
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Factorizing Strings into Combinatorial Objects

杉本, 志穂

https://doi.org/10.15017/1928634

出版情報：九州大学, 2017, 博士（理学）, 課程博士
バージョン：
権利関係：

Factorizing Strings into Combinatorial Objects

Shiho Sugimoto

August, 2017

Abstract

String factorization is a task of factorizing a string into a sequence of non-empty strings under

given constraints. The size of factorization is defined to be the number of factors in it. For

example, the Lyndon factorization has the constraints that each factor is a Lyndon word and

the factors are arranged in the lexicographically non-increasing order. On the other hand, the

Lempel-Ziv 77 (LZ77) factorization, the core of LZ77 compression, is a smallest-sized factor-

ization such that each factor has a previous occurrence.

It is known that the sizes of the Lyndon factorization and the LZ77 factorization of a string

w are lower bounds on the size of grammar that generatesw in the grammar-based compression.

Moreover, these factorizations can be used as a means of accelerating several string processing

algorithms. Studies on string factorization can thus contribute not only to Combinatorics on

Strings but also to String Algorithms. Many kinds of string factorizations have been introduced

and efficient factorization algorithms have been developed for them.

Kolpakov and Kucherov proposed a variant of the LZ77 factorization, called the reversed LZ

factorization (Theoretical Computer Science, 410(51), 2009). We present an online algorithm

that computes the reversed LZ factorization of a given string w of length n in O(n log2 n)

time using O(n log σ) bits of space, where σ ≤ n is the alphabet size. Also, we introduce a

new variant, called the reversed LZ factorization with self-references, and present two online

algorithms to compute this variant, in O(n log σ) time using O(n log n) bits of space, and in

O(n log2 n) time using O(n log σ) bits of space.

A palindromic factorization of a string w is a factorization of w into palindromic substrings

of w. We present an online O(n log n) time O(n) space algorithm to compute a smallest-

sized palindromic factorization of every prefix of w, where n is the length of a given string w.

We then show how to extend this algorithm to compute a smallest-sized maximal palindromic

factorizations of every prefix of w, where the factors are maximal palindromes (non-extensible

palindromic substring) of the prefix, in O(n log n) time and O(n) space, in an online manner.

i

We also present an online algorithm that computes a smallest-sized palindromic cover of w in

O(n) time using O(n) space.

We also define a restricted variant of palindromic factorization, called the diverse palin-

dromic factorization, where the factors are distinct from each other. We prove that the existence

problem of the diverse palindromic factorization is NP-complete.

A closed string is a string with a proper substring that occurs in the string as a prefix and a

suffix, but not elsewhere. Closed strings were introduced by Fici (WORDS 2011) as objects of

combinatorial interest in the study of Trapezoidal and Sturmian words. We consider algorithms

for computing closed factors (substrings) in strings, and in particular for greedily factorizing

a string into a sequence of longest closed factors. We describe an algorithm for this problem

that uses linear time and space. We then consider the related problem of computing, for every

position in the string, the longest closed factor starting at that position. We present a simple

algorithm for the problem that runs in O(n log n/ log log n) time.

Two strings x and y are said to be Abelian equivalent if x is a permutation of y, or vice

versa. If a string z satisfies z = xy with x and y being Abelian equivalent, then z is said to

be an Abelian square. If a string w can be factorized into a sequence v1, . . . , vs of strings such

that v1, . . . , vs−1 are all Abelian equivalent and vs is a substring of a permutation of v1, then

w is said to have a regular Abelian period (p, t) where p = |v1| and t = |vs|. If a substring

w1[i..i + l − 1] of a string w1 and a substring w2[j..j + l − 1] of another string w2 are Abelian

equivalent, then the substrings are said to be a common Abelian factor of w1 and w2 and if the

length l is the maximum of such then the substrings are said to be a longest common Abelian

factor of w1 and w2. We propose efficient algorithms which compute these Abelian regularities

using the run length encoding (RLE) of strings. For a given string w of length n whose RLE is

of size m, we propose algorithms which compute all Abelian squares occurring in w in O(mn)

time, and all regular Abelian periods of w in O(mn) time. For two given strings w1 and w2 of

total length n and of total RLE size m, we propose an algorithm which computes all longest

common Abelian factors in O(m2n) time.

ii

Acknowledgements

I really appreciate all the support I received from everyone. I begin by my most grateful thanks

for Professor Masayuki Takeda who is my supervisor and the committee chair of this thesis. He

gave me the choice to try the PhD course. I learned what research is, what researcher is, and

how to enjoy the life as a researcher from what he did. Thanks to him, my life in laboratory

could not have been better. I also express my appreciation to Professor Eiji Takimoto, Professor

Daisuke Ikeda and Professor Yukiko Yamauchi, who are the members of the committee of this

thesis. They gave me some advice to make this thesis better.

I greatly appreciate to Professor Hideo Bannai and Professor Shunsuke Inenaga. They were

always my goals far from me. It was a happiness that I always had my role models. They

had many big ideas, knowledges and techniques and they had never hesitated to give it us. I

am grateful to Dr. Tomohiro I in Kyushu Institute of Technology. He helped me my research

when and after he was in Kyushu University. I also appreciate to Professor Eiji Takimoto and

Professor Kohei Hatano for their advice in weekly seminars. The discussions with them were

always productive.

This research was partly supported JSPS (Japan Society for the Promotion of Science). The

results in the thesis were partially published in the Proc. of PSC2013, the Proc. of PSC2014,

the Proc. of CPM2014, the Proc. of DLT2015 and the Proc. of IWOCA2017. Also, the

journal version of PSC2014 paper was published in 2016 in Discrete Applied Mathematics by

ELSEVIER. I am thankful for all editors, committees, anonymous referees, and publishers.

I express my gratitude to co-authors Dr. Golnaz Badkobeh, Dr. Travis Gagie, Professor

Costas S. Iliopoulos, Dr. Juha Kärkkäinen, Dr. Dominik Kempa, Dr. Marcin Piatkowski and

Dr. Simon J. Puglisi. Especially, I really enjoyed discussing stringology and talking about

others with Dr. Golnaz Badkobeh and Dr. Simon J. Puglisi. Additionally, discussing with

Professor Maxime Crochemore and Dr. Tatiana Starikovskaya were great time to me. I hope I

will write a paper with them.

iii

I am also grateful to the technical staffs of our laboratory, Ms. Sanae Wakita, Ms. Miho

Higo and Ms. Akiko Ikeuchi. They always supported and took care of me, not limited to

my paperwork . I also express thanks to all of staffs in Department of Informatics, Kyushu

University.

Last, but not least, I express my lots of thanks and lots of loves to my family.

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Background . 1

1.2 Previous work on string factorization . 2

1.3 Our contributions . 3

1.4 Organization . 8

2 Preliminaries 9

2.1 Notion and notation . 9

2.2 Model of computation . 10

2.3 Tools . 10

2.4 Two variants of LZ77 factorization . 12

3 Reversed LZ Factorization Online 14

3.1 Notation . 14

3.2 Reversed LZ factorization . 14

3.3 Computing RLZ (w) in O(n log2 n) time and O(n log σ) bits of space 16

3.4 Online computation of reversed LZ factorization with self-references 20

3.5 Reversed LZ factorization and smallest grammar 24

4 Palindromic Factorization 25

4.1 Palindromic factorization and palindromic cover of string 25

4.2 Combinatorial properties of palindromic suffixes 26

4.3 Computing smallest-sized palindromic factorizations online 28

v

CONTENTS

4.4 Computing smallest-sized maximal palindromic factorizations online 31

4.5 Computing smallest-sized palindromic covers online 32

4.6 Related Work . 34

5 Diverse Palindromic Factorization is NP Complete 36

5.1 Outline of the proof . 36

5.2 Adding a wire . 39

5.3 Splitting a wire . 40

5.4 Adding a NAND gate . 43

5.5 Summing up . 54

5.6 k-Diverse factorization . 54

5.7 Binary alphabet . 55

6 Closed Factorization 58

6.1 Closed strings and closed factorization . 58

6.2 Greedy longest closed factorization in linear time 59

6.3 Longest closed factor array . 62

7 Abelian Regularities 64

7.1 Notation . 64

7.2 Computing regular Abelian periods using RLEs 65

7.3 Computing Abelian squares using RLEs . 67

7.4 Computing longest common Abelian factors using RLEs 75

8 Conclusion 83

vi

Chapter 1

Introduction

1.1 Background

Combinatorics is an area of Discrete Mathematics, which studies how to count or enumerate

certain combinatorial objects. Combinatorics on Words, branching from Combinatorics, fo-

cuses on words or strings, i.e., sequences of symbols. Examples of combinatorial string objects

are squares, repetitions (i.e., periodic strings), palindromes, Lyndon words, closed strings, and

so on.

A string factorization is a research topic in Combinatorics on Words, and has received spe-

cial concerns. It is a task of factorizing a given string into combinatorial objects. An example is

the Lyndon factorization introduced by Chen, Fox and Lyndon [17] in 1958. The goal of studies

on string factorization in this area is mainly to discover algebraic properties on strings. Little

attention has been paid to development of algorithms for factorizing strings or analysis of their

complexities in this area.

On the other hand, Stringology is an area of Theoretical Computer Science, which studies

algorithms and data structures for processing string data efficiently as well as algebraic prop-

erties on combinatorial string objects. Algorithmic aspects of string factorization have been a

subject of active research in Stringlogy. For the Lyndon factorization, Duval [27] revealed in

1983 the property that a sequence of longest Lyndon words corresponds to the Lyndon factor-

ization, and presented a simple linear-time algorithm based on this property. Efficient parallel

algorithms for the Lyndon factorization are also known [7, 25]. Recently, Lyndon factorization

algorithms over compressed string were proposed [41, 42].

The Lyndon factorization is of a mathematical interest but it has several applications, espe-

cially related to data compression. It is used in a bijective variant of Burrows-Wheeler trans-

1

CHAPTER 1. INTRODUCTION

form [57, 37]1. In the context of grammar-based compression, it is shown in [42] that the size

of Lyndon factorization of a string gives a lower bound on the size of a smallest grammar that

generates it uniquely. Examples of applications not related to data compression are a digital

geometry algorithm [14] and a public key cryptosystem [69]. Very recently, it turns out that

the Lyndon factorization can be used as a preprocessing step in computation of runs (maximal

repetitions) within a given string [54, 36, 21].

