

design, the running time is a critical factor to obtain a solution at high speed. If a problem has

a polynomial-time algorithm, it can be solved in realistic time as one theoretical criteria. In fact,

polynomial-time algorithms are useful in practice. For example, SHORTEST PATH, MINIMUM SEP-

ARATOR, and MINIMUM CUT have polynomial-time algorithms [25, 35].

On the other hand, if there is no polynomial-time algorithm for a problem, it may not be solved

in realistic time when the size of input is large. Actually, there exist a lot of problems that are

anticipated to have no polynomial-time algorithm, which are known as NP-hard (or NP-complete)

problems. For example, FEEDBACK ARC SET and NORMALIZED CUT that will appear in Sec-

tion 1.2.1 are NP-hard [59, 102].

To cope with such NP-hard problems, algorithm design has been studied in the field of computer

science. For an NP-hard problem, an approximation algorithm is an efficient algorithm that finds

an approximate solution. When designing an approximation algorithm, it is important how close

the solution that the algorithm outputs is to an optimal solution, in other words, the accuracy of the
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solution.

A fixed-parameter algorithm is another efficient algorithm for an NP-hard problem. The key

concept of fixed-parameter algorithm is to give up the universality. Its running time is exponential

for the worst case, but when the input satisfies certain conditions, it outputs an optimal solution in a

realistic running time. These “efficient” algorithms could be important tools in the graph optimiza-

tion approach in the case when the employed problem is NP-hard.

1.1.2 Network indicator approach

The network indicator approach is the other major method of network analysis. As the name

implies, this approach uses network indicators, which reflect the characteristics of vertices, edges,

and network itself.

An example of indicators for the whole network is density, which represents how dense a graph

is. If the density of a social network is high, it means that a human relation of the group is close and

strong.

Among network indicators for vertices and edges, one of the most well-known concepts of

network indicators is centrality. The centrality quantifies how important vertices (or edges) are in a

networked system [86]. Many kinds of centralities are previously defined [11, 14, 37–39, 44, 85, 86,

100, 103, 106]. The most basic centrality among them is degree centrality for a vertex. It is defined

as the degree of a vertex, that is, the number of neighbors of a vertex in the network. For example,

a person with many friends has the high degree centrality in the social network.

The vertex betweenness centrality is also a well-studied centrality index proposed by Free-

man [37–39]. The vertex betweenness centrality of vertex v is defined as the number of shortest

paths between pairs of other vertices that run through v [37–39, 44]. Intuitively, a vertex with the

high betweenness centrality represents an important point such as a hub. Thus, in an aviation net-

work, vertices corresponding to hub airports such as Narita, Incheon and Frankfurt could have the

high vertex betweenness centralities. In a communication network, a vertex with the high between-

ness centrality is also an important point where the information concentrates.

Similarly, the betweenness centrality is defined for an edge. The edge betweenness central-

ity is defined as the number of shortest paths between pairs of vertices that run along it [44, 88].

For example, in a traffic network, an edge with the high edge betweenness centrality represents a
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road on which many cars concentrate. The edge betweenness centrality is also used for the graph

clustering [21, 44, 84, 88, 101].

1.2 Network analysis in Economics

In Economics, economic structure analysis by using the concept of network has been studied.

An economic network consists of vertices represent industries, sectors, companies or individuals,

and edges represent transactions between them. In weighted cases, the weight of a vertex or an

edge represents its magnitude. For example, if a vertex corresponds to an industry, its production

volume is represented as the vertex weight, and if an edge corresponds to a transaction between two

industries, the amount of money or materials transferred between them is represented as the edge

weight. Economic networks include international trade networks, supply-chain networks, and so

on. By using economic networks, we can analyze the economic structure in terms of networks and

the results are used to carry out appropriate economic policies and managements.

One of the most well-known research fields which study economic network analysis is input-

output analysis. Input-output analysis is a quantitative economic analysis framework [70, 72, 77].

This framework is based on an input-output table, which is a matrix such that its rows and columns

correspond to sectors and its element (i, j) represents the amount of money or materials in the trans-

action from sector i to sector j. In the sense, an input-output table is an interindustry transactions

table [77]. Since an input-output table is a matrix, we can interpret it as a transaction network

between sectors. In the field of input-output analysis, we deal with not only simple transaction

networks, but also direct and indirect transaction networks by using the Leontief inverse matrix.

It can be regarded as supply-chain networks between sectors associated with the final demands of

specific sectors. In other words, input-output analysis considers the economic ripple effect. We call

an economic network based on the input-output model, in particular, an input-output network.

1.2.1 Graph optimization approach for economic networks

Input-output analysis has long been related to the graph optimization approach. The triangula-

tion is one of the traditional graph optimization methods in input-output analysis. The triangulation

in input-output analysis reveals the characteristics of economic structures [63, 64, 71, 82]. This
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method rearranges rows and columns of input-output tables so that the sum of the upper triangular

elements is maximum. In other words, it finds such a linear ordering of rows and columns. In terms

of the graph optimization approach, the triangulation is well-known as the (weighted) FEEDBACK

ARC SET problem, which is a well-studied graph optimization problem [59,63]. The triangulation,

or FEEDBACK ARC SET extracts a main stream of the economic structure from the upstream sectors

to the downstream sectors in the sense.

Input-output analysis framework can be also extended to environmental analysis by using envi-

ronmentally extended input-output tables [55–57, 68, 69, 91, 114]. We call a network based on an

environmentally extended input-output table an environmental input-output network. In an environ-

mental input-output network, the weight of an edge represents the amount of embodied emissions

such as CO2 associated with a transaction. Kagawa et al. proposed a new graph optimization

method for the environmental input-output network analysis by using graph clustering [55–57].

This method can identify industrial clusters with the high environmental emissions and is expected

to lead to more efficient environmental policies that encourage the collaboration between industries

in the cluster than those for a specific industry. In this method, they found industrial clusters by

solving NORMALIZED CUT, which is a graph optimization problem [102].

1.2.2 Network indicator approach for economic networks

In the economic field, there are many traditional indicators, such as GDP, consumer price index,

and unemployment rate, and so on. Some of them are developed a long time ago. Recently, the

development of indicators based on economic networks is started. The merit of indicators based on

economic networks is that we can observe the critical economic structures quantitatively. As the

result, we can carry out efficient policies.

The economic network indicators are mainly studied on environmental economic analysis.

Liang et al. proposed the vertex betweenness centrality for environmental input-output net-

works [75]. The vertex betweenness centrality in environmental input-output networks is defined as

the sum of environmental emissions associated with the supply-chain paths passing through the spe-

cific sector. It can identify a critical transmission sector in the sense that many sectors supply their

products to final consumers by passing through the specific sector, and consequently the transmis-

sion sector contributes to emitting a large amount of environmental emissions in the economy. The
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point of betweenness centrality for an environmental input-output network is considering the eco-

nomic ripple effect and the economic circulation. That is, this indicator is specialized in economic

networks.

1.3 Motivation and contribution

As seen the previous sections, the graph optimization approach and the network indicator ap-

proach for economic network analysis are making achievements and promising. In the graph opti-

mization approach, the triangulation method and the graph clustering approach for economic net-

works were introduced in Section 1.2.1. The triangulation method extracts a directed acyclic sub-

graph that represents a main stream of the economic structure and the graph clustering approach for

an environmental input-output network finds industrial clusters with the high emissions. However,

the tools of economic network analysis are still inadequate since there are many types of structures

to analyze, for example, a vulnerable part in supply chains, transactions with high environmental

impacts, and so on. Thus, we need to expand the methods by modeling the task to discover the other

important structures in economic networks as a graph optimization problem and by designing its

algorithm. The same is true for the network indicator approach. Although Liang et al. proposed a

network indicator for industries in economic networks [75], there are a lot of objectives of network

indicators (e.g., transactions and a whole network). On the basis of these principles, we expand the

methods of economic network analysis in terms of the graph optimization and the network indicator

approaches in this thesis.

When we analyze economic networks, there are important characteristics of them. Among them,

we focus on two important characteristics, “direction” and “weight”. The direction of an edge is

one of the essential elements in economic network analysis. When a policymaker considers an

appropriate economic policy for some industries, he or she has to take the properties of industries

into account since the upstream industry and the downstream industry in a transaction differ in the

situation such as a business model, production system, service, marketing and so on. Thus, the edge

direction in an economic network is clearly essential in order to make economic policies considering

the characteristics of industries.

Having weights is another important feature of an economic network. In an economic network,
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the vertex weight represents the sector’s importance such as the production volume and the amount

of emissions. Also the edge weight represents the amount of money, materials or emissions as-

sociated with the transaction. In the sense, the edge weight reflects how important and strong a

relationship between industries is.

In the graph optimization approach, a lot of graph optimization problems and their algorithms

are proposed, but many of them are for undirected and unweighted graphs. Since the direction and

the weight are essential characteristics of economic networks described above, we need a graph

optimization problem that takes them into account and its algorithm to find a good solution at high

speed. Following these concepts, we re-organize and expand the graph optimization approach for

economic networks. In detail, we propose two types of new graph optimization problems. One

focuses on the direction, and the other focuses on the weight. For both of them, we present high-

performance algorithms for them.

For the former, we define two graph optimization problems on directed graphs, called DI-

RECTED r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET. These

problems are studied in Chapter 3. The motivation of these problems comes from the extraction

of critical industries and transactions in a “directed” economic network. In theoretical computer

science, these problems are categorized as variants of classical graph optimization problems on

undirected graphs, which are known as VERTEX COVER and EDGE DOMINATING SET [41, 116].

For the latter, as a graph optimization problem focusing on the weight, we define the MAXIMUM

WEIGHT MINIMAL (s-t) SEPARATOR problem in Chapter 4. The problem is to find a maximum

weight minimal (s-t) separator, which is a variant of separators in graphs. The point is that each

vertex in the graph has the weight. This problem arises in the context of supply-chain network

analysis. When a vertex-weighted network represents a supply chain where a vertex represents an

industry, s and t are virtual vertices representing source and sink respectively, and the weight of a

vertex represents its financial importance, the maximum weight minimal s-t separator is interpreted

as the most important set of industries that is influential or vulnerable in the supply-chain network.

Unfortunately, these problems are NP-hard as shown in Chapters 3 and 4. On the other hand,

we design fixed-parameter algorithms for DIRECTED r-IN (OUT) VERTEX COVER, DIRECTED

(p, q)-EDGE DOMINATING SET, and MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR. This

implies that we can obtain the optimal solutions in polynomial time when the instances satisfy
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certain conditions. We also give approximation algorithms for DIRECTED r-IN (OUT) VERTEX

COVER and DIRECTED (p, q)-EDGE DOMINATING SET in Chapter 3.

As for the network indicator approach, we propose a new network indicator for environmental

input-output networks in this thesis. In a previous study, Liang et al. proposed the vertex between-

ness centrality in an environmental input-output network [75]. However, the vertex betweenness

centrality is not necessarily useful to observe the connections between sectors since it is a network

indicator for a sector. To grasp the economic structure in detail, a network indicator specified for a

transaction is preferable.

We newly develop such a network indicator for a transaction in Chapter 5. The indicator is

named the edge betweenness centrality for an environmental input-output network. The edge be-

tweenness centrality in an environmental input-output network indicates how much ‘embodied’

environmental emissions of products flow through the transaction and to what extent sectors are

connecting through a specific edge (i.e., a transaction) in terms of supply-chain complexity. As with

the vertex betweenness centrality, the edge betweenness centrality considers the economic ripple

effect and the economic circulation. Thus, this indicator is also specialized in economic networks.

Moreover, we calculate the vertex and edge betweenness centralities for a real input-output table.

We then identify critical sectors and transactions for environmental and economic policies to reduce

the pollutions efficiently. We also visualize the CO2 circulation networks in global supply chains

based on the vertex and edge betweenness centralities. Visualizing networks is useful to understand

the fundamental characteristics of them intuitively [47, 98, 99]. In economic network analysis, the

visualization of economic networks also gives useful information and leads good implications [55–

57, 69, 89, 96]. We reveal the environmental economic structures in global supply chains by the

visualization of economic networks based on the vertex and edge betweenness centralities.

1.4 Thesis overview

This thesis is organized as follows. Chapter 2 is the preliminary part. We give common def-

initions and notations used in this thesis. We also introduce a very useful technique of algorithm

design, which is called a tree decomposition.

In Chapter 3, we give two graph optimization problems on directed graphs, called DIRECTED
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r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET. For these prob-

lems, we first study the computational complexity. We show that DIRECTED r-IN (OUT) VER-

TEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET are NP-complete on restricted graphs.

Moreover, we prove that if r is larger than one, DIRECTED r-IN (OUT) VERTEX COVER is W [2]-

hard and if p or q is larger than one, DIRECTED (p, q)-EDGE DOMINATING SET is W [2]-hard

on directed acyclic graphs. For these problems, we also showed that there is no polynomial-time

c ln k-approximation algorithm for any constant c < 1 unless P=NP, where k is the size of an

optimal solution, though they can be approximated within ratio O(log n) by a greedy algorithm.

On the other hand, we give polynomial-time algorithms on trees. Moreover, we show that DI-

RECTED (p, q)-EDGE DOMINATING SET is fixed-parameter tractable with respect to treewidth

when (p, q) = (0, 1), (1, 0), (1, 1). Finally, we design a 2O(k)n-time algorithm for DIRECTED

(p, q)-EDGE DOMINATING SET when (p, q) = (0, 1), (1, 0), (1, 1) where k is the solution size.

In Chapter 4, we study the MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR problem. We first

prove that MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR is NP-hard on bipartite graphs. On the

other hand, we show that MAXIMUM WEIGHT MINIMAL SEPARATOR is fixed-parameter tractable

with respect to the weight of the solution. We then propose two fixed-parameter algorithms for

MAXIMUM WEIGHT (s-t) MINIMAL SEPARATOR with respect to treewidth. One is an ωO(ω)nO(1)-

time deterministic algorithm and the other is a 9ωW 2nO(1)-time randomized algorithm, where ω is

the width of a tree decomposition.

In Chapter 5, we propose a new analytical method based on economic network indicators to

find environmentally critical transmission sectors, transactions and paths in global supply-chain

networks. We first introduce the edge betweenness centrality for input-output analysis. Then we

give the mathematical relationship between the edge betweenness centrality proposed in Chapter 5

and the vertex betweenness centrality proposed by Liang et al. [75]. As the empirical analysis, we

use the world input-output database (WIOD) covering 35 industrial sectors and 41 countries and

regions in 2008 [24, 109]. We compute the vertex and edge betweenness centralities for WIOD.

Moreover, we visualize the CO2 circulation networks in global supply chains based on the vertex

and edge betweenness centralities. Finally, we discuss effective environmental policies from the

results.

In Chapter 6, we summarize our study in this thesis and discuss our contribution to this field.
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Chapter 2

Preliminaries

In this chapter, we give notations and definitions. A graph is an ordered pairG = (V (G), E(G))

consisting of the vertex set V (G) and the edge set E(G). We denote a vertex in V (G) by v ∈ V (G)

and an edge of a pair of vertices (u, v) in E(G) by (u, v) ∈ E(G). We sometimes denote an edge

by e, that is, e = (u, v) for simplicity. We will generally use n = |V (G)| and m = |E(G)| as the

number of vertices and edges of G, respectively. For simplicity, we sometimes denote V (G) and

E(G) by V and E, respectively.

For two vertices u, v, if (u, v) ∈ E(G), u and v are said to be adjacent in G. If an edge (u, v)

is unordered, a graph is said to be undirected. On the other hand, if an edge (u, v) is ordered, a

graph is said to be directed and edge (u, v) is oriented from u to v. For example, given a vertex set

V (G) = {u, v, w} and an edge set E(G) = {(u, v), (v, w)}, an undirected graph G is depicted in

Figure 2.1, and a directed graph G is depicted in Figure 2.2.

A graph H = (V (H), E(H)) of G is a subgraph if V (H) ⊆ V (G) and E(H) ⊆ E(G). We

wu

v

Figure 2.1. An undirected graph

u

v

w

Figure 2.2. A directed graph
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denote the subgraph of G that consists of V ′ ⊆ V (G) by G(V ′). A subgraph H of G is said to be

induced by V ′ if H contains every edge in E(G) whose endpoints are both in V ′. For V ′ ⊆ V (G),

we denote by G[V ′] the subgraph of G induced by V ′.

A path from v1 to vk in a directed or undirected graph G is a vertex sequence v1, v2, . . . , vk

such that vi 6= vj for 1 ≤ i < j ≤ k and (vi, vi+1) ∈ E(G) for 1 ≤ i ≤ k − 1. The length

of a path is defined as the number of edges, that is, k − 1. Similarly, a cycle is a vertex sequence

v1, v2, . . . , vk such that vi 6= vj for 1 ≤ i < j ≤ k, (vi, vi+1) ∈ E(G) for 1 ≤ i ≤ k − 1, and

(vk, v1) ∈ E(G). The length of a cycle is defined as the number of edges. In this case, it is k. For

two vertices u, v ∈ V , if the length of a path from u to v is minimum, it is called shortest. The

distance from u to v, denoted by dist(u, v), is defined as the length of a shortest path from u to v.

Note that if a graph is undirected, dist(u, v) = dist(v, u).

2.1 Undirected graph

We say an undirected graphG is connected if there exists a path from u to v for any u, v ∈ V (G).

A connected component of G is an inclusion-wise maximal connected induced subgraph.

In an undirected graph, a vertex u is called a neighbor of v if there exists an edge (u, v). A vertex

u such that dist(u, v) is at most r is called an r-neighbor of v. We denote the set of neighbors of

v by N(v) and the set of r-neighbors of v by Nr(v). Note that N1(v) = N(v). The number of

neighbors of v is called the degree of v and it is denoted by d(v) := |N(v)|. We define maxv∈V d(v)

as the maximum degree of undirected graph G.

A set of edges without common vertices is called a matching. Furthermore, a matching is

maximal if no proper superset is a matching. An edge dominating set is an edge set X such that

every edge in E \X is adjacent to at least one edge inX . Therefore, a maximal matching is an edge

dominating set.

2.2 Directed graph

In a directed graph, a vertex u is called an in-neighbor of v if there exists an edge (u, v) and

a vertex w is called an out-neighbor of v if there exists an edge (v, w). Moreover, the set of in

(out)-neighbors of v is denoted by N in(v) (resp., Nout(v)). The number of in (out)-neighbors of v
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is called the in (out)-degree of v and denoted by din(v) := |N in(v)| (resp., dout(v) := |Nout(v)|).

A vertex u such that dist(u, v) is at most r is called an r-in-neighbor of v and a vertex w such

that dist(v, w) is at most r is called an r-out-neighbor of v. The set of r-in (out)-neighbors of

v is denoted by N in
r (v) (resp., Nout

r (v)). Note that N in
1 (v) = N in(v) and Nout

1 (v) = Nout(v).

We define ∆(G) = maxv∈V (din(v) + dout(v)) as the maximum degree of directed graph G. For

simplicity, we sometimes use ∆ instead of ∆(G).

2.3 Graph classes

Undirected graph

An undirected graph is a forest if it has no cycle. In particular, a forest is called a tree if it is

connected. A graph is bipartite if a graph does not contain any odd-length cycles. If a graph can be

embedded in the plane without any edges crossing, it is called a planar graph. A graph is r-regular

if d(v) = r for any vertex v. In particular, a 3-regular graph is called a cubic graph. A graph is

chordal if every cycle of length at least four has a chord, which is an edge that is not part of the

cycle but connects two vertices in the cycle.

Directed graph

A directed graph G is a forest, a tree, and a planar graph if the underlying undirected graph of

G is a forest, a tree, and a planar graph, respectively. A directed graph G is called a directed acyclic

graph (DAG) if G has no directed cycle.

2.4 Algorithm design for NP-hard problems

In the graph optimization approach, we design an algorithm to solve a graph optimization

problem. From the aspect of algorithm design, the running time of an algorithm is a critical factor.

In fact, whether the algorithm can fast compute the solution depends on the running time. Generally,

we evaluate the running time by using a function of the input size n. Also we often use the upper

bound of the running time in which any instance of the problem can be solved by the algorithm, in

other words, we evaluate the worst running time for any instance. We denote the running time of an

algorithm by O(f(n)) by using big O notation, which is a kind of the Bachmann-Landau notations.
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Although the definition of the running time of an algorithm that can be solved in “realistic time” is

ambiguous, one criterion is whether the running time is polynomial in n or not. An algorithm is said

to be a polynomial-time algorithm in n if its running time is O(nc) where c is some constant, for

example, O(n), O(n2), n log n,O(n100). If there exists a polynomial-time algorithm for a problem,

it is considered to be tractable in the theoretical sense. Such problems are said to be in P.

On the other hand, if there is no polynomial-time algorithm for a problem, it may not be solved

in realistic time when the input size is large. In fact, there exist a lot of problems that are anticipated

to have no polynomial-time algorithms. Such problems are known to be NP-hard (or NP-complete

if problems are decision problems). To prove that a problem is NP-hard, we use a polynomial-

time reduction from the other NP-hard problem to the problem [65]. If there is a polynomial-time

reduction, it implies that the problem is as hard as the other one or more.

An approximation algorithm is an efficient algorithm for an NP-hard problem that find the

approximate solution. When designing an approximation algorithm, it is important how close the

solution is to the optimal solution, in other words, the accuracy. For this, by giving a mathematical

proof, we evaluate the accuracy of an approximation algorithm. Such an algorithm is described as

an α-approximation algorithm and α is called an approximation ratio [111]. The approximation

ratio of an algorithm represents the accuracy guarantee of the solution. The closer approximation

ratio α is to 1, the better solution the algorithm outputs.

A fixed-parameter algorithm or an FPT algorithm is the other efficient algorithm for an NP-

hard problem. Given a parameter k and an input size n, a fixed-parameter algorithm is defined as

an algorithm that computes an optimal solution in time f(k)nc where c is a constant independent

of both n and k, and f is a computational function. In a sense, a fixed-parameter algorithm is

conditional because we can regard the algorithm as a polynomial-time algorithm if k is enough

small. The parameter k depends on the input instance. When designing a fixed-parameter algorithm,

the goal is to make both the f(k) factor and the constant c in the bound on the running time as small

as possible [19]. The problem that has a fixed-parameter algorithm in time f(k)nc is said to be

fixed-parameter tractable with respect to k.

The parameterized complexity is computational complexity in terms of parameters and the W-
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Hierarchy is a hierarchy of complexity classes as follows [33]:

FPT = W [0] ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [t] ⊆ · · · ⊆W [SAT ] ⊆ · · · ⊆W [P ].

As for fixed-parameter tractability, it is most important that FPT = W [0] versus W [t]-hard where

t ≥ 1. Intuitively, this relation is similar to P versus NP. In other words, if the problem is W [t]-hard

where t ≥ 1, then it does not presumably have a fixed-parameter algorithm.

2.5 Tree decomposition

In this section, we introduce the definition of tree decomposition.

Definition 2.5.1. A tree decomposition of an undirected graph G = (V,E) is defined as a pair

〈X , T 〉, where X = {X1, X2, . . . , XN ⊆ V }, and T is a tree whose nodes are labeled by

I ∈ {1, 2, . . . , N}, such that:

1.
⋃
i∈I Xi = V ,

2. For all {u, v} ∈ E, there exists an Xi such that {u, v} ⊆ Xi,

3. For all i, j, k ∈ I , if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

In the following, we use the term “nodes” (not “vertices”) for the elements of T to avoid confu-

sion. Moreover, we call a subset of V corresponding to a node i ∈ I a bag and denote it by Xi. The

width of a tree decomposition 〈X , T 〉 is defined by maxi∈I |Xi|−1, and the treewidth ofG, denoted

by tw(G), is the minimum width over all tree decompositions of G. We sometimes denote tw(G)

by tw for simplicity. Roughly speaking, the treewidth is a graph parameter that means how much a

graph is similar to a tree. If the treewidth of a graph is one, it is a forest. Thus, the treewidth is small

implies a graph is tree-like. Figure 2.3 shows a tree decomposition of a graph. Since a tree-like

structure of a graph enables to solve the problem efficiently, a tree decomposition of the small width

is desirable. However, in general, computing the treewidth of a given graph G is NP-hard [1].

On the other hand, it is known that computing treewidth is fixed-parameter tractable with respect

to itself and there exists a linear time algorithm if treewidth is fixed [7]. Moreover, there are FPT

approximation algorithms for computing treewidth [8, 19].
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Figure 2.3. A graph (left) and its tree decomposition of width two (right)

We also use a very useful type of tree decomposition for use in algorithms, called a nice tree

decomposition introduced by Kloks [61]. More precisely, it is a special binary tree decomposition

which has four types of nodes, named leaf, introduce vertex, forget and join. A variant of the notion,

using a new type of node named introduce edge, was introduced by Cygan et al. [20].

Definition 2.5.2. A tree decomposition 〈X , T 〉 is called a nice tree decomposition if it satisfies the

following:

1. T is rooted at a designated node r ∈ I satisfying |Xr| = 0, called the root node.

2. Each node of the tree T has at most two children.

3. Each node in T has one of the following five types:

• A leaf node i which has no children and its bag Xi satisfies |Xi| = 0,

• An introduce vertex node i has one child j with Xi = Xj ∪ {v} for a vertex v ∈ V ,

• An introduce edge node i has one child j and labeled with an edge (u, v) ∈ E where

u, v ∈ Xi = Xj ,

• A forget node i has one child j and satisfies Xi = Xj \ {v} for a vertex v ∈ V ,

• A join node i has two children nodes j1, j2 and satisfies Xi = Xj1 = Xj2 .

We can transform any tree decomposition to a nice tree decomposition withO(n) nodes in linear

time [19]. Without loss of generality, we can assume that the parent node of an introduce edge (u, v)

node is an introduce edge (u,w), introduce edge (v, x), forget u, or forget v node for some w or

x [19].
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Chapter 3

On Directed Covering and

Domination Problems

3.1 Introduction

Covering and domination problems are well-studied problems in theory and in applications of

graph algorithms, for example, VERTEX COVER [41], DOMINATING SET [41] and EDGE DOM-

INATING SET [116]. However, almost all of these problems are studied on undirected graphs. In

particular, VERTEX COVER and EDGE DOMINATING SET on directed graphs have not been studied

although there are some results on directed DOMINATING SET [18, 29, 40, 66]. This seems surpris-

ing, but maybe one reason might be that it is difficult to expand the definition naturally to directed

graphs due to the unclear relationship between “direction” and “domination”.

In this chapter, we study directed versions of VERTEX COVER and EDGE DOMINATING SET.

First, we give formal definitions of directed VERTEX COVER and directed EDGE DOMINATING

SET. In the definitions, we consider several scenarios that reflect how the selected set influences

edges via directed edges. It should be noted that the definition follows from r-DOMINATING

SET [22, 30, 66]. These definitions are also motivated by economic network analysis. We men-

tion applications of these problems in Section 3.1.2.

In a directed graph, vertex v is said to in-cover every incoming edge (u, v) and out-cover every

outgoing edge (v, u) for some u. A vertex v is also said to r-in-cover all edges in the directed path

to v of length at most r. Similarly, v is said to r-out-cover all edges in the directed path from v.
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Here, for a path v1, v2, . . . , v`, the length of the path is defined as the number of edges, that is, `−1.

In particular, if r = 0, a vertex is not considered to cover any edge. Then DIRECTED r-IN (OUT)

VERTEX COVER is the following problem.

Definition 3.1.1. DIRECTED r-IN (OUT) VERTEX COVER (r-IN (OUT) VC) is the problem that

given a directed graph G = (V,E) and two positive integers k and r, determines whether there

exists a vertex subset S ⊆ V of size at most k such that every edge in E is r-in (out)-covered by S.

Such an S is called an r-in (out)-vertex cover.

Furthermore, we define DIRECTED (p, q)-EDGE DOMINATING SET. An edge e = (u, v) is

said to (p, q)-dominate itself and all edges that vertex u p-in-covers and vertex v q-out-covers. In

particular, edge (u, v) is said to (p, 0)-dominate (resp., (0, q)-dominate) itself and all edges p-in-

covered by u (resp., q-out-covered by v).

Then DIRECTED (p, q)-EDGE DOMINATING SET is defined as follows.

Definition 3.1.2. DIRECTED (p, q)-EDGE DOMINATING SET ((p, q)-EDS) is the problem that

given a directed graph G = (V,E), one positive integer k, and two non-negative integers p, q,

determines whether there exists an edge subset K ⊆ E of size at most k such that every edge is

(p, q)-dominated by K. Such a K is called a (p, q)-edge dominating set.

We also define DIRECTED r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMI-

NATING SET as optimization problems, that is, the problems are to find a minimum r-in (out)-vertex

cover and a minimum (p, q)-edge dominating set, respectively.

The undirected EDGE DOMINATING SET problem is DOMINATING SET on (undirected) line

graphs. We can see the same relationship between DIRECTED (0, 1)-EDGE DOMINATING SET and

DOMINATING SET on directed line graphs. For a directed graph, a directed line graph is defined as

follows:

Definition 3.1.3 ( [49]). A directed line graph of G = (V,E) is L(G) = (E,E2) such that

E2 = {((x, y), (z, w)) | (x, y), (z, w) ∈ E ∧ y = z}.

