九州大学学術情報リポジトリ Kyushu University Institutional Repository

鉄筋コンクリート壁板で表面から補強した煉瓦造壁 体の水平載荷実験

荒木, 啓介 九州大学大学院人間環境学府空間システム専攻:修士課程

山口, 謙太郎 九州大学大学院人間環境学研究院都市·建築学部門:准教授

蜷川,利彦 九州大学大学院人間環境学研究院都市 建築学部門 : 教授

花里, 利一 三重大学工学研究科

他

https://doi.org/10.15017/1931492

出版情報:都市·建築学研究. 33, pp.53-62, 2018-01-15. Faculty of Human-Environment Studies, Kyushu University バージョン: 権利関係:

鉄筋コンクリート壁板で表面から補強した煉瓦造壁体の水平載荷実験

Horizontal Loading Test of Brick Wall Specimens Reinforced on the Surface with RC Wall

荒木啓介*,山口謙太郎**,蜷川利彦**,花里利一***,村上公志****,賀 雄* Keisuke ARAKI*, Kentaro YAMAGUCHI**, Toshihiko NINAKAWA**, Toshikazu HANAZATO***, Koshi MURAKAMI**** and Xiong HE*

The objective of this study is to propose a reinforcing method that improves seismic safety of unreinforced brick masonry structure based on considering a reinforcing method that improves seismic safety of the Kyushu University Headquarters Building 1 and 3.

In this study, five brick wall specimens adjacent to the opening existing in the headquarters buildings were prepared on 3/4 of the scales, and horizontal loading tests of one unreinforced wall specimen and four specimens reinforced with RC walls were conducted.

As a result of the loading tests, compared with the maximum load of the unreinforced brick wall specimen, the specimens in which one side was reinforced with RC wall had a reinforcing effect of 6.1-6.2 times, and the specimens in which both sides were reinforced with RC wall had a reinforcing effect of 12.6-14.2 times.

Keywords : Unreinforced Masonry, Brick, Seismic Reinforcement, Reinforced Concrete, Jacketing, Loading Test, Reinforcement Effect

無補強組積造、れんが、耐震補強、鉄筋コンクリート、ジャケッティング、載荷実験、補強効果

1. 序

筆者らは、1925年に建築された九州大学本部第一庁舎 及び第三庁舎の耐震安全性が向上する補強方法の開発を 通して、無筋煉瓦造建築の耐震安全性が向上する補強方 法の提案を行っている.筆者らはこれまで、九州大学本 部第一庁舎および第三庁舎を構成する煉瓦組積体の力学 特性を調べてきた¹⁾.また、文献 2)の研究では、両庁舎 を構成する煉瓦組積体と同程度の強度を有する煉瓦およ び目地モルタルを用いて作製した対角圧縮試験体に、RC 壁板または鋼板で表面から補強を施して実験を行った結 果,RC 壁板で補強する仕様が優れていることを確認し た.

本研究では、実構造物に存在する開口部周辺の壁体を

- * 空間システム専攻 修士課程
- ** 都市·建築学部門
- *** 三重大学 工学研究科
- **** 岡山市役所

3/4 スケールで模した煉瓦造壁体を 5 体作製し,無補強 壁試験体 1 体と RC 壁板で補強した壁試験体 4 体の水平 載荷実験を行い,その補強効果の確認と耐力評価式の検 証を行った.

2. 表面から行う補強の有効性

本部第一庁舎および第三庁舎の外壁には組積した煉瓦 が現れているが、写真1に示すように内壁の大部分は煉 瓦壁の表面にモルタルなどの左官仕上げがなされている. 建築物によっては歴史的に価値のある左官等の内装仕上 げが施されていることもあり、適用にあたっては関係者 による十分な協議を行う必要があるが、その了承が得ら れれば、両庁舎は外部に面した壁体の室内側や内壁の両 面は補強を行っても煉瓦積みの外観を維持できる.また、 両庁舎の壁体の壁厚は臥梁のせいや床スラブ厚に比べて 厚く(図1)、鉄筋コンクリート構造の耐震壁のように、そ れより幅の大きな梁や柱で四周が取り囲まれていない.そ