The goal of this thesis is to develop efficient algorithms for existing or newly introduced

string factorization problems, or to show their intractability.

1.2 Previous work on string factorization

First, we mention a class of string factorizations which were originally intended for data com-

pression. Ziv and Lempel [78] proposed the LZ77 factorization as a tool of data compression.

It plays a central role in efficient string processing algorithms [52, 28], in compressed full text

indices [56], and in an approximation algorithm to the smallest grammar problem [67].

Due to its importance, efficient algorithms for computing the LZ77 factorization have been

proposed, both in offline manner and in online manner. In the offline setting where the string

is static, there exist efficient algorithms to compute the LZ77 factorization of a given string

w of length n, running in O(n) time and using O(n log n) bits of space, assuming an integer

alphabet [19]. See [1] for a survey, and [48, 38, 47, 46] for more recent results in this line of

research.

In the online setting where new characters may be appended to the end of the string,

Okanohara and Sadakane [66] gave an algorithm that runs in O(n log3 n) time using n log σ +

o(n log σ) + O(n) bits of space, where σ is the size of the alphabet. Later, Starikovskaya [70]

proposed an algorithm running in O(n log2 n) time using O(n log σ) bits of space, assuming
logσ N

4
characters are packed in a machine word. Yamamoto et al. [76] developed an online

LZ77 factorization algorithm running in O(n log n) time using O(n log σ) bits of space.

Some variants of the LZ77 factorization also exist; the LZ-End factorization [55] allows

faster random access in compressed strings, and the reversed LZ factorization [53, 71] is useful

for finding gapped palindromes in strings.

Ziv and Lempel [79] also proposed the LZ78 factorization, and later Welch [75] proposed its

variant called the LZW factorization. These factorizations are intended for data compression.

1The Burrows-Wheeler transform is a core of the compression tool bzip2.

2

CHAPTER 1. INTRODUCTION

Also, they can be used as a means of accelerating computation of alignments of two strings [22].

The LZ78/LZW factorization of a string of length n over an alphabet of size σ can be computed

in O(n log σ) time. A more efficient algorithm for computing the LZ78/LZW factorization was

proposed by Jansson et al. [45].

Next, we mention several string factorizations not related to data compression. The smallest-

sized maximal palindromic factorization problem introduced by Alatabbi et al. [3] is to find a

factorization of a given string into factors that are maximal palindromes (non-extensible palin-

dromic substrings) of smallest size. They presented in [3] an offline O(n)-time algorithm.

Dumitran et al. [26] introduced two factorization problems: the square factorization prob-

lem and the repetition factorization problem, which are defined as the problems of finding any

factorization of a given string into squares and finding any factorization of a given string into

runs (maximal repetitions), respectively. For the square factorization problem, they presented

in [26] an O(n log n) time solution. Matsuoka et al. [63] proposed an improved algorithm that

runs in O(n) time. They also proposed in [63] algorithms that compute square factorizations of

smallest/largest size in O(n log n) time using O(n) space, assuming an integer alphabet.

For the repetition factorization problem, Dumitran et al. [26] presented an O(n) time al-

gorithm. Inoue et al. [44] proposed algorithms that compute repetition factorizations of small-

est/largest size in O(n log n) time using O(n) space for a general ordered alphabet.

Table 1.1 summarizes known string factorizations and the complexity of existing algorithms

for them.

1.3 Our contributions

In this section, we state the problems we consider in this thesis and explain related works of the

problems and outline of our solution.

1.3.1 Reversed LZ factorization

One of the most well-studied factorizations is the LZ77 factorization we mentioned above.

In this thesis we consider the reversed LZ factorization problem introduced by Kolpakov and

Kucherov [53], which is used as a basis of computing gapped palindromes. In the online setting,

the reversed LZ factorization can be computed inO(n log σ) time usingO(n log n) bits of space,

utilizing the algorithm by Blumer et al. [12].

3

CHAPTER 1. INTRODUCTION

Table 1.1: Several string factorization problems are listed with complexity of existing solutions,
where n is the input string length and σ is the alphabet size.

problem constraint complexity
Lyndon factozation [17] each factor is a Lyndon word and

the factors are arranged in lexico-
graphically non-decreasing order.

O(n) time O(n) space [27]

LZ77 factorization [78] each factor is the right maximal
substring that has a previous oc-
currence.

O(n) time O(n log n) bits of space [19]

reversed LZ factoriza-
tion [53]

each factor is the right maximal
substring of which reversal has a
previous occurence.

O(n log σ) time O(n log n) bits of
space [53]

smallest sized maximal
palindromic factoriza-
tion [3]

each factor is a maximal palin-
drome.

O(n) time O(n) space [3]

square factorization [26] each factor is a square. O(n) time O(n) space [63]
smallest/largest sized square
factorization [63]

each factor is a square. O(n log n) time O(n) space [63]

repetition factorization [26] each factor is a repetition. O(n) time O(n) space [26]
smallest/largest sized repeti-
tion factorization [44]

each factor is a repetition. O(n log n) time O(n) space [44]

We present a space-efficient solution to compute reversed LZ factorization, which requires

only O(n log σ) bits of working space with slightly slower O(n log2 n) running time.

We also introduce a new, self-referencing variant of the reversed LZ factorization, and pro-

pose two online algorithms; the first one runs in O(n log σ) time and O(n log n) bits of space,

and the second one in O(n log2 n) time and O(n log σ) bits of space. A key to achieve such

complexity is efficient online computation of the longest suffix palindrome for each prefix of

the string w.

As an independent interest, we consider the relationship between the number of factors in

the reversed LZ factorization of a string w, and the size of the smallest grammar that generates

only w. It is known that the number of factors in the LZ77 factorization of w is a lower bound

of the smallest grammar for w [67]. We show that, unfortunately, this is not the case with the

reversed LZ factorization with or without self-references.

1.3.2 Palindromic factorization

In 2013, Alatabbi et al. [3] introduced a new kind of factorization problem, called the smallest-

sized maximal palindromic factorization problem. A factorization of string w is said to be a

4

CHAPTER 1. INTRODUCTION

maximal palindromic factorization of w if every factor in the factorization is a maximal palin-

drome in w. They presented an offline O(n)-time algorithm to compute a smallest-sized maxi-

mal palindrome factorization of a given string of length n.

In this thesis, we introduce yet another kind of factorization problem, called the smallest-

sized palindromic factorization problem. A factorization of a string w is said to be a palin-

dromic factorization of w if every factor is a palindrome (not necessarily maximal). We present

an online O(n log n)-time O(n)-space algorithm to compute a smallest-sized palindromic fac-

torization of a given string w of length n. In addition, we show how to extend this algorithm to

obtain an online O(n log n)-time O(n)-space algorithm to compute a smallest-sized maximal

palindromic factorization of w. We achieve the O(n log n)-time bound in our solutions using

combinatorial properties of palindromic suffixes of strings. We remark that the algorithm of

Alattabi et al. [3] is offline, and a naı̈ve extension of their algorithm to the online scenario leads

to an O(n2)-time bound.

Also, we consider the problem of covering a given string with fewest palindromes. We show

how to compute such covers inO(n) time in an offline fashion, and later describe how to extend

it to an online O(n)-time algorithm. Both of the algorithms use O(n) space. This solves an

open problem of Alatabbi et al. [3].

1.3.3 Diverse palindromic factorization

We define a restricted variant of palindromic factorization, called the diverse palindromic fac-

torization. A factorization of a string w is said to be diverse if the factors are distinct from each

other. Some well-known factorizations, such as the LZ78 [79] factorization are diverse (except

that the last factor may have appeared before). Fernau et al. [30] recently proved that it is NP-

complete to determine whether a given string has a diverse factorization of at least a given size,

and Schmid [68] has investigated related questions. It seems natural to consider the problem of

determining whether a given string has a diverse factorization into palindromes. For example,

abcddeef and abcdefed each have exactly one such factorization — i.e., a, b, c, dd, ee, f

and a, b, c, defed, respectively — but abcdefdc has none. This problem is obviously in NP

and we prove that it is NP-hard and, thus, NP-complete by showing a reduction from the circuit

satisfiability problem [58].

We also show that it is NP-complete for any fixed k to decide whether a given string can

be factored into palindromes that each appear at most k times in the factorization; we call such

5

CHAPTER 1. INTRODUCTION

a factorization k-diverse. Finally, since several recent papers (e.g. [15, 16, 40]) consider the

effect of alphabet size on the difficulty of various string problems, we show that the problems

remain NP-complete even if the string is restricted to be binary.

1.3.4 Closed factorization

A closed string is a string with a proper substring that occurs as a prefix and a suffix but does

not have internal occurrences. Closed strings were introduced by Fici [31] as objects of com-

binatorial interest in the study of Trapezoidal and Sturmian words. Since then, Badkobeh, Fici,

and Liptak [9] have proved a tight lower bound for the number of closed substrings in strings of

given length and alphabet.

In this thesis, we initiate the study of algorithms for computing closed factors. In particular

we consider two algorithmic problems. The first, which we call the closed factorization prob-

lem, is to greedily factorize a given string into a sequence of longest closed factors (we give a

formal definition of the problem in Section 6.1). We describe an algorithm for this problem that

uses O(n) time and space, where n is the length of the given string.

The second problem we consider is the closed factor array problem, which requires us to

compute the length of the longest closed factor starting at each position in the input string. We

show that this problem can be solved in O(n logn
log logn

) time, using techniques from computational

geometry.

1.3.5 Abelian regularities

Two strings s1 and s2 are said to be Abelian equivalent if s1 is a permutation of s2, or vice versa.

For instance, strings ababaac and caaabba are Abelian equivalent. Since the seminal paper by

Erdős [29] published in 1961, the study of Abelian equivalence on strings has attracted much

attention, both in word combinatorics and string algorithmics.

We are interested in the following algorithmic problems related to Abelian regularities of

strings.