It is obvious that a directed (0, 1)-edge dominating set on a directed graph G corresponds to

a (directed) dominating set on the line graph of G. Furthermore, DIRECTED (1, 1)-EDGE DOMI-
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Graph class Tree Planar DAG of bounded ∆ DAG General

1-IN (OUT) VC - - - O(n)

r-IN (OUT) VC (r ≥ 2) O(r(r + ∆)n) NP-c W [2]-h W [2]-h

(0, 1), (1, 0)-EDS O(n) NP-c NP-c 2O(k)n

(1, 1)-EDS O(n) NP-c NP-c 2O(k)n

(p, q)-EDS (p or q ≥ 2) O(γ2∆2n) NP-c W [2]-h W [2]-h
Table 3.1. Our results for graph classes. NP-c and W [2]-h stand for NP-complete and W [2]-hard, respec-
tively. Note that γ = max{p, q} and ∆ = maxv∈V (din(v) + dout(v)).

NATING SET corresponds to undirected DOMINATING SET on the underlying undirected graph of

a directed line graph. These relations imply that our definition of DIRECTED (p, q)-EDGE DOMI-

NATING SET is quite natural from the viewpoint of line graphs.

One interesting aspect of directed versions, but not undirected versions, is the asymmetry of the

problem structures. For DIRECTED r-IN VERTEX COVER, a vertex in-covers only incoming edges

when r = 1. Thus, all vertices whose in-degree is at least one must be included the solution to cover

every edge due to the asymmetry of covering. Therefore, it is trivial that DIRECTED 1-IN (OUT)

VERTEX COVER is solvable in linear time, while undirected VERTEX COVER is NP-complete.

The problem DIRECTED (1, 1)-EDGE DOMINATING SET, in a sense, corresponds to (undirected)

EDGE DOMINATING SET. For the optimization version, EDGE DOMINATING SET is equivalent to

MINIMUM MAXIMAL MATCHING [116]. However, DIRECTED (1, 1)-EDGE DOMINATING SET

does not necessarily correspond to matching on the undirected graphs underlying directed graphs

due to the asymmetry of domination.

For DIRECTED (p, q)-EDGE DOMINATING SET, there exists another source of asymmetry. That

is, we can consider the case in which p and q are different. In the case in which (p, q) = (0, 1), edge

(u, v) dominates itself and edges out-covered by v. Although DIRECTED (0, 1)-EDGE DOMINAT-

ING SET is similar to DIRECTED 1-OUT VERTEX COVER, surprisingly, it is NP-complete even on

directed acyclic graphs.

3.1.1 Our contributions

Table 3.1 shows our results. In this chapter, we first give hardness results for DIRECTED r-

IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET on restricted graphs,
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even on directed acyclic planar graphs of bounded degree. The hardness on directed acyclic graphs

implies that we cannot design parameterized algorithms with respect to directed treewidth [54]

and DAG-width [4] unless P=NP. The fact that DIRECTED (0, q)-EDGE DOMINATING SET is NP-

complete even if q = 1 implies that r-DOMINATING SET on directed line graphs is NP-complete

even if r = 1. Moreover, we prove that DIRECTED r-IN (OUT) VERTEX COVER is W [2]-hard

and c ln k-inapproximable on directed acyclic graphs when r ≥ 2, and DIRECTED (p, q)-EDGE

DOMINATING SET is W [2]-hard and c ln k-inapproximable on directed acyclic graphs when either

p or q is greater than 1. These results hold even if there are no multiple edges or loops.

On the other hand, we obtain algorithms for certain cases, including algorithms for all problems

when restricted to trees, for any values of p, q, and r. The interplay among distance, direction,

and domination results in a complex dynamic programming solution for DIRECTED r-IN (OUT)

VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET, running in time O(r(r + ∆)n)

and O(γ2∆2n), respectively. Note that γ = max{p, q} and ∆ = maxv∈V (din(v) + dout(v)).

Because an edge can either dominate or be dominated by edges outside of a subtree depending on

how it is directed, at each step of the algorithm we need to maintain extensive information not only

about the subtree itself but also potential outside influence.

We also show that DIRECTED (0, 1)-EDGE ((1, 0)-EDGE, (1, 1)-EDGE) DOMINATING SET

can be solved in linear time on graphs whose underlying undirected graphs have bounded treewidth.

Note that given a directed graph G and its underlying undirected graph G∗, the directed treewidth

of G is no greater than its DAG-width which, in turn, is no greater than the treewidth of G∗ [4].

Finally, we show that DIRECTED (0, 1)-EDGE ((1, 0)-EDGE, (1, 1)-EDGE) DOMINATING SET

is fixed-parameter tractable with respect to k. In particular, we give 2O(k)n-time algorithms. We

emphasize that the running time of these algorithms is single exponential in k and linear in n.

3.1.2 Motivation and application

As practical motivation, a number of network models employ directed graphs. For example,

directed graphs are used to represent economic networks in which vertices correspond to industries

and edges correspond to transactions of money or materials between industries [48, 67].

Recently, economists have used graph algorithms to analyze these economic networks in terms

of graph structures in order to find critical industries and transactions [56,96]. Based on the analyses,
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economists discuss which kinds of economic policies should be adopted, and so on. However, there

are some problems. Such analyses in economics are based on undirected graph algorithms instead of

directed graph algorithms; the algorithms first transform directed graphs to undirected graphs, and

then apply undirected graph algorithms to the graphs thus obtained. This is because there are many

more results on graph optimization on undirected graphs than on directed graphs. Of course, such

substitute algorithms might extract some information from the processed graph, but some important

information is definitely lost. For example, when we would like to find a critical transaction in an

economic network, the edge direction is clearly essential.

The theoretical motivation is a relationship between directed DOMINATING SET and DIRECTED

(p, q)-EDGE DOMINATING SET. As we mentioned above, DIRECTED (0, 1)-EDGE DOMINATING

SET is directed DOMINATING SET on directed line graphs and DIRECTED (1, 1)-EDGE DOMI-

NATING SET is undirected DOMINATING SET on an underlying undirected graph of a directed line

graph. Directed line graphs are used for DNA sequencing and have some useful properties and char-

acterizations [5, 49]. As for combinatorial problems on graphs, (directed) HAMILTONIAN PATH on

directed line graphs can be solved in time O(n2 + m2) [6] while HAMILTONIAN PATH on undi-

rected line graphs is NP-complete [3]. Therefore, some directed problems could be easier than the

undirected versions on line graphs. Unfortunately, however, our results show that directed DOMI-

NATING SET and the distance version, that is, directed r-DOMINATING SET, remain NP-complete

even on directed line graphs.

3.1.3 Related problems

One of the most famous covering problems is VERTEX COVER. This is a classical NP-complete

problem on undirected graphs, but known to be fixed-parameter tractable [15]. In terms of graph

parameters, the size of the minimum vertex cover of G is called the vertex cover number of G. For

any graph, it is easily seen that the vertex cover number is greater than or equal to the treewidth [32].

EDGE DOMINATING SET is the problem that given an undirected graph G = (V,E) and an

integer k, determines whether there exists a set of edges X of size at most k such that any edge in

E \X has at least one incident edge in X . This problem is NP-complete even on bipartite, planar,

and bounded degree graphs [116], but fixed-parameter tractable in general [31]. As we have seen,

the EDGE DOMINATING SET problem is equivalent to DOMINATING SET on line graphs. More-
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over, the (optimization) EDGE DOMINATING SET problem is equivalent to MINIMUM MAXIMAL

MATCHING [116].

DOMINATING SET is a classical domination problem. This problem is known to be Ω(log n)-

inapproximable, but O(log n)-approximable by a simple greedy algorithm on general graphs [27].

With respect to parameterized complexity, DOMINATING SET is W [2]-complete, unlike VERTEX

COVER and EDGE DOMINATING SET [28]. Therefore, this problem is well-studied on restricted

graphs. Recently, Dawar et al. [22] and Drange et al. [30] considered fixed-parameter tractability and

the existence of problem kernels for some sparse graph classes. Their results include the distance

version, that is, r-DOMINATING SET. This approach was generalized to directed graphs because

the directed DOMINATING SET problem is also W [2]-complete [66].

The remainder of this chapter is organized as follows. In Section 3.2, we prove hardness results.

In Section 3.3, we give polynomial-time algorithms on trees and fixed-parameter algorithms on

general graphs. Finally, we present conclusions and directions for further work in Section 3.4.

3.2 Hardness results

In this section, we discuss the hardness of DIRECTED r-IN (OUT) VERTEX COVER and DI-

RECTED (p, q)-EDGE DOMINATING SET.

3.2.1 Directed (0, 1)-Edge ((1, 0)-Edge) Dominating Set

We first show that DIRECTED (0, 1)-EDGE ((1, 0)-EDGE) DOMINATING SET is NP-complete.

Although DIRECTED (0, 1)-EDGE DOMINATING SET is very similar to 1-OUT VERTEX COVER,

there is a large gap in terms of time complexity.

To show this, we introduce a variant of the SAT problem. Let (X, C) be an instance I

of SAT, where X = {x1, x2, . . . , xn} is the set of variables and C = {C1, C2, . . . , Cm} is

the set of clauses. We consider a bipartite graph GI = (X ∪ C, E), where E = {{x,C} |

x ∈ X,C ∈ C such that x ∈ C or x̄ ∈ C}. An instance I of SAT is called planar if GI is planar.

Much is known concerning the planar version of SAT, called PLANAR SAT. For example, 3SAT

is known to be NP-complete even if the instance is restricted to being planar [76]. The restricted

version of 3SAT is called PLANAR 3SAT.
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Figure 3.2. Replaced clauses

Here, we consider another restriction of PLANAR SAT. In the restricted instances, each literal

appears at most twice, that is, for all y ∈ X ∪ X , the number of clauses containing y is at most

two. Instead, the size of each clause is relaxed to be not exactly three but at most three. We call this

version PLANAR AT-MOST3SAT(L2), where L2 means that each literal appears at most twice.

Lemma 3.2.1. PLANAR AT-MOST3SAT(L2) is NP-complete.

Proof: This problem clearly belongs to NP. We show the hardness. The hardness is shown by

a reduction from PLANAR 3SAT, which is NP-complete [76]. Let I = (X, C) be an instance of

PLANAR 3SAT. If all the literals appear at most twice, we do not need to do anything. Otherwise,

there is a literal that appears at least three times. We assume that the literal x is positive, without

loss of generality. Let ` be the total number of appearances of x and x̄.

Next, we create ` new variables x(1), x(2), . . . , x(`), and new clauses Cx1 = {x(1), x̄(2)},

Cx2 = {x(2), x̄(3)}, . . ., Cx`−1 = {x(`−1), x̄(`)}, Cx` = {x(`), x̄(1)}. Later in the proof, we will

define a mapping of the x(i)’s to clauses in the original CNF formula that contains x. The order

implicit in the mapping will be used to guarantee planarity of the new formula. These new clauses

are introduced in order to guarantee that all x(i)’s take the same value (1 or 0). Furthermore, for C

the clause in which the i-th x or x̄ appears, we define C ′ to be the same as C except that x or x̄ is

replaced with x(i) or x̄(i). Note that x(i) (or x̄(i)) appears only in C ′ and Cxi (resp., Cxi−1), that is,

at most twice. It is obvious that the original instance is satisfiable if and only if the new instance

is, where x’s and x̄’s are replaced with x(i) or x̄(i), i = 1, 2, . . . , `. By doing this replacement for

all the variables, we obtain a new equivalent SAT instance I ′, whose clauses contain at most three

literals and literals appear at most twice.

We now map the x(i)’s to clauses containing x and demonstrate that planarity is preserved. We

construct a planar drawing of GI′ from a planar drawing P of GI . We focus on the part of the graph
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consisting of x and the C’s containing x in P , as shown in Figure 3.1. Suppose that x appears in

Cx1, Cx2, . . ., Cx`, where C’s are drawn in this order in P . Our mapping assigns x(i) (or x̄(i)) to

Cxi. Now we are ready to show that GI′ has a planar drawing. We first draw vertices corresponding

to C ′’s in the order in which the C’s are drawn in P . We then draw x(i)’s and Cx1 , C
x
2 , . . . , C

x
` as the

cycle (x(1), Cx1 , x
(2), . . . , x(`), Cx` , x

(1)) taking the place of x in P , with scale reduced as needed

for the cycle to fit in the allotted space. Since a cycle is planar, this can be done in a planar way.

Finally, we draw edges between x(i)’s and Cxi’s, which does not yield any crossing among vertices

derived by variable x and clauses containing x due to the way we chose to map values of i to clauses

(see Figure 3.2).The planarity of P guarantees that the whole GI′ can be drawn in the plane. This

completes the proof.

By using Lemma 3.2.1, we can obtain Theorem 3.2.2.

Theorem 3.2.2. DIRECTED (0, 1)-EDGE ((1, 0)-EDGE) DOMINATING SET is NP-complete on di-

rected planar graphs such that ∆ ≤ 3 holds.

Proof: We only consider DIRECTED (0, 1)-EDGE DOMINATING SET as the other proof is similar.

This problem is clearly in NP. Thus, we show the hardness. The reduction is from PLANAR AT-

MOST3SAT(L2).

Let n be the number of variables, m be the number of clauses, and l be the number of literals in

an input Φ for PLANAR AT-MOST3SAT(L2). Then, we construct a graph as in Figure 3.3. First,

we create n cycles of length four corresponding to the variables in Φ and m paths of length five

corresponding to the clauses in Φ. For a variable’s gadget, if we include the two horizontal edges

in the (0, 1)-edge dominating set, it corresponds to setting the variable to true in Φ. Otherwise, we

include the two vertical edges, which corresponds to setting the variable to false. Note that the size

of a minimum (0, 1)-edge dominating set for a cycle of length four is two. In Figure 3.3, thick lines

represent that they are included in the solution (we use the same convention in the other figures).

We connect each clause gadget to the variable gadgets corresponding to the literals in the clause,

as follows. For v1, v2, . . . , v6 the vertices in the clause gadget, each of v1, v3, and v5 is connected

by a path of length two, called a linking path, to one of the vertices in a variable gadget. We can

observe that there are l linking paths in the constructed graph. For each variable, there are at most

two occurrences of true literals and at most two of false literals. Because the variable gadget has
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Figure 3.4. Replacing a cycle by a directed path
for a variable’s gadget

four vertices corresponding to literals, by connecting each vertex in the variable gadget to a clause

gadget, for any vertex v in the constructed graph, ∆ ≤ 3 holds.

Finally, we show that an input Φ for PLANAR AT-MOST3SAT(L2) has a satisfying truth assign-

ment if and only if there exists a (0, 1)-edge dominating set of size 2n+ l + 2m in the constructed

graph. Given a truth assignment for Φ, we take the corresponding vertical or horizontal pair of

edges in each variable gadget since we need exactly two edges in order to dominate the cycle. For

each linking path, we add to the (0, 1)-edge dominating set either the edge incident on a variable

gadget if that edge is not dominated, or otherwise the other edge on the linking path. For a clause

gadget, if a literal in the clause is true, an edge adjacent to the vertex corresponding to the literal is

dominated. Note that if at least one literal is true, the clause gadget can be dominated by only two

edges; otherwise we need three edges to dominate it. Because every clause is true and there are n

variable gadgets, l linking paths, and m clauses, we can dominate all edges by a set of 2n+ l+ 2m

edges.

Conversely, suppose that we are given a (0, 1)-edge dominating set of size 2n + l + 2m. We

need at least two edges to dominate each variable gadget and at least one edge to dominate each

linking path. Because there are n variable gadgets and l linking paths, all clause gadgets must be

dominated by at most 2m edges. Note that we need at least two edges to dominate a clause gadget.

Two edges will suffice only when the (0, 1)-edge dominating set contains at least one adjacent edge

in a linking path. This means that each clause has at least one true literal. Moreover, we can observe

that a (0, 1)-edge dominating set contains exactly two, one, and two edges in each variable gadget,

linking path, and clause gadget, respectively. In a variable gadget, either the vertical or horizontal
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pair of edges is in the (0, 1)-edge dominating set. Thus, we give an assignment for each variable

such that if the horizontal pair is included, we assign the variable to be true, and otherwise we assign

it to be false. Because each clause has at least one true literal, this is a satisfying truth assignment.

By replacing each variable gadget by a path v1, v2, v3, v4 of length three, connecting vertex v3

and true literals in a clause, and connecting vertex v4 and false literals (see Figure 3.4), we can also

show that DIRECTED (0, 1)-EDGE DOMINATING SET is NP-complete on directed acyclic planar

graphs of bounded degree. Note that edge (v1, v2) is contained in any (0, 1)-edge dominating set.

Moreover, including edge (v2, v3) in the (0, 1)-edge dominating set corresponds to assigning true

to the variable and including edge (v3, v4) corresponds to assigning false. Now, we only replace

variable gadgets in Theorem 3.2.2, and the other parts in the constructed graph satisfy ∆ ≤ 3.

Since each literal appears at most twice in PLANAR AT-MOST3SAT(L2), v3 and v4 have at most

two edges in linking paths. Thus, the degrees of v3 and v4 are at most four and three, respectively.

Consequently, ∆ ≤ 4 holds for any vertex in the constructed graph.

Corollary 3.2.3. DIRECTED (0, 1)-EDGE ((1, 0)-EDGE) DOMINATING SET is NP-complete on di-

rected acyclic planar graphs such that ∆ ≤ 4 holds.

3.2.2 Directed (1, 1)-Edge Dominating Set

As for DIRECTED (1, 1)-EDGE DOMINATING SET, we obtain a stronger result in terms of a

degree constraint. To show this, we first introduce a variant of planar graphs. A graph is planar

almost cubic if it is planar, there are exactly two vertices of degree two, and the degree of all other

vertices is three. We show that VERTEX COVER remains NP-complete on planar almost cubic

graphs.

Lemma 3.2.4. VERTEX COVER on planar almost cubic graphs is NP-complete.

Proof: We show a reduction from VERTEX COVER on planar cubic graphs, which is NP-

complete [79]. Given a planar cubic graphG = (V,E), choose an edge (u, v) and insert two vertices

w and x into (u, v), that is, change (u, v) to a path consisting of u,w, x, v. Let G′ = (V ′, E′) be

the constructed graph where V ′ = V ∪ {w, x} and E′ = (E \ {(u, v)}) ∪ {(u,w), (w, x), (x, v)}.

Note that the degree of w and x is two, and the degree of any other vertex is three. Since we only
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replace an edge by a path of length three in a planar graph, G′ remains planar. Thus, G′ is a planar

almost cubic graph.

Then, we show that an instance (G, k) of VERTEX COVER on planar cubic graphs is a yes-

instance if and only if an instance (G′, k + 1) of VERTEX COVER on planar almost cubic graphs is

a yes-instance.

Let C be a vertex cover of size at most k in G. Then, C covers every edge in E \{(u, v)} and at

least one of (u,w) and (x, v) in G′ since at least one of u and v is in C. If both of (u,w) and (x, v)

are covered by C, we add either w or x. Because (w, x) is the only edge not covered, we can obtain

a vertex cover of size at most k + 1. Otherwise, without loss of generality, we suppose that (u,w)

is not covered. Now, the only edges not covered by C are (u,w) and (w, x). Therefore, by setting

C ′ = C ∪ {w}, we obtain a vertex cover in G′ of size at most k + 1.

Conversely, let C ′ be a vertex cover of size at most k + 1 in G′. To cover edge (w, x), C ′

contains at least one of w and x. First, we suppose C ′ contains exactly one of w and x. Without

loss of generality, we suppose that w ∈ C ′ and x /∈ C ′. Then we can observe that v ∈ C ′ in order

to cover (x, v). Thus C ′ \ {w} is a vertex cover of size at most k in G because v covers (u, v)

in G. If C ′ contains both x and w, we can replace x by v because (w, x) is covered by w. Then,

(C ′ \ {w, x}) ∪ {v} is a vertex cover of size at most k in G because v covers (u, v) in G.

By using Lemma 3.2.4, we show the following theorem.

Theorem 3.2.5. DIRECTED (1, 1)-EDGE DOMINATING SET is NP-complete on directed acyclic
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planar graphs such that ∆ ≤ 3 holds.

Proof: Since DIRECTED (1, 1)-EDGE DOMINATING SET is clearly in NP, we prove hardness. We

show a reduction from VERTEX COVER on planar almost cubic graphs. Suppose that we are given

an instance (G, k) of VERTEX COVER. For an undirected planar almost cubic graph G, we choose

the two vertices with degree two in G as source and sink vertices. We then arrange each vertex in

a horizontal line such that the two vertices of degree two become ends of the line and orient every

edge from left to right. Note that there exist exactly one source vertex such that the in-degree is zero

and out-degree is two and exactly one sink vertex such that the in-degree is two and out-degree is

zero. For other vertices v, it holds that din(v) = 1 and dout(v) = 2 or din(v) = 2 and dout(v) = 1.

Next, we attach paths of length three to each vertex to form a vertex gadget. First, for

G = (V,E), let G′ = (V ′ ∪ V ′′, Eo ∪ Ev), where V ′ = {v′ | v ∈ V }, V ′′ = {v′′ | v ∈ V },

Eo = {(u′′, v′) | (u, v) ∈ E), and Ev = {(v′, v′′) | v ∈ V }. Graph G′ is a graph formed from G

such that v is split into two vertices v′, v′′ connected by the edge (v′, v′′). Then, we attach a path

from v′′ of length two to v′′ for v′′ ∈ {w′′ ∈ V ′′ | din(w) = 2, w ∈ V } (see Figure 3.5), and a path

to v′ of length two to v′ for v′ ∈ {w′ ∈ V ′ | dout(w) = 2, w ∈ V } (see Figure 3.6). For each path,

we denote the edge incident to v′ or v′′ in a path by e1 and the other edge by e2. An edge ev ∈ Ev

in G′ corresponds to vertex v in G and each oriented edge in Eo corresponding to an edge in G is

called an original edge. We refer to a path consisting of e1, e2, and ev as a vertex gadget of v. Let

G′′ be the graph constructed in this way. Since we only replace vertices in G by paths, G′′ remains

planar and acyclic and for any vertex v in G′′, ∆ ≤ 3 holds.

Finally, we show that an instance (G, k) of VERTEX COVER on planar almost cubic graphs is a

yes-instance if and only if an instance (G′′, n + k) of DIRECTED (1, 1)-EDGE DOMINATING SET

is a yes-instance. Let G = (V,E) and C be a vertex cover of size at most k in G. In G′′, we add

each e1 to the solution set in order to dominate e2 and ev for each vertex gadget. We also add ev’s

such that v ∈ C in G. Because edge ev corresponds to v in G, each edge ev dominates all original

edges. Therefore, such a solution set is a (1, 1)-edge dominating set and its size is n+ k.

Conversely, let K be a (1, 1)-edge dominating set of size at most n + k in G′′. To dominate

e2, K contains either e1 or e2 for each vertex gadget. If K contains e2 for some gadgets, e2 can

be replaced by e1 while maintaining a (1, 1)-edge dominating set. Thus, we can assume that K

contains all e1’s and does not contain any e2’s. Note that every ev is dominated by e1. From this
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Figure 3.7. Replacing an edge and attaching path gadgets for the reduction to (p, q)-EDS

fact, if K includes some original edges, we can exclude them because they can only dominate ev’s.

Therefore, we can suppose K only contains e1’s and ev’s. Because the set of ev’s in K dominates

all original edges, the set of vertices in G corresponding to ev’s in K covers all edges in G. Thus,

this is a vertex cover for G. Since the size of K is at most n+ k and the number of e1’s included in

K is n, the number of ev’s in K is at most k. Therefore, the size of the vertex cover is at most k.

We also obtain the following result on the distance-generalized version.

Corollary 3.2.6. DIRECTED (p, q)-EDGE DOMINATING SET is NP-complete on directed acyclic

planar graphs such that ∆ ≤ 3 holds when p, q ≥ 1.

Proof: For graph G′′ in Theorem 3.2.5, let Ev, E1 and E2 be the sets of ev’s, e1’s, and e2’s,

respectively. First, we remove every edge in E1∪E2 from G′′. Then, we replace each original edge

(s, t) by a path of length p + q − 1, consisting of s, u1, u2, . . . , up+q−2, t. We consider the edge

(uq−1, uq) to correspond to an edge in E.

Next, we attach a path of length p+ q, called a path gadget, to each ui as in Figure 3.7. As with

DIRECTED (1, 1)-EDGE DOMINATING SET, for each edge (w, x) ∈ Ev except for the source and

the sink, if din(w) = 1, we attach a path gadget to w. Otherwise, that is, if dout(x) = 1, we attach

it to x. Finally, we attach a path gadget to each of the source and the sink.

Let G′′′ be the created graph. Because we only attach the paths to vertices satisfying ∆ ≤ 2, it

holds that ∆ ≤ 3 for any v. Furthermore, G′′′ remains planar and acyclic.

Then, we show that an instance (G, k) of VERTEX COVER is a yes-instance if and only if an

instance (G′′′, (p + q − 1)n + k) of DIRECTED (p, q)-EDGE DOMINATING SET is a yes-instance.

The rest of the argument is the same as that in the proof for DIRECTED (1, 1)-EDGE DOMINATING

SET.
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3.2.3 Distance generalization

In this subsection, we consider the distance-generalized versions as with Corollary 3.2.6. We

first show that DIRECTED r-IN (OUT) VERTEX COVER and DIRECTED (0, q)-EDGE ((p, 0)-

EDGE) DOMINATING SET are NP-complete on directed acyclic planar graphs of bounded degree.

Theorem 3.2.7. When r, p and q are greater than 1, DIRECTED r-IN (OUT) VERTEX COVER and

DIRECTED (0, q)-EDGE ((p, 0)-EDGE) DOMINATING SET are NP-complete on directed acyclic

planar graphs such that ∆ ≤ 4.

Proof: We show a reduction from VERTEX COVER on planar cubic graphs, which is NP-

complete [79], to DIRECTED r-OUT VERTEX COVER.

Given an instance (G = (V,E), k) of VERTEX COVER, we create a graph G′. First, we replace

each edge e = (u,w) in E by an edge gadget as in Figure 3.8. We insert a center vertex v1
e in each

edge e, that is, we replace one edge e = (u,w) by two directed edges (u, v1
e) and (w, v1

e). We denote

the set of v1
e ’s by V 1

e . Moreover, for each e in E we add a vertex v2
e and an edge e′ = (v1

e , v
2
e). Let

V 2
e be the set of v2

e ’s and E′ be the set of e′’s.

Next, we replace (u, v1
e) by a directed path from u to v1

e of length r−1 and (w, v1
e) by a directed

path from w to v1
e of length r − 1. Let VP be the set of vertices in the directed paths except for u,

v1
e , and w and EP be the set of edges in the directed paths.

As a vertex gadget, we attach an edge ev = (v′, v) to every v. We denote the set of v′’s by V ′

and the set of ev’s by Ev.

Let G′ = (V ∪ V ′ ∪ V 1
e ∪ V 2

e ∪ VP , E′ ∪Ev ∪EP ) be the created graph. Note that G′ remains

planar and acyclic. Moreover, for any vertex v in G′, ∆ ≤ 4 holds because we only replace each
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edge by a path and attach edges.

Now, we show that an instance (G, k) of VERTEX COVER is a yes-instance if and only if an

instance (G′, n+ k) of DIRECTED r-OUT VERTEX COVER is a yes-instance. Suppose that we are

given a vertex cover C = {v1, . . . , vk} ⊆ V of size k. Let C ′ = V ′ ∪C. Then the set V ′ covers all

edges in Ev ∪ EP . Furthermore, since C is a vertex cover in G, it covers every edge in E′ due to

the construction. Thus, C ′ is an r-out-vertex cover of size at most n+ k.

Conversely, suppose that we are given an r-out-vertex cover C ′ of size n + k. Note that C ′

always includes V ′ in order to cover each edge ev = (v′, v).

Because V ′ covers every edge in Ev ∪EP , and all edges covered by V 1
e ∪ V 2

e ∪ VP are covered

by V , if C ′ includes a vertex in V 1
e ∪V 2

e ∪VP , we can replace it by a vertex in V while maintaining

the coverage of each edge by C ′. Let C = C ′ \ V ′ ⊆ V . Then C is a vertex cover in G of size k

because C covers all edges in E′ corresponding to E and |V ′| = n.

By attaching a new edge (v′′, v′) for each v′ in the reduced graph G′ and a corresponding

additional vertex v′′, and setting r = q for DIRECTED (0, q)-EDGE DOMINATING SET, we obtain

the reduced graph of DIRECTED (0, q)-EDGE DOMINATING SET (see Figure 3.9). Then, we can

similarly prove DIRECTED (0, q)-EDGE DOMINATING SET is NP-complete on directed acyclic

planar graphs such that ∆ ≤ 4.