写真1 本部第一庁舎の内壁

表1 壁試験体材料 (モルタル,コンクリート) の力学的性質

	目地モ	ルタル	補強部コ	ンクリート	
試験体名	圧縮強度 (N/mm ²)	ヤング率 (N/mm ²)	圧縮強度 (N/mm ²)	ヤング率 (N/mm ²)	
UR01	43.3	2.34 $\times 10^{4}$			
CS01	45.1	2.56 $\times 10^4$	61.6	0.70.1.104	
CD01	43.3	2.34 \times 10 ⁴	01.0	3. /9 × 10	
CS02	43.4	2. 41×10^4	76.0	4 00104	
CD02	43.4	2.41 \times 10 ⁴	70.Z	4. 30 × 10	

のため,壁の周囲の部材と補強部をア ンカー等で接合すると床スラブや直 交壁が損傷する恐れがあり,補強で 期待する耐力が発揮されない可能性 がある.床スラブより下の壁体や基 礎等に手を加えずに,各階の見えか かりの部分を補強して効果があれば 経済的にも有利である.そこで,図2 に示すような開口部周辺の壁体の補 強を行って,そこに無開口壁に近い 水平耐力を与えることを目指す.

本研究では、図2中の凸形の形状の 部分を壁試験体とするが、開口部横

を想定した試験体の上部を開口壁,壁長が長い試験体の 下部を腰壁と表記する.

3. アンカーの量、付着強度、埋め込み深さの検討

筆者の所属する研究室ではこれまで文献 3)の研究で、 煉瓦壁体に埋め込んだアンカーボルトの付着性状を調べ ている.その結果から得られた、煉瓦壁体に埋め込んだ アンカーのせん断耐力とアンカー断面積との関係を図 3 に示す.また、文献 2)・文献 3)の研究ではアンカーを煉 瓦小口1個分の長さで埋め込んでいたが、写真2のよう に埋め込んだアンカーの先端部分で破壊が起こり、アン カーが埋め込まれた部分は補強部と煉瓦組積体の一体性 が確認された.このことから、本研究ではアンカーは煉 瓦組積体を貫通させて補強を行うこととする.

図1 実構造物の壁体断面

表2 鉄筋の機械的性質

規格	ヤング率 (N/mm ²)	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	破断伸び (%)				
D10 (SD345)	1.84×10^{5}	382	594	19.2				
D16 (SD345)	1.85×10 ⁵	403	585	17.9				
)16 (SD345) *	1.84×10 ⁵	401	576	16.9				
試験体CD02に使用								

> 図2 開口部周辺の壁体と 試験体想定箇所

表3 試験体の補強方法と載荷方法

試験体名	補強部	アンカー 本数(本)	アンカー 筋比(%)	ねじれの拘束
UR01	無	0	0	有
CS01	片面	100	0.56	有
CS02	片面	100	0.56	無
CD01	両面	100	0.56	有
CD02	両面	60	0.33	有

写真2小ロー個分埋め込んだ アンカーの先端部分での破壊

4. 実験概要

試験体5体の形状及び配筋図を図4に、煉瓦壁に使用 した目地モルタルとRC壁板に使用したコンクリートの 力学的性質を表1に、鉄筋の機械的性質を表2に、試験 体5体の補強方法と載荷方法の違いを表3に示す.使用 した煉瓦は、寸法216mm×108mm×63mmの無孔の焼成 煉瓦で、九州大学本部第一庁舎および第三庁舎に使用さ れる煉瓦と同等の圧縮強度(平均圧縮強度22.6N/mm²) を有するものを用いた.5体とも図2に示す開口部周辺 の壁体を想定し、3/4 スケールで作製した.試験体UR01 は無補強壁で、試験体CS01、CS02 は図4に示す厚さ 110mmのRC壁板を片面に、試験体CD01、CD02 は両面 に打設した.煉瓦壁はRCスタブ上に組積し、補強部は RCスタブとアンカー等で接合せずに縁を切った.

補強試験体にはアンカーを打っており,アンカーの縦 方向の配置は煉瓦1段おきに,横方向の配置は小口1個

-54-

分以上の間隔とした. 試験体 CS01, CS02 ではアンカー を埋め込み深さ 295mm で打設し, 試験体 CD01, CD02 ではアンカーを煉瓦壁に貫通させて打設した. ただし, 試験体 CS02 のアンカー用の穿孔時に, 誤って貫通した 箇所が5箇所あったため, 埋め込み長さを少し短くする 必要がある.アンカー筋には D13 の SD345 を用いており,エポキシ樹脂を用いた接着系アンカーとした.試験体 CS01, CS02, CD01 にはアンカーを 100 本打設し,試験体 CD02 にはアンカーを 40%減らした 60 本打設した.表3 に示すアンカー筋比は煉瓦壁体の見付面積に対する

試験体 CD02 配筋図

①-①'断面図 (左 CS01/02,右 CD01/02)

図4 壁試験体の形状, 配筋図, ひずみゲージ貼付け位置(単位:mm)

アンカー筋の断面積の比(アンカー筋断面積/煉瓦壁体 の見付面積)と定義したアンカー量を表す指標である.