1. Compute Abelian squares in a given string.

2. Compute regular Abelian periods of a given string.

3. Compute longest common Abelian factors of two given strings.

6

CHAPTER 1. INTRODUCTION

Cummings and Smyth [24] proposed an O(n2)-time algorithm to solve Problem 1, where

n is the length of the given string. Crochemore et al. [20] proposed an alternative O(n2)-time

solution to the same problem. Recently, Kociumaka et al. [51] showed how to compute all

Abelian squares in O(s+ n2

log2 n
) time, where s is the number of outputs.

Related to Problem 2, various kinds of Abelian periods of strings have been considered: An

integer p is said to be a full Abelian period of a string w iff there is a decomposition u1, . . . , uz

of w such that |ui| = p for all 1 ≤ i ≤ z and u1, . . . , uz are all Abelian equivalent. A pair (p, t)

of integers is said to be a regular Abelian period (or simply an Abelian period) of a string w

iff there is a decomposition v1, . . . , vs of w such that p is a full Abelian period of v1 · · · vs−1,
|vi| = p for all 1 ≤ i ≤ s − 1, and vs is a permutation of a substring of v1 (and hence

t ≤ p). A triple (h, p, t) of integers is said to be a weak Abelian period of a string w iff there

is a decomposition y1, . . . , yr of w such that (p, t) is an Abelian period of y2 · · · yr, |y1| = h,

|yi| = p for all 2 ≤ i ≤ r − 1, |yr| = t, and y1 is a permutation of a substring of y2 (and hence

h ≤ p).

The study on Abelian periodicity of strings was initiated by Constantinescu and Ilie [18].

Fici et al. [34] gave an O(n log log n)-time algorithm to compute all full Abelian periods. Later,

Kociumaka et al. [50] showed an optimal O(n)-time algorithm to compute all full Abelian

periods. Fici et al. [34] also showed an O(n2)-time algorithm to compute all regular Abelian

periods for a given string of length n. Kociumaka et al. [50] also developed an algorithm which

finds all regular Abelian periods in O(n(log log n + log σ)) time, where σ is the alphabet size.

Fici et al. [33] proposed an algorithm which computes all weak Abelian periods in O(σn2)

time, and later Crochemore et al. [20] proposed an improved O(n2)-time algorithm to compute

all weak Abelian periods. Kociumaka et al. [51] showed how to compute all shortest weak

Abelian periods in O(n2/
√

log n) time.

Consider two strings w1 and w2. A pair (s1, s2) of a substring s1 of w1 and a substring s2

of w2 is said to be a common Abelian factor of w1 and w2, iff s1 and s2 are Abelian equivalent.

Alatabbi et al. [2] proposed an O(σn2)-time and O(σn)-space algorithm to solve Problem 3

of computing all longest common Abelian factors (LCAFs) of two given strings of total length

n. Later, Grabowski [39] showed an algorithm which finds all LCAFs in O(σn2) time with

O(n) space. He also presented an O((σ
k

+ log σ)n2 log n)-time O(kn)-space algorithm for

a parameter k ≤ σ
log σ

. Recently, Badkobeh et al. [10] proposed an O(n log2 n log∗ n)-time

O(n log2 n)-space algorithm for finding all LCAFs.

In this thesis, we show that we can accelerate computation of Abelian regularities of strings

7

CHAPTER 1. INTRODUCTION

via run length encoding (RLE) of strings. Namely, if m is the size of the RLE of a given string

w of length n, we show that:

1. All Abelian squares in w can be computed in O(mn) time.

2. All regular Abelian periods of w can be computed in O(mn) time.

3. All longest common Abelian factors of w1 and w2 can be computed in O(m2n) time.

Since m ≤ n always holds, our O(mn)-time solution to Problem 1 is at least as efficient as the

O(n2)-time solutions by Cummings and Smyth [24] and by Crochemore et al. [20], and can be

much faster when the input string w is highly compressible by RLE. Amir et al. [5] proposed an

O(σ(m2 + n))-time algorithm to compute all Abelian squares using RLEs. Our O(mn)-time

solution is faster than theirs when σm2

m−σ = ω(n).

Our O(mn)-time solution to Problem 2 is faster than the O(n(log log n+ log σ))-time solu-

tion by Kociumaka et al. [50] for highly RLE-compressible strings with log log n = ω(m)2.

OurO(m2n)-time solution to Problem 3 is faster than theO(σn2)-time solution by Grabowski [39]

when σn = ω(m2), and is faster than the fastest variant of the other solution by Grabowski [39]

(choosing k = σ
log σ

) when
√
n log n log σ = ω(m). Also, our solution is faster than the

O(n log2 n log∗ n)-time solution by Badkobeh et al. [10] when log n
√

log∗ n = ω(m). The

time bounds of our algorithms are all deterministic.

1.4 Organization

The rest of this thesis is organized as follows: In Chapter 3, we introduce the reversed LZ fac-

torization without self-references, and consider computing the reversed LZ factorization with

or without self-references of a given string w in a small space. In Chapter 4, we define the

problems of computing a smallest-sized palindromic factorization of w and of computing a

smallest-sized palindromic cover of w, and present efficient algorithms for them. In Chapter 5,

we formulate the diverse palindromic factorization problem and prove that the existence prob-

lem of the diverse palindromic factorization is NP-complete. In Chapter 6, we define the closed

factorization problem and the longest closed factor array problem, and show algorithms for

solving them. In Chapter 7, we consider accelerating computation of various Abelian regular-

ities Abelian squares: Abelian periods, and longest common Abelian factors via Run Length

factorization.
2Since we can w.l.o.g. assume that σ ≤ m, the log σ term is negligible here.

8

Chapter 2

Preliminaries

2.1 Notion and notation

Let Σ be an alphabet. An element of Σ∗ is called a string. Strings x, y, and z are called a prefix,

a substring, and a suffix of the string w = xyz, respectively. A prefix, substring, and suffix of

a string w is said to be proper if it is not w. A string b is called a border of another string w if

b is both a proper prefix and suffix of w. The sets of substrings and suffixes of w are denoted

by Substr(w) and Suffix (w), respectively. The length of string w is denoted by |w|. The empty

string ε is a string of length 0, that is, |ε| = 0. For 1 ≤ i ≤ |w|, w[i] denotes the i-th character

of w. For 1 ≤ i ≤ j ≤ |w|, w[i..j] denotes the substring of w that begins at position i and ends

at position j. For convenience, let w[i..j] = ε for i > j.

A period of a string x is an integer p with 0 < p ≤ |x| such that x[i] = x[i+ p] for all i with

1 ≤ i ≤ |x| − p.

Proposition 1 (Periodicity Lemma [23]). Let d and d′ be two periods of a string w. If d+ d′ −
gcd(d, d′) ≤ |w|, then gcd(d, d′) is also a period of w.

Let wrev denote the reversed string of s, that is, wrev = w[|w|] · · ·w[2]w[1]. A string x is

called a palindrome if x = xrev. The center of a palindromic substring w[i..j] of a string w is
i+j
2

. The radius of palindrome x is |x|
2

. A palindromic substring w[i..j] is called the maximal

palindrome at the center i+j
2

if no other palindromes at the center i+j
2

have a larger radius than

w[i..j], i.e., if w[i − 1] 6= w[j + 1], i = 1, or j = |w|. Since a string w of length n ≥ 1 has

2n − 1 centers (1, 1.5, . . . , n − 0.5, n), w has exactly 2n − 1 maximal palindromes. Note that

every palindromic suffix of w is a maximal palindrome of w.

For any string w of length n ≥ 1, let Spals(w) denote the set of the beginning positions of

9

CHAPTER 2. PRELIMINARIES

the palindromic suffixes of w, i.e.,

Spals(w) = {n− |s|+ 1 | s ∈ Suffix (w), s is a palindrome}.

We introduce the property of Spals .

Proposition 2 ([6, 62]). For any string w of length n, Spals(w) can be represented by O(log n)

arithmetic progressions.

A factorization of a string w is a sequence f1, . . . , fk of non-empty strings such that w =

f1 · · · fk. Each fi is called a factor of the factorization. The size of the factorization is the

number k of factors in it.

2.2 Model of computation

In this thesis, we use the unit cost word RAM model1, where we have access to a random access

memory consisting of cells, each of which stores an `-bit word, and all the basic arithmetic and

logic operations over `-bit words can be carried out in constant time. Let n be the size of data

in memory. In this model it is usually assumed that ` = Ω(log n), or simply ` ≥ dlog ne, which

means that with one machine word we can address any data element.

There are three types of alphabets from which symbols are drawn: (i) a constant-sized

alphabet, (ii) an integer alphabet where symbols are integers in the range [1..nc] for a constant

c, and (iii) a general alphabet in which the only operations on strings are symbols comparisons.

2.3 Tools

2.3.1 Suffix array

The suffix array [61] SAw (we drop subscripts when they are clear from the context) of a stringw

is an array SA[1..n] which contains a permutation of the integers [1..n] such that w[SA[1]..n] <

w[SA[2]..n] < · · · < w[SA[n]..n]. In other words, SA[j] = i iff w[i..n] is the j th suffix of w in

ascending lexicographical order.

1RAM stands for Random Access Machine.

10

CHAPTER 2. PRELIMINARIES

a!
b!
c!

a!

a!
c!

a!
b!
b!
b!
a!
c!

b!
b!
a!
c!

b!
b!
b!
a!
c!

b!

b!

b!
a!
c!

b!

a!
a!
a!
a!

b!
b!
b!

c!
a!

a!

c!

b!
b!
a!
c!

b!

a!
a!

a!

b!

a!

c!

b!
a!
c!

b!
b!
a!
c!

b!

a!
a!

a!

Figure 2.1: STree(w) with w = abbaaaabbbac.

2.3.2 Suffix tree

The suffix tree [74] of string s, denoted STree(s), is a rooted tree such that

1. Each edge is labeled with a non-empty substring of s, and each path from the root to a

node spells out a substring of s;

2. Each internal node v has at least two children, and the labels of distinct out-going edges

of v begin with distinct characters;

3. For each suffix x of w, there is a path from the root that spells out x.

The number of nodes and edges of STree(s) is O(|s|), and STree(s) can be represented using

O(|s| log |s|) bits of space, by implementing each edge label y as a pair (i, j) such that y =

s[i..j].