By reversing the orientation of every edge in the reduced graph of DIRECTED r-OUT VERTEX

COVER and DIRECTED (0, q)-EDGE DOMINATING SET, we can also show that DIRECTED r-

IN VERTEX COVER and DIRECTED (p.0)-EDGE DOMINATING SET are NP-complete on directed

acyclic planar graphs such that ∆ ≤ 4, respectively.

From Theorems 3.2.2 and 3.2.7, we can conclude directed r-DOMINATING SET on directed line

graphs is NP-complete.

Corollary 3.2.8. The (directed) r-DOMINATING SET problem is NP-complete on directed line

graphs even if r = 1.

Finally, we show in Theorems 3.2.10, 3.2.12 and Corollaries 3.2.11, 3.2.13 that DIRECTED r-IN

(OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET are W [2]-hard parame-

terized by the solution size k and c ln k-inapproximable for any constant c < 1 on directed acyclic

graphs unless P=NP. Here, we introduce the SET COVER problem, which is used for reductions to
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Figure 3.10. Constructed graph of the reduction from SET COVER to DIRECTED r-OUT VERTEX COVER

show the hardness results above.

Definition 3.2.9. SET COVER is the problem that given a collection of sets S = {S1, S2, . . . , Sm}

defined over a domain of elements U = {e1, e2, . . . , en} and an integer k, determines whether there

exists a subcollection S ′ ⊆ S of size at most k such that
⋃
S∈S′ S = U .

It should be noted that SET COVER is W [2]-complete and Ω(log n)-inapproximable [27, 28].

Since the setting of SET COVER is very general, many problems can be formulated as SET COVER.

Also it should be noted that SET COVER can be approximated within ratio O(log n) by a sim-

ple greedy algorithm, which yields approximation algorithms with performance guarantee for such

problems. In fact, our problems DIRECTED r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-

EDGE DOMINATING SET can be approximated within O(log n) under the framework, where n is

the number of vertices.

Theorem 3.2.10. DIRECTED r-IN (OUT) VERTEX COVER is W [2]-hard parameterized by the so-

lution size k on directed acyclic graphs when r ≥ 2.

Proof: We show that there is a parameterized reduction from SET COVER to DIRECTED r-IN

(OUT) VERTEX COVER. In this proof, we focus on DIRECTED r-OUT VERTEX COVER since we

can also prove the other case by a slight modification. If k = m, it is trivial. Hence, we suppose

that k < m. Without loss of generality, suppose that every S ∈ S is not empty.

Given an instance of SET COVER, that is, (S, U, k), we create a graph G = (V,E) where

V = {x} ∪ VS ∪ VY ∪ VZ and E = ES ∪EY ∪EZ by the following method (see Figure 3.10). Let
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x be a super vertex and VS = {s1, s2, . . . , sm} be a vertex set corresponding to S in the instance of

SET COVER. Then we connect x and each sj ∈ VS by adding edges (x, sj), where 1 ≤ j ≤ m. We

denote the set of (x, sj)’s by ES .

Let VY = {y1, . . . , yn} and VZ = {z1, . . . , zn}. Then, for each element ei of SET COVER, we

create the corresponding edge (yi, zi) for 1 ≤ i ≤ n. Finally, we connect each sj and yi by a path

of length r− 1 from sj to yi if Sj ∈ S covers element ei ∈ U . We denote the set of (yi, zi)’s by EZ

and the set of edges in the paths of length r − 1 by EY . Obviously, G is directed acyclic due to the

construction. Constructing the graph can be done in time polynomial in the size of the input to SET

COVER.

Then we show that an instance of SET COVER (S, U, k) is a yes-instance if and only if the

instance of DIRECTED r-OUT VERTEX COVER (G, r, k + 1) is a yes-instance, where G is the

graph created by the above procedure.

If (S, U, k) is a yes-instance of SET COVER, let S∗ = {Sj1 , Sj2 , . . . , Sjk} be a solution where

{j1, j2, . . . , jk} ⊆ {1, 2, . . . ,m}. In G, we select C = {sj1 , sj2 , . . . , sjk , x}. Then we can imme-

diately confirm that C covers every edge in E since x covers all edges in E \ EZ .

Conversely, if (G, r, k + 1) is a yes-instance of DIRECTED r-OUT VERTEX COVER, let C be a

solution of size k + 1. Note that C contains x because every edge in ES is covered only by vertex

x. If C includes a vertex uj on the path from sj to zi, then because every edge covered by uj is

covered by sj , we can replace uj by vertex sj if sj ∈ VS \C, and any vertex s ∈ VS \C otherwise,

keeping every edge covered by C.

Therefore, we assume that C \ {x} ⊆ VS and let C = {sj1 , sj2 , . . . , sjk , x}. Then we choose

S∗ = {Sj1 , Sj2 , . . . , Sjk} ⊆ S. Note that element ei is covered by Sj if and only if edge

ei = (yi, zi) is covered by sj in G since vertex x does not cover any edge in U . From the con-

struction of G, we conclude that
⋃
S∈S∗ S = U , and hence (S, U, k) is a yes-instance. This implies

that DIRECTED r-OUT VERTEX COVER is W [2]-hard parameterized by k. By reversing the orien-

tation of every edge, we can also obtain a reduction from SET COVER to DIRECTED r-IN VERTEX

COVER.

Corollary 3.2.11. When r ≥ 2, for DIRECTED r-IN (OUT) VERTEX COVER, there is no

polynomial-time c ln k-approximation algorithm for any constant c < 1 on directed acyclic graphs

unless P=NP, where k is the size of an optimal solution, though it can be approximated within ratio
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O(log n) by a greedy algorithm.

Proof: We use the same reduction as in Theorem 3.2.10. For SET COVER, there is no polynomial-

time algorithm whose approximation ratio is better than c ln |U | with any c < 1 unless P=NP [27].

Since the parameter k of SET COVER corresponds to (k+ 1) of an r-in (out) vertex cover, it is hard

to find an r-in (out) vertex cover with size at most (k + 1)c ln |U |. Here, |U | is bounded below by

k, and this implies that r-IN (OUT) VERTEX COVER is hard to approximate within c ln k for any

c < 1.

On the other hand, since we can describe r-IN (OUT) VERTEX COVER as SET COVER, it can

be approximated within ratio O(log n) by a greedy algorithm.

By almost the same method as for r-IN (OUT) VERTEX COVER, we obtain a proof as for

DIRECTED (p, q)-EDGE DOMINATING SET. That is, we replace a super vertex by a path of length

p+ 1.

Theorem 3.2.12. DIRECTED (p, q)-EDGE DOMINATING SET is W [2]-hard parameterized by the

solution size k on directed acyclic graphs when p ≥ 2 or q ≥ 2.

Proof: We show that there is a parameterized reduction from SET COVER to DIRECTED (p, q)-

EDGE DOMINATING SET. In this proof, we show only the case in which q ≥ 2 since we can also

prove the other case by a slight modification.



35

Given an instance of SET COVER, that is, (S, U, k), we create graph G by the following method

(see Figure 3.11). This graph is similar to a constructed graph for DIRECTED r-IN (OUT) VERTEX

COVER. We replace r by q − 1 and x by a path x1, x2, . . . , xp+2 of length p + 1. Let EX be an

edge set of the path. Note that each edge (xp+2, sj) corresponds to Sj ∈ S . The rest of the proof is

almost the same as that for DIRECTED r-IN (OUT) VERTEX COVER.

We show that an instance of SET COVER (S, U, k) is a yes-instance if and only if the instance

of DIRECTED (p, q)-EDGE DOMINATING SET (G, k + 1) is a yes-instance, where G is the graph

created by the above procedure.

Given a yes-instance of SET COVER (S, U, k), let S∗ = {Sj1 , . . . , Sjk} be a solution

where {j1, . . . , j`} ⊆ {1, . . . ,m}. In graph G, we select the edge set K = {(xp+2, sj1), . . . ,

(xp+2, sjk), (xp+1, xp+2)}. Then we can immediately confirm that edge (xp+1, xp+2) dominates

every edge in E \ EZ and K \ {(xp+1, xp+2)} dominates every edge in EZ .

Conversely, if (G, k + 1) is a yes-instance of DIRECTED (p, q)-EDGE DOMINATING SET, let

K be a solution of size k + 1. Note that K contains at least one edge in EX and we can as-

sume that K only contains one edge (xp+1, xp+2) because it dominates every edge dominated by

e ∈ EX \ {(xp+1, xp+2)}.

If there is edge e ∈ (E \ EX \ ES) ∩ K on the path from sj to zi, we can replace e by

(xp+2, sj) ∈ ES if it is not in K, and otherwise by any edge es ∈ ES , keeping every edge of G

dominated by K. Hence every edge in E \ EZ is already dominated by (xp+1, xp+2). Therefore,

we assume that K ⊆ ES .

Let K = {(xp+2, sj1), (xp+2, sj2), . . . , (xp+2, sjk), (xp+1, xp+2)} be a solution of size k + 1.

We then choose S∗ = {Sj1 , Sj2 , . . . , Sjk} ⊆ S. Note that element ei is covered by Sj if and only

if edge (yi, zi) is dominated by (xp+2, sj) in G. From the construction of G, we conclude that⋃
S∈S∗ S = U , and hence (S, U, k) is a yes-instance. This implies that DIRECTED (p, q)-EDGE

DOMINATING SET is W [2]-hard parameterized by k when q ≥ 2.

By reversing the orientation of every edge, we can obtain a reduction from SET COVER to

DIRECTED (p, q)-EDGE DOMINATING SET when p ≥ 2.

Corollary 3.2.13. When p ≥ 2 or q ≥ 2, for DIRECTED (p, q)-EDGE DOMINATING SET, there

is no polynomial-time c ln k-approximation algorithm for any constant c < 1 on directed acyclic

graphs unless P=NP, where k is the size of an optimal solution, though it can be approximated
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within ratio O(log n) by a greedy algorithm for any p and q.

Proof: We use the same reduction as in Theorem 3.2.12. For SET COVER, there is no polynomial-

time algorithm whose approximation ratio is better than c ln |U | with any c < 1 unless P=NP [27].

Since the parameter k of SET COVER corresponds to (k + 1) of a (p, q)-edge dominating set, it is

hard to find an (p, q)-edge dominating set with size at most (k + 1)c ln |U |. Here, |U | is bounded

below by k, and this implies that (p, q)-EDGE DOMINATING SET is hard to approximate within

c ln k for any c < 1.

On the other hand, since we can describe DIRECTED (p, q)-EDGE DOMINATING SET as SET

COVER, it can be approximated within ratio O(log n) by a greedy algorithm.

3.3 Algorithms

In this section, we give polynomial-time algorithms for DIRECTED r-IN (OUT) VERTEX

COVER and DIRECTED (p, q)-EDGE DOMINATING SET on trees. Moreover, we also present a

fixed-parameter algorithm with respect to treewidth and the solution size respectively for DIRECTED

(0, 1)-EDGE ((1, 0)-EDGE, (1, 1)-EDGE) DOMINATING SET on general graphs.

3.3.1 Algorithms on trees

In this subsection, we first present a polynomial-time algorithm for DIRECTED (p, q)-EDGE

DOMINATING SET of trees, which shows the following theorem.

Theorem 3.3.1. Let γ = max{p, q}. There is an algorithm that solves DIRECTED (p, q)-EDGE

DOMINATING SET on trees in time O(γ2∆2n).

Proof: We show this theorem by presenting a concrete algorithm to solve DIRECTED (p, q)-EDGE

DOMINATING SET on trees in time O(γ2∆2n). Our algorithm is based on dynamic programming.

Because the underlying undirected graph of an instance graph G is a tree, we can root it at an

arbitrary vertex; henceforth we use Ĝ to denote such a rooted tree. When we use the terms parent,

child, ancestor, and descendant, we are referring to the relationships between vertices in Ĝ.

We first extend the definition of distance to specify distances between vertices and edges. For

an edge e = (u, v) and vertices w and x, we define dist(w, e) to be dist(w, u) and dist(e, x) to

be dist(v, x). Moreover, for two edges e = (u, v) and f = (x, y), we define dist(e, f) to be



37

dist(v, x). An edge e i-in-dominates (or just in-dominates) all edges f such that dist(f, e) ≤ i− 1

and an edge e j-out-dominates (or just out-dominates) all edges f such that dist(e, f) ≤ j − 1. In

a directed path containing edges e and f , the edges (not including e and f ) traversed along the path

are between e and f . If there are k edges between e and f , then e (k + 1)-out-dominates f and f

(k + 1)-in-dominates e.

In Ĝ, we use Tv to denote the subtree rooted at the vertex v, and G[Tv] to denote the subgraph

of (the directed graph) G induced on the vertices in Tv. We call G[Tv] the subtree of G rooted

at v and use conn(v) to denote the edge connecting v to its parent, if it has one. We refer to a

vertex v as an out-vertex if conn(v) is directed from v to its parent and an in-vertex if conn(v) is

directed from v’s parent to v. If v is the root of Ĝ, it is neither an out-vertex nor an in-vertex. We

use same(v) and diff(v) to denote the sets of children of v that are out-vertices and in-vertices,

respectively, if v is an out-vertex and that are in-vertices and out-vertices, respectively, if v is an

in-vertex. Furthermore, we use ST (v) to denote the set of subtrees rooted at vertices in same(v)

and DT (v) to denote the set of subtrees rooted at vertices in diff(v); these are considered to be

two different types of subtrees. In addition, we use Cs to denote the set of edges between v and

vertices in same(v), and Cd to denote the set of edges between v and vertices in diff(v); just as

there are two types of subtrees, we consider these sets to constitute two types of connecting edges.

Our dynamic-programming algorithm processes vertices in an order such that a vertex v is pro-

cessed after all its descendants, where we use information about the subtrees rooted at the children

of v to determine how to dominate edges in G[Tv]. We store not only the sizes of edge dominating

sets, but also the sizes of edge dominating sets defined in terms of their reach and deficit, which are

measures of the impact of edges inside a subtree in the domination of edges outside the subtree and

the impact of edges outside a subtree in the domination of edges inside the subtree.

To see how edges in subtrees rooted at children of v can have an impact on each other, suppose v

has two childrenw and x such thatw is an out-vertex and x is an in-vertex. Furthermore, consider an

edge ew in G[Tw] such that dist(ew, w) = i and an edge ex in G[Tx] such that dist(x, ex) = j. We

can form a directed path that starts at ew and traverses the edges (w, v) and (v, x) to end at ex. Since

the number of edges between ew and ex is i+ j + 2, this means that ew (i+ j + 3)-out-dominates

ex and that ex (i+ j + 3)-in-dominates e.

To determine the reach of a set of edges K in G[Tv], we first determine the shortest distance
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i from an edge in K to v, if v is an out-vertex, or the shortest distance i from v to an edge in K,

if v is an in-vertex. When v is an endpoint of an edge in K (that is, i = 0), that edge will be

able to q-out-dominate an edge outside of G[Tv], if v is an out-vertex, or p-in-dominate an edge

outside of G[Tv], if v is an in-vertex. We thus define maxreach(v) = q for each out-vertex v and

maxreach(v) = p for each in-vertex v. More generally, we define the reach of K beyond G[Tv] to

be maxreach(v)− i.

To measure which edges depend on outside edges for domination, we define the deficit of K

within G[Tv] to be maximum over dist(e, v) (resp., dist(v, e)) over all edges e in G[Tv] not (p, q)-

dominated by any edge in K, for v an out-vertex (resp., in-vertex). Since the edge between v and its

parent is the outside edge that can cover the largest deficit, we set maxdeficit(v) = p for v an out-

vertex and maxdeficit(v) = q for v an in-vertex. We refer to all edges e with dist(e, v) ≤ d − 1

(resp., dist(v, e) ≤ d − 1) to be edges of deficit of d (≥ 1) in G[Tv], for v an out-vertex (resp.,

an in-vertex). If d = 0, the deficit does not exist, that is, all edges in G[Tv] are dominated by K.

Should an edge outside a subtree have sufficient reach to dominate all edges of deficit of at most d,

we will say that the edge covers the deficit.

Using these concepts, we say that a set of edges K is a reach-r-deficit-d edge dominating set

for G[Tv] if the reach of K beyond G[Tv] is r, and K (p, q)-dominates G[Tv\J ] where J is the set

of edges of deficit at most d in G[Tv]. In our algorithm, we use D[v, r, d] to store the minimum

number of edges in a reach-r-deficit-d edge dominating set for G[Tv].

When processing a vertex v, we determine D[v, r, d] for values of r and d in the ranges

0 ≤ r ≤ maxreach(v) and 0 ≤ d ≤ maxdeficit(v). For the base cases, for each leaf v in

Ĝ, we set D[v, r, d] = 0 for all values of r and d.

The observations below result from the fact that the size of the minimum edge dominating set

of a smaller subgraph is never bigger than the size of a minimum edge dominating set for a larger

subgraph.

Observation 3.3.2. The following properties hold:

1) D[u, r, d] ≤ D[v, r, d] for u a descendant of v,

2) D[v, r, d] ≤ D[v, r′, d] for r ≤ r′, and

3) D[v, r, d] ≤ D[v, r, d′] for d ≥ d′.
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Observation 3.3.3. For a given value of v, the minimum values will be D[v, 0,maxdeficit(v)];

the solution to DIRECTED (p, q)-EDGE DOMINATING SET will be D[v, 0, 0], for v the root of Ĝ.

Before detailing the calculation of D[v, r, d], we first consider the roles of Cs, ST (v), Cd, and

DT (v). For both types of subtrees and connecting edges, a single edge may cover the deficit for

all the subtrees and connecting edges of the opposite type. However, the roles of the two types

of subtrees and connecting edges are not symmetric. Specifically, since edges in Cd cannot form

directed paths with conn(v), only edges in Cs and ST (v) will have an impact on the reach r and

deficit d for v. In contrast, in the choice of edges for K in G[Tv], all edges in Cd and all deficits in

trees in DT (v) must be covered.

We first observe in the following two lemmas that a single edge in Cs will suffice to ensure that

r = maxreach(v), and that if there is no edge in K ∩ Cs, then it suffices for a single subtree in

ST (v) to have reach r + 1. In our calculations, this implies that the reach for every other tree in

ST (v) can be assumed to be 0 (or for all to have reach 0, if K ∩ Cs 6= ∅).

Lemma 3.3.4. If K ∩ Cs = ∅, the reach of K beyond G[Tv] is one less than the maximum over all

vertices u ∈ same(v) of the reach of K restricted to G[Tu].

Proof of Lemma 3.3.4: If K ∩ Cs = ∅, then the reach of K beyond G[Tv] is one less than

maxreach(v), since it will be one less than the maximum over all u ∈ same(v) of the reach of K

beyond G[Tu], and since u ∈ same(v), (u, v) /∈ K, and maxreach(u) = maxreach(v).

Lemma 3.3.5. The reach of K beyond G[Tv] is maxreach(v) if and only if K ∩ Cs 6= ∅.

Proof of Lemma 3.3.5: Clearly, an edge in K ∩ Cs can maxreach(v)-out-dominate (resp.,

maxreach(v)-in-dominate) edges outside of G[Tv] if v is an out-vertex (resp., in-vertex). The

opposite direction is immediately shown by Lemma 3.3.4.

To determine deficit, we first make a few observations that apply to subtrees of both types.

For any child u of v, if conn(u) is in K, then we can assume that the deficit within G[Tu] is

maxdeficit(u). Furthermore, if conn(u) is not in K, then the maximum deficit possible within

G[Tv] is maxdeficit(u)− 1. This is summarized in the following two lemmas.

Lemma 3.3.6. For any child u of v, conn(u) covers a deficit of maxdeficit(u) in G[Tu].

Proof of Lemma 3.3.6: If conn(u) = (u, v) (resp., conn(u) = (u, v)), conn(u) dominates all
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edges e with dist(e, u) ≤ maxdeficit(u) − 1 (resp., dist(u, e) ≤ maxdeficit(u) − 1). Thus,

conn(u) covers a deficit of maxdeficit(u) in G[Tu].

Lemma 3.3.7. For any child u of v, if conn(u) is not included in K, then the maximum possible

deficit within G[Tv] that can be covered by K is maxdeficit(u)− 1.

Proof of Lemma 3.3.7: If conn(u) = (u, v) (resp., conn(u) = (v, u)) is not included in K,

dist(e, v) = dist(e, u) + 1 (resp., dist(v, e) = dist(u, e) + 1) for edge e in the deficit of K

within G[Tu]. Thus, the maximum possible deficit within G[Tv] that can be covered by K is

maxdeficit(u)− 1.

We make use of the following terminology to capture the idea of determining whether

or not to include conn(u) in K, where the deficit can be an arbitrary value j. We define

min(u, j) = min{1 + D[u, 0,maxdeficit(u)], D[u, 0, j]}; the first case represents choosing to

include conn(u) and the second case not to include conn(u). If the latter is the smaller for all

u ∈ same(v) (u ∈ diff(v), respectively), we may choose to add an arbitrary edge in Cs (Cd, re-

spectively) to cover the deficit for subtrees of the opposite type. Accordingly, we define αs(j) = 0

if there exists u ∈ same(v) such that 1 + D[u, 0,maxdeficit(u)] ≤ D[u, 0, j], and 1 otherwise.

We define αd(j) similarly, for u ∈ diff(v).

As a consequence of Lemma 3.3.7, we observe that the reach of a connecting edge of the oppo-

site type is sufficient to cover any deficit.

Lemma 3.3.8. For any child u of v, if conn(u) is not included in K, the deficit in G[Tv] will be

covered by any single connecting edge of the opposite type. Thus, if K ∩ Cd 6= ∅, d = 0.

Proof of Lemma 3.3.8: If conn(u) is not included in K, by Lemma 3.3.7, the maximum possible

deficit within G[Tv] that can be covered by K is maxdeficit(u) − 1. Any single connecting edge

e of the opposite type of conn(u) can maxdeficit(u)-in-dominate (resp., maxdeficit(u)-out-

dominate) edges if u is an out-vertex (resp., in-vertex). Thus, the deficit in G[Tv] will be covered

by any single connecting edge of the opposite type.

Moreover, if there exists an edge in K ∩ Cd, the edge dominates all edges in ST (u) and Cs

from the above discussion. Thus, if K ∩ Cd 6= ∅, d = 0.

We consider using a subtree Tx in DT (v) to cover the deficit in a subtree rooted at a vertex w

in same(v). In this case, the reach beyond G[Tx] must be two greater than the deficit in G[Tw], due
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to the need for the path to pass through conn(x) and conn(w) en route to G[Tx]. This reach for a

single subtree in DT (v) will cover the deficit for all subtrees in ST (v).

The analogous result holds for the reach of a single subtree in ST (v) covering the deficit for

all subtrees rooted at vertices in DT (v). The key difference is that for the subtrees in ST (v), there

remains the option of not covering the deficit. No such option exists for subtrees in DT (v), for

which all deficits must be covered.

To determine the value of D[v, r, d], we will consider all possible options for adding edges

between v and its children to K, a reach-r-deficit-d edge dominating set for G[Tv], as the choice of

edges of K in the subtrees rooted at the children of v will be represented by already-computed table

entries. We demonstrate how to compute D[v, r, d] as four different cases, depending on the values

of d and r.

Case 1: r = maxreach(v) and d > 0

Since r = maxreach(v), by Lemma 3.3.5 K ∩ Cs 6= ∅, and since d > 0, by Lemma 3.3.8

K ∩ Cd = ∅.

Since K contains at least one edge in Cs, by Lemma 3.3.8, all edges in Cd are covered, as well

as deficits of maxdeficit(u) − 1 for each u ∈ diff(v), which by Lemma 3.3.7 is the maximum

possible.

Any u ∈ same(v) for which conn(u) ∈ K will contribute D[u, 0,maxdeficit(u)], by

Lemma 3.3.6.

If for u ∈ same(v), conn(u) /∈ K, then G[Tu] can have a deficit of d−1, which in conjunction

with conn(u) will result in deficit d. Thus, for each u ∈ same(v), the contribution ismin(u, d−1).

We may need to add an arbitrary edge in Cs to ensure r = maxreach(v), as indicated by αs(d−1).

D[v, r, d] =
∑

u∈diff(v)

D[u, 0,maxdeficit(u)− 1] +
∑

u∈same(v)

min(u, d− 1) + αs(d− 1).

Case 2: r < maxreach(v) and d > 0

Since r < maxreach(v), by Lemma 3.3.5 K ∩ Cs = ∅, and since d > 0, by Lemma 3.3.8

K ∩ Cd = ∅.

To ensure that the edges in Cd are covered and that the deficit of all trees in DT (v) are covered,

we make use of an edge in the subtree in ST (v) that gives rise to reach r. We consider all choices
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of w ∈ same(v), for a contribution of D[w, r + 1, d− 1] for that choice, and D[u, 0, d− 1] for all

u ∈ same(v)\{w}. For each u ∈ diff(v), the contribution will be D[u, 0, r − 1].

Thus,

D[v, r, d] = min
w∈same(v)

{ D[w, r + 1, d− 1] +
∑

u∈same(v)\{w}

D[u, 0, d− 1]}

+
∑

u∈diff(v)

D[u, 0, r − 1].

Case 3: r = maxreach(v) and d = 0

Since r = maxreach(v), by Lemma 3.3.5 K ∩ Cs 6= ∅. Any u ∈ same(v) for which

conn(u) ∈ K will contribute 1 +D[u, 0,maxdeficit(u)], by Lemma 3.3.6.

The edges in Cs cover all deficits of trees Tu in DT (v) up to a deficit of maxdeficit(u) − 1;

the only other option for a tree in DT (v) is to include conn(u) in K to cover a deficit of up to

maxdeficit(u).

To cover the deficits of trees in ST (v), we consider the minimum over all choices of j in the

range from 0 to maxdeficit(v) − 1 as the deficit for any Tu ∈ ST (v) such that conn(u) /∈ K.

When j = maxdeficit(v) − 1, an edge in Cd must be in K. For all other values of j, one tree in

DT (v) must have reach j + 2, and all others will have reach 0.

We set D[v, r, d] = minj∈{0,...,maxdeficit(v)−1}Cost(j) for Cost(j) as defined below.

Cost(maxdeficit(v)− 1) =
∑

u∈same(v)∪diff(v)

min(u,maxdeficit(u)− 1)

+ αs(maxdeficit(u)− 1) + αd(maxdeficit(u)− 1).

For any value of j in the range from 0 to maxdeficit(v)− 2,

Cost(j) = min
w∈diff(v)

{ D[w, j + 2,maxdeficit(w)− 1]

+
∑

u∈diff(v)\{w}

D[u, 0,maxdeficit(u)− 1]

+
∑

u∈same(v)

min(u, j) + αs(j)}.

Case 4: r < maxreach(v) and d = 0
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Since r < maxreach(v), by Lemma 3.3.5 K ∩ Cs = ∅.

IfK does not contain any edge in Cd, we need to cover the deficits in trees in ST (v) andDT (v)

as well as the edges inCs andCd, all without being able to select any of the connecting edges. Since

an edge in a subtree in DT (v) can cover the deficit for all trees in ST (v) (as well as all edges in

Cs), we consider all trees in ST (v) to have the same deficit, j. We then require a single subtree

in DT (v) to have reach j + 2, with the rest having reach 0. We consider all possible values of j,

0 ≤ j ≤ maxdeficit(v)− 2, and all choices of a subtree in DT (v) to have sufficient reach.

Similarly, we need to ensure that the edges in Cd are covered and that the deficits of all trees

in DT (v) are covered. This will be accomplished by an edge in a subtree in ST (v), which is also

the one that results in reach r (the rest will have reach 0). Thus all subtrees in DT (v) will have

the same deficit, r − 2. This immediately implies that r ≥ 2 in this case. We consider all possible

choices of subtrees in ST (v).

If instead K contains any edge in Cd, then by Lemma 3.3.8, K covers the deficits in all subtrees

in ST (v), as well as all edges in Cs. To cover the edges of Cd and the deficits in all trees in

DT (v), we consider D[w, r + 1,maxdeficit(w) − 1], for all possibilities of w ∈ same(v), and

D[u, 0,maxdeficit(u) − 1] for all u ∈ same(v)\{w} (only one tree needs to contribute to the

reach of r for v). Since this reach will cover a deficit of r− 1 in any tree in DT (v), the contribution

for each u ∈ diff(v) will be min(u, r − 1), with the possible addition of an arbitrary edge in Cd

(represented by αd(r − 1).

We setD[v, r, d] = minj∈{0,...,maxdeficit(v)−1}Cost(j) for Cost(j) as defined below; the value

j = maxdeficit(v)− 1 handles the case in which K contains an edge in Cd. Thus,

Cost(maxdeficit(v)− 1) = min
w∈same(v)

{D[w, r + 1,maxdeficit(w)− 1]

+
∑

u∈same(v)\{w}

D[u, 0,maxdeficit(u)− 1]

+
∑

u∈diff(v)

min(u, r − 1) + αd(r − 1)}.

For any value of j in the range from 0 to maxdeficit(v)− 2,

Cost(j) = min
w∈same(v),x∈diff(v)

{ D[w, r + 1, j] +
∑

u∈same(v)\{w}

D[u, 0, j]
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+ D[x, j + 2, r − 2] +
∑

u∈diff(v)\{x}

D[u, 0, r − 2]}.