開口壁と腰壁の端部に SD345 の D16 を主筋,中央部 の同じ方向に SD345 の D10 を中間鉄筋として, 主筋や 中間鉄筋を覆うように両端部に 90° フックを付けた SD345のD10をせん断補強筋として使用した.

実験は図5に示す加力装置で行い、軸力は煉瓦組積体 上面(RC 壁増設部を除く)に 54kN 載荷し(圧縮応力: 0.21N/mm²),実験中は一定に保持した.水平力はスタブ 上面から載荷点までの高さに生じる変形角が±0.01、 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0 ×10⁻² rad.に 3 回ずつ達するまで(試験体 CS01 は 1.5× 10⁻² rad.まで, 試験体 CS02 は 1.0×10⁻² rad.まで) 正負交 番の静的繰り返し載荷を行った. 試験体 CS02 はねじれ 時の性能を把握するため、面外方向のねじれを拘束せず に載荷を行った. それ以外の試験体では面外方向のねじ れを拘束して載荷を行った.変位計は図6に示す位置に 取付けた.なお、表4は、実際の本部第一庁舎に本研究 で提案する RC 壁を増設する際の軸力の増加について検 討したものである. 同表は最大の長期軸力が作用する壁 体とそれに RC 壁を増設した場合について示しており、 実験で確認された壁体の圧縮強度の最小値に対し、長期 の軸力は両面補強時でも11%程度である.また、本部第 一庁舎の基礎は壁体から断面積を徐々に大きくした同様 の煉瓦壁で構成されており, 壁体と同等以上の圧縮耐力 が見込めるため、長期軸力に対する耐力不足は考えにく い. 加えて、重量増による地震時水平力の増大に対して

表4 最大圧縮応力が作用する本部第一庁舎の壁体の RC 壁増設に伴う圧縮耐力の確認

	現状 最大値	片面 補強時	両面 補強時	圧縮強度 最小値
軸力(kN)	275	307	339	
圧縮応力度(N/mm ²)	0. 569	0. 636	0. 702	6. 35

図6 変位計取付け位置(単位:mm)

は、それを十分上回る水平耐力の増大効果が見込めれば 補強に利用できる. 但し、水平荷重で生じる曲げ圧縮応 力がどのように煉瓦壁へ分散して入力されるかは解明が 十分でないため、その検討を今後引き続き実施する.

5. 壁試験体の水平耐力

無補強煉瓦壁の水平耐力 。Qu は開口壁脚部の横目地が 曲げ破壊したのち、開口壁が剛体回転するときの水平荷 重として、(1) 式で算定する.

$${}_{b}Q_{\mu} = (N+w) \cdot L/2h \tag{1}$$

ただし.

N: 煉瓦組積体上面に作用させた軸力

w:開口壁の自重

- L:開口壁の長さ
- h:開口壁脚部から加力点までの高さ

本研究では、RC 壁板で補強した煉瓦壁の水平耐力を2 種類の方法で算定した.1種類目として, RC 壁板で補強 した煉瓦壁の降伏耐力。Qyは RC 梁の許容曲げモーメン トの算定式(3)を準用し,開口壁脚部の主筋が降伏する時 の水平荷重に,開口壁が剛体回転するときの水平荷重 かの を加えた値として、(2)式で算定する.

$$_{c}Q_{y} = M_{y}/h + _{b}Q_{u} \tag{2}$$

$$M_y = a_t \cdot \sigma_y \cdot j \tag{3}$$

ただし,

a_t:開口壁端部に配置した3本の主筋 D16の断面積 の合計

σ_v:主筋の降伏強度

i:応力中心間距離で、(7/8) dとする

d:開口壁の有効せいで,3本の引張鉄筋の重心から 求める

また,同補強煉瓦壁の終局耐力 *_Q*^{*u*} は RC 梁の終局曲 げモーメントの算定式(5)を準用し,開口壁脚部の終局強 度時の水平荷重に開口壁が剛体回転するときの水平荷重 *_bQ*^{*u*} を加えた値として,(4)式で算定する.