For a constant alphabet, Weiner’s algorithm [74] constructs STree(srev) in an online manner

from left to right, i.e., constructs STree(s[1..j]rev) in increasing order of j = 1, 2, . . . , |s|, in

O(|s|) time using O(|s| log |s|) bits of space. It is known that the tree of the suffix links of the

directed acyclic word graph [12] of s forms STree(srev). Hence, for larger alphabets, we have

the following:

Proposition 3 ([12]). Given a string s, we can compute STree(srev) online from left to right, in

O(|s| log σ) time using O(|s| log |s|) bits of space.

11

CHAPTER 2. PRELIMINARIES

2.3.3 Suffix trie

In our algorithms, we will also use the generalized suffix trie for a set W of strings, denoted

STrie(W). STrie(W) is a rooted tree such that

1. Each edge is labeled with a character, and each path from the root to a node spells out a

substring of some string w ∈ W ;

2. The labels of distinct out-going edges of each node must be different;

3. For each suffix s of each string w ∈ W , there is a path from the root that spells out s.

2.3.4 Knuth-Morris-Pratt algorithm

Let P be a non-empty string called the pattern. The Knuth-Morris-Pratt (KMP for short) al-

gorithm [49] is based on the KMP automaton, which accepts the language Σ∗P . Let Q =

{0, 1, . . . , |P |} be the set of states, and let fail be a special value not in Q. The state-transition

δ : Q × Σ → Q of the KMP automaton for P is represented as the two functions: the goto

function g : Q× Σ→ Q ∪ {fail}, and the failure function f : Q− {0} → Q satisfying

δ(j, a) =

{
g(j, a), if g(j, a) 6= fail;
δ(f(j), a), otherwise.

The goto function g takes j ∈ Q and a ∈ Σ as input and returns j + 1 if P [j + 1] = a,

otherwise, returns fail. (The case j = 0 is an exception. Let g(0, a) = 0 for every a ∈ Σ with

P [1] 6= a.) The failure function f takes j ∈ Q− {0} as input and returns the length of longest

border of P [1..j]. Figure 2.2 shows the KMP automaton for P = abacb with Σ = {a, b, c}. The

move of the KMP automaton of Figure 2.2 on text T = abacbbaababacbb is shown in Figure 2.3.

Proposition 4. The KMP algorithm finds all occurrences of a pattern P of length m within a

text T of length n in O(m+ n) time using O(m) space for a general unordered alphabet.

2.4 Two variants of LZ77 factorization

We give formal definitions of two variants of LZ77 factorization as below.

Definition 1 (LZ77 factorization without self-references). The LZ77 factorization without self-

reference of a string w is a factorization f1, . . . , fm such that for any 1 ≤ i ≤ m,

12

CHAPTER 2. PRELIMINARIES

b
0 1 2 3 4 5

b caa

− {a}

Figure 2.2: KMP automaton for P = abacb is displayed. The circles denote the states, and the
thick circle means the final state. The solid and the broken arrows represent the goto and the
failure functions, respectively.

original text:

state transition:

a a a aaab b b b b bc c

0 1 2 3 4 5 0

0

1 2 3

1

0

1 2 3 4 5

Figure 2.3: Move of KMP automaton is demonstrated. The solid and the broken arrows repre-
sent the state transitions with the goto and the failure functions, respectively. The underlined
number indicates that the pattern occurs.

fi is the longest non-empty prefix of w[j..|w|] that occurs in w[1..j − 1] if such

exists, and fi = w[j] otherwise,

where j = |f1 · · · fi−1|+ 1.

Definition 2 (LZ77 factorization with self-references). The LZ77 factorization with self-reference

of a string w is a factorization f1, . . . , fm such that for any 1 ≤ i ≤ m,

fi is the longest non-empty prefix of w[j..|w|] that occurs in w[1..|f1 · · · fi| − 1] if

such exists, and fi = w[j] otherwise,

where j = |f1 · · · fi−1|+ 1.

13

Chapter 3

Reversed LZ Factorization Online

In this chapter, we address two variants of the LZ77 factorization, called the reversed LZ factor-

ization with and without self-references, and present efficient online algorithms for computing

them.

The results in this chapter were originally published in [71].

3.1 Notation

For an input string w of length n over an alphabet of size σ ≤ n, let r = logσ n
4

= logn
4 log σ

.

For simplicity, assume that log n is divisible by 4 log σ, and that n is divisible by r. A string of

length r, called a meta-character, fits in a single machine word. Thus, a meta-character can also

be transparently regarded as an element in the integer alphabet Σr = {1, . . . , n}. We assume

that given 1 ≤ i ≤ n−r+1, any meta-characterA = w[i..i+r−1] can be retrieved in constant

time.

We call a string on the alphabet Σr of meta-characters, a meta-string. Any string w whose

length is divisible by r can be viewed as a meta-string w of length m = n
r
. We write 〈w〉

when we explicitly view string w as a meta-string, where 〈w〉[j] = w[(j − 1)r + 1..jr] for

each j ∈ [1,m]. Such range [(j − 1)r + 1, jr] of positions will be called meta-blocks and the

beginning positions (j − 1)r + 1 of meta-blocks will be called block borders. For clarity, the

length m of a meta-string 〈w〉 will be denoted by ‖〈w〉‖. Note that m log n = n log σ.

3.2 Reversed LZ factorization

Kolpakov and Kucherov [53] introduced the following variant of LZ77 factorization.

14

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

k!

fi!fi-1!w! "!

fi
rev!

f
1!

Figure 3.1: Let k = |f1 · · · fi−1|+ 1. fi is the longest non-empty prefix of w[k..|w|] that is also
a substring of w[1..k − 1]rev if such exists.

Definition 3 (Reversed LZ factorization without self-references). The reversed LZ factorization

of a string w without self-references, denoted RLZ (w), is a factorization f1, . . . , fm of w such

that for any 1 ≤ i ≤ m,

fi is the longest non-empty prefix of w[k..|w|] that occurs in w[1..k − 1]rev if such

exists, and fi = w[k] otherwise,

where k = |f1 · · · fi−1|+ 1.

Figure 3.1 illustrates Definition 3.

Example 1. For string w = abbaaaabbbac, RLZ (w) consists of the following factors: f1 = a,

f2 = b, f3 = ba, f4 = a, f5 = aabb, f6 = ba, and f7 = c.

We are interested in online computation of RLZ (w). Using Proposition 3, one can compute

RLZ (w) online inO(n log σ) time usingO(n log n) bits of space [53], where n = |w|. The idea

is as follows: Assume we have already computed the first j factors f1, f2, . . . , fj , and we have

constructed STree(w[1..lj]
rev), where lj =

∑j
h=1 |fh|. Now the next factor fj+1 is the longest

prefix of w[lj + 1..n] that is represented by a path from the root of STree(w[1..lj]
rev). After

the computation of fj+1, we update STree(w[1..lj]
rev) to STree(w[1..lj+1]

rev), using Propo-

sition 3. In the next section, we will propose a new space-efficient online algorithm which

requires O(n log2 n) time using O(n log σ) bits of space.

We introduce yet another new variant, the reversed LZ factorization with self-references.

Definition 4 (Reversed LZ factorization with self-references). The reversed LZ factorization of

a string w with self-references, denoted RLZS (w), is a factorization g1, . . . , gp of w such that

for any 1 ≤ i ≤ p,

gi is the longest non-empty prefix of w[k..|w|] that occurs in w[1..|g1 · · · gi| − 1]rev

if such exists, and gi = w[k] otherwise,

15

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

where k = |g1 · · · gi−1|+ 1.

Figure 3.2 illustrates Definition 4.

Example 2. For string w = abbaaaabbbac, RLZS (w) consists of the following factors: g1 = a,

g2 = b, g3 = baaaabb, g4 = ba, and g5 = c.

Note that in Definition 4 the ending position of a previous occurrence of grevi does not have

to be prior to the beginning position k of gi, while in Definition 3 it has to. This is the difference

between RLZ (w) and RLZS (w).

In this chapter we propose two online algorithms to compute RLZS (w); the first one runs

in O(n log σ) time using O(n log n) bits of space, and the second one does in O(n log2 n) time

using O(n log σ) bits of space.

3.3 Computing RLZ (w) inO(n log2 n) time andO(n log σ) bits
of space

The outline of our online algorithm to compute RLZ (w) follows the algorithm of Starikovskaya

[70] which computes LZ 77 factorization [78] in an online manner and in O(n log2 n) time

using O(n log σ) bits of space. The Starikovskaya algorithm maintains the suffix tree of the

meta-string 〈w〉 in an online manner, i.e., maintains STree(〈w〉[1..k]) in increasing order of

k = 1, 2, . . . , n/r, and maintains a generalized suffix trie for a set of substrings of w[1..kr] of

length 2r that begin at a block border. In contrast to the Starikovskaya algorithm, our algo-

rithm maintains STree((〈w〉[1..k])rev) in increasing order of k = 1, 2, . . . , n/r, and maintain

a generalized suffix trie for a set of substrings of w[1..kr]rev of length 2r that begin at a block

border.

Assume we have already computed the first i − 1 factors f1, . . . , fi−1 of RLZ (w) and

are computing the ith factor fi. Let li =
∑i−1

j=1 |fj|. This implies that we have processed

!!

"#!"#$!!%! "!

"#
&'(!

"
!!

Figure 3.2: Let k = |g1 · · · gi−1|+ 1. gi is the longest non-empty prefix of w[k..|w|] that is also
a substring of w[1..|g1 · · · gi| − 1]rev if such exists.

16

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

a

ba

a

a

a

a

a

b
b

b

b

b

b

b

b

b

a

a

a

a

a

a

Figure 3.3: Let r = 3 and consider string w = bba|aaa|bba|bac, where | represents a block
border. The figure shows STrie(W rev

3) where W rev
3 = {aaaabb, abbaaa}.

(〈w〉[1..k])rev where k = dli/re, i.e., the kth meta block contains position li. As is the case with

the Starikovskaya algorithm, our algorithm consists of two main phrases, depending on whether

|fi| < r or |fi| ≥ r.