Let γ = max{p, q}, and for vertex v let d(v) = din(v) + dout(v), which represents the de-

gree of v in the underlying undirected graph of G; d(v) ≤ ∆ holds. For each v, r, d, the al-

gorithm computes D[v, r, d] in time O(d(v)) in Case 1, O(d(v)2) in Case 2, O(γd(v)2) in Case

3, and O(γd(v)3) in Case 4. Thus, for each v, D[v, r, d] can be computed in time O(γd(v))

for r = maxreach(v) and all d > 0 in Case 1. Similarly, time O(γ2d(v)2) suffices for all

r < maxreach(v) and d > 0 in Case 2, O(γ2d(v)2) for r = maxreach(v) and d = 0 in Case 3,

and O(γ2d(v)3) for all r < maxreach(v) and d = 0 in Case 4. Therefore, the total running time

is in
∑

v∈V O(γ2d(v)3) = O(γ2
∑

v∈V d(v)3) = O(γ2∆2
∑

v∈V d(v)) = O(γ2∆2n). Note that

since the underlying undirected graph of G is a tree,
∑

v∈V d(v) = 2(n − 1) by the handshaking

lemma. This completes the proof of Theorem 3.3.1.

Next, we present a polynomial-time algorithm for DIRECTED r-IN (OUT) VERTEX COVER on

trees.

Theorem 3.3.9. There is an algorithm that solves DIRECTED r-IN (OUT) VERTEX COVER on trees

in time O(r(r + ∆)n).

Proof: Since we will use r to denote reach, here we will consider the (renamed) DIRECTED q-

OUT VERTEX COVER. The proof for DIRECTED q-IN VERTEX COVER, which is similar, has been

omitted. We assume that q ≥ 2 because the case in which q = 1 is trivial in general graphs.

As with DIRECTED (p, q)-EDGE DOMINATING SET, we use D[v, r, d] to store the minimum

number of vertices in a reach-r-deficit-d vertex cover for G[Tv].

When processing a vertex v, we determine D[v, r, d] for values of r and d in the ranges

0 ≤ r ≤ q and 0 ≤ d ≤ q. For the base cases, for each leaf v and its parent u in Ĝ, if there

is an edge (v, u) from v to its parent u, we must include v in the solution in order to cover (v, u).

Thus, we define D[v, r, d] as follows:

D[v, r, d] =


1 (1 ≤ r ≤ q ∧ d = 0)

+∞ (otherwise).

If there is an edge (u, v) from parent u for a leaf v, there is no reachable path from v to any
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vertex. Moreover, v is not included in any minimum q-out vertex cover because v does not cover

any edge. Thus, we define D[v, r, d] as follows:

D[v, r, d] =


0 (r = 0 ∧ 0 ≤ d ≤ q − 1)

+∞ (otherwise).

As with DIRECTED (p, q)-EDGE DOMINATING SET, the observations below result from the

fact that the size of the minimum q-out vertex cover of a smaller subgraph is never bigger than the

size of a minimum q-out vertex cover for a larger subgraph.

Observation 3.3.10. The following properties hold:

1) D[u, r, d] ≤ D[v, r, d] for u a descendant of v,

2) D[v, r, d] ≤ D[v, r′, d] for r ≤ r′, and

3) D[v, r, d] ≤ D[v, r, d′] for d ≥ d′.

Observation 3.3.11. For a given value of v, the minimum value will be D[v, 0, r]; the solution to

DIRECTED q-OUT VERTEX COVER will be D[v, 0, 0], for v the root of Ĝ.

Thus, we compute D[v, 0, 0] by using dynamic programming from the leaves. For each v, we

define the recursive formulas. We consider two types of vertices.

Case 1: v such that there is an edge (v, u) to parent u.

In this case, if r = 0 or d > 0, we set D[v, r, d] = +∞ because uncovered edges in G[Tv] and

(v, u) are never covered henceforth. Otherwise, we consider two cases:

(a) When r = q and d = 0, v must be included in the solution. Therefore, we set

D[v, r, d] =
∑

u∈diff(v)

D[u, 0, q − 1] +
∑

w∈same(v)

D[w, 1, 0] + 1.

Because v and any vertex above v in a tree never cover any edge (w, v) for w ∈ same(v), we

need the reach of 1 in D[w, 1, 0].
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(b) When 1 ≤ r ≤ q − 1 and d = 0, v must not be included in the solution. Therefore, we set

D[v, r, d] = min
x∈same(v)

{ D[x, r + 1, 0] +
∑

u∈diff(v)

D[u, 0, r − 1] +
∑

w∈same(v)\{x}

D[w, 1, 0]}.

In the recursive formula, every edge in DT (v) is covered by x. As with Case 1(a), we need the

reach of 1 in D[w, 1, 0] since v and any vertex above v in a tree never cover any edge (w, v).

Case 2: v such that there is an edge (u, v) from parent u.

In this case, if r > 0, we set D[v, r, d] = +∞ because v does not reach any vertex above itself in

G[Tv]. Otherwise, we consider two cases:

(a) When r = 0 and d > 0, v must not be included in the solution. Therefore, we set

D[v, r, d] =
∑

u∈diff(v)

D[u, 1, 0] +
∑

w∈same(v)

D[w, 0, d− 1].

Because v and any vertex above v in a tree never cover any edge (u, v) for u ∈ diff(v), we

need the reach of 1 in D[u, 1, 0].

(b) When r = 0 and d = 0, we set

D[v, r, d] = min

{ ∑
u∈diff(v)

D[u, 1, 0] +
∑

w∈same(v)

D[w, 0, q − 1] + 1,

min
0≤j≤q−2

{
min

x∈diff(v)
{D[x, j + 2, 0] +

∑
u∈diff(v)\{x}

D[u, 1, 0] +
∑

w∈same(v)

D[w, 0, j]}
}}

.

The first part is the case in which v is included in the solution. Since v q-covers edges in ST (v),

we sum up D[w, 0, q] for w ∈ same(v). The second part is the other case, that is, v is not included

in the solution. In this case, we consider every possible combination of the reach of DT (v) and the

deficit of ST (v) such that every edge inG[Tv] is covered. Then we set a minimum possible solution

in G[Tv] as D[v, r, d].

Let d(v) = din(v) + dout(v) for vertex v, which represents the degree of v

in the underlying undirected graph of G; d(v) ≤ ∆ holds. For each v, the al-

gorithm computes D[v, r, d] in time O(q2) + O(d(v)) + O(qd(v)2) in Case 1 and

O(q2) + O(qd(v)) + O(qd(v)2) in Case 2, respectively. Therefore, the total running time is in
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v∈V O(q2 + qd(v)2) = O(q2n+ q∆

∑
v∈V d(v)) = O(q(q+ ∆)n) by the same argument of the

proof of Theorem 3.3.1.

3.3.2 Algorithms on graphs of bounded treewidth

In this subsection, we present a 25ωωO(1)n-time algorithm on a tree decomposition of width at

most ω for DIRECTED (1, 0)-EDGE ((0, 1)-EDGE, (1, 1)-EDGE) DOMINATING SET. We first show

an algorithm for DIRECTED (1, 1)-EDGE DOMINATING SET, which shows the following theorem.

Theorem 3.3.12. Given a directed graph G, let G∗ be the underlying undirected graph of G. Then

given a tree decomposition ofG∗ of width at most ω, there exists an algorithm that solves DIRECTED

(1, 1)-EDGE DOMINATING SET in time 25ωωO(1)n.

Proof: We use dynamic programming based on a tree decomposition of width ω. For vertex v,

(u, v) is called an incoming edge of v and (v, u) is called an outgoing edge of v. Let D be the

solution set. We fill table entries for each node. For a representation of the state of v in a bag, we

define the coloring function:

c : V → {0,0in,0out,0inout,0ininout,0outinout,1in,1out,1inout}.

Each element of {0,0in,0out,0inout,0ininout, 0outinout,1in,1out,1inout} is called a state and has the

following meanings:

• 0: v is an endpoint of an edge not included in D.

• 0in: v is an endpoint of an edge not included in D, but will become an endpoint of an

incoming edge of v included in D.

• 0out: v is an endpoint of an edge not included in D, but will become an endpoint of an

outgoing edge of v included in D.

• 0inout: v is an endpoint of an edge not included in D, but will become an endpoint of both an

incoming edge and an outgoing edge of v included in D.

• 0ininout: v is an endpoint of an incoming edge of v included in D and will also become an

endpoint of an outgoing edge of v included in D.
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• 0outinout: v is an endpoint of an outgoing edge of v included in D and will also become an

endpoint of an incoming edge of v included in D.

• 1in: v is an endpoint of an incoming edge of v included in D.

• 1out: v is an endpoint of an outgoing edge of v included in D.

• 1inout: v is an endpoint of both an incoming edge and an outgoing edge of v included in D.

Let Σ = {0,0in,0out,0inout,0ininout,0outinout,1in,1out,1inout}. Given two vertex sets V and

W , we denote their colorings by cV ∈ Σ|V | and cW ∈ Σ|W |, respectively. Suppose that

cV = (c(v1), . . . , c(v|V |)) and cW = (c(w1), . . . , c(w|W |)), where vi ∈ V and wi ∈ W .

Then we define the concatenation cV × cW ∈ Σ|V |+|W | of cV and cW as the coloring

(c(v1), . . . , c(v|V |), c(w1), . . . , c(w|W |)).

Suppose that W ⊆ V . Then we define the separation cV \ cW ∈ Σ|V |−|W | as the coloring

(c(vi1), . . . , c(vi|V |−|W |)), where vi1 , . . . , vi|V |−|W | ∈ V \W .

Given a tree decomposition 〈X , T 〉, we define a subgraph Gi = (Vi, Ei) for each node i where

Vi is the union of all bags Xj with j = i or j a descendant of i in T , and Ei ⊆ E is the set of edges

introduced in the subtree rooted at node i. Then we define a partial solution in node i as a subset of

Ei that possibly dominates every edge in an induced subgraph of Vi.

For each node i, we define the function:

fi : Σ|Xi| → N ∪ {+∞}.

This function’s value represents the minimum size of a possible partial solution in node i. Let

ci ∈ Σ|Xi| be a coloring of node i. If fi(ci) = +∞, it means that the coloring ci is invalid. We

obtain the minimum size of the solution by computing fi(ci) by dynamic programming on a tree

decomposition. For simplicity, we sometimes denote ci by c.

Leaf node: In leaf nodes, we define fi(∅) := 0.

Introduce vertex v node: If c(v) ∈ {0ininout,0outinout,1in,1out,1inout}, we set fi(c) := +∞.

That is because there is no edge incident to v in node i while each state in
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(u, v) 0 0in 0out 0inout 0ininout 0outinout 1in 1out 1inout

0 - - (1) (1) (1) (1) - (1) (1)

0in (1) (1) (1) (1) (1) (1) (1) (1) (1)

0out - - (1) (1) (1) (1) - (1) (1)

0inout (1) (1) (1) (1) (1) (1) (1) (1) (1)

0ininout (1) (1) (1) (1) (1) (1) (1) (1) (1)

0outinout (1) (1) (1) (1) (2) (1) (3) (1) (4)

1in (1) (1) (1) (1) (1) (1) (1) (1) (1)

1out - - (1) (1) (5) (1) (6) (1) (7)

1inout (1) (1) (1) (1) (8) (1) (9) (1) (10)
Table 3.2. Entries indicate case numbers that apply for the possible states of u and v for the introduce node
for the edge (u, v). The labels for the rows correspond to c(u) and the labels for the columns correspond to
c(v).

{0ininout,0outinout,1in,1out,1inout} represents that v is incident on at least one edge. Note that

an introduce vertex node only adds v, and does not add any edge. Thus, the fact that vertex

v has no edge is inconsistent with c(v) ∈ {0ininout,0outinout,1in,1out,1inout}. Otherwise, we set

fi(c) := fj(c \ {c(v)}), that is, we set fi(c) as the value of fj for the same coloring as c in its child

j.

Introduce edge (u, v) node: Table 3.2 shows all cases of the possible states of u and v for

the introduce node for the edge (u, v). The point of the recursive formulas is to check whether the

states of the endpoints of (u, v) in node j are consistent with the ones in node i. We set the recursive

formula taking the minimum value of a valid coloring in node j.

Case 1. In case 1 (see Table 3.2), we cannot add edge (u, v) to D, since adding (u, v) to D is

inconsistent with the states of u and v in introduce node i for the edge (u, v). For example,

if c(u) = 0 and c(v) = 0out in node i, the states of u and v imply that u is an endpoint of

edge in D and v is an endpoint of an edge not included in D. However, if (u, v) is added to

D in node i, u becomes an endpoint of an edge in D and v becomes an endpoint of an edge

not included in D. This is inconsistent with the states of u and v. Thus, (u, v) must not be

included in D. The other cases are similar. In these cases, we set fi(c) := fj(c) since we do

not add edge (u, v) to D and consequently the size of a partial solution does not change.
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Case 2. If c(u) = 0outinout and c(v) = 0ininout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0inout} × {0inout}) + 1,

fj(c× {0inout} × {0ininout}) + 1,

fj(c× {0outinout} × {0inout}) + 1,

fj(c× {0outinout} × {0ininout})}.

In a child node j, if cj(u), cj(v) = 0inout, u and v do not have any edge in the solution

yet. If we add (u, v) to the solution in the introduce edge (u, v) node, the states of u and

v are changed to 0outinout and 0ininout since u becomes incident to an outgoing edge in the

solution and v becomes incident to an incoming edge. The second and third equations are

similar cases in which the states of u and v are changed to 0outinout and 0ininout. For the last

equation, u and v already have an outgoing and incoming edge in the solution, respectively.

Moreover, edge (u, v) is dominated even if it is not included in the solution. Thus, we set

fi(c× {c(u)} × {c(v)}) as described above. Similar arguments apply to the remaining cases

below.

Case 3. If c(u) = 0outinout and c(v) = 1in, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0inout} × {0in}) + 1,

fj(c× {0inout} × {1in}) + 1,

fj(c× {0outinout} × {0in}) + 1,

fj(c× {0outinout} × {1in})}.

Case 4. If c(u) = 0outinout and c(v) = 1inout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0inout} × {0outinout}) + 1,

fj(c× {0inout} × {1inout}) + 1,

fj(c× {0outinout} × {0outinout}) + 1,

fj(c× {0outinout} × {1inout})}.
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Case 5. If c(u) = 1out and c(v) = 0ininout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0out} × {0inout}) + 1,

fj(c× {0out} × {0ininout}) + 1,

fj(c× {1out} × {0inout}) + 1,

fj(c× {1out} × {0ininout})}.

Case 6. In the case in which c(u) = 1out and c(v) = 1in, if we do not add (u, v) to the solution,

it is never dominated. Thus, edge (u, v) must be added to the solution in any case. Thus we

define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0out} × {0in}) + 1,

fj(c× {0out} × {1in}) + 1,

fj(c× {1out} × {0in}) + 1,

fj(c× {1out} × {1in}) + 1}.

Case 7. If c(u) = 1out and c(v) = 1inout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0out} × {0outinout}) + 1,

fj(c× {0out} × {1inout}) + 1,

fj(c× {1out} × {0outinout}) + 1,

fj(c× {1out} × {1inout})}.

Case 8. If c(u) = 1inout and c(v) = 0ininout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0ininout} × {0inout}) + 1,

fj(c× {0ininout} × {0ininout}) + 1,

fj(c× {1inout} × {0inout}) + 1,

fj(c× {1inout} × {0ininout})}.
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Case 9. If c(u) = 1inout and c(v) = 1in, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0outinout} × {0out}) + 1,

fj(c× {0outinout} × {1out}) + 1,

fj(c× {1inout} × {0out}) + 1,

fj(c× {1inout} × {1out})}.

Case 10. If c(u) = 1inout and c(v) = 1inout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0ininout} × {0outinout}) + 1,

fj(c× {0ininout} × {1inout}) + 1,

fj(c× {1inout} × {0outinout}) + 1,

fj(c× {1inout} × {1inout})}.

For each entry denoted by “-” in Table 3.2, we set fi(c) := +∞ since edge (u, v) is never

dominated.

Forget v node: Suppose that Xi = Xj \ {v} for a forget node i and its child j. Let

cj = c× {cj(v)} and D be a set of cj’s such that one of these sets of conditions holds:

1) cj(v) = 0 and ∀u ∈ N in(v) ∩ Xj , c(u) ∈ {0in,0inout,0ininout,0outinout,1in, 1inout} and

∀w ∈ Nout(v) ∩Xj , c(w) ∈ {0out,0inout,0ininout,0outinout,1out, 1inout},

2) cj(v) = 1in and ∀u ∈ N in(v) ∩Xj , c(u) ∈ {0in,0inout,0ininout,0outinout,1in, 1out,1inout},

3) cj(v) = 1out and ∀w ∈ Nout(v)∩Xj , c(w) ∈ {0out,0inout,0ininout,0outinout, 1in,1out,1inout},

4) cj(v) = 1inout.

The conditions of set D mean that every edge incident to v is dominated. In condition 2, note

that any (u, v) ∈ E such that cj(u) = 1out is included in K in the introduce edge (u, v) node.

Similarly, in condition 3, any (u, v) ∈ E such that cj(u) = 1in is included in K. Then, we set

fi(c) := mincj∈D fj(cj).
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0 0in 0out 0inout 0ininout 0outinout 1in 1out 1inout

0 0

0in 0in 1in

0out 0out 1out

0inout 0inout 0ininout 0outinout 1inout

0ininout 0ininout 0ininout 1inout 1inout

0outinout 0outinout 1inout 0outinout 1inout

1in 1in 1in

1out 1out 1out

1inout 1inout 1inout 1inout 1inout
Table 3.3. Entries indicate ci(v) for possible combinations of cj1(v) and cj2(v) for v in a join node i which
has two children node j1 and j2.

Join node: We assume that a join node i has two children nodes j1, j2. According to Table 3.3,

we have 25 combinations of states for each v in a join node. Let D′ be a tuple of two colorings

cj1 , cj2 such that for each vertex v, cj1(v) and cj2(v) satisfy the condition of Table 3.3. Then we set

the recursive formula as follows:

fi(c) := min
cj1 ,cj2∈D′

fj1(cj1) + fj2(cj2).

Note that there is no edge (u, v) for u, v ∈ Xi in Gi because we assume that the parent node of an

introduce edge (u, v) node is an introduce edge (u,w), introduce edge (v, x), forget u, or forget v

node for some w or x.

Finally, we bound the running time. In each introduce vertex, introduce edge, and forget node,

we can compute every recursive formula in time 9ωωO(1). For each join node, we have 25 combi-

nations of states for each v, and hence it takes 25ωωO(1)-time to compute every recursive formula.

Therefore, the total running time is 25ωωO(1)n.

By a slight modification, we also obtain a 25ωωO(1)n-time algorithm for DIRECTED (0, 1)-

EDGE ((1, 0)-EDGE) DOMINATING SET.

Theorem 3.3.13. Given a directed graph G, let G∗ be an undirected graph underlying in G. Then

given a tree decomposition ofG∗ of width at most ω, there exists an algorithm that solves DIRECTED

(0, 1)-EDGE ((1, 0)-EDGE) DOMINATING SET in time 25ωωO(1)n.
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(u, v) 0 0in 0out 0inout 0ininout 0outinout 1in 1out 1inout

0 - - - - - - - - -

0in (1) (1) (1) (1) (1) (1) (1) (1) (1)

0out - - - - - - - - -

0inout (1) (1) (1) (1) (1) (1) (1) (1) (1)

0ininout (1) (1) (1) (1) (1) (1) (1) (1) (1)

0outinout (1) (1) (1) (1) (2) (1) (3) (1) (4)

1in (1) (1) (1) (1) (1) (1) (1) (1) (1)

1out - - - - (5) - (6) - (7)

1inout (1) (1) (1) (1) (8) (1) (9) (1) (10)
Table 3.4. Entries indicate case numbers that apply for possible states of u and v for the introduce node for
the edge (u, v). The labels for the rows correspond to c(u) and the labels for the columns correspond to c(v).

Proof: We only change the recursive formulas of introduce edge and forget nodes in the algorithm

for DIRECTED (1, 1)-EDGE DOMINATING SET.

Introduce edge (u, v) node: Table 3.4 shows all cases of state of u and v in an introduce edge

(u, v) node.

Case 1. In case 1 (see Table 3.4), we cannot add edge (u, v) to D, since adding (u, v) to D is

inconsistent with the states of u and v as with DIRECTED (1, 1)-EDGE DOMINATING SET.

Therefore, we set fi(c) := fj(c) since we do not add edge (u, v) to D and consequently the

size of a partial solution does not change.

Case 2. If c(u) = 0outinout and c(v) = 0ininout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0inout} × {0inout}) + 1,

fj(c× {0inout} × {0ininout}) + 1,

fj(c× {0outinout} × {0inout}) + 1,

fj(c× {0outinout} × {0ininout})}.

Case 3. If c(u) = 0outinout and c(v) = 1in, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0inout} × {0in}) + 1,
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fj(c× {0inout} × {1in}) + 1,

fj(c× {0outinout} × {0in}) + 1,

fj(c× {0outinout} × {1in})}.

Case 4. If c(u) = 0outinout and c(v) = 1inout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0inout} × {0outinout}) + 1,

fj(c× {0inout} × {1inout}) + 1,

fj(c× {0outinout} × {0outinout}) + 1,

fj(c× {0outinout} × {1inout})}.

Case 5. In the case in which c(u) = 1out and c(v) = 0ininout, if we do not add (u, v) to the solution,

it is never dominated. Thus, we must add edge (u, v) to the solution in any case. Thus we

define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0out} × {0inout}) + 1,

fj(c× {0out} × {0ininout}) + 1,

fj(c× {1out} × {0inout}) + 1,

fj(c× {1out} × {0ininout}) + 1}.

Case 6. In the case in which c(u) = 1out and c(v) = 1in, if we do not add (u, v) to the solution,

it is never dominated. Thus, we must add edge (u, v) to the solution in any case. Thus we

define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0out} × {0in}) + 1,

fj(c× {0out} × {1in}) + 1,

fj(c× {1out} × {0in}) + 1,

fj(c× {1out} × {1in}) + 1}.
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Case 7. In the case in which c(u) = 1out and c(v) = 1inout, if we do not add (u, v) to the solution,

it is never dominated. Thus, we must add edge (u, v) to the solution in any case. Thus we

define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0out} × {0outinout}) + 1,

fj(c× {0out} × {1inout}) + 1,

fj(c× {1out} × {0outinout}) + 1,

fj(c× {1out} × {1inout}) + 1}.

Case 8. If c(u) = 1inout and c(v) = 0ininout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0ininout} × {0inout}) + 1,

fj(c× {0ininout} × {0ininout}) + 1,

fj(c× {1inout} × {0inout}) + 1,

fj(c× {1inout} × {0ininout})}.

Case 9. If c(u) = 1inout and c(v) = 1in, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0outinout} × {0out}) + 1,

fj(c× {0outinout} × {1out}) + 1,

fj(c× {1inout} × {0out}) + 1,

fj(c× {1inout} × {1out})}.

Case 10. If c(u) = 1inout and c(v) = 1inout, we define:

fi(c× {c(u)} × {c(v)}) := min{ fj(c× {0ininout} × {0outinout}) + 1,

fj(c× {0ininout} × {1inout}) + 1,

fj(c× {1inout} × {0outinout}) + 1,

fj(c× {1inout} × {1inout})}.
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For the case we denote by “-” in Table 3.2, we set fi(c) := +∞ since edge (u, v) is never

dominated.

Forget v node: Suppose that Xi = Xj \ {v} for a forget node i and its child j. Let

cj = c× {cj(v)} and D be a set of cj’s such that one of these sets of conditions holds:

1) cj(v) ∈ {1in,1inout} and ∀u ∈ N in(v) ∩ Xi, c(u) ∈ {0in,0inout,0ininout,0outinout,1in,1out,

1inout},

2) cj(v) = 1out and ∀u ∈ N in(v) ∩ Xi, c(u) ∈ {0in,0inout,0ininout,0outinout,1out, 1inout} and

∀w ∈ Nout(v) ∩Xi, c(w) ∈ {0ininout,1in,1inout}.

The conditions of set D mean that every edge incident to v is dominated. Then, we set

fi(c) := mincj∈D fj(cj).

The running time of this algorithm is dominated by join nodes. Therefore, this algorithm runs

in time 25ωωO(1)n.

3.3.3 Fixed-parameter algorithms with respect to k

In this subsection, we give fixed-parameter algorithms in time 2O(k)n for DIRECTED (0, 1)-

EDGE ((1, 0)-EDGE, (1, 1)-EDGE) DOMINATING SET. The procedures of our algorithms are as

follows. We first obtain a tree decomposition of small width, and then we run 25ωωO(1)n-time

algorithms in Theorems 3.3.12 and 3.3.13, respectively.

To obtain a tree decomposition of small width, we use the following theorem proved by Bod-

laender et al. [8].

Theorem 3.3.14 ( [8]). There exists an algorithm that, given an n-vertex graphG and an integer ω, in

time 2O(ω)n either outputs that the treewidth ofG is larger than ω, or constructs a tree decomposition

of G of width at most 5ω + 4.

Then, we show the treewidth of the underlying undirected graph of G is bounded by twice the

minimum size of a directed (1, 1)-edge dominating set.

Lemma 3.3.15. Given a directed graph G, let G∗ be the underlying undirected graph of G and s

be the minimum size of a directed (1, 1)-edge dominating set on G. Then the following inequality

holds: tw(G∗) ≤ 2s.
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Proof: Let G∗ be an undirected graph, tw(G∗) be the treewidth of G∗, and vc(G∗) be the size

of minimum vertex cover. Then we have tw(G∗) ≤ vc(G∗) [32]. Let M∗ be a minimum maxi-

mal matching in G∗. A minimum (1, 1)-edge dominating set in G is a (not necessarily minimum)

edge dominating set in G∗. Otherwise, there is an edge not dominated by the (1, 1)-edge dom-

inating set in G. Moreover, for any edge dominating set D in undirected graphs, |D| ≥ |M∗|

holds because a minimum maximal matching is a minimum edge dominating set [116]. Therefore,

s ≥ |M∗| holds. On the other hand, we have a well-known result that for any maximal matching

M , vc(G∗) ≤ 2|M | [41]. Moreover, we already know that tw(G∗) ≤ vc(G∗) holds. Finally, we

can obtain tw(G∗) ≤ 2s.

Finally, DIRECTED (1, 1)-EDGE DOMINATING SET can be solved in the following time.

Theorem 3.3.16. An instance (G, k) of DIRECTED (1, 1)-EDGE DOMINATING SET can be solved

in time 2O(k)n.

Proof: Given an instance (G, k), we first determine whether the treewidth of G∗ is at most 2k

in time 2O(k)n by using Theorem 3.3.14. If tw(G∗) > 2k, we conclude that it is a no-instance

by Lemma 3.3.15. Otherwise, we use the 25ωωO(1)n-time algorithm based on a tree decomposi-

tion of width at most 10k + 4 obtained by Theorem 3.3.14. Therefore, the total running time is

2O(k)n+ 2510k+4(10k + 4)O(1)n = 2O(k)n.

Thus, the DIRECTED (1, 1)-EDGE DOMINATING SET problem is fixed-parameter tractable with

respect to k. We emphasize that the running time of this algorithm is single exponential in k and

linear in n.

In the same way, we can prove DIRECTED (0, 1)-EDGE ((1, 0)-EDGE) DOMINATING SET is

fixed-parameter tractable with respect to k. First, we obtain the following lemma corresponding to

Lemma 3.3.15.

Lemma 3.3.17. Given a directed graph G, let G∗ be the underlying undirected graph of G and s′ be

the minimum size of a directed (0, 1)-edge ((1, 0)-edge) dominating set on G. Then the following

inequality holds: tw(G∗) ≤ 2s′.

Proof: Let s be the minimum size of a directed (1, 1)-edge dominating set onG. From the definition

of directed (0, 1)-edge ((1, 0)-edge) dominating set and directed (1, 1)-edge dominating set, s′ ≥ s.

Thus, we have tw(G∗) ≤ 2s′ from Lemma 3.3.15.
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Using an argument similar to that used in the proof of Theorem 3.3.16, we obtain the following

theorem.

Theorem 3.3.18. An instance (G, k) of DIRECTED (0, 1)-EDGE, ((1, 0)-EDGE) DOMINATING

SET can be solved in time 2O(k)n.

3.4 Conclusions and future directions

In this chapter, we study covering and domination problems on directed graphs, that is, DI-

RECTED r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET. We first

showed the NP-hardness of these problems even on some restricted graphs. We also proved that

DIRECTED r-IN (OUT) VERTEX COVER is W [2]-hard when r ≥ 2 and DIRECTED (p, q)-EDGE

DOMINATING SET is W [2]-hard when p ≥ 2 or q ≥ 2 on directed acyclic graphs. Moreover,

for these problems, we showed that there is no polynomial-time c ln k-approximation algorithm for

any constant c < 1 unless P=NP, where k is the size of an optimal solution, though they can be

approximated within ratio O(log n) by a greedy algorithm.