$$_{c}Q_{u} = M_{u}/h + _{b}Q_{u} \tag{4}$$

$$M_u = 0.9a_t \cdot \sigma_y \cdot d \tag{5}$$

2種類目として,壁式鉄筋コンクリート造計算規準(以下,WRC規準と記す)に準じた耐力式による算定を併せて行った. RC 壁板で補強した煉瓦壁の曲げ降伏時の水 平耐力 wcQ_y は,WRC規準を準用した(7)式で得られる耐力壁の降伏曲げモーメントを加力点までの高さhで除した値として,(6)式で算定する.

$$_{wc}Q_y = {_wM_u}/h \tag{6}$$

$${}_{w}M_{y} = \sum({}_{w}a_{t} \cdot {}_{w}\sigma_{y}) \cdot l' + 0.5\sum({}_{w}a_{w} \cdot {}_{w}\sigma_{wy}) \cdot l' + 0.5(N+w)l'$$
(7)

ただし,

- wa_t:引張鉄筋の断面積で WRC 規準に準じ引張側端
 部から RC 壁板の厚さ 110 mmの範囲内にある縦筋
 とする
- wσ_y: 引張鉄筋の規格降伏点で終局曲げモーメント計 算時には 1.1 倍とする
- l':開口壁の長さLの 0.9 倍の値

waw:中間鉄筋の断面積

wσ_{wy}:中間鉄筋の規格降伏点で終局曲げモーメント 計算時には 1.1 倍とする

RC 壁板で補強した煉瓦壁の曲げ終局時の水平耐力

試験体 UR01

試験体 CS01 (無補強面) 試験体 CS01 (補強面) 写真 3 載荷後の試験体の状況

wcQuは WRC 規準を準用した(9)式で得られる耐力壁の 終局曲げモーメントを加力点までの高さhで除した値と して,(8)式で算定する.

$$_{wc}Q_u = {_wM_u}/h \tag{8}$$

$${}_{w}M_{u} = \sum ({}_{w}a_{t} \cdot {}_{w}\sigma_{y}) \cdot l' + 0.5 \sum ({}_{w}a_{w} \cdot {}_{w}\sigma_{wy}) \cdot l' + 0.5(N+w)l'$$
(9)

6. 実験結果および考察

各試験体の水平荷重-変形角関係を図7に、載荷後の 試験体の状況を写真3に示す.水平荷重は図5に示す ように、ジャッキから圧縮加力を行ったときを正、引張 加力を行ったときを負とし、変形角は、ジャッキの圧縮 加力によってスタブが図5中の正側へ変位したときを正、 ジャッキの引張加力によってスタブが負側へ変位したと きを負としている.

試験体 UR01 の最大荷重は+31.8kN (+0.041×10⁻²rad. 時)であった. +0.025×10⁻²rad.のサイクルで開口壁正側 脚部の煉瓦1段目下面の横目地に曲げひび割れが生じた. その後, -0.025×10⁻²rad.のサイクルで負側脚部の1 段目 上面の横目地に, +0.050×10⁻²rad.のサイクルで正側脚部 の1段目上面の横目地に曲げひび割れが生じた. それ以 降の変形領域では,開口壁の下から2段目以上が剛体的 に回転した.

試験体 CS01 の最大荷重は+196kN(+0.71×10⁻² rad.時) であり,試験体 UR01 の最大荷重と比較すると 6.2 倍の 補強効果があった. -0.050×10⁻² rad.のサイクルで開口壁 負側脚部の無補強面(正面)の煉瓦1段目下面に曲げに よるひび割れがみられ,+0.30×10⁻² rad.のサイクルでその 周辺の組積体表面に階段状のひび割れが発生した.また, +0.30×10⁻² rad.のサイクルで開口壁正側脚部の補強面(背 面)に曲げによるひび割れがみられ,組積体と補強部の 壁厚方向に階段状のひび割れがみられた. ±0.75~1.0× 10⁻² rad.のサイクル以降,開口壁脚部の補強面に曲げひび 割れが進展した.

試験体 CS02 の最大荷重は+194kN(+0.51×10⁻²rad.時)

であり、試験体 UR01 の最大荷重と比較すると 6.1 倍の 補強効果があった.+0.10×10⁻²rad.のサイクルで開口壁正 側脚部の無補強面(正面)の煉瓦1段目下面に曲げによ るひび割れがみられ、+0.30×10⁻²rad.のサイクルでその周 辺の組積体表面に斜めにひび割れが発生した.また、 +0.20×10⁻²rad.のサイクルで開口壁正側脚部の補強面(背 面)に曲げによるひび割れがみられ、±0.50×10-2rad.の サイクル以降、開口壁脚部の補強面に曲げひび割れが進 展した.