3.3.1 Algorithm for |fi| < r

For any k (1 ≤ k ≤ n/r), let W rev
k denote the set of substrings of w[1..kr]rev of length 2r

that begin at a block border, i.e., W rev
k = {w[tr + 1..(t + 2)r]rev | 1 ≤ t ≤ (k − 2)}. We

maintain STrie(W rev
k) in an online manner, for k = 1, 2, . . . , n/r. Note that STrie(W rev

k)

represents all substrings of w[1..kr]rev of length r which do not necessarily begin at a block

border. Therefore, we can use STrie(W rev
k) to determine if |fi| < r, and if so, compute fi. An

example for STrie(W rev
k) is shown in Figure 3.3.

A minor issue is that STrie(W rev
k) may contain “unwanted” substrings that do not corre-

spond to a previous occurrence of f rev
i in w[1..li], since substrings w[(k − 2)r + 1..y]rev for

any li < y ≤ kr are represented by STrie(W rev
k). In order to avoid finding such unwanted

occurrences of f rev
i , we associate to each node v representing a reversed substring xrev, the left-

most ending position of x in w[1..kr]. Assume we have traversed the prefix of length p ≥ 0 of

w[li + 1..n] in the trie, and all the nodes involved in the traversal have positions smaller than

li + 1. If either the node representing w[li + 1..li + p + 1] stores a position larger than li or

there is no node representing w[li + 1..li + p + 1], then fi = w[li + 1..li + p] if p ≥ 1, and

fi = w[li + 1] if p = 0.

17

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

As is described above, fi can be computed in O(|fi| log σ) time. When li + p > kr, we

insert the suffixes of a new substring w[(k− 1)r+ 1..(k + 1)r]rev of length 2r into the trie, and

obtain the updated trie STrie(W rev
k+1). Since there exist σ2r = σ

logn
2 =

√
n distinct strings of

length 2r, the number of nodes in the trie is bounded by O(
√
nr2) = O(

√
n(logσ n)2). Hence

the trie requires o(n) bits of space. Each update adds O(r2) new nodes and edges into the trie,

taking O(r2 log σ) time. Since there are n/r blocks, the total time complexity to maintain the

trie is O(nr log σ) = O(n log n).

The above discussion leads to the following lemma:

Lemma 1. We can maintain in O(n log n) total time, a dynamic data structure occupying o(n)

bits of space that allows whether or not |fi| < r to be determined in O(|fi| log σ) time, and if

so, computes fi and a previous occurrence of f rev
i in O(|fi| log σ) time.

3.3.2 Algorithm for |fi| ≥ r

Assume we have found that the length of the longest prefix of w[li + 1..n] that is represented by

STrie(W rev
k) is at least r, which implies that |fi| ≥ r.

For any string f and integer 0 ≤ m ≤ min(|f |, r − 1), let strings αm(f), βm(f), γm(f)

satisfy f = αm(f)βm(f)γm(f), |αm(f)| = m, and |βm(f)| = j′r where j′ = max{j ≥ 0 |
m + jr ≤ |f |}. We say that an occurrence of f in w has offset m (0 ≤ m ≤ r − 1), if, in the

occurrence, αm(f) corresponds to a suffix of a meta-block, βm(f) corresponds to a sequence of

meta-blocks (i.e. βm(f) ∈ Substr(〈w〉)), and γm(f) corresponds to a prefix of a meta-block.

Let fmi denote the longest prefix of w[li + 1..n] which has a previous occurrence in w[1..li] with

offset m. Thus, |fi| = max0≤m<r |fmi |.
Our algorithm maintains two suffix trees on meta-strings, STree((〈w〉[1..k − 1])rev) and

STree((〈w〉[1..k])rev). Depending on the value of m, we use either STree((〈w〉[1..k − 1])rev)

and STree((〈w〉[1..k])rev).

If li − (k − 1)r ≥ m, i.e. the distance between the (k − 1)th block border and position li

is not less than m, then we use STree((〈w〉[1..k])rev) to find fmi . We associate to each internal

node v of STree((〈w〉[1..k])rev) the lexicographical ranks of the leftmost and rightmost leaves

in the subtree rooted at v, denoted left(v) and right(v), respectively. Recall that the leaves

of STree((〈w〉[1..k])rev) correspond to the block borders 1, r + 1, . . . , (k − 1)r + 1. Hence,

αm(fmi)βm(fmi) occurs in w[1..li]
rev iff there is a node v representing βm(fmi) and the interval

[left(v), right(v)] contains at least one block border b such that w[b−m..b− 1] = αm(fmi). To

18

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

determine γm(fmi), at each node v of STree((〈w〉[1..k])rev) we maintain a trie Tv that stores the

first meta-characters of the outgoing edge labels of v. Then, αm(fmi)βm(fmi)γm(fmi) occurs in

w[1..li]
rev iff there is a node u of Tv representing γm(fmi) and the interval [left(u1), right(u2)]

contains at least one block border b such that w[b−m..b− 1] = αm(fmi), where u1 and u2 are

respectively the leftmost and rightmost children of u in Tv.

If li− (k− 1)r < m, i.e. if the the distance between the (k− 1)th block border and position

li is less than m, then we use STree((〈w〉[1..k − 1])rev) to find fmi . This allows us to find only

previous occurrences of f rev
i that end before li + 1. All the other procedures follow the case

where li − (k − 1)r ≥ m, mentioned above.

Lemma 2. We can maintain in O(n log2 n) total time, a dynamic data structure occupying

O(n log σ) bits of space that allows to compute fi with |fi| ≥ r and a previous occurrence of

f rev
i in O(|fi| log2 n) time.

Proof. Traversing the suffix tree for βm(fmi) takes O(
|fmi |
r

log n) = O(|fmi | log σ) time since

‖〈βm(fmi)〉‖ ≤ |f
m
i

r
|. Also, traversing the trie for γm(fmi) takesO(r log σ) time, since |γm(fmi)|

< r. To assure βm(fmi)γm(fmi) is immediately preceded by αm(fmi), we use the dynamic data

structure proposed by Starikovskaya [70] which is based on the dynamic wavelet trees [59].

At each node v, the data structure allows us to check if the interval [left(v), right(v)] contains

a block border of interest in O(log2 n) time, and to insert a new element to the data struc-

ture in O(log2 n) time. Thus, fi can be computed in O(
∑

0≤m≤r−1(|fmi | log σ + r log σ +

|f
m
i

r
| log2 n)) = O(|fi| log2 n). The position of a previous occurrence of f rev

i can be retrieved

in constant time, since each leaf of the suffix tree corresponds to a block border. Once fi is

computed, we update STree((〈w〉[1..k])rev) to STree((〈w〉[1..k′])rev), such that the k′th block

border contains position li+1 in w. Using Proposition 3, the suffix tree can be maintained in a

total of O(n
r

log σ) = O(n log n) time.

It follows from Proposition 3 that the suffix tree on meta-strings requires O(n
r

log n) =

O(n log σ) bits of space. Since the dynamic data structure of Starikovskaya [70] takesO(n log σ)

bits of space, the total space complexity of our algorithm is O(n log σ) bits.

The main result of this section follows from Lemma 1 and Lemma 2:

Theorem 1. Given a string w of length n, we can compute RLZ (w) in an online manner, in

O(n log2 n) time and O(n log σ) bits of space.

19

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

3.4 Online computation of reversed LZ factorization with self-
references

In this section, we consider to compute RLZS (w) for a given string w in an online manner. An

interesting property of the reversed LZ factorization with self-references is that, the factorization

can significantly change when a new character is appended to the end of the string. A concrete

example is shown in Figure 3.4, which illustrates online computation of RLZS (w) with w =

abbaaaabbbac. Focus on the factorization of abbaaaab. Although there is a factor starting at

position 5 in RLZS (abbaaaab), there is no factor starting at position 5 in RLZS (abbaaaabb).

Below, we will characterize this with its close relationship to palindromes.

a b b a a a a b b b a c!

a!

a b!

a b b!

a b b a!

a b b a a!

a b b a a a!

a b b a a a a!

a b b a a a a b

a b b a a a a b b

a b b a a a a b b b

a b b a a a a b b b a

a b b a a a a b b b a c!

Figure 3.4: A snapshot of online computation of RLZS (w) with w = abbaaaabbbac. For each
non-empty prefix w[1..k] of w, | denotes the boundary of factors in RLZS (w[1..k]).

3.4.1 Computing RLZS (w) in O(n log σ) time and O(n log n) bits of space

Let w be any string of length n. For any 1 ≤ j ≤ n, the occurrence of substring p starting at

position j is called self-referencing, if there exists j′ such that w[j′..j′ + |p| − 1]rev = w[j..j +

|p| − 1] and j ≤ j′ + |p| − 1 < j + |p| − 1.

For any 1 ≤ k ≤ n, let Lpalw(k) = max{k − j + 1 | w[j..k] = w[j..k]rev, 1 ≤ j ≤ k}.
That is, Lpalw(k) is the length of the longest palindrome that ends at position k in w.

20

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

Lemma 3. For any string w of length n and 1 ≤ k ≤ n, let RLZS (w[1..k − 1]) = g1, . . . , gp.

Let lq =
∑q

h=1 |gh| for any 1 ≤ q ≤ p. Then

RLZS (w[1..k])

=


g1, . . . , gpw[k] if gpw[k] ∈ Substr(w[1..lp−1]

rev) and lp−1 + 1 ≤ dk,

g1, . . . , gp, w[k] if gpw[k] /∈ Substr(w[1..lp−1]
rev) and lp−1 + 1 ≤ dk,

g1, . . . , gj, w[lj + 1..k] otherwise,

where dk = k − Lpalw(k) + 1 and j is the minimum integer such that lj ≥ dk.

Proof. By definition of Lpalw(k) and dk, w[dk..k] is the longest suffix palindrome of w[1..k]. If

lp−1 + 1 ≤ dk, w[lp−1 + 1..k] cannot be self-referencing. Hence the first and the second cases of

the lemma follow. Consider the third case. Since lj ≥ dk, w[lj + 1..k] is self-referencing. Since

RLZS (w[1..lj]) = g1, . . . , gj , the third case follows.