On the other hand, we designed polynomial-time algorithms for these problems on trees. We

finally showed DIRECTED (0, 1)-EDGE ((1, 0)-EDGE, (1, 1)-EDGE) DOMINATING SET are fixed-

parameter tractable with respect to treewidth and the solution size, respectively. In particular, the

running time of these algorithms are linear in n, and single exponential in treewidth and the solution

size, respectively.

Directions for future work include improving the running time and the computational complex-

ity on other restricted graphs.
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Chapter 4

On the Maximum Weight Minimal

Separator

4.1 Introduction

Given a connected graph G = (V,E) and two vertices s, t ∈ V , a set S ⊆ V of vertices

is called an s-t separator if s and t belong to different connected components in G \ S, where

G \S = (V \S,E). If a set S is an s-t separator for some s and t, it is simply called a separator. If

an s-t separator S is minimal in terms of set inclusion, that is, no proper subset of S also separates

s and t, it is called a minimal s-t separator. Similarly, if a separator is minimal in terms of set

inclusion, it is called a minimal separator.

Separators and minimal separators are important in several contexts and have indeed been stud-

ied intensively. For example, they are related to the connectivity of graphs, which is an important

notion in many practical applications, such as network design, supply chain analysis and so on.

From a theoretical point of view, minimal separators are related to treewidth or potential maximal

cliques, which play key roles in designing fast algorithms [10, 13].

Assume that G does not have the edge (s, t), that is, (s, t) /∈ E. In this chapter, we consider

the problem of finding a maximum weight minimal s-t separator of a given vertex-weighted graph.

More precisely, the problem is defined as follows: Given a connected graph G = (V,E), vertices

s, t ∈ V and a weight functionw : V → N+, find a minimal s-t separator whose weight
∑

v∈S w(v)

is maximum. The decision version of the problem is to decide the existence of minimal s-t separator
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with weight W . We call this problem MAXIMUM WEIGHT MINIMAL s-t SEPARATOR. Similarly,

MAXIMUM WEIGHT MINIMAL SEPARATOR is the following problem: Given a connected graph

G = (V,E) and a weight functionw : V → N+, find a minimal separator whose weight
∑

v∈S w(v)

is maximum. The decision version of the problem is to decide the existence of minimal separator

with weight W .

This problem arises in the context of supply chain network analysis. When a weighted network

represents a supply chain where a vertex represents an industry, s and t are virtual vertices repre-

senting source and sink respectively, and the weight of a vertex represents its financial importance,

the maximum weight minimal s-t separator is interpreted as the most important set of industries

that is influential or vulnerable in the supply chain network.

On the negative side, we show that these problems are NP-hard on bipartite graphs, even if all

the vertex weights are identical, that is, the problem is to find the maximum size of minimal (s-t)

separator. On the other hand, we show that MAXIMUM WEIGHT MINIMAL SEPARATOR is fixed-

parameter tractable with respect to the solution size and weight. We then design FPT algorithms

with respect to treewidth. It should be noted that since the condition of s-t connectivity can be

written in Monadic Second Order Logic, given a tree decomposition of width at most ω, it can be

solved in f(ω)n time by Courcelle’s meta-theorem, where f is a computable function. However,

the function f forms a tower of exponentials; the existence of an FPT algorithm with better running

time is not obvious.

In this chapter, we propose two parameterized algorithms for MAXIMUM WEIGHT s-t MIN-

IMAL SEPARATOR with respect to treewidth. One is an ωO(ω)n-time deterministic algorithm and

the other is an O∗(cω ·W 2)-time randomized algorithm for the decision version, where c is a con-

stant, ω is the width of a tree decomposition, and O∗ is the order notation omitting the polynomial

factor. The former algorithm is based on a standard dynamic programming approach, whereas the

latter utilizes two techniques recently developed. The first technique is called Cut & Count, and

by using this, the running time is bounded by a single exponential of treewidth. Furthermore, by

applying the second technique called fast convolution, we improve the running time by reducing

the base of the exponent from c = 21 to c = 9; the total running time of the resulting algorithm

is O∗(9ω · W 2), which can be further improved when the graph is unweighted. It is noted that

MAXIMUM WEIGHT MINIMAL SEPARATOR can be solved by applying the above algorithms for
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all possible combinations of s and t, i.e., at most n2 times.

4.2 Related work

4.2.1 The number of minimal separators

Minimal separators have been investigated for a long time in many aspects. As mentioned

above, they are related to treewidth or potential maximal cliques, for example [10, 13]. In general,

a graph may have exponentially many minimal separators, and in fact there exists a graph with

Ω(3n/3) minimal separators [34]. Recently, this bound was improved to Ω(1.4521n) [43]. On the

other hand, some graph classes have only polynomially (even linearly) many minimal separators.

For example, Bouchitté showed that weakly triangulated (weakly chordal) graphs have a polynomial

number of separators [12]. As examples of other graph classes with polynomially many minimal

separators, there are circular-arc graphs [62] and polygon-circle graphs, which are a superclass of

circle graphs [107].

On the other hand, Berry et al. presented an O(n3Rsep)-time algorithm that enumerates all the

minimal separators whereRsep is the number of these [2]. By combining these results, we know that

MAXIMUM WEIGHT MINIMAL s-t SEPARATOR can be solved in polynomial time for the graph

classes mentioned above. That is, we just enumerate all the minimal separators and evaluate the

weights of these for such graphs.

Proposition 4.2.1. MAXIMUM WEIGHT MINIMAL s-t SEPARATOR and MAXIMUM WEIGHT

MINIMAL SEPARATOR can be solved in polynomial time for a graph classes that have a polynomial

number of minimal separators.

4.2.2 Relationship between minimal separators and treewidth

Minimal separators and treewidth are strongly related. As for the number of minimal separators,

if a graph has a polynomially many minimal separators, we can compute its treewidth in polyno-

mial time [12, 13]. Such graph classes include (amongst others) circular-arc graphs (O(n2) [62]),

polygon-circle graphs (O(n2) [107]), weakly triangulated graphs (O(n2) [12]). Furthermore, com-

puting treewidth is fixed-parameter tractable with respect to the maximum size of a minimal sep-

arator [105]. This parameter corresponds to the solution size of MAXIMUM WEIGHT MINIMAL
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SEPARATOR on unweighted graphs. In this sense, this thesis focuses on the converse relation of

these two parameters: maximum size of a minimal separator and treewidth. That is, for treewidth

as the parameter, we consider the fixed parameter tractability of MAXIMUM WEIGHT MINIMAL

SEPARATOR.

4.2.3 Comparison with Max Cut

The MAX CUT problem is a classical graph problem where, given an undirected and edge-

weighted graph G = (V,E), we have to find a set S ⊆ V that maximizes
∑

u∈S,v∈V \S wuv, where

wuv is the weight of edge (u, v). Both MAX CUT and MAXIMUM WEIGHT MINIMAL SEPARATOR

are in some sense connectivity problems. However, in the former problem the value of a solution

is based on edge weights, whereas in the latter problem it is given by vertex weights. As such, the

problems can behave quite differently: It is known that MAX CUT is NP-hard on chordal graphs [9],

but on bipartite graphs, it is trivial. In contrast, MAXIMUM WEIGHT MINIMAL SEPARATOR is NP-

hard on bipartite graphs but can be solved in polynomial time on chordal graphs.

4.3 Basic results

In this section, we give two basic results for MAXIMUM WEIGHT MINIMAL SEPARATOR.

On the negative side, we show that MAXIMUM WEIGHT MINIMAL SEPARATOR and MAXIMUM

WEIGHT MINIMAL s-t SEPARATOR are NP-hard. On the other hand, we show that it is fixed-

parameter tractable with respect to W .

4.3.1 NP-hardness

Theorem 4.3.1. MAXIMUM WEIGHT MINIMAL s-t SEPARATOR is NP-hard on bipartite graphs

even if all the vertex weights are identical.

Proof: We give a reduction from a well-known NP-hard problem, MAX CUT ( [42]), which,

given an unweighted graph G = (V,E), asks whether there exists a cut (C, V \ C) whose value

(|{(u, v) ∈ E | u ∈ C, v ∈ V \ C}|) is at least k.

We construct an instance (G′, p) of MAXIMUM WEIGHT MINIMAL s-t SEPARATOR from

G = (V,E) and positive integer k. Although the instance we construct is weighted, the proof
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can easily be modified to the unweighted case.

We build the vertex set of G′ by taking the union of 3 copies (V, V ′, V ′′) of the vertex set V

of G, where we write v′ (resp., v′′) to denote the vertex corresponding to the copy of v ∈ V in V ′

(resp., V ′′). Furthermore, for each edge e in the edge set E of G, we create a corresponding vertex

e in G′. Finally, we also create two vertices s and t.

We build the edge set of G′ by making every vertex of V ′ adjacent to s, and every vertex of V ′′

adjacent to t. We make every vertex v ∈ V adjacent to its corresponding copies v′ (in V ′) and v′′

(in V ′′). Finally, for each edge vertex e (corresponding to some edge e = (u, v) in G), we take the

edges (e, u) and (e, v).

Formally, let G′ = (V ∪ E ∪ V ′ ∪ V ′′ ∪ {s, t}, E1 ∪ E2), where V ′ = {v′ | v ∈ V },

V ′′ = {v′′ | v ∈ V }, E1 =
⋃
e=(u,v)∈E{(u, e), (v, e)} and E2 =

⋃
u∈V {(s, u′), (u′, u)} ∪⋃

u∈V {(t, u′′), (u′′, u)}.

The vertex weights of G′ are defined to be wv = 3n + 1 if v ∈ E and 1 otherwise (where

n = |V |). G′ can be easily seen to be bipartite, by partitioning the vertices into sets {s, t} ∪ V and

V ′ ∪ V ′′ ∪ E.

We now show that if G has a cut C of weight at least k, then G′ has a minimal s-t separator S

whose weight is at least p = (3n+ 1)k.

GivenC, we construct S by taking the union of the vertices in V ′′ that correspond to some vertex

in C, the vertices in V ′ that correspond to some vertex not in C, and the vertices corresponding to

edges bisected by C. Formally, let S = {u′′ ∈ V ′′ | u ∈ V ∩ C} ∪ {v′ ∈ V ′ | v ∈ V \ C} ∪

{e = (u, v) ∈ E | u ∈ C, v ∈ V \ C}.

S is a s-t separator: it is easy to see that the vertices reachable from s (after removing S) are pre-

cisely the vertices in V and V ′ that correspond to vertices inC, together with vertices corresponding

to edges between vertices in C. On the other hand, the vertices reachable from t are precisely the

vertices in V and V ′′ that correspond to vertices not in C, together with vertices corresponding to

edges between vertices not in C.

Furthermore, S is minimal, since removing from S any vertex e corresponding to an edge

e = (u, v) gives rise to an s-t path s, u′, u, e, v, v′′, t (if u ∈ C, v 6∈ C) or s, v′, v, e, u, u′′, t (if

u 6∈ C, v ∈ C). Removing from S any vertex v′ or v′′ gives rise to an s-t path s, v′, v, v′′, t.

The weight of S is at least (3n + 1)k since |{e = (u, v) ∈ E | u ∈ C, v ∈ V \ C}| ≥ k (i.e.,
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since C is a cut that bisects at least k edges, our separator S includes at least k edge vertices).

We next show that if G′ has a minimal s-t separator S whose weight is at least p = (3n+ 1)k,

then G has a cut C of weight at least k. By the weighting, S contains at least k vertices in E. Note

that for any v ∈ V (G), at least one of v, v′, v′′ is included in S, otherwise S does not separate s and

t. If S does not contain any v ∈ V , let C be vertices in V that are reachable from s after removing

S; C is actually a cut, and its weight is k. Otherwise, S contains a vertex v ∈ V . In this case, S

does not contain any e forming e = (v, x) because otherwise it contradicts the minimality. Then,

we construct S′ := S \ {v} ∪ {v′} ∪ {e = (v, x) ∈ E} - obtaining a minimal separator of greater

weight. By repeating this procedure, we obtain a minimal separator S of weight at least (3n+ 1)k

that does not contain any v ∈ V . This completes the correctness of the reduction.

As mentioned above, this reduction can be modified to the unweighted case. To this end, we

create 3n+1 identical copies of each edge vertex e (and of its incident edges). In the new reduction,

to block the path between u and v, we need to remove 3n + 1 copies of e (= (u, v)), which plays

the same role as the original vertex having weight 3n+ 1.

Next, we show how to adapt this proof to the case of MAXIMUM WEIGHT MINIMAL SEPA-

RATOR, which does not require the separator to separate s and t (but rather only requires that the

separator separates some pair of vertices).

Corollary 4.3.2. MAXIMUM WEIGHT MINIMAL SEPARATOR is NP-hard on bipartite graphs, even

if all the vertex weights are identical.

Proof: We give a reduction from MAXIMUM WEIGHT MINIMAL s-t SEPARATOR. Given an in-

stance (G = (V,E), p, s, t, w) of MAXIMUM WEIGHT MINIMAL s-t SEPARATOR, we add an addi-

tional vertex xwhich we make adjacent to both s and t and we give xweightw(x) = Σv∈V w(v)+1.

We ask whether there exists a minimal separator of weight at least w(x) + p. If S is a separator of

weight at least w(x) + p, it must necessarily include x, and thus, be an s-t separator. It then follows

that S \ {x} must be an s-t separator of weight at least p in G. The converse easily follows: if S is

an s-t separator in G of weight at least p, then S ∪ {x} is a separator of weight at least p+w(x) in

the modified graph.

The proof for the unweighted case follows similarly to above, by creating w(x) identical copies

of x (and noting that our hardness proof for MAXIMUM WEIGHT MINIMAL s-t SEPARATOR uses
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polynomial weights).

4.3.2 Fixed-parameter tractability

As a positive result, we show that MAXIMUM WEIGHT MINIMAL SEPARATOR is fixed-

parameter tractable with respect to the solution size k.

Theorem 4.3.3. For unweighted graphs G, MAXIMUM WEIGHT MINIMAL SEPARATOR is fixed-

parameter tractable with respect to the solution size k.

Proof: We first determine whether G contains k × k grid minor or not in f(k)n2-time [60]. If

G has an k × k grid minor, then G also has a minimal separator of size at least k. Otherwise, the

treewidth ofG is at most g(k) by the excluded grid theorem [16,97]. Therefore, we can use dynamic

programming on a tree decomposition of width bounded by a function of k. As the MAXIMUM

WEIGHT MINIMAL SEPARATOR problem can be formulated in Monadic Second Order Logic, we

can solve the problem in linear time for fixed k. In this chapter, we give more efficient dynamic

programming algorithms.

For vertex-weighted graphs, MAXIMUM WEIGHT MINIMAL SEPARATOR is also fixed-

parameter tractable with respect to W .

Corollary 4.3.4. For vertex-weighted graphs G, MAXIMUM WEIGHT MINIMAL SEPARATOR is

fixed-parameter tractable with respect to W .

4.4 Dynamic programming on tree decompositions

In this section, we give an FPT algorithm with respect to treewidth. It is a standard dynamic

programming algorithm based on tree decompositions, and given a tree decomposition of width at

most ω, the running time is ωO(ω)n.

To be able to use “standard” algorithmic techniques, we reformulate the MAXIMUM WEIGHT

MINIMAL s-t SEPARATOR as a connectivity problem. In doing so, we can use the Cut & Count

technique [19, 20]. We start with defining the notion of connected partition:

Definition 4.4.1. A connected partition of weight W is a partition (S,A,B,Q) of V such that: (1)

s ∈ A, t ∈ B, (2) G[A] is connected, (3) G[B] is connected, (4)
∑

v∈S w(v) = W , (5) for ∀v ∈ S,
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there exist vertices a ∈ A, b ∈ B such that (a, v) ∈ E, (v, b) ∈ E and (6) for sets A,B,Q, there

does not exist an edge (u, v) such that u and v are in different sets.

The key to the design of our algorithms is the following lemma, which states that connected

partitions correspond to minimal separators.

Theorem 4.4.2. There exists a minimal s-t separator of weight W if and only if there exists a

connected partition (S,A,B,Q) of weight W .

To prove Theorem 4.4.2, we use the following lemma. This lemma appears in many papers and

books, for example, as an exercise in [45].

Lemma 4.4.3 ( [45] ). Let S be a minimal s-t separator and A, B be the connected components of

G[V \S] containing s and t, respectively. Then every vertex of S has a neighbor inA and a neighbor

in B.

Using this lemma, we can prove Theorem 4.4.2.

Proof: [Theorem 4.4.2] (⇒) Let S be a minimal s-t separator of weight W . Let A be the subset of

vertices of V \ S such that G[A] is the connected component containing s and B be the subset of

vertices such that G[B] is the connected component containing t. Moreover, let Q = V \A \B \S.

Note that S ∩ A ∩B ∩Q = ∅ and that there is no edge between A,B and Q. By Lemma 4.4.3, all

vertices in S have neighbors in both A and B. Therefore, (S,A,B,Q) is a connected partition of

weight W .

(⇐) Suppose that (S,A,B,Q) is a connected partition of weight W . We claim that S is a minimal

s-t separator. To show this by contradiction, suppose that there exists a vertex v ∈ S such that

S \ {v} separates s and t. Then there exist vertices a ∈ A, b ∈ B such that (a, v) ∈ E, (v, b) ∈ E.

Since G[A] is connected, there exists a path (in G[A]) from s to a. Similarly, there exists a path (in

G[B]) from b to t. By joining these paths with the edges (a, v) and (v, b), we obtain a path from

s to t, which contradicts that S \ {v} is a separator. Hence S is a minimal s-t separator, and by

definition it is of weight W .

Using connected partitions, we design an ωO(ω)n-time algorithm for MAXIMUM WEIGHT MINI-

MAL s-t SEPARATOR. First, we partition S into S∅, SA, SB and SAB (see Figure 4.1). Set S∅ con-

sists of the vertices in S that have no neighbor in A and B, but may have neighbors in SA, SB, SAB
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Figure 4.1. Connection between vertex sets

or Q. Set SA (resp., SB) consists of the vertices in S that have at least one neighbor in A (resp., B),

but no neighbor in B (resp., A). They may have neighbors in SA, SB, SAB, Q. Set SAB consists of

the vertices in S that have neighbors in A and in B and may have neighbors in SA, SB, SAB, Q.

Since we eventually want the sets A and B to become connected, we need to track their connec-

tivity. We define two partitionsPA = {PA1 , PA2 , . . . , PAα } ofXi∩A andPB = {PB1 , PB2 , . . . , PBβ }

of Xi ∩ B. We call each element of a partition PA` (resp., PB` ) a block. They correspond to the

intersection of Xi and the vertex sets of connected components of GAi = (A ∩ Vi, Ei) (resp.,

GBi = (B∩Vi, Ei)). Note that there are at most |Xi|O(|Xi|) partitions for each nodeXi. α and β are

the number of connected components in GAi = (A ∩ Vi, Ei) and GBi = (B ∩ Vi, Ei), respectively.

Note that α ≤ |Xi ∩ A| and β ≤ |Xi ∩ B|. Intuitively, one block {{v}} is added to PA in each

introduce vertex v node; then blocks may be merged in introduce edge nodes and join nodes. In a

forget node, note that a vertex may not be the last of its block, else, the solution is invalid and must

be discarded since its component of A is not connected.

With these sets, we define a partial solution as follows.

Definition 4.4.4. Given a node i of the tree decomposition of G, a partial solution for node i is a

partition (S∅, SA, SB, SAB, A,B,Q) of Vi with PA and PB , such that:

• S∅ ∪ SA ∪ SA ∪ SAB ∪A ∪B ∪Q = Vi,

• ∀v ∈ S∅, N(v) ∩ (A ∪B) = ∅,

• ∀v ∈ SA, N(v) ∩B = ∅ and N(v) ∩A 6= ∅,

• ∀v ∈ SB , N(v) ∩B 6= ∅ and N(v) ∩A = ∅,

• ∀v ∈ SAB , N(v) ∩B 6= ∅ and N(v) ∩A 6= ∅,
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• ∀v1, v2 ∈ A, v1, v2 are in the same block in PA↔ v1, v2 are connected in GAi ,

• ∀v1, v2 ∈ B, v1, v2 are in the same block in PB ↔ v1, v2 are connected in GBi ,

• s ∈ Vi ⇒ s ∈ A, and

• t ∈ Vi ⇒ t ∈ B.

Let Σ = {s∅, sA, sB, sAB, a, b, q}. Each element of Σ is called state of vertices (e.g., we say

that vertex v ∈ S∅ has state s∅). Then, we define the coloring function c : V → Σ. The coloring

function represents which set of the partition a vertex is in, for example, if v is in S∅ then c(v) = s∅.

Given two sets V and W , we denote their colorings by cV ∈ Σ|V | and cW ∈ Σ|W |, respectively.

Suppose that V and W are disjoint, cV = (c(v1), . . . , c(v|V |)), and cW = (c(w1), . . . , c(w|W |)),

where vi ∈ V and wi ∈ W . We then define the concatenation cV × cW ∈ Σ|V |+|W | of cV

and cW as the coloring (c(v1), . . . , c(v|V |), c(w1), . . . , c(w|W |)). Moreover, if W ⊆ V . then

we define the separation cV \ cW ∈ Σ|V |−|W | as the coloring (c(vi1), . . . , c(vi|V |−|W |)), where

vi1 , . . . , vi|V |−|W | ∈ V \W .

In our algorithm, we assume we are given a nice tree decomposition of width at most ω. We

transform this tree decomposition by adding {s, t} to all bags; thus we can suppose that the root bag

Xr contains exactly two vertices s, t. The width of this tree decomposition is at most ω + 2.

We define the function fi(c,PA,PB) to be the possible maximum weight of vertices in S ∩ Vi

of a partial solution (S∅, SA, SB, SAB, A,B,Q) of Vi with PA and PB . If c,PA,PB deviate from

the definition of a partial solution, then let fi(c,PA,PB) = −∞.

We now give recursive formulas for computing fi in each node i. In the root node,

fr({c(s)} × {c(t)}, {{s}}, {{t}}) = fr({a} × {b}, {{s}}, {{t}}) is the maximum weight of min-

imal s-t separators because Xr = {s, t}.

In the following, we let i denote a parent node, and let j denote its corresponding child node.

For a join node, we write j1 and j2 to denote its two children. To emphasize that we are dealing

with two different colorings, we denote parent node colorings by ci and child node colorings by cj .

Leaf node: In leaf nodes, if c(s) = a and c(t) = b, we define fi({c(s)} × {c(t)}, {{s}}, {{t}})

:= 0. Otherwise, fi({c(s)} × {c(t)},PA,PB) := −∞ since there are only two vertices s, t in Xi.
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Introduce vertex v node: In introduce vertex nodes, we consider three cases for colorings. If

c(v) = s∅, we add w(v) to fj(c,PA,PB) because v is added in S. If c(v) ∈ {a, b, q}, the value

of fi does not change since v /∈ S. Moreover, we add a block {{v}} to PA or PB depending on

whether c(v) = a or c(v) = b, respectively. Finally, if c(v) ∈ {sA, sB, sAB}, a partial solution is

invalid by the definition because v has no incident edge and hence no neighbor inA orB. Therefore,

we define fi as follows:

fi(c,PA,PB) :=



fj(c \ {c(v)},PA,PB) + w(v) if c(v) = s∅

fj(c \ {c(v)},PA \ {{v}},PB) if c(v) = a

fj(c \ {c(v)},PA,PB \ {{v}}) if c(v) = b

fj(c \ {c(v)},PA,PB) if c(v) = q

−∞ otherwise.

Introduce edge (u, v) node: In introduce edge nodes, we define fi for the following cases of

c(u), c(v).

• If c(u) = a and c(v) = a, the vertices u, v are in A. If u and v are in the different blocks,

we set fi(c,PA,PB) := −∞ because u and v are in the same block of partition PA in node

i due to edge (u, v). Then, there are two cases: the partitions in A ∩Xi (parent) and A ∩Xj

(child) are same or not. In the former case, u and v are in the same block in the partition of

A ∩ Xj , and we then set fi(c,PA,PB) := fj(c,PA,PB). In the latter case, let P ′A be a

partition of A ∩ Xj such that PA 6= P ′A but P ′A changes to PA by merging two blocks of

P ′A including u and v respectively with edge (u, v). Therefore, we take a P ′A that maximizes

fi(c,P ′A,PB). Then, we set fi as follows:

fi(c,PA,PB) := max{fj(c,PA,PB),max
P ′A

fj(c,P ′A,PB)}.

• The case that c(u) = b and c(v) = b is almost the same as the case that c(u) = a

and c(v) = a. If u and v are not in the same block of partition PB , we then set

fi(c,PA,PB) := −∞. Let P ′B be a partition of B ∩ Xj such that PB 6= P ′B but P ′B

changes to PB by merging two blocks of P ′B including u and v respectively with edge (u, v).
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Then, we define fi as follows:

fi(c,PA,PB) := max{fj(c,PA,PB),max
P ′B

fj(c,PA,P ′B)}.

• If c(u), c(v) ∈ {s∅, sA, sB, sAB, q}, we define fi as follows:

fi(c,PA,PB) = fj(c,PA,PB).

In this case, (u, v) is irrelevant to the partitions and the value is not changed because only one

edge (u, v) is added.

• If (c(u), c(v)) = (sA, a), (a, sA), we consider two cases. One case is that u ∈ SA and v ∈ A

in the child node and the other case is that u ∈ S∅ and v ∈ A in the child node. In the other

case, u is moved from S∅ into SA by adding (u, v), because u has a neighbor v in A. Thus,

we define fi as follows:

fi(c× {sA} × {a},PA,PB) := max { fj(c× {sA} × {a},PA,PB),

fj(c× {s∅} × {a},PA,PB)}.

• If (c(u), c(v)) = (sB, b), (b, sB), we consider almost the same cases as above; that is,

u ∈ SB , v ∈ B and u ∈ S∅ and v ∈ B in the child node.

fi(c× {sB} × {b},PA,PB) := max { fj(c× {sB} × {b},PA,PB),

fj(c× {s∅} × {b},PA,PB)}.

• If (c(u), c(v)) = (sAB, a), (a, sAB), there are two cases: (1) u ∈ SAB and v ∈ A in the child

node and (2) u ∈ SB and v ∈ A in the child node. In the latter case, u is moved from SB to

SAB by adding (u, v), because u has a neighbor v in B. Therefore, we define fi as follows:

fi(c× {sAB} × {a},PA,PB) := max { fj(c× {sAB} × {a},PA,PB),

fj(c× {sB} × {a},PA,PB)}.
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• If (c(u), c(v)) = (sAB, b), (b, sAB), we consider almost the same cases as above; that is,

u ∈ SAB , v ∈ B and u ∈ SA and v ∈ B in the child node.

fi(c× {sAB} × {b},PA,PB) := max { fj(c× {sAB} × {b},PA,PB),

fj(c× {sA} × {b},PA,PB)}.

• Otherwise, we set fi(c,PA,PB) := −∞ because the rest of the cases are invalid by the

definition of states and partial solution. There must not exist edge (u, v) for such cases.

Forget v node: In a forget v node, if cj(v) ∈ {s∅, sA, sB}, vertex v will never have neighbors

both inA and inB and hence this case is invalid because of the definition of the connected partition,

which requires that each vertex in S has neighbors in both A and B. If cj(v) ∈ {sAB, q}, we need

not consider the connectivity of v. In the case that cj(v) = a, we only consider partitions such that

there exists at least one vertex u in A included in the same block as v. If there is no such vertex, the

block including v is never merged. Consequently, G[A] would not be connected in the root node.

The case that cj(v) = b is almost the same. Let P ′A,P ′B be a partition satisfying such conditions,

then we define fi as follows:

fi(c,PA,PB) := max { fj(c× {sAB},PA,PB), fj(c× {q},PA,PB),

max
P ′A

fj(c× {a},P ′A,PB),max
P ′B

fj(c× {b},PA,P ′B)}.

Join node: For a parent node i and two child nodes j1, j2, we denote the corresponding colorings

by ci, cj1 , cj2 and the corresponding partitions by PAj1 ,P
B
j1
,PAj2 ,P

B
j2

. We then define a subset D of

tuples of ((cj1 ,PAj1 ,P
B
j1

), (cj2 ,PAj2 ,P
B
j2

)) such that the combinations of colorings for cj1 , cj2 satisfy

the following conditions (see Table 4.1):

• ∀v ∈ c−1
i ({s∅, a, b, q}), (cj1(v), cj2(v)) = (ci(v), ci(v)),

• ∀v ∈ c−1
i ({sA}), (cj1(v), cj2(v)) = (sA, s∅), (s∅, sA), (sA, sA),

• ∀v ∈ c−1
i ({sB}), (cj1(v), cj2(v)) = (sB, s∅), (s∅, sB), (sB, sB), and

• ∀v ∈ c−1
i ({sAB}), (cj1(v), cj2(v)) = (sAB, s∅), (sAB, sA), (sAB, sB), (sAB, sAB),
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s∅ sA sB sAB a b q

s∅ s∅ sA sB sAB

sA sA sA sAB sAB

sB sB sAB sB sAB

sAB sAB sAB sAB sAB

a a

b b

q q
Table 4.1. This table represents combinations of states of two child nodes j1, j2 for each vertex in
Xi = Xj1 = Xj2 . The rows and columns correspond to states of j1, j2 respectively and inner ele-
ments correspond to states of x. For example, if ci(v) = sA, there are three combinations such that
(cj1(v), cj2(v)) = (sA, s∅), (cj1(v), cj2(v)) = (s∅, sA) and (cj1(v), cj2(v)) = (sA, sA).