みられ,以降も進展した.また,+0.75×10-2rad.以降のサ 400 イクルで開口壁脚部のコンクリートに圧壊がみられた. 300 片面補強試験体2体を比較すると、最大荷重は同等だっ 200 头中危重 (KN) 100 (a)~(e)の凡例 Ö 水平荷重−変形角関係 ~100 降伏曲げ荷重cQy -200 1段目主筋が引張降伏(背面) 2段目主筋が引張降伏(背面) 3段目主筋が引張降伏(背面) -300 -400 終局曲げ荷重cQu -500 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 1段目主筋が引張降伏(正面) 2段目主筋が引張降伏(正面) 0 変形角 (×10-2rad.) 3段目主筋が引張降伏(正面) (a) 試験体 UR01 Λ 500 500 400 400 300 300 200 200 (NS) 米平荷重 (MI) 100 100 水平荷重(ា 0 -100 -100 -200 -200 -300 -300 -400 -400 -500 -500 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -2.5-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 変形角 (×10-2rad.) 変形角(×10-2rad.) 試験体 CSO1 (±1.5×10⁻²rad. まで) (b) 試験体 CSO2(±1.0×10⁻²rad. まで) (c)500 500 400 400 300 300 200 200 3 大平荷重 (KK) 100 100 水平荷重 0 0 -100 -100 -200 -200 -300 -300 -400 -400 -500 -2.5 -2.0 -500 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -2.5 -2.0 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.5 変形角 (×10-2rad.) 変形角(×10-2rad.) (e) 試験体 CD02 (d) 試験体 CD01

であり、試験体 UR01 の最大荷重と比較すると 14.2 倍の

補強効果があった.+0.20×10⁻²rad.のサイクルで最初に開

口壁正側脚部の補強面(背面)に曲げによるひび割れが

みられ、以降のサイクルで他の脚部にもひび割れが発生

し進展した. また, +0.75×10⁻²rad.以降のサイクルで開口

試験体 CD02 の最大荷重は+402kN(+0.77×10⁻²rad.時)

であり、試験体 UR01 の最大荷重と比較すると 12.6 倍の 補強効果があった. +0.10×10⁻²rad.のサイクルで最初に開

口壁正側脚部の補強面(正面)に曲げによるひび割れが

2.0 2.5

2.0

2.5

壁脚部のコンクリートに圧壊がみられた.

試験体 CD01 の最大荷重は+453kN (+0.88×10⁻²rad.時)

500

-58-

(KN)

草重

FI-

×

試験体 CS02

たが試験体 CS02 はね じれの影響により試験 体 CS01 より小さな変 形角で最大荷重に達し たと考えられる.また, 開口上部のねじれの概 念図を図 8 に,試験体 CS01 と試験体 CS02 の 開口上部のねじれ-全 体変形角関係を図 9 に 示す.図9より,片面 補強試験体の開口上部 のねじれが大きくなっ ている. ± 0.40 × 10^2 rad.サイクルまで

は、両試験体とも上部のねじれはほぼ同等であった. ± 0.50×10^{-2} rad.サイクルで試験体 CS02 の上部のねじれが大きくなり始め、それ以降のサイクルでは両試験体 とも上部のねじれが大きくなっていった. 試験体 CS02 では、試験体を上から見て、時計回りのねじれが徐々に 大きくなっている. 上部のねじれは+1.0×10⁻²rad.のとき、試験体 CS01 が約 2.2%rad.で、試験体 CS02 が約 5.0%rad. となった.

両面補強試験体 2 体を比較すると, アンカーを 40%減 らした試験体 CD02 は試験体 CD01 より最大耐力が約 11%低下したが大変形領域までその耐力を維持した. 変形角別の最大水平荷重の大きさを図 10 に示す.補強 試験体 4 体は,無補強試験体 UR01 の最大荷重が測定さ れた+0.041×10⁻²rad.以降も荷重が増加した.開口壁の主筋 は±0.20×10⁻²rad.以降のサイクルで降伏し始め,最大荷重 に至るまでに大きな変形能力を示した.