See Figure 3.4 and focus on RLZS (abbaaaab), where g1 = a, g2 = b, g3 = ba, and

g4 = aaab. Consider to compute RLZS (abbaaaabb). Since the longest suffix palindrome

bbaaaabb intersects the boundary between g3 and g4 of RLZS (abbaaaab), the third case of

Lemma 3 applies. Consequently, the new factorization RLZS (abbaaaabb) consists of g1 = a

and g2 = b of RLZS (abbaaaab), and a new self-referencing factor g3 = baaaabb.

Theorem 2. Given a string w of length n, we can compute RLZS (w) in an online manner, in

O(n log σ) time and O(n log n) bits of space.

Proof. Suppose we have already computed RLZS (w[1..k − 1]), and we are computing

RLZS (w[1..k]) for 1 ≤ k ≤ n.

Assume lp−1 + 1 ≤ dk. We check whether gpw[k] ∈ Substr(w[1..lp−1]
rev) or not using

STree(w[1..lp−1]
rev). If the first case of Lemma 3 applies, then we proceed to the next position

k + 1 and continue to traverse the suffix tree. If the second case of Lemma 3 applies, then we

update the suffix tree for the reversed string, and proceed to computing RLZS (w[1..k + 1]).

Assume lp−1 + 1 > dk, i.e., the third case of Lemma 3 holds. For every j < e ≤ p, we

remove ge of RLZS (w[1..k− 1]), and the last factor of RLZS (w[1..k]) is w[lj + 1..k]. We then

proceed to computing RLZS (w[1..k + 1]).

As is mentioned in Section 3.2, in a total of O(n log σ) time and O(n log n) bits of space,

we can check whether the first or the second case of Lemma 3 holds, as well as maintain the

21

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

suffix tree for the reversed string online. In order to compute Lpalw(k) in an online manner,

we can use Manacher’s algorithm [60] which computes the maximal palindromes for all centers

in w in O(n) time and in an online manner. Since Manacher’s algorithm actually maintains

the center of the longest suffix palindrome of w[1..k] when processing w[1..k], we can easily

modify the algorithm to also compute Lpalw(k) online. Since Manacher’s algorithm needs to

store the length of maximal palindromes for every center in w, it takes O(n log n) bits of space.

Finally, we show the total number of factors that are removed in the third case of Lemma 3.

Once a factor that begins at position j is removed after computing RLZS (w[1..k]) for some

k, for any k ≤ k′ ≤ n, RLZS (w[1..k′]) never contains a factor starting at position j. Hence,

the total number of factors that are removed in the third case is at most n. This completes the

proof.

3.4.2 Computing RLZS (w) inO(n log2 n) time andO(n log σ) bits of space

In this subsection, we present a space efficient algorithm that computes RLZS (w) online, using

only O(n log σ) bits of space. Note that we cannot use the method mentioned in the proof of

Theorem 2, as it requires O(n log n) bits of space. Instead, we maintain a compact representa-

tion of all suffix palindromes of each prefix w[1..k] of w, as follows. We describe the definition

of Spals again. For any string w of length n ≥ 1, let Spals(w) denote the set of the beginning

positions of the palindromic suffixes of w, i.e.,

Spals(w) = {n− |s|+ 1 | s ∈ Suffix (w), s is a palindrome}.

Proposition 2 implies that Spals(w) can be represented by O(log2 n) bits of space.

Lemma 4. We can maintain O(log2 n)-bit representation of Spals(w[1..k]) online for every

1 ≤ k ≤ n in a total of O(n log n) time.

Proof. We show how to efficiently update Spals(w[1..k − 1]) to Spals(w[1..k]). Let S be any

subset of Spals(w[1..k − 1]) which is represented by a single arithmetic progression 〈t, q,m〉,
where t is the first (minimum) element, q is the step, and m is the number of elements of the

progression. Let sj be the jth smallest element of S, with 1 ≤ j ≤ m. By definition, sj

is a suffix palindrome of w[1..k − 1] for any j. In addition, if m ≥ 3, then it appears that,

for any 1 ≤ j < m, sj has a period q. Therefore, we can test whether the elements of S

correspond to the suffix palindromes of w[1..k], by two character comparisons: w[t−1] = w[k]

22

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

a!

a!a!

a!a!

a!

b!

k!

w!

b!

b!

b!

b!

c!

t!

Figure 3.5: Illustration of Lemma 4. Letw[t−1] = c, w[t+q−1] = a, andw[k] = b. w[t−1..k]
is a suffix palindrome of w[1..k] iff c = b, and w[t+ iq− 1..k] is a suffix palindrome of w[1..k]
for any 1 ≤ i < m iff a = b.

iff t − 1 ∈ Spals(w[1..k]), and w[t + q − 1] = w[k] iff t + iq − 1 /∈ Spals(w[1..k]) for any

1 ≤ i < m. (See also Figure 3.5.) If the extension of only one element of S becomes an element

of Spals(w[1..k]), then we check if it can be merged to the adjacent arithmetic progression that

contains closest smaller positions. As above, we can process each arithmetic progression in

O(1) time. By Proposition 2, there are O(log n) arithmetic progressions in Spals(w[1..k]) for

each prefix of w[1..k] of w. Consequently, for each 1 ≤ k ≤ n we can maintain O(log2 n)-bit

representation of Spals(w[1..k]) in a total of O(n log n) time.

The main result of this subsection follows:

Theorem 3. Given a string w of length n, we can compute RLZS (w) in an online manner, in

O(n log2 n) time and O(n log σ) bits of space.

Proof. Assume that we are computing a new factor that begins at position l of w. First, we

use the algorithm of Theorem 1 and obtain the longest prefix f of w[l..n] such that f rev has

an occurrence in w[1..l − 1]. Then we apply Lemma 3 for w[1..l + |f | − 1], and if the third

case holds, then we compute the self-reference factor. We use Lemma 4 to compute Lpalw(k)

for any given position k. After computing the new factor, then we update the suffix tree of the

meta-string, and proceed to computing the next factor. Overall, the algorithm takes O(n log2 n)

time and O(n log σ + log2 n) = O(n log σ) bits of space.

23

CHAPTER 3. REVERSED LZ FACTORIZATION ONLINE

3.5 Reversed LZ factorization and smallest grammar

For any string w, the number of the LZ77 factors [78] (with/without self-references) of w is

known to be a lower bound of the smallest grammar that derives only w [67]. Here we briefly

show that this is not the case with the reversed LZ factorization (for either with or without

self-references).

Theorem 4. For σ = 3, there is an infinite series of strings for which the smallest grammar has

size O(log n) while the size of the reversed LZ factorization is O(n).

Proof. Let w = (abc)
n
3 . Then, RLZ (w) = RLZS (w) = a, b, c, a, b, c, . . . , a, b, c, consisting

of exactly n factors. On the other hand, it is easy to see that there exists a grammar of size

O(log n) that generates only w. This completes the proof.

The above theorem applies to any constant alphabet of size at least 3. When σ = 1, the

size of the smallest grammar and the number of factors in RLZ (w) are both O(log n), while the

number of factors in RLZS (w) is O(1). The binary case where σ = 2 is open.

24

Chapter 4

Palindromic Factorization

In this chapter, we introduce a variant of the smallest-sized maximal palindromic factorization

problem, named the smallest-sized palindromic factorization problem. We present an efficient

online algorithm that computes a smallest-sized palindromic factorization of a given string, and

then show how to extend it to the problem of computing a smallest-sized maximal palindromic

factorization. We also present an online algorithm that computes a smallest-sized palindromic

cover of a given string.

The results in this chapter were originally published in [43].

4.1 Palindromic factorization and palindromic cover of string

A factorization f1, . . . , fk of a string w is said to be a palindromic factorization of w if every

factor fi is a palindrome. A palindromic factorization f1, . . . , fk of w is said to be a maximal

palindromic factorization of w if each fi is the maximal palindrome at center |f1 · · · fi−1| +
|fi|+1

2
in w. Since any single character a ∈ Σ is a palindrome, any string has a palindromic

factorization. On the other hand, there is a sequence of strings that have no maximal palindromic

factorizations, e.g., string a(baca)k with k ≥ 1 has no maximal palindromic factorization.

For a positive integer n, let [1, n] = {1, . . . , n}. A set {[b1, e1], . . . , [bh, eh]} of subintervals

of [1, n] is called a cover of interval [1, n], if
⋃h
i=1[bi, ei] = [1, n]. The size of the cover is the

number h of subintervals in it. A cover {[b1, e1], . . . , [bh, eh]} of [1, n] is said to be a palindromic

cover of string w of length n, if w[bi..ei] is a palindrome for every i with 1 ≤ i ≤ h. Note that

any palindromic factorization of string w is a palindromic cover of w, and hence any string has

a palindromic cover.

In this chapter, we give efficient solutions to the following problems.

25

CHAPTER 4. PALINDROMIC FACTORIZATION

Problem 1. Given a string w of length n, compute a smallest-sized palindromic factorization

of w[1..i] for every i = 1, . . . , n.

Problem 2. Given a string w of length n, compute a smallest-sized maximal palindromic fac-

torization of w[1..i] for every i = 1, . . . , n.

Problem 3. Given a string w of length n, compute a smallest-sized maximal palindromic cover

of w[1..i] for every i = 1, . . . , n.

To solve the above problems efficiently, we make use of the following known results on

palindromes and advanced data structures.

Lemma 5 ([60]). Given a string w of length n, we can compute the maximal palindromes for

all centers in w in O(n) time.

For any two nodes u and v in the same path of a weighted rooted tree, let min(u, v) be a

query that returns a node in the path with minimum weight.

Lemma 6 ([4]). Under a word RAM model, a dynamic tree can be maintained in linear space

so that a min query and an operation of adding a leaf to the tree are both supported in the

worst-case O(1) time.

4.2 Combinatorial properties of palindromic suffixes

Here we introduce some combinatorial properties of palindromic suffixes as well as some nota-

tions which will be used for designing online algorithms in Sections 4.3 and 4.4. Some of the

properties were stated in [6, 62] in a different form.

The next lemma shows a mutual relation between palindromic suffixes and periods.