(s∅, sAB), (sA, sAB), (sB, sAB), (sA, sB), (sB, sA),

and the partition obtained by merging PAj1 and PAj2 equals PA and the partition obtained by merging

PBj1 ,P
B
j2

equals PB . If D = ∅ for ci,PA,PB , we set fi(ci,PA,PB) := −∞. Otherwise, we set

S∗ := c−1
i ({s∅, sA, sB, sAB}). Then we define fi as follows:

fi(ci,PA,PB) := max
((cj1 ,P

A
j1
,PB

j1
),(cj2 ,P

A
j2
,PB

j2
))∈D

{ fj1(cj1 ,PAj1 ,P
B
j1)

+ fj2(cj2 ,PAj2 ,P
B
j2)− w(S∗)}.

The subtraction in the right hand side of the equation above is because the weight w(S∗) is counted

twice; once in each child node.

We recursively calculate fi on the tree decomposition. Note that all bags have |Xi| ver-

tices and the number of combinations of colorings and partitions (c,PA,PB) in each node is

|Xi|O(|Xi|) = ωO(ω). The running time to compute all fi’s in Xi is dominated by join nodes and it

is roughly (ωO(ω))3 = ωO(ω) since we scan every coloring and partition in two children nodes Xj1

andXj2 for each coloring ci and each partition PA,PB and then check all combinations. Therefore,

the total running time is ωO(ω)n and we conclude with the following theorem.

Theorem 4.4.5. Given a tree decomposition of width at most ω, there exists an algorithm that solves

MAXIMUM WEIGHT MINIMAL s-t SEPARATOR in time ωO(ω)n.

MAXIMUM WEIGHT MINIMAL SEPARATOR can be solved by applying the above ωO(ω)n-
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time algorithm for all possible combinations of s and t, i.e., at most n2 times. We thus obtain the

following result:

Theorem 4.4.6. Given a tree decomposition of width at most ω, there exists an algorithm that solves

MAXIMUM WEIGHT MINIMAL s-t SEPARATOR in time ωO(ω)n3.

4.5 Algorithm using Cut & Count

In this section, we give a Monte-Carlo algorithm that solves the decision version of MAXIMUM

WEIGHT MINIMAL s-t SEPARATOR, that is, to decide whether there exists a minimal s-t separator

with weight W in time O∗(9ω ·W 2), where ω is the width of a tree decomposition. This algorithm

is based on the Cut & Count technique.

4.5.1 Isolation lemma

In this subsection, we explain the isolation lemma introduced by Mulmuley et al. [80]. The

main idea of the Cut & Count technique is to obtain a single solution with high probability; we

count modulo 2, and the isolation lemma guarantees the existence of such a single solution.

Definition 4.5.1 ( [80]). A function w′ : U → Z isolates a set family F ⊆ 2U if there is a unique

S′ ∈ F with w′(S′) = minS∈F w
′(S) where w′(X) =

∑
u∈X w

′(u).

Lemma 4.5.2 (Isolation lemma [80]). Let F ⊆ 2U be a set family over a universe U with |F | > 0.

For each u ∈ U , choose a weight w′(u) ∈ {1, 2, . . . N} uniformly and independently at random.

Then Pr[w′ isolates F ] ≥ 1− |U |/N.

4.5.2 Cut & Count

The Cut & Count technique was introduced by Cygan et al. for solving connectivity prob-

lems [20]. The concept of Cut & Count is counting the number of relaxed solutions, that is, we do

not consider whether they are connected or disconnected. Then we compute the number of relaxed

solutions modulo 2 and we determine whether there exists a connected solution by cancellation

tricks. Now, we define a consistent cut to explain the details of Cut & Count.

Definition 4.5.3 ( [20]). A cut (V1, V2) of V ′ ⊆ V such that V1 ∪ V2 = V ′ and V1 ∩ V2 = ∅ is
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consistent if v1 ∈ V1 and v2 ∈ V2 implies (v1, v2) /∈ E.

This means that a cut (V1, V2) of V ′ is consistent if there are no edges between V1 and V2. We

fix an arbitrary vertex v in V1. Then, if G[V ] is connected, then there only exists one consistent cut,

namely (V1, V2) = (V, ∅). Therefore, the number of consistent cuts is odd. Otherwise, if V does

not induce a connected subgraph, the number of consistent cuts is a multiple of two. Therefore,

we just need to compute the number of consistent cuts modulo 2 and return yes if the number of

consistent cuts is odd, and return no otherwise. the isolation lemma allows us to guarantee (with

high probability) that there exists a unique solution (and thus, that we indeed end up with an odd

number of consistent cuts).

Let S ⊆ 2U be a set of solutions. According to [19, 20], the Cut & Count technique is divided

into two parts as follows.

• The Cut part : Relax the connectivity requirement by considering the setR ⊇ S of possibly

connected or disconnected candidate solutions. Moreover, consider the set C of pairs (X;C)

where X ∈ R and C is a consistent cut of X .

• The Count part : Isolate a single solution by sampling weights of all elements in U by the

isolation lemma. Then, compute |C|modulo 2 using a sub-procedure. Disconnected candidate

solutionsX ∈ R \ S cancel since they are consistent with an even number of cuts. If the only

connected candidate x ∈ S exists, we obtain the odd number of cuts.

Given a setU and a tree decomposition 〈X , T 〉, the general scheme of Cut & Count is as follows:

Step 1. Set the integer weight for every vertex uniformly and independently at random by

w′ : U → {1, . . . , 2|U |}.

Step 2. For each integer weight 0 ≤ W ′ ≤ 2|U |2, compute the number of relaxed solutions of

weight W ′ with consistent cuts modulo 2 on a tree decomposition. Then return yes if it is

odd, otherwise no in the root node.

We use the Cut & Count technique to determine whether there exists a connected partition

(S,A,B,Q) of weight W so that A and B are connected. To apply the above scheme, we newly

give the following definition of a partial solution. Note that we have to consider two consistent cuts

of A and B.
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Definition 4.5.4. Given a node i of the tree decomposition of G, a partial solution for that node is

a tuple (S∅, SA, SB, SAB, Al, Ar, Bl, Br, Q,w), such that:

• Vi = S∅ ∪ SA ∪ SA ∪ SAB ∪Al ∪Ar ∪Bl ∪Br ∪Q,

• (Al, Ar) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Al and v ∈ Ar,

• (Bl, Br) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Bl and v ∈ Br,

• w = Σv∈Sw(v),

• ∀v ∈ S∅, N(v) ∩ (Al ∪Ar ∪Bl ∪Br) = ∅,

• ∀v ∈ SA, N(v) ∩ (Bl ∪Br) = ∅ and N(v) ∩ (Al ∪Ar) 6= ∅,

• ∀v ∈ SB , N(v) ∩ (Bl ∪Br) 6= ∅ and N(v) ∩ (Al ∪Ar) = ∅ and

• ∀v ∈ SAB , N(v) ∩ (Bl ∪Br) 6= ∅ and N(v) ∩ (Al ∪Ar) 6= ∅.

• s ∈ Vi ⇒ s ∈ Al

• t ∈ Vi ⇒ t ∈ Bl

For each vertex v, we set another weight w′(v) by choosing from {1, . . . , 2|V |} independently

at random. We also define the coloring function c : V → {s∅, sA, sB, sAB, al, ar, bl, br, q}. Now,

we give a dynamic programming algorithm that computes the number of relaxed solutions with

consistent cuts modulo 2. To compute that, for each c, w and w′, we define the counting function

hi : {s∅, sA, sB, sAB, al, ar, bl, br, q}|Xi|×N×N→ N in each node i on a nice tree decomposition.

Here, we define the function [p] as follows: if p is true, then [p] = 1, otherwise [p] = 0.

Leaf node: In a leaf node, we define hi(∅, 0, 0) = 1, if S∅ = SA = SB = SAB = Al =

Ar = Bl = Br = ∅ and w,w′ = 0. Otherwise, hi(c, w,w′) = 0.

Introduce vertex v node: The function hi has five cases in introduce vertex nodes. Note that we

only add one vertex v without edges. Thus, if c(v) ∈ {sA, sB, sAB}, the partial solution is invalid

by definition because v has no neighbor. If c(v) = s∅, vertex v is chosen as a vertex of S, and we

hence add each weight w(v), w′(v) to w, w′, respectively. Moreover, v must not be s, t because s
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(resp., t) should be in Al (resp., Bl). If not, it is not a connected partition. Similarly, if c(v) = al

(resp., bl), we check whether v is not t (resp., s). As for c(v) ∈ {ar, br, q}, we also check whether

v is neither s nor t. Therefore, we define hi in introduce vertex nodes as follows:

hi(c× {c(v)}, w, w′) :=



[v 6= s, t]hj(c, w − w(v), w′ − w′(v)) if c(v) = s∅

[v 6= t]hj(c, w,w
′) if c(v) = al

[v 6= s]hj(c, w,w
′) if c(v) = bl

[v 6= s, t]hj(c, w,w
′) if c(v) ∈ {ar, br, q}

0 otherwise.

Introduce edge (u, v) node: In introduce edge nodes, we check each state of the endpoints of

the edge (u, v) and define fi for each case.

• If c(u) = s∅, vertex u has no neighbor in A and B. Hence, we define the function hi in this

case as follows:

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) /∈ {al, ar, bl, br}]

·hj(c× {s∅} × {c(v)}, w, w′).

• If c(u) = sA, vertex u has neighbors in A but no neighbor in B. In this case, we have

two cases. The first case is that u ∈ S∅ and v ∈ A in the child node, because by

adding edge (u, v) in the introduce edge (u, v) node, vertex u is moved from S∅ to SA.

The other case is that u ∈ SA and v /∈ B in the child node. If v ∈ B, vertex u is in

SAB in the parent node. We define hi as follows. Note that only if c(v) ∈ {al, ar}, we

sum up two cases. If c(v) ∈ {bl, br}, hi(c × {c(u)} × {c(v)}, w, w′) := 0, otherwise

hi(c× {c(u)} × {c(v)}, w, w′) := hj(c× {sA} × {c(v)}, w, w′).

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {al, ar}]hj(c× {s∅} × {c(v)}, w, w′)

+ [c(v) /∈ {bl, br}]hj(c× {sA} × {c(v)}, w, w′).
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• The case that c(u) = sB is almost the same as in the above case, however, we swap the roles

of A and B.

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {bl, br}]hj(c× {s∅} × {c(v)}, w, w′)

+ [c(v) /∈ {al, ar}]hj(c× {sB} × {c(v)}, w, w′).

• If c(u) = sAB , we consider three cases: u ∈ SA and v ∈ B, u ∈ SB and v ∈ A, and

u ∈ SAB and v is in an arbitrary set in the child node. For first and second case, vertex u is

moved from SA (resp., SB) into SAB by adding edge (u, v). If u ∈ SAB , v is allowed to be in

any set because a vertex in SAB could connect to all sets. Therefore, we define fi as follows:

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {bl, br}]hj(c× {sA} × {c(v)}, w, w′)

+ [c(v) ∈ {al, ar}]hj(c× {sB} × {c(v)}, w, w′)

+ hj(c× {sAB} × {c(v)}, w, w′).

• If c(u) ∈ {al, ar}, then c(v) /∈ {bl, br, q} since there is no edge between A,B and Q by the

definition of connected partition. There is also no edge between Al and Ar because (Al, Ar)

is a consistent cut. Therefore, if u is in Al or Ar, then v is in the same set as u or is in one of

SA and SAB . Note that because u is in A, v is not in S∅, SB .

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) = c(u)]hj(c× {c(u)} × {c(v)}, w, w′)

+ [c(v) ∈ {sA, sAB}]hj(c× {c(u)} × {c(v)}, w, w′).

• The case that c(u) ∈ {bl, br} is almost the same as in the above case, however, we replace A
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by B.

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) = c(u)]hj(c× {c(u)} × {c(v)}, w, w′)

+ [c(v) ∈ {sB, sAB}]hj(c× {c(u)} × {c(v)}, w, w′).

• If c(u) = q, vertex u is in Q. Hence, v must be in S∅, SA, SB, SAB , or Q because a vertex in

Q has no neighbor in A and B by the definition of connected partition.

hi(c× {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {s∅, sA, sB, sAB, q}]

·hj(c× {c(u)} × {c(v)}, w, w′).

Forget v node: For forget nodes, if cj(v) ∈ {s∅, sA, sB}, a partial solution does not satisfy the

condition of connected partitions because any v ∈ S must have neighbors of both A and B. For

this reason, we only sum up for each state cj(v) ∈ {sAB, al, ar, bl, br, q}. The function hi in forget

nodes is defined as follows:

hi(c, w,w
′) :=

∑
cj(v)∈{sAB ,al,ar,bl,br,q}

hj(c× {cj(v)}, w, w′).

Join node: We denote the coloring and weight for each partial solution in i, j1, j2 by ci, cj1 , cj2

and wi, wj1 , wj2 , w′i, w
′
j1

, w′j2 , respectively. Moreover, for a state subset L ⊆ {s∅, sA, sB, sAB,

al, ar, bl, br, q}, we define c−1(L) as the vertex set such that all vertices satisfy c(v) ∈ L. For a

coloring ci, we also define the subset D of tuples of (cj1 , cj2) as the combinations of colorings of

cj1 , cj2 like Section 3 such that:

• ∀v ∈ c−1
i ({s∅, al, ar, bl, br, q}), (cj1(v), cj2(v)) = (ci(v), ci(v)),

• ∀v ∈ c−1
i ({sA}), (cj1(v), cj2(v)) = (sA, s∅), (s∅, sA), (sA, sA),

• ∀v ∈ c−1
i ({sB}), (cj1(v), cj2(v)) = (sB, s∅), (s∅, sB), (sB, sB), and

• ∀v ∈ c−1
i ({sAB}), (cj1(v), cj2(v)) = (sAB, s∅), (sAB, sA), (sAB, sB),

(sAB, sAB), (s∅, sAB), (sA, sAB), (sB, sAB), (sA, sB), (sB, sA).
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Let S∗ be the vertex subset c−1
i ({s∅, sA, sB, sAB}). To sum up all combinations of vertex states

and weights for counting, we define the function hi. If D = ∅, we define hi(ci, wi, w′i) := 0.

Otherwise,

hi(ci, wi, w
′
i) :=

∑
wj1

+wj2
=wi+w(S∗)

∑
w′
j1

+w′
j2

=w′
i
+w′(S∗)

∑
(c∗j1

,c∗j2
)∈D

hj1(c∗j1 , wj1 , w
′
j1)hj2(c∗j2 , wj2 , w

′
j2).

From now, we analyze the running time of this algorithm. In leaf, introduce vertex, introduce

edge, and forget nodes, we can compute fi for each coloring c and weight w,w′ in O(1)-time be-

cause we only use O(1)-operations. Therefore, the total running time for them is O∗(9ω ·W ·W ′).

However, in join nodes, we sum up all weight combinations and coloring combinations satisfying

some conditions. There are 21 coloring combinations for each vertex and W ·W ′ weight combina-

tions. Therefore, we compute all fi’s in a join node in time O∗(21ω ·W 2). Note that by definition,

O(W ′2) is a polynomial factor.

Theorem 4.5.5. Given a tree decomposition of width at most ω, there exists a Monte-Carlo algo-

rithm that solves the decision version of MAXIMUM WEIGHT MINIMAL s-t SEPARATOR in time

O∗(21ω ·W 2). It cannot give false positives and may give false negatives with probability at most

1/2.

Using the convolution technique [110], we can obtain a faster Monte-Carlo algorithm. The

technique helps to speed up the computation for join nodes. First, we set the new coloring

ĉ : V → {sĀB̄, sĀ, sB̄, sall, al, ar, bl, br, q}. The state sĀB̄ represents that a vertex v is in S and has

no neighbor of A and B. The state sĀ (resp., sB̄) represents a vertex v is in S and has no neighbor

of A (resp., B), respectively. Finally, the state sall represents a vertex v is in S without constraints.

Then, we show the following lemma to transform between c and ĉ.

Lemma 4.5.6. Let i be a node of a tree decomposition and hi(c, w,w′) be a counting function to

count the number of partial solutions of MAXIMUM WEIGHT MINIMAL s-t SEPARATOR of each

weight w,w′, corresponding to each coloring c, ĉ of a node i. Then we can transform from one

coloring to another coloring for each function without loss of information. Moreover, it is computed

in O(W ·W ′ · 9ω · |Xi|).

Proof: This proof scheme follows [110]. We consider the immediate `-th step in the transformation.
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For hi(c× {c(v)} × ĉ, w, w′), v is a vertex which turns into the state of another coloring in the `-th

step, and c is the partial coloring of size `−1 and ĉ is also the partial coloring of size |Xi|−`. Here,

for simplicity, we denote hi(c× {c(v)} × ĉ, w, w′) and hi(c× {ĉ(v)} × ĉ, w, w′) by hi(c(v)) and

hi(ĉ(v)).

Since hi is the number of partial solutions with a consistent cut, the transformation from c to ĉ

of hi in `-th step is as follows:

- hi(sĀB̄) = hi(s∅)

- hi(sĀ) = hi(s∅) + hi(sB)

- hi(sB̄) = hi(s∅) + hi(sA)

- hi(sall) = hi(s∅) + hi(sA) + hi(sB) + hi(sAB).

Conversely, we can transform from ĉ to c as follows:

- hi(s∅) = hi(sĀB̄)

- hi(sA) = hi(sB̄)− hi(sĀB̄)

- hi(sB) = hi(sĀ)− hi(sĀB̄)

- hi(sAB) = hi(sall)− hi(sĀ)− hi(sB̄) + hi(sĀB̄).

These equations follow from equations of the transformation from c to ĉ.

For each of the colorings c, ĉ, each transformation can be performed inO(|Xi|)-steps. Thus, the

total running time of each direction is O(W ·W ′ · 9ω · |Xi|).

Therefore, we first transform the original coloring c to the new coloring ĉ inO(W ·W ′ ·9ω ·|Xi|)-

time. Then we compute the following function hi for the new coloring ĉ in O(9ω ·W 2)-time:

hi(ĉ, w,w
′
i) :=

∑
wj1

+wj2
=wi+w(Ŝ∗)

∑
w′j1

+w′j2
=w′i+w

′(Ŝ∗)

hj1(ĉ, wj1 , w
′
j1)hj2(ĉ, wj2 , w

′
j2),

where Ŝ∗ = ĉ−1({s∅, sA, sB, sAB}) ⊆ V . Note that ĉi, ĉj1 , ĉj2 are the same coloring. Finally, we

transform ĉ to c. Thus, total running time of this algorithm is O∗(9ω ·W 2).
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s∅ sA sB sAB al ar bl br q

s∅ s∅ sA sB sAB

sA sA sA sAB sAB

sB sB sAB sB sAB

sAB sAB sAB sAB sAB

ar ar

al al

br br

bl bl

q q

Table 4.2. Combinations of the original coloring
in join node

sall sĀ sB̄ sĀB̄ al ar bl br q

sall sall

sĀ sĀ

sB̄ sB̄

sĀB̄ sĀB̄

ar ar

al al

br br

bl bl

q q

Table 4.3. Combinations of the new coloring in
join node

Theorem 4.5.7. Given a tree decomposition of width at most ω, there exists a Monte-Carlo algo-

rithm that solves the decision version of MAXIMUM WEIGHT MINIMAL SEPARATOR and MAXI-

MUM WEIGHT MINIMAL s-t SEPARATOR in time O∗(9ω ·W 2). It cannot give false positives and

may give false negatives with probability at most 1/2. If the input graph is unweighted, the running

time is 9ωnO(1).

As usual for this type of algorithm, the probability of a false negative can be made arbitrarily

small by repeating the algorithm.

4.6 Conclusion

In this chapter, we studied MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR. We first showed

MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR is NP-hard even on unweighted bipartite graphs.

On the other hand, we designed a deterministic ωO(ω)nO(1)-algorithm. However, this algorithm is

not a single exponential algorithm. We then designed an O∗(9ω ·W 2)-randomized algorithm based

on the Cut & Count.
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Chapter 5

Finding Environmentally Critical

Transmission Sectors, Transactions,

and Paths in Global Supply Chain

Networks

5.1 Introduction

Environmentally extended input-output analysis has been widely used to estimate production-

and consumption-based emissions in many countries [52, 90, 93], and in Japan a national emission

inventory has been provided to the public every five years [83]. A major advantage of using envi-

ronmental energy input-output analysis is that product supply-chain networks can be easily mod-

eled and environmentally and ecologically important sectors and paths can be identified from the

network [68, 69, 91, 114]. Clustering analysis has also been applied to environmental energy input-

output analysis in order to find environmentally important industry groups (i.e., industry clusters)

that induce higher CO2 emissions along their supply chains [55–57].

It is important to note that the environmentally critical sectors, transactions, paths, and clusters

identified by input-output analysis play important roles in reducing consumption-based emissions

through the entire economy. A supply-chain path is composed of transactions between two sectors.



84

An environmentally critical sector as identified by key sector analysis [51,53,68,95] is considered to

be a sector that contributes to emitting larger environmental emissions (e.g., CO2 emissions) in the

economy through not only purchasing emission- and energy-intensive products from other upstream

sectors but producing emission- and energy-intensive products in its own sector. Therefore, an

effective emission reduction policy (i.e., technology policy) is to improve the production technology

of the critical sector toward a cleaner one that has less energy consumption and environmental

emissions along the product supply chain.

Information on environmentally critical paths [68] and clusters [55–57, 96] can support a tech-

nology policy in the sense that policymakers can find high priority supply-chain paths (i.e., upstream

products) and clusters (i.e., upstream product systems). However, it is not an easy task to find high-

priority paths and clusters from the supply-chain complexity due to the problem of computation

(e.g., [56]).

Liang et al. (2016) proposed a useful indicator, vertex betweenness centrality, of a specific sec-

tor by combining input-output analysis with social network analysis [75]. More specifically, Liang

et al. (2016) formulated the vertex betweenness centrality index by applying the notion of network

centrality [37–39] to structural path analysis [23, 68]. Liang et al. (2016) defined a specific sector

with higher vertex betweenness centrality in a supply-chain network as a critical transmission sec-

tor in the sense that many sectors supply their products to final consumers by passing through the

specific sector, and consequently the transmission sector contributes to emitting a large amount of

environmental emissions in the economy. Although key sector analysis [51, 53, 68, 95] implicitly

considers the transmission power of a specific sector, previous analyses failed to define this as the

vertex betweenness centrality consistent with network theory [37–39]. A technology policy for re-

ducing environmental emissions should target high-priority sectors with higher vertex betweenness

centrality.

In this study, we develop another centrality index, edge betweenness centrality, consistent with

environmental energy input-output analysis following Liang et al. (2016) and prove a mathemati-

cal relationship between the “edge” betweenness centrality and the “vertex” betweenness centrality.

The edge betweenness centrality indicates how much ‘embodied’ environmental emissions of prod-

ucts flow through the transaction and to what extent sectors are connecting through a specific edge

(i.e., a transaction) in terms of supply-chain complexity. It is important to note that the embodied
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environmental emissions (e.g., embodied CO2 emissions) in supply-chain networks are caused by

embodied energy consumption in the entire economy [52, 94].

The edge betweenness centrality for a particular transaction developed in this study can be

regarded as the sum of environmental emissions associated with ‘infinite’ supply-chain paths that

include the specific transaction identified using structural path analysis (SPA) (e.g., [68,81,91,92]).

However, a technical problem of SPA is that it is impossible to identify ‘infinite’ paths that include

the particular transaction; therefore, the edge betweenness centrality developed in this study can be

a useful indicator to express the importance (or criticality) of a particular transaction in the entire

supply-chain network.

Liang et al. (2015) also proposed strongest path betweenness [74]. This index represents the

importance of a sector in the supply-chain network as a center transmitting or facilitating the creation

of environmental impacts. Roughly speaking, it is defined as the sum of the strengths of all strongest

paths in the supply-chain network passing through a sector. The strongest path in [74] is defined as

the environmentally important path that causes the largest CO2 emissions in sector i owing to one

unit of value added in sector j. It is important to note that the strongest path developed in [74] is

defined for a path, whereas the edge betweenness centrality developed in this study is defined for

a transaction. A strongest path from sector i to sector j represents the most inefficient path among

all possible paths from i to j. The point of difference from the vertex betweenness centrality and

the edge betweenness centrality is that the strongest path betweenness does not consider ‘infinite’

supply-chain paths.

In this study, we compute the edge and vertex betweenness centralities using the environmen-

tally extended multi-regional input-output table covering 35 industrial sectors and 41 countries and

regions in 2008 [24,109] and identify high-priority sectors with higher vertex betweenness centrality

and high-priority transactions with higher edge betweenness centrality in global supply-chain net-

works. Finally, we argue how those high-priority sectors and transactions can contribute to reducing

CO2 emissions as climate mitigation.

It should be noted that although we mainly focus on CO2 emissions as a case study, the method

developed in this chapter can be applied to energy consumption and other environmental pollutants

such as NOx and SOx. In particular, although energy consumption and CO2 emissions are both

typical analysis subjects for these methods, our reason for mainly focusing on CO2 emissions is
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Figure 5.1. An example of the vertex betweenness centrality for sector v

interest in the effects on recent global warming. For this purpose, we conducted similar betweenness

centrality analyses focused on energy consumption and computed rank correlation coefficients for

both vertex and edge betweenness centralities for CO2 emissions and energy consumption. Finally,

we discuss a more direct relationship between CO2 emissions and energy consumption with a focus

on the vertex and edge betweenness centralities in Section 5.5.

The remainder of this chapter is organized as follows: Section 5.2 revisits the vertex between-

ness centrality as proposed in [75]; Section 5.3 develops the edge betweenness centrality consistent

with input output analysis; Section 5.4 presents the mathematical relationship between the vertex

betweenness centrality and the edge betweenness centrality; Section 5.5 presents and discusses the

results; and finally Section 5.6 concludes this chapter.

5.2 Vertex betweenness centrality proposed in Liang et al. (2016)

The vertex betweenness centrality of a specific sector proposed in Liang et al. (2016) was de-

fined as the sum of environmental emissions associated with the supply-chain paths passing through

the specific sector [75]. Figure 5.1 illustrates the vertex betweenness centrality of sector v in a

supply-chain network with seven vertices and six edges. In the figure, ea, eb, and ec are respectively

the environmental emissions in upstream sectors a, b, and c triggered by the transactions among
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downstream sectors, d, e, and f . In this case, the vertex betweenness centrality of sector v can be

calculated as bv = ea + eb + ec.

Following Liang et al. (2016), the vertex betweenness centrality bv of a specific sector v can be

formulated as:

bv =
n∑
s=1

n∑
t=1

∞∑
r=1

qr × w(s, k1, k2, . . . , kr, t), (5.1)

where w(s, k1, k2, . . . , kr, t) is the environmental emissions associated with all supply-chain paths

from sector s to sector t passing through r sectors, sector s→ sector k1→ sector k2→ · · · → sector

kr → sector t via sector v, and qr is the number of times that sector v appears in the supply-chain

paths. Following the idea of structural path analysis (e.g., [23, 68]), w(s, k1, k2, . . . , kr, t) can be

formulated as fsask1ak1k2 · · · akrtyt, where yt is the final demand of sector t, ak1k2 is the interme-

diate input from sector k1 directly required for producing one unit of output in sector k2, and fs is

the direct environmental emissions per unit of output of sector s. Accordingly, ask1ak1k2 · · · akrt

represents the intermediate input from sector s indirectly required for producing one unit of output

in sector t. It should be noted that if r = 1 and k1 = v, we have bv =
∑n

s=1

∑n
t=1 fsasvavtyt from

Eq. (5.1).

We further define the following supply-chain path:

bv(`1, `2) =
∑

1≤k1,...,k`1≤n

∑
1≤j1,...,j`2≤n

fk1ak1k2 · · · ak`1vavj1 · · · aj`2−1j`2
yj`2 , (5.2)

where bv(`1, `2) represents the environmental emissions associated with supply-chain paths that

pass through sector v that has upstream industrial supply chains with path lengths of `1 and down-

stream industrial supply chains with path lengths of `2. Then, we can rewrite bv(`1, `2) as the

following matrix multiplication:

bv(`1, `2) =
∑

1≤k1,...,k`1≤n

∑
1≤j1,...,j`2≤n

fk1ak1k2 · · · ak`1vavj1 · · · aj`2−1j`2
yj`2

=
∑

1≤k1,...,k`1≤n
fk1ak1k2 · · · ak`1v

∑
1≤j1,...,j`2≤n

avj1 · · · aj`2−1j`2
yj`2 (5.3)

= (f ′A`1)v(A
`2y)v
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= f ′A`1JvA
`2y,

where y = (yj) represents an (n × 1) final demand vector expressing the final demand for sector

j, A = (aij) (n × n) is an input coefficient matrix expressing the intermediate input from sector i

per unit of output of sector j, Jv is an (n × n) matrix whose (v, v) element is 1 and other matrix

elements are 0, and f = (fi) represents an (n × 1) emission coefficient vector expressing direct

environmental emissions per unit of output of sector i. The prime denotes the matrix transpose.