実験結果と水平耐力の算定結果を表 5 に、水平耐力の 算定に用いた値を表 6 に示す. 試験体 UR01 は開口壁の 剛体回転で変形角-2.0×10⁻²rad.に達した際には水平荷重 が-27.5kN まで低下し、表 5 中の $_{b}Q_{u}=24.4$ kN に近い値と なった. 試験体 CS01, CS02, CD01, CD02 はいずれも、 開口壁の主筋が最初に引張降伏した時の水平荷重が $_{c}Q_{y}$ に近い値となった. また,試験体 CS01, CS02, CD01,

試験体	名	①最大 荷重 (kN)	最大荷重時の 変形角 (×10 ⁻² rad.)	±0.05×10 ⁻² rad. サイクル時の 最大荷重 (k N)	 ②開口壁脚部の 主筋が最初に 引張降伏した 時の水平荷重 (kN) 	左項の時の 変形角 (×10 ⁻² rad.)	水平荷重 _b Q _u (kN)	水平荷重 _c Q _y (kN)	水平荷重 _c Q _u (kN)	Qy ②実験値	_cQu ①実験値
UR01	н	31.8	0. 041	31.8	_	_	24.4	-	_		_
	負	-29.8	-0. 087	-29.6			27. T				
0001	正	196	0. 714	110	153	0. 22			166	1.06	0.85
0301	負	-193	-1.007	-68.0	-146	-0. 48	24.4	162		1. 11	0.86
0000	正	194	0. 509	106	159	0. 27	24.4			1. 02	0.86
0302	負	-192	-0. 752	-109	-154	0.37				1.05	0.86
0001	IE	453	0.879	207	302	0. 18				0.99	0.68
CDOT	負	-392	-1. 394	-98, 6	-277	-0. 22	04.4	200	200	1.08	0. 79
0000	IE	402	0. 770	206	280	0.13	24.4	300	308	1.07	0. 77
0002	負	-400	-1.519	-204	-288	0.13				1.04	0.77

った.

表5 壁試験体の載荷実験結果と水平耐力の算定結果

表6 水平耐力の算定に用いた値

試験体名	N (kN)	W (kN)	L (mm)	h (mm)	a_t (mm ²)	$\sigma_y = (N/mm^2)$	j (mm)	d (mm)	wa _t (mm ²)	$w\sigma_y$ (N/mm ²)	$a_w a_t$ (mm ²)	<i>w</i> σ _{wy} (N/mm²)
UR01	54	4.7	798	956	-	-	-	-	-	-	-	-
CS01	54	4.7	798	956	596	403	549	627	199	345	199, 71.3	345
CS02	54	4.7	798	956	596	401	549	627	199	345	199, 71.3	345
CD01	54	4.7	798	956	1192	403	549	627	199	345	199, 71.3	345
CD02	54	4.7	798	956	1192	403	549	627	199	345	199, 71.3	345

CD02 はいずれも、最大荷重が _cQuより大きな値を示し、 (4)式による終局曲げ耐力の算定結果は14%~32%の過小 評価となった.

(6)式と(8)式による算定値と実験値の比較を表7に示 す.(6)式による降伏曲げ耐力の算定結果は21~33%過大 評価となった.一方(8)式による終局曲げ耐力の算定値は 実験値に近い値となったが、片面補強試験体の耐力につ いては 8~10%の過大評価となった. このことから降伏 耐力は(2)式により概ね捉えられ、両面補強時の終局耐力 表7 (6) 式と(8) 式の算定値と 実験値との比較

(mm^2) (M/mm^2)							
				0	0	0	0
-	_	= = = = ~ /		wcQy	$_{wc}Q_{u}$	wcYy	wcYu
199, 71.3	345	試験1	試験14名		(kN)	の宝輪値	
199. 71.3	345						
199, 71.3	345	0001	ΙĒ	102	010	1.26	1.08
199, 71.3	345	0301	負	192	212	1.33	1.10
	0000	IE	102	010	1.21	1.09	
は(8)式	により	0302	負	192	212	1.25	1.10
	2 2 10	0001	IE	266	102	1.21	0.89
慨る捉	えられ	0001	負	300	402	1. 32	1.02
ステレン	が分か	0000	īE	200	400	1.31	1.00
	0002	負	300	402	1.27	1.01	
1							

ここで、表8~表11に開口壁脚部の引張鉄筋と中間鉄 筋による降伏時、終局時における実際のモーメントと算 定値との比較を示す. また図 11,図 12 に降伏時の開口壁 脚部のひずみ分布と鉄筋の負担軸力の概念図を示す。ひ ずみ分布は図4に示す開口壁脚部の鉄筋に貼ったひずみ