Lemma 7. For any palindrome x, z ∈ Spals(x) iff |x| − |z| is a period of x.

Proof. ⇒: Since x is a palindrome and z is a suffix of x, zrev is a prefix of x. Since z is a

palindrome, zrev = z is a prefix and also a suffix of x, which means |x| − |z| is a period of x.

⇐: Since |x| − |z| is a period of x, z is a prefix of x. It follows from x = xrev that z

(prefix of length |z| of x) and zrev (prefix of length |z| of xrev) are equivalent, which means

z ∈ Spals(x).

Lemma 7 leads to the following lemmas.

26

CHAPTER 4. PALINDROMIC FACTORIZATION

Lemma 8. For any palindrome x, let z be the largest palindromic suffix of x with |z| < |x|.
Then |x| − |z| is the smallest period of x.

Lemma 9. For any string w and y, z ∈ Spals(w) with 2|z| > |y| > |z|, the suffix of length

2|z| − |y| is also in Spals(w).

For any string w of length n, let LSpals(w) denote the lengths of the palindromic suffixes

of w, i.e., LSpals(w) = {|z| | z ∈ Spals(w)}. Thanks to Proposition 2, LSpals(w) can

be represented by O(log n) arithmetic progressions. Let LSpals(w) = {q1, q2, . . . , q|LSpals(w)|}
with q1 < q2 < · · · < q|LSpals(w)|. As a consequence of Lemma 9, it is known that the differences

between two adjacent elements in LSpals(w) are monotonically non-decreasing.

We consider partitioning LSpals(w) into O(log n) groups as follows: For any 1 ≤ j ≤
|LSpals(w)|, qj is contained in an AP-group of w with common difference d iff qj − qj−1 =

qj+1 − qj or qj+1 − qj = qj+2 − qj+1, where either of the equalities is ignored when qj′ is used

for j′ < 1 or j′ > |LSpals(w)|, respectively. Namely, if there exist more than two consecutive

elements with common difference d of LSpals(w), they, except the largest one, belong to the

same group. An element of LSpals(w) that does not belong to any AP-group makes a single-

group that consists only of itself. Each group can be represented by 〈q, d, q′〉, where q (resp.

q′) is the smallest (resp. largest) element of the group and d is its common difference, i.e.,

〈q, d, q′〉 = {q, q + d, . . . , q′}, where d = 0 for single-groups. Let X (w) denote the set of

groups of w, that is LSpals(w) =
⋃
〈q,d,q′〉∈X (w){q, q + d, . . . , q′}.

Let P(w) = {|w| − q | q ∈ LSpals(w)}, which represents the set of positions p s.t. p+ 1 is

the beginning position of a palindromic suffix of w. For any 〈q, d, q′〉 ∈ X , let P(w, 〈q, d, q′〉)
denote a subset of P that restricts palindromic suffixes to ones corresponding to 〈q, d, q′〉, i.e.,

P(w, 〈q, d, q′〉) = {|w| − q, |w| − (q + d), . . . , |w| − q′}. The next lemma shows that the

characters attached to the left of palindromic suffixes corresponding to 〈q, d, q′〉 are identical.

Lemma 10. For any string w, 〈q, d, q′〉 ∈ X (w) and p, p′ ∈ P(w, 〈q, d, q′〉), w[p] = w[p′].

Proof. Since it is clear when |〈q, d, q′〉| = 1, consider the case where |〈q, d, q′〉| > 1. It follows

from 〈q, d, q′〉 ∈ X (w) and the definition of X (w), q′ + d, q′ ∈ LSpals(w). By Lemma 7, d is a

period of the suffix z of length q′+ d of w. Since positions p, p′ are in z and |p− p′| is dividable

by d, the lemma holds.

Lemma 11. Let w be a string of length n and a ∈ Σ. Given a sorted list of X (w), we can

compute a sorted list of X (wa) in O(log n) time.

27

CHAPTER 4. PALINDROMIC FACTORIZATION

Proof. A simple but important observation is that for any w[i..n + 1] ∈ Spals(wa) with i < n,

w[i+ 1..n] ∈ Spals(w). Then except for w[n+ 1] and w[n..n+ 1] we can compute Spals(wa)

by expanding palindromic suffixes of w.

After adding w[n + 1] and w[n..n + 1] (if w[n] = a) to a tentative list X of X (wa), we

process 〈q, d, q′〉 ∈ X (w) in increasing order of their lengths. Thanks to Lemma 10, we can

process each 〈q, d, q′〉 in O(1) time, that is, we add 〈q+2, d, q′+2〉 to X iff w[n−q] = a. After

processing all groups in X (w) we check the consecutive groups in X and merge them into one

AP-group if needed. Therefore we can get a sorted list of X (wa) in O(|X (w)|) = O(log n)

time.

4.3 Computing smallest-sized palindromic factorizations on-
line

In this section, we present an O(n log n)-time online algorithm that solves Problem 1 of com-

puting a smallest-sized palindromic factorization of every prefix of a string w of length n. More

precisely, we compute an array F such that for each position 1 ≤ i ≤ n, i−F [i] gives the length

of the last factor of a smallest-sized palindromic factorization of w[1..i] (when more than one

factorization exists, choose arbitrary one). Notice that using F , given any position 1 ≤ i ≤ n

one can compute a smallest-sized palindromic factorization of w[1..i] by computing the lengths

of the factors from right to left in O(ki) time, where ki is the number of factors. Our algorithm

will also compute ki’s online.

We use the following abbreviation. For any 1 ≤ i ≤ n, let Li = LSpals(w[1..i]), Xi =

X (w[1..i]) and Pi = P(w[1..i]). Also, for any 〈q, d, q′〉 ∈ Xi let Pi〈q, d, q′〉 = P(w[1..i],

〈q, d, q′〉).

Suppose that we have processed positions 1, . . . , i − 1 and now processing i. Note that

F [i] = arg minp∈Pi{kp} and ki = minp∈Pi{kp + 1}, where k0 = 0 for convenience. However

checking all elements in Pi to compute the minimum value will takeO(i) time since |Pi| = O(i)

in the worst case.

In order to achieve our aim, we utilize Xi representation. Now we focus on the following

subproblem: given 〈q, d, q′〉 ∈ Xi, compute arg minp∈Pi〈q,d,q′〉{kp}. We show how to solve this

in constant time. When |〈q, d, q′〉| is small enough as we can treat it as a constant, we can solves

this in constant time naı̈vely. However |〈q, d, q′〉| = O(i) in the worst case. In what follows, we

28

CHAPTER 4. PALINDROMIC FACTORIZATION

consider how to process efficiently the case where |〈q, d, q′〉| is large. The next lemma gives a

key observation.

Lemma 12. For any 〈q, d, q′〉 ∈ Xi with |〈q, d, q′〉| ≥ 3, 〈q, d, q′ − d〉 ∈ Xi−d.

Proof. First we show q, q + d, . . . , q′ is a subsequence of Li−d. By definition of Xi, the suffix

z of length q′ + d of w[1..i] is a palindrome. It follows from Lemma 7 that d is a period of

z, which means that palindromic structures of w[i − |z| + d + 1..i] are identical to those of

w[i − |z| + 1..i − d]. In other words, Li ∩ [1, q′] = Li−d ∩ [1, q′]. Hence q, q + d, . . . , q′ is a

subsequence of Li−d. Another consequence of the equality Li ∩ [1, q′] = Li−d ∩ [1, q′] is that

the largest element of Li−d which is smaller than q is not q − d.

Next we show that q′ + d /∈ Li−d. Assume on the contrary that q′ + d ∈ Li−d, i.e., the

suffix y of length q′ + d of w[1..i − d] is a palindrome. It follows from Lemma 7 that d is a

period of y. Let x be the suffix of length q′ of y. Note that x is also a prefix of z. Let y = y′x

and z = xz′. Since x is a palindrome and has y′ as a prefix and z′ as a suffix, y′ = (z′)rev.

Therefore y′xz′, which is the suffix of length q′ + 2d of w[1..i], is a palindrome. This implies

that q, q + d, . . . , q′ + d, q′ + 2d is a subsequence of Li, which contradicts that 〈q, d, q′〉 ∈ Xi.

Putting all together, q, q + d, . . . , q′ with |{q, q + d, . . . , q′}| ≥ 3 is a subsequence of Li−d

that is maximal with common difference d, which leads to the argument.

Since Pi−d〈q, d, q′−d〉 = {i−d−q, i−2d−q, . . . , i−q′} = Pi〈q, d, q′〉\{i−q}, Lemma 12

implies that at position i − d we actually computed p′ = arg minp∈Pi〈q,d,q′〉\{i−q}{kp}. Then if

we keep this information, it suffices for us to compare kp′ and ki−q, and take the smaller one,

which requires constant time.

More precisely, we maintain the following data structures dynamically: If there exists

〈q, d, q′〉 ∈ Xi with |〈q, d, q′〉| ≥ 5, our algorithm maintains an array Ad of length d s.t. for

j ≡ i (mod d),

just before processing position i: Ad[j] is undefined if |〈q, d, q′〉| = 5, and Ad[j]

= arg minp∈Pi−d〈q,d,q′−d〉{kp} if |〈q, d, q′〉| ≥ 6.

just after processing position i: Ad[j] is updated to be arg minp∈Pi〈q,d,q′〉{kp}.

This array Ad is used for AP-groups 〈q, d, q′〉 ∈ X with |〈q, d, q′〉| ≥ 5 of adjacent positions. It

is allocated when necessary and discarded as soon as an AP-group with common difference d

disappears from X while processing positions.

29

CHAPTER 4. PALINDROMIC FACTORIZATION

The next lemma ensures that when Ad is allocated there exists AP-groups with common

difference d for the d immediately preceding positions of i, which will be used for analyzing

the cost for allocation/deallocation of Ad arrays.

Lemma 13. Let 〈q, d, q′〉 ∈ Xi with |〈q, d, q′〉| ≥ 5. For any 1 ≤ h ≤ d, there exists an

AP-group of w[1..i− h] with common difference d.