(f ′A`1)v and (A`2y)v represent the v-th elements of the respective computed vectors.

It is well known that the direct and indirect requirement matrix (i.e., Leontief inverse matrix)

can be obtained as the following power series expansion [77, 112]:

L = (I−A)−1 = I + A + A2 + · · · . (5.4)

If we define the indirect requirement matrix as T = LA = AL = L− I = A + A2 + A3 · · ·

and from Eqs. 5.1 and 5.3 we notice that bv =
∑∞

`1=1

∑∞
`2=1 bv(`1, `2), then the vertex betweenness

centrality of sector v can be reformulated as follows:

bv =

∞∑
`1=1

∞∑
`2=1

bv(`1, `2)

=

∞∑
`1=1

∞∑
`2=1

f ′A`1JvA
`2y

= (
∞∑
`1=1

f ′A`1)Jv(
∞∑
`2=1

A`2y) (5.5)

= f ′(
∞∑
`1=1

A`1)Jv(
∞∑
`2=1

A`2)y

= f ′TJvTy.

The matrix computation in Eq. (5.5) yields the vertex betweenness centrality of sector v. Hence

we can compute the vertex betweenness centrality for each node (i.e., each sector) in time O(nω),

where ω denotes the matrix multiplication exponent. It is well known that ω < 2.373 [113]. Since
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Figure 5.2. An example of the edge betweenness centrality for transaction (u, v)

the number of sectors is n, the total running time is O(nω+1) and therefore very low.

5.3 Edge betweenness centrality in input-output networks

In this study, we develop another betweenness centrality, edge betweenness centrality, for

supply-chain networks. Let (u, v) be a directed edge (i.e., a transaction from sector u to sector

v in a supply-chain network). We then define the edge betweenness centrality for a specific transac-

tion (u, v) as the amount of environmental emissions associated with all supply-chain paths passing

through the transaction (u, v). As in Eq. (5.1), we can formulate the edge betweenness centrality

for the transaction (u, v) as follows:

buv =
n∑
s=1

n∑
t=1

∞∑
r=1

pr × w(s, k1, k2, . . . , kr, t), (5.6)

where pr represents the number of times that transaction (u, v) appears in all supply-chain paths

from sector s to sector t passing through r sectors. As with the vertex betweenness centrality, the

edge betweenness centrality is explained using a simple example: Figure 5.2 illustrates the between-

ness centrality of transaction (u, v) in a supply-chain network with eight vertices and seven edges.

In Figure 5.2, ea, eb, ec, and eu are respectively the environmental emissions in upstream sectors a,
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b, c, and u triggered by the transactions among downstream sectors, d, e, f , and v. In this case, the

edge betweenness centrality of transaction (u, v) can be calculated as buv = ea + eb + ec + eu.

As in Eq. (5.2), we denote by buv(`1, `2) the environmental emissions associated with supply-

chain paths that pass through a transaction from sector u to sector v that has upstream industrial

supply chains with path lengths of `1 and downstream industrial supply chains with path lengths of

`2 as follows:

buv(`1, `2) =
∑

1≤k1,...,k`1≤n

∑
1≤j1,...,j`2≤n

fk1ak1k2 · · · ak`1uauvavj1 · · · aj`2−1j`2
yj`2 . (5.7)

Subsequently, we reformulate buv(`1, `2) as the following matrix multiplication:

buv(`1, `2) =
∑

1≤k1,...,k`1≤n

∑
1≤j1,...,j`2≤n

fk1ak1k2 · · · ak`1uauvavj1 · · · aj`2−1j`2
yj`2

= auv
∑

1≤k1,...,k`1≤n
fk1ak1k2 · · · ak`1u

∑
1≤j1,...,j`2≤n

avj1 · · · aj`2−1j`2
yj`2 (5.8)

= auv(f
′A`1)u(A`2y)v

= auvf
′A`1JuvA

`2y.

Here Juv represents an (n×n) matrix whose (u, v) element is 1 and other elements are 0. It should

be noted that when `1 = `2 = 0, buv(0, 0) = fuauvyv. Considering all the supply-chain paths

passing through transaction (u, v), its edge betweenness centrality buv in Eq. (5.6) can be computed

based on the following matrix computation:

buv =

∞∑
`1=0

∞∑
`2=0

buv(`1, `2)

=

∞∑
`1=0

∞∑
`2=0

auvf
′A`1JuvA

`2y

= auv(

∞∑
`1=0

f ′A`1)Juv(
∞∑
`2=0

A`2y) (5.9)

= auvf
′(

∞∑
`1=1

A`0)Juv(

∞∑
`2=0

A`2)y

= auvf
′LJvLy.
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If a specific transaction from u to v does not exist in the supply-chain network, its edge betweenness

centrality is zero because we have auv = 0. As in the vertex betweenness centrality, each edge

betweenness centrality is computed in O(nω). The total running time is O(nω+2) because there

may exist O(n2) transactions. Moreover, let m be the number of transactions in the input-output

table. If an input-output matrix is sparse, we can compute all edge betweenness centralities in time

O(mnω). Therefore, the computation cost is also very low.

5.4 Relationship between vertex betweenness centrality and edge

betweenness centrality

We describe the relationship between the vertex betweenness centrality and the edge between-

ness centrality from the point of view of graph theory. First, we define the edge betweenness cen-

trality matrix.

Definition 5.4.1. The matrix B = (buv) is called an edge betweenness centrality matrix.

Given a directed and weighed graph G = (V,E), we denote the weight for edge (u, v) by

wuv. We further define dinw (v) =
∑

u∈N in(v)wuv as the weighted in-degree of vertex v and

doutw (v) =
∑

u∈Nout(v)wvu as the weighted out-degree of vertex v.

If we regard the edge betweenness centrality matrix B = (buv) as the above adjacency matrix

W = (wuv), then the weighted in-degree of sector v, dinw (v), expressing the environmental emis-

sions associated with supply-chain paths that pass through the transactions from other sectors to

sector v and the weighted out-degree of sector v, doutw (v), expressing the environmental emissions

associated with supply-chain paths that pass through the transactions from sector v to other sectors

can be formulated as follows.

Lemma 5.4.2. The following two equations for respectively the weighted in-degree of sector v and

the weighted out-degree of sector v hold:

dinw (v) = f ′TJvLy, (5.10)

doutw (v) = f ′LJvTy. (5.11)
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Proof: We only prove Eq. (5.10) because the proof of Eq. (5.11) is almost the same.

dinw (v) =
∑

u∈N in(v)

wuv =
n∑
u=1

buv

=
n∑
u=1

auvf
′LJuvLy

= f ′L

n∑
u=1

auvJuvLy

= f ′LAJvLy

= f ′TJvLy.

We finally obtain the following theorem using Lemma 5.4.2.

Theorem 5.4.3.

bv = dinw (v)− f ′TJvy = doutw (v)− f ′JvTy. (5.12)

Proof: According to Lemma 5.4.2, dinw (v) = f ′TJvLy (Eq. (5.10)) holds and T = L − I also

holds. Therefore, from Eq. (5.5) we have:

bv = f ′TJvTy

= f ′TJv(L− I)y

= f ′TJvLy − f ′TJvy

= dinw (v)− f ′TJvy.

We can prove similarly that bv = doutw (v)− f ′JvTy also holds.

Theorem 5.4.3 shows that the vertex betweenness centrality of sector v is equal to the weighted

in-degree of sector v minus the amount of all sectors’ embodied emissions triggered by the final de-

mand of sector v, and it also shows that the weighted out-degree of sector v minus the amount of v’s

embodied emissions triggered by the final demands of sectors coincides with the vertex betweenness

centrality of sector v.
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5.5 Data and results

5.5.1 Consumption-based emissions of nations

Using the inventory database of energy consumption and CO2 emissions from fossil fuels com-

bustion of 35 industrial sectors of 41 countries and regions provided by the 2008 world input-output

database (see Tables A.1 and A.2 in appendices) [24, 109], we first calculated the consumption-

based emissions of nations estimated by the conventional carbon footprint method [52, 58, 93, 108].

The total number of sectors in this study is n = 35 × 41 = 1435, and thus the network analysis

formulated in the previous section can be easily extended to a multi-regional framework.

The result based on the world input-output database shows that the total of all consumption-

based CO2 emissions in 2008 was 25,598 Mt-CO2, of which the U.S.A. and China accounted for

21% and 18%, respectively (Figure 5.3). Thus, it is well known that the U.S.A. and China have

contributed a large amount of CO2 emissions through consumption of goods and services [52].

An important point is that the U.S.A. transferred a large portion of its consumption-based CO2

emissions to developing countries such as China and India, whereas China and India transferred

relative small portions of their CO2 emissions to other countries (Figure 5.4) (e.g., [56, 94]).

As shown in Figure 5.4, CO2 emission transfers are greatly influenced by the structure of global

supply-chain networks (e.g., [56]). Accordingly, if we adopt emission reduction measures focused

on the sectors and transactions of highest priority within supply-chain networks, we can expect

to efficiently reduce emissions associated with entire supply chains. Up to now, however, no one

has proposed a centrality index that reflects the complex structure of global supply-chain networks

associated with the final demand for particular products or analyzed such structures.

5.5.2 Vertex betweenness centrality in global supply-chain networks

As explained in Section 5.2, Liang et al. (2016) developed a new network index called vertex

betweenness centrality. This index indicates the intermediate nodes of huge supply-chain paths, or

in other words, the “mediating function” of sectors. For the induced CO2 emissions in the global

supply chains considered in this study, sectors having the high vertex betweenness centrality repre-

sent environmentally important sectors along a supply chain.
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Figure 5.3. Consumption-based CO2 emissions of each country

Table 5.1 summarizes the results for the top 30 sectors in terms of the vertex betweenness

centrality in global supply-chain networks associated with the final demand in each demand country.

It is clear from the table that most of the CO2 emissions indirectly generated via the sectors of the

high vertex betweenness centrality are induced by the final demand in the same country (Table 5.1).

More specifically, we see that China’s Basic Metals and Fabricated Metal sector — the sector having

the highest vertex betweenness centrality (1253 Mt-CO2) — is an important sector in global supply

chains formed by the final demand in China (Table 5.1). Since approximately 90% of the 4.6 Gt of

CO2 emissions induced by the final demand in China (i.e., China’s consumption-based emissions)

are emitted in China (Figure 5.3), it follows that to effectively reduce CO2 emissions associated

with global supply-chain networks within China, the Basic Metals and Fabricated Metal sector

— the sector having the highest vertex betweenness centrality — requires more environmentally

friendly supply-chain management of raw materials inside China (Table 5.1).

The Electrical and Optical Equipment sector of China, ranked at both No. 5 and No. 20 in

Table 5.1, is clearly an important sector in the global supply chains formed by the final demands
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Figure 5.4. CO2 emission transfer of each country

in both China and the U.S.A. Based on the betweenness centrality, 414 Mt of the CO2 emissions

induced by the final demand in China is indirectly generated via China’s Electrical and Optical

Equipment sector, but in addition 164 Mt of the CO2 emissions induced by the final demand in

theU.S.A. are also emitted via this sector (Table 5.1). This result demonstrates that substantial

amounts of CO2 emissions are induced by the final demands in other countries.

To obtain the vertex betweenness centrality for a network created by superimposing the global

supply-chain networks formed by the final demand in each country, we substitute yg =
∑41

r=1 y
r,

the global final demand obtained by summing the final demand yr in each country, into the right-

hand side of Eq. (5.5) (Table 5.2). From Table 5.2, we see that of the CO2 emissions associated with

the final demands in all countries (41 countries and regions), emissions from China’s Electrical and

Optical Equipment sector amounted to 1037 Mt (Table 5.2), which are similar with Japan’s total

CO2 emissions in 2008 (1282 Mt) [78]. If we compare the value of vertex betweenness centrality of

China’s Electrical and Optical Equipment sector associated with the final demand in China (No. 5 in

Table 5.1) with the value of vertex betweenness centrality of the same sector relating to world final
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Figure 5.5. Rank correlation of vertex betweenness centrality indices between CO2 emissions and energy
consumptions associated with the final demand in each demand country

demand (No. 4 in Table 5.2), we find that approximately 60% of CO2 emissions induced by the final

demands outside China are generated in this specific sector of the Chinese economy. Remarkably,

the final demand in the U.S.A. accounts for approximately 16% of the CO2 emissions, while the

final demands in Japan and Germany account for approximately 4% each. Undoubtedly therefore,

this is a key sector for the CO2 emission transfer to China via supply chains (Tables 5.1, 5.2).

From the above observations, we can conclude that environmentally friendly production man-

agement and raw material procurement in China’s Electrical and Optical Equipment sector, which

has the high vertex betweenness centrality in global supply-chain networks with respect to the total

final demand worldwide, has the potential for effectively reducing CO2 emissions over entire global

supply-chain networks.

We also found that the Spearman’s rank correlation of vertex betweenness indices of CO2 emis-

sions and energy consumption associated with the final demand by each demand country is very

high, 0.997 (Figure 5.5), which means that the above-mentioned CO2 mitigation policy (i.e., en-

vironmentally friendly production management and raw material procurement) focused on high-
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ranked sectors listed in Table 5.1 should be straightforwardly consistent with an energy reduction

policy in those sectors. The detailed results for the vertex betweenness centrality of energy con-

sumption and a comparison between CO2 emissions and energy consumption are shown in Ta-

bles B.1, B.2, B.5, and B.6.
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Table 5.1. Top 30 sectors for vertex betweenness centrality (VB) for CO2 emissions in the global supply-
chain networks associated with the final demand in each demand country

Rank Demand Country Sector VB (Mt-CO2)

1 CHN CHN Basic Metals and Fabricated Metal 1253
2 CHN CHN Electricity, Gas and Water Supply 1089
3 CHN CHN Chemicals and Chemical Products 701
4 CHN CHN Other Non-Metallic Mineral 605
5 CHN CHN Electrical and Optical Equipment 414
6 CHN CHN Mining and Quarrying 402
7 CHN CHN Machinery, Nec 330
8 CHN CHN Rubber and Plastics 234
9 USA USA Basic Metals and Fabricated Metal 224

10 CHN CHN Transport Equipment 224
11 USA USA Renting of M&Eq and Other Business Activities 212
12 IND IND Basic Metals and Fabricated Metal 202
13 CHN CHN Food, Beverages and Tobacco 202
14 USA CHN Basic Metals and Fabricated Metal 194
15 USA USA Chemicals and Chemical Products 186
16 CHN CHN Agriculture, Hunting, Forestry and Fishing 184
17 CHN CHN Pulp, Paper, Paper, Printing and Publishing 180
18 CHN CHN Coke, Refined Petroleum and Nuclear Fuel 179
19 CHN CHN Textiles and Textile Products 170
20 USA CHN Electrical and Optical Equipment 164
21 JPN JPN Basic Metals and Fabricated Metal 162
22 USA USA Coke, Refined Petroleum and Nuclear Fuel 152
23 CHN CHN Renting of M&Eq and Other Business Activities 147
24 IND IND Electricity, Gas and Water Supply 141
25 USA USA Food, Beverages and Tobacco 135
26 USA CHN Electricity, Gas and Water Supply 118
27 USA USA Financial Intermediation 117
28 CHN CHN Wood and Products of Wood and Cork 113
29 USA CHN Chemicals and Chemical Products 110
30 CHN CHN Inland Transport 107
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Table 5.2. Top 30 sectors of vertex betweenness centrality (VB) for CO2 emissions in the global supply-chain
network associated with the global final demand

Rank Country Sector VB (Mt-CO2)

1 CHN Basic Metals and Fabricated Metal 2084
2 CHN Electricity, Gas and Water Supply 1591
3 CHN Chemicals and Chemical Products 1171
4 CHN Electrical and Optical Equipment 1037
5 CHN Other Non-Metallic Mineral 715
6 CHN Mining and Quarrying 608
7 CHN Machinery, Nec 544
8 CHN Rubber and Plastics 439
9 CHN Textiles and Textile Products 400

10 CHN Transport Equipment 356
11 USA Basic Metals and Fabricated Metal 326
12 JPN Basic Metals and Fabricated Metal 298
13 IND Basic Metals and Fabricated Metal 290
14 USA Chemicals and Chemical Products 285
15 CHN Coke, Refined Petroleum and Nuclear Fuel 275
16 CHN Food, Beverages and Tobacco 260
17 CHN Pulp, Paper, Paper, Printing and Publishing 259
18 USA Renting of M & Eq and Other Business Activities 248
19 CHN Agriculture, Hunting, Forestry and Fishing 246
20 CHN Renting of M & Eq and Other Business Activities 241
21 KOR Basic Metals and Fabricated Metal 239
22 RUS Basic Metals and Fabricated Metal 195
23 USA Coke, Refined Petroleum and Nuclear Fuel 192
24 IND Electricity, Gas and Water Supply 177
25 RUS Coke, Refined Petroleum and Nuclear Fuel 166
26 CHN Wood and Products of Wood and Cork 161
27 CHN Wholesale Trade and Commission Trade 158
28 USA Food, Beverages and Tobacco 154
29 CHN Inland Transport 152
30 RUS Mining and Quarrying 140
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Table 5.3. Top 30 transactions for edge betweenness centrality (EB) for CO2 emissions in the global supply-chain networks associated with the final demand in
each demand country

Rank Demand Country Upstream sector Country Downstream sector EB (Mt-CO2)

1 CHN CHN Other Non-Metallic Mineral (4) → CHN Construction (49) 845
2 CHN CHN Basic Metals and Fabricated Metal (1) → CHN Construction (49) 422
3 CHN CHN Electricity, Gas and Water Supply (2) → CHN Basic Metals and Fabricated Metal (1) 369
4 CHN CHN Electricity, Gas and Water Supply (2) → CHN Chemicals and Chemical Products (3) 251
5 CHN CHN Electricity, Gas and Water Supply (2) → CHN Mining and Quarrying (6) 228
6 CHN CHN Basic Metals and Fabricated Metal (1) → CHN Machinery, Nec (7) 200
7 CHN CHN Electricity, Gas and Water Supply (2) → CHN Other Non-Metallic Mineral (4) 197
8 CHN CHN Electricity, Gas and Water Supply (2) → CHN Construction (49) 164
9 CHN CHN Basic Metals and Fabricated Metal (1) → CHN Electrical and Optical Equipment (5) 152
10 USA USA Electricity, Gas and Water Supply (71) → USA Public Admin and Defence(121) 138
11 CHN CHN Agriculture, Hunting, Forestry and Fishing (16) → CHN Food, Beverages and Tobacco (13) 128
12 IND IND Other Non-Metallic Mineral (43) → IND Construction (50) 125
13 CHN CHN Mining and Quarrying (6) → CHN Basic Metals and Fabricated Metal (1) 122
14 CHN CHN Chemicals and Chemical Products (3) → CHN Health and Social Work (125) 111
15 IND IND Electricity, Gas and Water Supply (24) → IND Basic Metals and Fabricated Metal (12) 99
16 CHN CHN Electricity, Gas and Water Supply (2) → CHN Machinery, Nec (7) 98
17 CHN CHN Chemicals and Chemical Products (3) → CHN Rubber and Plastics (8) 98
18 IND IND Basic Metals and Fabricated Metal (12) → IND Construction (50) 97
19 CHN CHN Mining and Quarrying (6) → CHN Coke, Refined Petroleum and Nuclear Fuel (18) 95
20 CHN CHN Basic Metals and Fabricated Metal (1) → CHN Transport Equipment (10) 94
21 USA USA Other Non-Metallic Mineral (47) → USA Construction (52) 90
22 USA USA Mining and Quarrying (33) → USA Coke, Refined Petroleum and Nuclear Fuel (22) 88
23 RUS RUS Other Non-Metallic Mineral (61) → RUS Construction (216) 82
24 USA USA Agriculture, Hunting, Forestry and Fishing (37) → USA Food, Beverages and Tobacco (25) 81
25 USA USA Electricity, Gas and Water Supply (71) → USA Food, Beverages and Tobacco (25) 79
26 USA USA Electricity, Gas and Water Supply (71) → USA Chemicals and Chemical Products (15) 77
27 USA USA Electricity, Gas and Water Supply (71) → USA Hotels and Restaurants (74) 76
28 CHN CHN Mining and Quarrying (6) → CHN Electricity, Gas and Water Supply (2) 75
29 CHN CHN Mining and Quarrying (6) → CHN Other Non-Metallic Mineral (4) 74
30 CHN CHN Electricity, Gas and Water Supply (2) → CHN Education (130) 70
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Table 5.4. Top 30 transactions of edge betweenness centrality (EB) for CO2 emissions in the global supply-chain network associated with the global final demand

Rank Country Upstream sector Country Downstream sector EB (Mt-CO2)

1 CHN Other Non-Metallic Mineral → CHN Construction 853

2 CHN Electricity, Gas and Water Supply → CHN Basic Metals and Fabricated Metal 610

3 CHN Basic Metals and Fabricated Metal → CHN Construction 425

4 CHN Electricity, Gas and Water Supply → CHN Chemicals and Chemical Products 419

5 CHN Basic Metals and Fabricated Metal → CHN Electrical and Optical Equipment 396

6 CHN Electricity, Gas and Water Supply → CHN Mining and Quarrying 343

7 CHN Basic Metals and Fabricated Metal → CHN Machinery, Nec 312

8 CHN Electricity, Gas and Water Supply → CHN Other Non-Metallic Mineral 235

9 CHN Mining and Quarrying → CHN Basic Metals and Fabricated Metal 202

10 CHN Chemicals and Chemical Products → CHN Rubber and Plastics 187

11 CHN Electricity, Gas and Water Supply → CHN Construction 166

12 CHN Electricity, Gas and Water Supply → CHN Machinery, Nec 153

13 CHN Electricity, Gas and Water Supply → CHN Electrical and Optical Equipment 153

14 CHN Agriculture, Hunting, Forestry and Fishing → CHN Food, Beverages and Tobacco 152

15 CHN Mining and Quarrying → CHN Coke, Refined Petroleum and Nuclear Fuel 146

16 USA Electricity, Gas and Water Supply → USA Public Admin and Defence; Compulsory Social Security 139

17 IND Electricity, Gas and Water Supply → IND Basic Metals and Fabricated Metal 136

18 CHN Basic Metals and Fabricated Metal → CHN Transport Equipment 129

19 IND Other Non-Metallic Mineral → IND Construction 129

20 CHN Chemicals and Chemical Products → CHN Health and Social Work 116

21 USA Electricity, Gas and Water Supply → USA Chemicals and Chemical Products 111

22 CHN Mining and Quarrying → CHN Electricity, Gas and Water Supply 108

23 USA Mining and Quarrying → USA Coke, Refined Petroleum and Nuclear Fuel 107

24 IND Basic Metals and Fabricated Metal → IND Construction 100

25 CHN Electricity, Gas and Water Supply → CHN Textiles and Textile Products 99

26 CHN Mining and Quarrying → CHN Chemicals and Chemical Products 92

27 USA Other Non-Metallic Mineral → USA Construction 91

28 USA Agriculture, Hunting, Forestry and Fishing → USA Food, Beverages and Tobacco 90

29 RUS Electricity, Gas and Water Supply → RUS Mining and Quarrying 89

30 CHN Mining and Quarrying → CHN Other Non-Metallic Mineral 89
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5.5.3 Edge betweenness centrality in global supply-chain networks

The vertex betweenness centrality as discussed above is an indicator that focuses on the cen-

trality of sectors, but it does not take into consideration the role played by transactions between

two different sectors in global supply-chain networks. For this reason, for segments of high vertex

betweenness centrality, implementing supply-chain management practices that focus on the envi-

ronmental burden associated with all the raw materials from the upstream sectors needed for manu-

facturing products is very difficult. Since the edge betweenness centrality formulated as Eq. (5.9) in

Section 5.3 makes it possible to identify transactions between sectors through which large amounts

of CO2 emissions flow, promoting technological and economic cooperation between sectors of

high edge betweenness centrality has the potential to effectively reduce emissions for entire sup-

ply chains.

Table 5.3 summarizes the results for the top 30 transactions in terms of the edge betweenness

centrality in global supply-chain networks associated with the final demand in each demand country.

The numbers in brackets in Table 5.3 are the ranks in terms of the vertex betweenness centrality

shown in Table 5.1. We also show the top 30 transactions in terms of the edge betweenness centrality

in global supply-chain networks associated with the global final demand in Table 5.4.

In Table 5.3, it is shown that the edge betweenness centrality of domestic transactions associated

with the final demand in the same country is high, in particular, the edge betweenness centrality of

transactions within China associated with the final demand in China is high. This demonstrates that

the majority of CO2 arising from the final demand in the same country is not emitted abroad in

global supply chains via sectors that have a high value of edge betweenness centrality.

The comparison with the vertex betweenness centrality shows that the vertex betweenness cen-

trality of at least one of the endpoints of a transaction with the high edge betweenness centrality

also tends to be high (Table 5.3). If the vertex betweenness centrality of both the upstream sector

u and the downstream sector v in a particular transaction (u, v) is high, a large amount of CO2 is

emitted from the sectors upstream of upstream sector u associated with the final demands of sectors

downstream of downstream sector v.

For a transaction from the U.S.A.’s Electricity, Gas and Water Supply sector to its Public Admin

and Defence; Compulsory Social Security sector, the edge betweenness centrality is high, despite

the fact that the vertex betweenness centrality at both endpoints is low (Table 5.3). The reason is
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that a high proportion of the CO2 emissions associated with these transactions are higher primary

ripple effect (fuauvyv) CO2 emissions arising from upstream sectors (e.g., U.S.A.’s Electricity, Gas

and Water Supply) associated with the final demands of downstream sectors (e.g., U.S.A.’s Public

Admin and Defence; Compulsory Social Security). For these kinds of transactions, characterized

by sectors of low vertex betweenness centrality and high edge betweenness centrality, emission re-

duction measures focused on the particular transaction do not contribute much to limiting emissions

over the entire global supply chain. Therefore, emission reduction efforts need to be focused on the

relevant sectors themselves in these cases.

In order to view the relationship between CO2 emissions and energy consumption in terms of

the edge betweenness centrality, we computed the Spearman’s rank correlation of edge betweenness

indices of CO2 emissions and energy consumption associated with the final demand in each demand

country and found it to be 0.998. This implies that a very high rank correlation of CO2 emissions

and energy consumption also supports emission reduction efforts being made by effective energy

reduction measures in the relevant high-priority sectors indicated in Table 5.1 and the relevant high-

priority transactions in Table 5.3. The detailed results for the edge betweenness centrality of energy

consumption and a comparison with CO2 emissions are shown in Tables B.3, B.4, B.7, and B.8.

Next, we examine the edge betweenness centrality matrix B = (buv), composed of the edge

betweenness centrality values buv of each transaction (u, v). Figures 5.6 and 5.7 illustrate the net-

works consisting of the top 100 transactions in terms of the edge betweenness centrality for CO2

emissions in global supply chains associated with the final demands in the U.S.A. and Germany,

both of which have high emissions transfers, as shown in Figure 5.4. In the global supply-chain

networks shown in these two figures, a higher vertex betweenness centrality is indicated by a larger

circle, while a higher edge betweenness centrality is indicated by a thicker edge. Both in the case

of the U.S.A. and Germany, the edge betweenness centrality of transactions that have Electricity,

Gas and Water Supply as an upstream sector is high, which means that this sector tends to spread

CO2 emissions to domestic sectors (Figures 5.6 and 5.7). In addition, since the vertex betweenness

centrality of the Electricity, Gas and Water Supply sector is low, the quantity of CO2 emissions

indirectly generated via this sector is low; it generates CO2 itself.
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Figure 5.6. High-priority supply-chain network with higher edge betweenness centrality for CO2 emissions
associated with the final demand in the U.S.A. (circle size indicates amount of vertex betweenness centrality
and edge width indicates amount of edge betweenness centrality)

If we look at the important supply-chain network graphs for global warming alleviation, that

is, having the strong edge betweenness centrality as shown in Figures 5.6 and 5.7, we find that

although the final demands in the U.S.A. and Germany induce a huge amount of CO2 emissions

in China, they hardly induce cross-border emissions outside of China. However, we can confirm

that CO2 generated within China by the final demands in the U.S.A. and Germany flows outside

the country through global supply chains. If we look at China’s Electrical and Optical Equipment

sector, which has the high vertex betweenness centrality, we note that the large amount of CO2

emitted by China’s Electricity, Gas and Water Supply sector associated with the final demand in

the U.S.A. flows into and concentrates in this Electrical and Optical Equipment sector via China’s

Basic Metals and Fabricated Metal sector (Figure 5.6). Furthermore, a large amount of CO2 flows

into the Electrical and Optical Equipment sector outside of China via China’s Electrical and Optical

Equipment sector (Figure 5.6). A similar observation can be made in the case of CO2 associated with

the final demand in Germany (Figure 5.7). Accordingly, China’s Electrical and Optical Equipment

sector, which this study’s centrality analysis has identified as having the high vertex betweenness

centrality, is a decisively important sector for reducing CO2 emissions across entire global supply

chains. In addition, we can see that formulating measures to promote cooperation across a specific
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Figure 5.7. High-priority supply-chain network with higher edge betweenness centrality for CO2 emissions
associated with the final demand in Germany (circle size indicates amount of vertex betweenness centrality
and edge width indicates amount of edge betweenness centrality)

group of transactions having the high edge betweenness centrality — China’s Electricity, Gas and

Water Supply→China’s Basic Metals and Fabricated Metal sector→China’s Electrical and Optical

Equipment sector→ U.S.A.’s Electrical and Optical Equipment sector→ U.S.A. final demand —

has the potential for effectively reducing CO2 emissions across global supply chains.