図 11 降伏時の開口壁脚部のひずみ分布の概念図 (CD02 正加力時)

表 8	(3) 式による降伏時の開口壁脚部の
モー	メントの算定値と実験値との比較

試験体		③引張鉄筋による モーメント合計 (kNm)	(3) [°] a _t ·σ _y ·j (kNm)	③'算定值 ③実験值	③' /③ 平均
0001	IE	87. 8	131	1.50	
0301	負	111	131	1.19	
0000	正	110	131	1.20	
0302	負	117	131	1.13	1 20
0001	IE	175	263	1.50	1. 50
0001	負	188	263	1.40	
0002	IE	214	263	1. 23	
	負	204	263	1.29	

表9 (5) 式による終局時の開口壁脚部の モーメントの算定値と実験値との比較

試験体		④引張鉄筋による モーメント合計 (kNm)	$\begin{array}{c} \textcircled{4}^{'}\\ 0.9a_t \cdot \sigma_y \cdot d\\ (kNm) \end{array}$	④ ['] 算定値 ④実験値	④' /④ 平均
0901	ΙĒ	137	135	0. 99	
0301	負	135	135	1.00	
0000	IE	142	135	0.95	
0302	負	135	135	1.00	0.07
0001	IE	285	270	0.95	0.97
0001	負	283	270	0.96	
0000	ΤĒ	286	270	0.95	
0002	負	284	270	0.95	

試験	体	⑤引張鉄筋による モーメント合計 (kNm)	 ⑥中間鉄筋による モーメント合計 (kNm) 	$\sum_{\substack{(wa_t \cdot wa_y) \cdot l' \\ (kNm)}} (5)$	$ \begin{array}{c} $	⑤'算定值 ⑤実験値	⑤' /⑤ 平均	⑥' 算定値 ⑥実験値	⑥' /⑥ 平均
0001	IE	53. 7	43.3	49.2	116	0. 92		2.68	
0301	負	48. 3	70. 2	49. 2	116	1.02		1.65	
0000	ΤĒ	55.5	67.9	49. 2	116	0.89		1.71	
0302	負	56.8	77.3	49.2	116	0.87	0.02	1.50	0.06
0001	ΤĒ	106	87.1	98.4	232	0.93	0.93	2.67	2.00
0001	負	102	96.6	98.4	232	0.97		2. 40	
0002	正	105	127	98.4	232	0.94		1.83	
ODUZ	負	109	113	98.4	232	0.90		2.05	

表 10 (7) 式の第一項と第二項よる降伏時の開口壁脚部のモーメントの算定値と実験値との比較

表 11 (9) 式の第一項と第二項よる終局時の開口壁脚部のモーメントの算定値と実験値との比較

試験	⑦引張鉄筋による 後体 モーメント合計 (kNm)		⑧中間鉄筋による モーメント合計 (kNm)	$\frac{\widehat{\mathcal{D}}'}{\sum_{\substack{(wa_t \cdot w\sigma_y) \cdot l' \\ (kNm)}}}$		⑦ ['] 算定値 ⑦実験値	⑦' /⑦ 平均	⑧' 算定値 	⑧' /⑧ 平均
0001	ΤĒ	55.9	113	54. 1	128	0.97		1.13	
0301	負	54.0	101	54. 1	128	1.00		1.27	
002	正	56.4	114	54. 1	128	0.96		1.12	:
0302	負	55. 1	108	54. 1	128	0.98	0.07	1.19	1 00
0001	ΤĒ	113	267	108	255	0.96	0.97	0.96	1.00
0001	負	113	266	108	255	0.96		0.96	
0002	IE	114	250	108	255	0.95		1.02	
	負	114	263	108	255	0, 95		0.97	