5.6 Discussion and conclusions

In this study, we identified key sectors and key transactions for effectively reducing CO2 emis-

sions associated with global supply-chain networks by applying the concept of vertex betweenness

centrality proposed by Liang et al. [75] together with the concept of edge betweenness centrality

proposed in this study, using the environmentally extended multi-regional input-output table cover-

ing 35 industrial sectors and 41 countries and regions in 2008 [24, 109].

Notably, the results of this study demonstrate that emission transfers to China associated with

the final demands in Europe and North America are high, and that if these regions cooperate with

China on environmentally friendly supply chain management, substantial emission reductions can

be effectively achieved. More specifically, China’s Electrical and Optical Equipment sector, which
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has the high vertex betweenness centrality, is the most instrumental sector in global supply-chain

networks in terms of the reduction of CO2 emissions. Due to its central role in global supply-

chain networks associated with the final demand of countries except for China, it is a key sector for

global supply-chain management to focus on. Therefore, we could effectively reduce the total CO2

emissions of global supply-chain networks by achieving procurement of low-carbon raw materials

that focuses on China’s Electrical and Optical Equipment sector and other high-priority sectors

identified in Table 5.1.

For one particular supply-chain path that we identified consisting of transactions having the

high edge betweenness centrality — China’s Electricity, Gas and Water Supply → China’s Basic

Metals and Fabricated Metal sector→ China’s Electrical and Optical Equipment sector→ U.S.A.’s

Electrical and Optical Equipment sector → U.S.A. final demand — we propose to adopt a style

in which high-priority product supply chains are emphasized in reporting life-cycle CO2 emissions

of companies. When raw materials are procured so that all involved companies adopt more envi-

ronmentally friendly practices for raw material procurement and product design, very substantial

progress can be made toward global warming mitigation.
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Chapter 6

Conclusion

In this thesis, we studied the graph optimization approach and the network indicator approach

in terms of economic structure analysis.

As for the graph optimization approach, we proposed new graph optimization problems con-

sidering important characteristics of economic networks and designed their high-performance al-

gorithms. In Chapter 3, we studied covering and domination problems on directed graphs, called

DIRECTED r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMINATING SET. We

first showed that DIRECTED r-IN (OUT) VERTEX COVER and DIRECTED (p, q)-EDGE DOMI-

NATING SET are NP-complete on restricted graphs. We then proved that if r is larger than one,

DIRECTED r-IN (OUT) VERTEX COVER is W [2]-hard and if p or q is larger than one, DIRECTED

(p, q)-EDGE DOMINATING SET is W [2]-hard on directed acyclic graphs. For these problems, we

also showed that there is no polynomial-time c ln k-approximation algorithm for any constant c < 1

unless P=NP, where k is the size of an optimal solution, though they can be approximated within

ratio O(log n) by a greedy algorithm. On the other hand, we designed polynomial time algorithms

on trees. Moreover, we showed that DIRECTED (p, q)-EDGE DOMINATING SET is fixed-parameter

tractable with respect to treewidth when (p, q) = (0, 1), (1, 0), (1, 1). We finally gave a 2O(k)n-

time algorithm for DIRECTED (p, q)-EDGE DOMINATING SET when (p, q) = (0, 1), (1, 0), (1, 1)

where k is the solution size. This implies that DIRECTED (p, q)-EDGE DOMINATING SET is fixed

parameter tractable with respect to k when (p, q) = (0, 1), (1, 0), (1, 1).

In Chapter 4, we defined MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR. We first showed

MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR is NP-hard even on unweighted bipartite graphs.
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On the other hand, we showed that MAXIMUM WEIGHT MINIMAL (s-t) SEPARATOR is fixed-

parameter tractable with respect to the weight of the solution. We then designed an ωO(ω)nO(1)-

time deterministic algorithm, where ω is the width of a tree decomposition. This implies MAXIMUM

WEIGHT MINIMAL (s-t) SEPARATOR is fixed-parameter tractable with respect to treewidth. How-

ever, this algorithm is not a single exponential algorithm. To improve the running time, we designed

a 9ωW 2nO(1)-time randomized algorithm based on the Cut & Count.

In Chapter 5, we studied the network indicator approach. We first proposed the edge between-

ness centrality in input-output analysis. The edge betweenness centrality is a network indicator for

a transaction whereas the vertex betweenness centrality proposed in [75] is a network indicator for

a sector. These indicators consider the economic ripple effect and reflect the structures of supply

chains. We also showed that the relationship between the edge betweenness centrality and the vertex

betweenness centrality. The edge betweenness centrality also enabled us to observe the connections

between sectors by visualizing the network based on it.

By applying them to the environmentally extended multi-regional input-output table covering

35 industrial sectors and 41 countries and regions in 2008 [24, 109], we identified key sectors and

key transactions for effectively reducing CO2 emissions associated with global supply-chain net-

works. Moreover, we visualized the CO2 circulation networks in global supply chains based on the

vertex and edge betweenness centralities. From the results, we claimed the total CO2 emissions of

global supply-chain networks could be effectively reduced by achieving procurement of low-carbon

raw materials that focuses on China’s Electrical and Optical Equipment sector and the other high-

priority sectors. We also proposed to adopt a style in which high-priority product supply chains

are emphasized in reporting life-cycle CO2 emissions of companies for one particular supply-chain

path identified by the edge betweenness centrality.

Through this thesis, we studied new analytical methods for economic structure analysis via

economic networks. With the globalization of economic activity, the importance of these types of

analytical methods definitely gets larger and larger.

In the graph optimization approach, we modeled the tasks to discover the important structures

in economic networks as graph optimization problems and designed algorithms for them; our work

gives a mathematical interpretation of an analytical method for economic network, which is a con-

tribution in the field of economic structure analysis. Furthermore, our graph modeling demonstrates
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that graph optimization with direction and/or weight are well motivated; it might open up new

research topics in the field of computer science. In fact, graph optimization problems that we inves-

tigated in this thesis are one with direction and one with weight; one with both direction and weight

is left as important future work. Of course, graph optimization for some other topological structure

that reflects important economic relations should be studied also.

As for the network indicator approach, we proposed a new indicator that considers the economic

ripple effect. However, there are still few indicators specialized on economic networks. Therefore,

the further development of economic network indicators is desired.

Finally, combining the graph optimization approach and the network indicator approach would

further expand the field of economic network analysis, for example, applying graph algorithms to

the economic network based on the edge betweenness centrality.
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Appendix A

Information of World Input-Output

Database
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Table A.1. Industry classification of the World Input-Output Table (WIOT)

Industry code Industry name

c1 Agriculture, Hunting, Forestry and Fishing

c2 Mining and Quarrying

c3 Food, Beverages and Tobacco

c4 Textiles and Textile Products

c5 Leather, Leather and Footwear

c6 Wood and Products of Wood and Cork

c7 Pulp, Paper, Paper , Printing and Publishing

c8 Coke, Refined Petroleum and Nuclear Fuel

c9 Chemicals and Chemical Products

c10 Rubber and Plastics

c11 Other Non-Metallic Mineral

c12 Basic Metals and Fabricated Metal

c13 Machinery, Nec

c14 Electrical and Optical Equipment

c15 Transport Equipment

c16 Manufacturing, Nec; Recycling

c17 Electricity, Gas and Water Supply

c18 Construction

c19 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel

c20 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles

c21 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods

c22 Hotels and Restaurants

c23 Inland Transport

c24 Water Transport

c25 Air Transport

c26 Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies

c27 Post and Telecommunications

c28 Financial Intermediation

c29 Real Estate Activities

c30 Renting of M&Eq and Other Business Activities

c31 Public Admin and Defence; Compulsory Social Security

c32 Education

c33 Health and Social Work

c34 Other Community, Social and Personal Services

c35 Private Households with Employed Persons
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Table A.2. Country classification of the World Input-Output Table (WIOT)

Country code Country name

AUS Australia

AUT Austria

BEL Belgium

BGR Bulgaria

BRA Brazil

CAN Canada

CHN China

CYP Cyprus

CZE Czech Republic

DEU Germany

DNK Denmark

ESP Spain

EST Estonia

FIN Finland

FRA France

GBR United Kingdom

GRC Greece

HUN Hungary

IDN Indonesia

IND India

IRL Ireland

ITA Italy

JPN Japan

KOR Korea

LTU Lithuania

LUX Luxembourg

LVA Latvia

MEX Mexico

MLT Malta

NLD Netherlands

POL Poland

PRT Portugal

ROM Romania

RUS Russia

SVK Slovak Republic

SVN Slovenia

SWE Sweden

TUR Turkey

TWN Taiwan

USA United States

RoW Rest of the world
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Appendix B

Comparison Between CO2 Emission

and Energy Consumption Based on

the Betweenness Centrality
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Table B.1. Top 30 sectors of vertex betweenness centrality (VB) for energy consumptions in the global
supply-chain network associated with the global final demand

Rank Country Sector VB (PJ)

1 CHN Basic Metals and Fabricated Metal 27794

2 CHN Electricity, Gas and Water Supply 20188

3 CHN Chemicals and Chemical Products 15872

4 CHN Electrical and Optical Equipment 14332

5 CHN Other Non-Metallic Mineral 8931

6 CHN Mining and Quarrying 7939

7 CHN Machinery, Nec 7356

8 CHN Rubber and Plastics 6110

9 CHN Textiles and Textile Products 5752

10 USA Basic Metals and Fabricated Metal 5444

11 USA Chemicals and Chemical Products 5194

12 JPN Basic Metals and Fabricated Metal 4992

13 CHN Transport Equipment 4891

14 USA Renting of M&Eq and Other Business Activities 4526

15 CHN Coke, Refined Petroleum and Nuclear Fuel 3915

16 KOR Basic Metals and Fabricated Metal 3787

17 IND Basic Metals and Fabricated Metal 3753

18 CHN Pulp, Paper, Paper , Printing and Publishing 3655

19 CHN Food, Beverages and Tobacco 3638

20 CHN Agriculture, Hunting, Forestry and Fishing 3425

21 USA Coke, Refined Petroleum and Nuclear Fuel 3386

22 CHN Renting of M&Eq and Other Business Activities 3370

23 RUS Basic Metals and Fabricated Metal 3345

24 RUS Coke, Refined Petroleum and Nuclear Fuel 3279

25 USA Food, Beverages and Tobacco 2853

26 RUS Mining and Quarrying 2769

27 USA Financial Intermediation 2606

28 USA Pulp, Paper, Paper , Printing and Publishing 2388

29 IND Electricity, Gas and Water Supply 2315

30 CHN Wood and Products of Wood and Cork 2242
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Table B.2. Top 30 sectors of vertex betweenness centrality (VB) for energy consumptions in the global
supply-chain networks associated with the final demand in each demand country

Rank Demand Country Sector VB (PJ)

1 CHN CHN Basic Metals and Fabricated Metal 16713

2 CHN CHN Electricity, Gas and Water Supply 13817

3 CHN CHN Chemicals and Chemical Products 9505

4 CHN CHN Other Non-Metallic Mineral 7561

5 CHN CHN Electrical and Optical Equipment 5724

6 CHN CHN Mining and Quarrying 5244

7 CHN CHN Machinery, Nec 4471

8 USA USA Renting of M&Eq and Other Business Activities 3879

9 USA USA Basic Metals and Fabricated Metal 3750

10 USA USA Chemicals and Chemical Products 3386

11 CHN CHN Rubber and Plastics 3257

12 CHN CHN Transport Equipment 3084

13 CHN CHN Food, Beverages and Tobacco 2819

14 JPN JPN Basic Metals and Fabricated Metal 2707

15 USA USA Coke, Refined Petroleum and Nuclear Fuel 2678

16 IND IND Basic Metals and Fabricated Metal 2615

17 USA CHN Basic Metals and Fabricated Metal 2594

18 CHN CHN Agriculture, Hunting, Forestry and Fishing 2560

19 CHN CHN Coke, Refined Petroleum and Nuclear Fuel 2540

20 CHN CHN Pulp, Paper, Paper , Printing and Publishing 2538

21 USA USA Food, Beverages and Tobacco 2505

22 CHN CHN Textiles and Textile Products 2442

23 USA CHN Electrical and Optical Equipment 2271

24 USA USA Financial Intermediation 2206

25 CHN CHN Renting of M&Eq and Other Business Activities 2059

26 USA USA Pulp, Paper, Paper , Printing and Publishing 1921

27 RUS RUS Coke, Refined Petroleum and Nuclear Fuel 1920

28 IND IND Electricity, Gas and Water Supply 1848

29 RUS RUS Basic Metals and Fabricated Metal 1753

30 USA USA Mining and Quarrying 1698
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Table B.3. Top 30 transactions of edge betweenness centrality (EB) for energy consumptions in the global supply-chain network associated with the global final
demand

Rank Country Upstream sector Country Downstream sector EB (PJ)

1 CHN Other Non-Metallic Mineral → CHN Construction 9043

2 CHN Electricity, Gas and Water Supply → CHN Basic Metals and Fabricated Metal 7605

3 CHN Basic Metals and Fabricated Metal → CHN Construction 5756

4 CHN Basic Metals and Fabricated Metal → CHN Electrical and Optical Equipment 5356

5 CHN Electricity, Gas and Water Supply → CHN Chemicals and Chemical Products 5216

6 CHN Electricity, Gas and Water Supply → CHN Mining and Quarrying 4278

7 CHN Basic Metals and Fabricated Metal → CHN Machinery, Nec 4219

8 CHN Electricity, Gas and Water Supply → CHN Other Non-Metallic Mineral 2929

9 CHN Mining and Quarrying → CHN Basic Metals and Fabricated Metal 2787

10 CHN Chemicals and Chemical Products → CHN Rubber and Plastics 2602

11 USA Electricity, Gas and Water Supply → USA Public Admin and Defence; Compulsory Social Security 2540

12 CHN Agriculture, Hunting, Forestry and Fishing → CHN Food, Beverages and Tobacco 2181

13 CHN Electricity, Gas and Water Supply → CHN Construction 2065

14 USA Electricity, Gas and Water Supply → USA Chemicals and Chemical Products 2020

15 CHN Mining and Quarrying → CHN Coke, Refined Petroleum and Nuclear Fuel 2014

16 CHN Electricity, Gas and Water Supply → CHN Machinery, Nec 1912

17 CHN Electricity, Gas and Water Supply → CHN Electrical and Optical Equipment 1908

18 USA Mining and Quarrying → USA Coke, Refined Petroleum and Nuclear Fuel 1834

19 RUS Electricity, Gas and Water Supply → RUS Mining and Quarrying 1801

20 IND Electricity, Gas and Water Supply → IND Basic Metals and Fabricated Metal 1779

21 CHN Basic Metals and Fabricated Metal → CHN Transport Equipment 1744

22 RUS Electricity, Gas and Water Supply → RUS Coke, Refined Petroleum and Nuclear Fuel 1720

23 USA Agriculture, Hunting, Forestry and Fishing → USA Food, Beverages and Tobacco 1702

24 CHN Chemicals and Chemical Products → CHN Health and Social Work 1607

25 USA Electricity, Gas and Water Supply → USA Food, Beverages and Tobacco 1594

26 USA Electricity, Gas and Water Supply → USA Basic Metals and Fabricated Metal 1584

27 CHN Mining and Quarrying → CHN Electricity, Gas and Water Supply 1482

28 USA Electricity, Gas and Water Supply → USA Hotels and Restaurants 1415

29 CHN Mining and Quarrying → CHN Chemicals and Chemical Products 1270

30 IND Basic Metals and Fabricated Metal → IND Construction 1257
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Table B.4. Top 30 transactions of edge betweenness centrality (EB) for energy consumptions in the global supply-chain networks associated with the final demand
in each demand country

Rank Demand Country Upstream sector Country Downstream sector EB (PJ)

1 CHN CHN Other Non-Metallic Mineral → CHN Construction 8962

2 CHN CHN Basic Metals and Fabricated Metal → CHN Construction 5704

3 CHN CHN Electricity, Gas and Water Supply → CHN Basic Metals and Fabricated Metal 4594

4 CHN CHN Electricity, Gas and Water Supply → CHN Chemicals and Chemical Products 3124

5 CHN CHN Electricity, Gas and Water Supply → CHN Mining and Quarrying 2844

6 CHN CHN Basic Metals and Fabricated Metal → CHN Machinery, Nec 2700

7 USA USA Electricity, Gas and Water Supply → USA Public Admin and Defence; Compulsory Social Security 2514

8 CHN CHN Electricity, Gas and Water Supply → CHN Other Non-Metallic Mineral 2457

9 CHN CHN Basic Metals and Fabricated Metal → CHN Electrical and Optical Equipment 2060

10 CHN CHN Electricity, Gas and Water Supply → CHN Construction 2046

11 CHN CHN Agriculture, Hunting, Forestry and Fishing → CHN Food, Beverages and Tobacco 1827

12 CHN CHN Mining and Quarrying → CHN Basic Metals and Fabricated Metal 1683

13 CHN CHN Chemicals and Chemical Products → CHN Health and Social Work 1541

14 USA USA Agriculture, Hunting, Forestry and Fishing → USA Food, Beverages and Tobacco 1528

15 USA USA Mining and Quarrying → USA Coke, Refined Petroleum and Nuclear Fuel 1513

16 USA USA Electricity, Gas and Water Supply → USA Food, Beverages and Tobacco 1431

17 USA USA Electricity, Gas and Water Supply → USA Chemicals and Chemical Products 1411

18 USA USA Electricity, Gas and Water Supply → USA Hotels and Restaurants 1385

19 CHN CHN Chemicals and Chemical Products → CHN Rubber and Plastics 1356

20 CHN CHN Mining and Quarrying → CHN Coke, Refined Petroleum and Nuclear Fuel 1304

21 IND IND Electricity, Gas and Water Supply → IND Basic Metals and Fabricated Metal 1292

22 CHN CHN Basic Metals and Fabricated Metal → CHN Transport Equipment 1265

23 IND IND Basic Metals and Fabricated Metal → IND Construction 1226

24 CHN CHN Electricity, Gas and Water Supply → CHN Machinery, Nec 1223

25 IND IND Other Non-Metallic Mineral → IND Construction 1139

26 USA USA Electricity, Gas and Water Supply → USA Basic Metals and Fabricated Metal 1089

27 USA USA Electricity, Gas and Water Supply → USA Retail Trade, Except of Motor Vehicles and Motorcycles 1040

28 CHN CHN Mining and Quarrying → CHN Electricity, Gas and Water Supply 1036

29 USA USA Other Non-Metallic Mineral → USA Construction 1031

30 CHN CHN Mining and Quarrying → CHN Other Non-Metallic Mineral 1025
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Table B.5. The comparison of Top 30 sectors of vertex betweenness centrality between CO2 emissions and
energy consumptions in the global supply-chain network associated with the global final demand

Country Sector CO2 Energy

CHN Basic Metals and Fabricated Metal 1 1

CHN Electricity, Gas and Water Supply 2 2

CHN Chemicals and Chemical Products 3 3

CHN Electrical and Optical Equipment 4 4

CHN Other Non-Metallic Mineral 5 5

CHN Mining and Quarrying 6 6

CHN Machinery, Nec 7 7

CHN Rubber and Plastics 8 8

CHN Textiles and Textile Products 9 9

CHN Transport Equipment 10 13

USA Basic Metals and Fabricated Metal 11 10

JPN Basic Metals and Fabricated Metal 12 12

IND Basic Metals and Fabricated Metal 13 17

USA Chemicals and Chemical Products 14 11

CHN Coke, Refined Petroleum and Nuclear Fuel 15 15

CHN Food, Beverages and Tobacco 16 19

CHN Pulp, Paper, Paper , Printing and Publishing 17 18

USA Renting of M&Eq and Other Business Activities 18 14

CHN Agriculture, Hunting, Forestry and Fishing 19 20

CHN Renting of M&Eq and Other Business Activities 20 22

KOR Basic Metals and Fabricated Metal 21 16

RUS Basic Metals and Fabricated Metal 22 23

USA Coke, Refined Petroleum and Nuclear Fuel 23 21

IND Electricity, Gas and Water Supply 24 29

RUS Coke, Refined Petroleum and Nuclear Fuel 25 24

CHN Wood and Products of Wood and Cork 26 30

CHN Wholesale Trade and Commission Trade 27 33

USA Food, Beverages and Tobacco 28 25

CHN Inland Transport 29 35

RUS Mining and Quarrying 30 26
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Table B.6. The comparison of Top 30 sectors of vertex betweenness centrality between CO2 emissions and
energy consumptions in the global supply-chain network associated with the final demand in each demand
country

Demand Country Sector CO2 Energy

CHN CHN Basic Metals and Fabricated Metal 1 1

CHN CHN Electricity, Gas and Water Supply 2 2

CHN CHN Chemicals and Chemical Products 3 3

CHN CHN Other Non-Metallic Mineral 4 4

CHN CHN Electrical and Optical Equipment 5 5

CHN CHN Mining and Quarrying 6 6

CHN CHN Machinery, Nec 7 7

CHN CHN Rubber and Plastics 8 11

USA USA Basic Metals and Fabricated Metal 9 9

CHN CHN Transport Equipment 10 12

USA USA Renting of M&Eq and Other Business Activities 11 8

IND IND Basic Metals and Fabricated Metal 12 16

CHN CHN Food, Beverages and Tobacco 13 13

USA CHN Basic Metals and Fabricated Metal 14 17

USA USA Chemicals and Chemical Products 15 10

CHN CHN Agriculture, Hunting, Forestry and Fishing 16 18

CHN CHN Pulp, Paper, Paper , Printing and Publishing 17 20

CHN CHN Coke, Refined Petroleum and Nuclear Fuel 18 19

CHN CHN Textiles and Textile Products 19 22

USA CHN Electrical and Optical Equipment 20 23

JPN JPN Basic Metals and Fabricated Metal 21 14

USA USA Coke, Refined Petroleum and Nuclear Fuel 22 15

CHN CHN Renting of M&Eq and Other Business Activities 23 25

IND IND Electricity, Gas and Water Supply 24 28

USA USA Food, Beverages and Tobacco 25 21

USA CHN Electricity, Gas and Water Supply 26 33

USA USA Financial Intermediation 27 24

CHN CHN Wood and Products of Wood and Cork 28 31

USA CHN Chemicals and Chemical Products 29 34

CHN CHN Inland Transport 30 36
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Table B.7. The comparison of Top 50 transactions of edge betweenness centrality between CO2 emissions and energy consumptions in the global supply-chain
network associated with the global final demand

Country Upstream sector Country Downstream sector CO2 Energy

CHN Other Non-Metallic Mineral → CHN Construction 1 1

CHN Electricity, Gas and Water Supply → CHN Basic Metals and Fabricated Metal 2 2

CHN Basic Metals and Fabricated Metal → CHN Construction 3 3

CHN Electricity, Gas and Water Supply → CHN Chemicals and Chemical Products 4 5

CHN Basic Metals and Fabricated Metal → CHN Electrical and Optical Equipment 5 4

CHN Electricity, Gas and Water Supply → CHN Mining and Quarrying 6 6

CHN Basic Metals and Fabricated Metal → CHN Machinery, Nec 7 7

CHN Electricity, Gas and Water Supply → CHN Other Non-Metallic Mineral 8 8

CHN Mining and Quarrying → CHN Basic Metals and Fabricated Metal 9 9

CHN Chemicals and Chemical Products → CHN Rubber and Plastics 10 10

CHN Electricity, Gas and Water Supply → CHN Construction 11 13

CHN Electricity, Gas and Water Supply → CHN Machinery, Nec 12 16

CHN Electricity, Gas and Water Supply → CHN Electrical and Optical Equipment 13 17

CHN Agriculture, Hunting, Forestry and Fishing → CHN Food, Beverages and Tobacco 14 12

CHN Mining and Quarrying → CHN Coke, Refined Petroleum and Nuclear Fuel 15 15

USA Electricity, Gas and Water Supply → USA Public Admin and Defence; Compulsory Social Security 16 11

IND Electricity, Gas and Water Supply → IND Basic Metals and Fabricated Metal 17 20

CHN Basic Metals and Fabricated Metal → CHN Transport Equipment 18 21

IND Other Non-Metallic Mineral → IND Construction 19 34

CHN Chemicals and Chemical Products → CHN Health and Social Work 20 24

USA Electricity, Gas and Water Supply → USA Chemicals and Chemical Products 21 14

CHN Mining and Quarrying → CHN Electricity, Gas and Water Supply 22 27

USA Mining and Quarrying → USA Coke, Refined Petroleum and Nuclear Fuel 23 18

IND Basic Metals and Fabricated Metal → IND Construction 24 30

CHN Electricity, Gas and Water Supply → CHN Textiles and Textile Products 25 32

CHN Mining and Quarrying → CHN Chemicals and Chemical Products 26 29

USA Other Non-Metallic Mineral → USA Construction 27 41

USA Agriculture, Hunting, Forestry and Fishing → USA Food, Beverages and Tobacco 28 23

RUS Electricity, Gas and Water Supply → RUS Mining and Quarrying 29 19
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Table B.8. The comparison of Top 30 transactions of edge betweenness centrality between CO2 emissions and energy consumptions in the global supply-chain
network associated with the final demand in each demand country

Demand Country Upstream sector Country Downstream sector CO2 Energy

CHN CHN Other Non-Metallic Mineral → CHN Construction 1 1

CHN CHN Basic Metals and Fabricated Metal → CHN Construction 2 2

CHN CHN Electricity, Gas and Water Supply → CHN Basic Metals and Fabricated Metal 3 3

CHN CHN Electricity, Gas and Water Supply → CHN Chemicals and Chemical Products 4 4

CHN CHN Electricity, Gas and Water Supply → CHN Mining and Quarrying 5 5

CHN CHN Basic Metals and Fabricated Metal → CHN Machinery, Nec 6 6

CHN CHN Electricity, Gas and Water Supply → CHN Other Non-Metallic Mineral 7 8

CHN CHN Electricity, Gas and Water Supply → CHN Construction 8 10

CHN CHN Basic Metals and Fabricated Metal → CHN Electrical and Optical Equipment 9 9

USA USA Electricity, Gas and Water Supply → USA Public Admin and Defence; Compulsory Social Security 10 7

CHN CHN Agriculture, Hunting, Forestry and Fishing → CHN Food, Beverages and Tobacco 11 11

IND IND Other Non-Metallic Mineral → IND Construction 12 25

CHN CHN Mining and Quarrying → CHN Basic Metals and Fabricated Metal 13 12

CHN CHN Chemicals and Chemical Products → CHN Health and Social Work 14 13

IND IND Electricity, Gas and Water Supply → IND Basic Metals and Fabricated Metal 15 21

CHN CHN Electricity, Gas and Water Supply → CHN Machinery, Nec 16 24

CHN CHN Chemicals and Chemical Products → CHN Rubber and Plastics 17 19

IND IND Basic Metals and Fabricated Metal → IND Construction 18 23

CHN CHN Mining and Quarrying → CHN Coke, Refined Petroleum and Nuclear Fuel 19 20

CHN CHN Basic Metals and Fabricated Metal → CHN Transport Equipment 20 22

USA USA Other Non-Metallic Mineral → USA Construction 21 29

USA USA Mining and Quarrying → USA Coke, Refined Petroleum and Nuclear Fuel 22 15

RUS RUS Other Non-Metallic Mineral → RUS Construction 23 32

USA USA Agriculture, Hunting, Forestry and Fishing → USA Food, Beverages and Tobacco 24 14

USA USA Electricity, Gas and Water Supply → USA Food, Beverages and Tobacco 25 16

USA USA Electricity, Gas and Water Supply → USA Chemicals and Chemical Products 26 17

USA USA Electricity, Gas and Water Supply → USA Hotels and Restaurants 27 18

CHN CHN Mining and Quarrying → CHN Electricity, Gas and Water Supply 28 28

CHN CHN Mining and Quarrying → CHN Other Non-Metallic Mineral 29 30

CHN CHN Electricity, Gas and Water Supply → CHN Education 30 41
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