ゲージの値を読み取り、ひずみゲージを貼り付けていな い部分は線形補間した. 終局時は同表①の最大荷重時の ひずみを読み取った.鉄筋の負担軸力は終局時に降伏ひ ずみよりもひずみが大きかった鉄筋はすべて降伏強度で 算定した. モーメントの実験値は圧縮力の重心位置まわ りのモーメントとして求めた.表8を見ると、(3)式では 降伏時の実際の引張鉄筋によるモーメントを30%過大評 価しているとわかる.表9を見ると、(5)式は終局時の実 際の引張鉄筋によるモーメントと概ね一致しているとい える.表5,表8,表9を見ると実験値に対する算定値の 比は表5の値が最も小さい.これは、表5の実験値には 引張鉄筋より圧縮側の鉄筋によるモーメントも含まれて いるが、表8、表9の実験値には含まれていないためと 考えられる. 表 10 より, (7)式の引張鉄筋の項(第一項) は降伏時の実際の引張鉄筋によるモーメントを 7%過小 に評価しているが、(7)式の中間鉄筋の項(第二項)は降 伏時の実際の中間鉄筋によるモーメントを 106%過大に 評価している. 表 11 より, (9)式の中間鉄筋の項(第二 項)は両面補強時には終局時の実際の中間鉄筋によるモ ーメントと概ね一致しているといえるが、片面補強時に は12~27%過大評価となった.全体を通して見ると、降 伏時と終局時はいずれも中間鉄筋は機能しているが、そ の影響は終局時のほうが大きいと考察される.そのため、 RC 梁の式と WRC 規準に準じた式とでは算定値が異な ったと考えられる.また、終局時の中間鉄筋の作用度合 いは両面補強時と片面補強時で若干差があることが分か った.

今後,壁体に作用するねじれの影響や,アンカーによる 煉瓦壁体の拘束効果が補強する壁体の水平耐力に及ぼす 影響を含めて,耐力式の検討を引き続き行う.また,基礎 や梁の補強の必要性についても検討を行う.

7.まとめ

本研究では、実構造物中の煉瓦造壁体を模して作製した無筋煉瓦造壁試験体1体と、同様の壁体をRC壁板で 補強した煉瓦造壁試験体4体の水平載荷実験を行い、補 強効果を調べた.その結果、以下の知見が得られた.

- 最大水平荷重について無補強煉瓦壁試験体 UR01 と 比較すると、片面を補強した試験体 CS01 は 6.2 倍, 試験体 CS02 は 6.1 倍,両面を補強した試験体 CD01 は 14.2 倍,試験体 CD02 は 12.6 倍の補強効果があっ た.
- (2) 無補強の煉瓦壁試験体 UR01 が最大荷重を迎えた ±0.050×10⁻²rad.のサイクル以降も,補強した煉瓦の壁 試験体の耐力は増大し,大きな変形能力を示した.
- (3) RC 片面補強を行った煉瓦壁試験体2体を比較すると、 最大耐力は同等で,試験体CS01は±0.75~1.0×10⁻²rad. のサイクル以降,試験体CS02は±0.50×10⁻²rad.のサイ クル以降,ねじれによる変形が顕著になった.
- (4) RC 両面補強を行った煉瓦壁試験体2体を比較すると、 アンカー量を試験体 CD01より40%減らした試験体 CD02は、試験体 CD01より最大耐力が約11%低下し

たがほぼ同様の載荷履歴を示し,(4)式による終局耐力の算定値は23%の過小評価となった.

(5) RC 補強を行った煉瓦壁試験体の降伏耐力は(2)式に より概ね捉えられ,両面補強時の終局耐力は(8)式に より概ね捉えられた.

今後,壁体に作用するねじれの影響や,アンカーによる 煉瓦壁体の拘束効果が補強する壁体の水平耐力に及ぼす 影響を含めて,耐力式の検討を引き続き行う.また,基礎 や梁の補強の必要性についても検討を行う.

謝辞

本研究は九州大学統合移転事業の一環で行ったもので ある. 試験体 CS02 及び CD02 の補強は文部科学省科学 研究費補助金(基盤研究(A),課題番号:16H01825,研 究代表者:花里利一)の助成により実施した.本研究の 遂行にあたり,大分大学の菊池健児教授,黒木正幸教授 からご助言を頂いた.また,実験にあたり,九州大学工 学部建築学科平成28年度卒論生 末廣秀樹君の協力を得 た.末尾ながら記して謝意を示す.

参考文献

- 村上公志,石原義高,山口謙太郎,蜷川利彦:九州大 学 本部庁舎を構成する煉瓦組積体の力学特性 そ の 2 その 3,日本建築学会大会学術講演梗概集,C-2,pp.843-846,2014年9月
- 2) 荒木啓介,山口謙太郎,蜷川利彦:九州大学 無筋 煉瓦造建築の壁体を表面から補強する方法に関す る研究 その 2,日本建築学会大会学術講演梗概集, C-2,pp.867-868,2016年8月
- 村上公志、山口謙太郎、蜷川利彦:九州大学 無筋 煉瓦造建築の壁体を表面から補強する方法に関す る研究 その1、日本建築学会大会学術講演梗概集、 C-2、pp.809-810、2015年9月

(受理:平成29年11月6日)