Proof. We show that there exist at least three consecutive palindromic suffixes of w[1..i − h]

with common difference d. From the assumption, there exist at least six palindromic suffixes

of w[1..i] with common difference d. Let us take a look at the largest three of them of lengths

q′ + d, q′ and q′− d, i.e., w[i− (q′ + d) + 1..i], w[i− q′ + 1..i] and w[i− (q′− d) + 1..i]. Since

q′−d > 3d, we can obtain three palindromes that ends at i−h, x = w[i−(q′+d)+1+h..i−h],

y = w[i−q′+1+h..i−h] and z = w[i−(q′−d)+1+h..i−h]. Notice that |x|−|y| = |y|−|z| = d

and |z| > d.

Now we will show that there is no palindromic suffix u of w[1..i− h] s.t. |x| > |u| > |y| or

|y| > |u| > |z|. Assume on the contrary that such u exists. Let d′ = |u| − |y| if |u| > |y| and

d′ = |u| − |z| if |y| > |u|. Let v be the prefix of length d of z. It follows from Lemma 7 that d′

and d − d′ are periods of v. From the periodicity lemma (see Proposition 1), gcd(d′, d − d′) is

also a period of v. However, Lemma 8 implies that the suffix of length q′ + d of w[1..i] has the

smallest period d, and hence its substring of length d cannot have a period d′′(< d) which can

divide d, a contradiction.

Theorem 5. Problem 1 can be solved in O(n log n) time and O(n) space in an online manner.

Proof. Suppose that we have processed positions 1, . . . , i − 1, i.e., we now have Xi−1 and

Ad arrays are properly maintained. At the beginning of processing i, we compute Xi from

Xi−1 as well as allocate/deallocate Ad arrays if necessary. Next, for each 〈q, d, q′〉 ∈ Xi we

compute arg minp∈Pi〈q,d,q′〉{kp} by naı̈vely checking if |〈q, d, q′〉| ≤ 5, and using Ad arrays if

|〈q, d, q′〉| ≥ 6. If |〈q, d, q′〉| ≥ 5, we also update its corresponding value of Ad. Then F [i] and

ki can be obtained from argp min〈q,d,q′〉∈Xi,p∈Pi〈q,d,q′〉{kp}.
By Lemma 11, computing Xi for all positions 1 ≤ i ≤ n takes a total of O(n log n) time.

For each 〈q, d, q′〉 ∈ Xi, arg minp∈Pi〈q,d,q′〉{kp} can be computed in constant time by using Ad

arrays, and hence it takes O(n log n) time in total. It follows from Lemma 13 that the cost for

allocation/deallocation of each position of Ad arrays can be attributed to distinct 〈q, d, q′〉 ∈ Xi

for some position i. Therefore the algorithm runs in O(n log n) time.

30

CHAPTER 4. PALINDROMIC FACTORIZATION

During the computation we maintain Ad arrays dynamically so that for any position i its

space usage is bounded by
∑
{d | 〈q, d, q′〉 ∈ Xi} = O(i) = O(n).

4.4 Computing smallest-sized maximal palindromic factor-
izations online

In this section, we present an O(n log n)-time online algorithm that solves Problem 2 of com-

puting a smallest-sized maximal palindromic factorization of every prefix of a stringw of length

n. Our high-level strategy is similar to that of previous section, i.e., checking palindromic suf-

fixes of w[1..i] for each position 1 ≤ i ≤ n. However, in this problem we have to be careful not

to use a non-maximal palindrome as a factor.

For any position 1 ≤ i ≤ n let hi be the number of factors of a maximal palindromic

factorization of w[1..i] of the smallest size if such exists, and ∞ otherwise. For any position

1 ≤ i < n, let h′i be the number of factors in a smallest-sized palindromic factorization ofw[1..i]

which consists only of maximal palindromes ofw[1..i+1] if such exists, and∞ otherwise. Note

that the values of hi and h′i may differ, since we can use any palindromic suffix of w[1..i] for hi

while for h′i we cannot use it if it is not maximal in w[1..i+ 1].

For any position 1 ≤ i < n let P ′i denote the set of positions p s.t. w[p + 1..i] is a maximal

palindrome of w, that is P ′i = {p ∈ Pi | w[p] 6= w[i + 1]}. It holds that hi = minp∈Pi{h′p + 1}
and h′i = minp∈P ′i{h

′
p + 1}, where ∞ + 1 = ∞. Similar to array F of Section 4.3, in this

problem we compute two arrays G and G ′ s.t. for each position i, G [i] = arg minp∈Pi{h′p}
and G ′[i] = arg minp∈P ′i{h

′
p}, where h′0 = 0 for convenience. Using these arrays, given any

position 1 ≤ i ≤ n, one can compute a maximal palindromic factorization of w[1..i] of the

smallest size (if hi 6=∞) in O(hi) time as follows; the hith factor is w[G [i] + 1..i], and for any

1 < j ≤ hi the (j− 1)th factor is w[G ′[ij] + 1..ij], where ij + 1 is the beginning position of the

jth factor.

In light of Lemma 10, for any 〈q, d, q′〉 ∈ Xi we can know in constant time if this group

corresponds to P ′i or not by just investigating w[p] and w[i + 1] for arbitrary position p ∈
Pi〈q, d, q′〉. Hence during the computation of arrays G and G ′ we can process each 〈q, d, q′〉 ∈
Xi in constant time.

Everything else can be managed in the same way as the algorithm proposed in Section 4.3.

As to the maintenance of Ad arrays, a minor remark is that we use h′p instead of kp, i.e., the

31

CHAPTER 4. PALINDROMIC FACTORIZATION

value of Ad is updated to be arg minp∈Pi〈q,d,q′〉{h′p}. Therefore we get the following theorem.

Theorem 6. Problem 2 can be solved in O(n log n) time and O(n) space in an online manner.

4.5 Computing smallest-sized palindromic covers online

In this section, we present an O(n)-time online algorithm that solves Problem 3 of computing a

smallest-sized palindromic cover of every prefix of a string w of length n. We begin this section

with a simpler problem of computing a smallest-sized palindromic cover of w, and present an

O(n)-time offline algorithm that solves the problem. The following observation is a key to our

solution.

Observation 1. If {[b1, e1], . . . , [bk, ek]} is a palindromic cover of string w, then there is a

palindromic cover {[b′1, e′1], . . . , [b′k, e′k]} of w such that b′i = bi − d and e′i = ei + d for some

d ≥ 0 and w[b′i..e
′
i] is the maximal palindrome at center b′i+e

′
i

2
= bi+ei

2
for all 1 ≤ i ≤ k.

The above observation says that for any palindromic cover of string w, there always exists

a palindromic cover of w of the same size which consist only of maximal palindromes. Hence,

to compute a palindromic cover of w of the smallest size, it suffices for us to consider covers

which are composed only of maximal palindromes.

Theorem 7. Given a string w of length n, we can compute a smallest-sized palindromic cover

of w in O(n) time.

Proof. We use an arrayR of length n such thatR[i] stores the beginning position of the maximal

palindrome that contains position i with the least (leftmost) beginning position. We compute

a palindromic cover of w from array R in a greedy manner, from right to left; The longest

palindromic suffix of w is the rightmost palindrome of a smallest-sized palindromic cover of w.

Given a smallest-sized palindromic cover of suffix w[b..n], we add into the cover the maximal

palindrome stored in R[b − 1], the maximal palindrome that contains position b − 1 with the

leftmost beginning position. The procedure terminates when we obtain from R a palindromic

prefix of w, i.e., a maximal palindrome that begins at position 1 in w.

Let C be the maximal palindromic cover the above algorithm computes. Let Ck denote the

subset of C that contains the last k intervals (the k consecutive intervals from right) in C. Let

bk be the beginning position of the leftmost interval of Ck. We show that C is a smallest-sized

maximal palindromic cover of w by induction on k. If k = 1, then C1 contains the longest

32

CHAPTER 4. PALINDROMIC FACTORIZATION

palindromic suffix of w. Then, clearly C1 = {[b1, n]} is the smallest-sized palindromic cover

of w[b1..n]. Assume that Ck is the smallest-sized palindromic cover of w[bk..n] for k ≥ 1,

computed greedily as above. Then, Ck+1 = [R[bk − 1], e] ∪ Ck, where e denotes the ending

position of the corresponding maximal palindrome starting atR[bk−1]. By definition ofR[bk−
1], Ck+1 is a smallest-sized palindromic cover of w[bk+1..n]. Since b|C| = 1, C|C| = C is a

smallest-sized palindromic cover of w[b|C|..n] = w.

Let us analyze the time complexity of the algorithm. The maximal palindromes can be

computed in O(n) time by Lemma 5. To compute array R, we sort the maximal palindromes

in increasing order of their beginning positions, and consider only the longest one for each

beginning position. This can be done in O(n) time by using bucket sort. Then R can be

obtained in O(n) time from the maximal palindromes above. Obviously it takes O(n) time to

greedily choose the maximal palindromes from R. This completes the proof.

Now, we extend the algorithm of Theorem 7 to compute a smallest palindromic cover of

every prefix of a given string in an online manner (Problem 5). A basic idea is to compute the

longest palindromic suffix of each prefix w[1..i] of a given string w, which is the last (rightmost)

palindrome of a smallest-sized palindromic cover of w[1..i].

Theorem 8. Given a string w of length n, we can compute an O(n)-size representation of

smallest-sized palindromic covers of all prefixes of w inO(n) time. Given a position j (1 ≤ j ≤
n) in w, the representation returns the size sj of a smallest-sized palindromic cover of w[1..j]

in O(1) time, and allows us to compute a smallest-sized palindromic cover in O(sj) time.

Proof. For any 1 ≤ i ≤ n, let li denote the length of the longest palindromic suffix of w[1..i],

and let si be the size of a smallest-sized palindromic cover of w[1..i]. If i = 1, then clearly [1, 1]

is the smallest-sized palindromic cover of w[1..1] = w[1]. Hence s1 = 1 and l1 = 1. Consider

the case where i ≥ 2. There are two cases to consider.

• When |li| = |li−1| + 2, namely, the longest palindromic suffix of w[1..i] is an extension

of that of w[1..i]. In this case, si = min{si−1, si−li + 1}. (See also Figure 4.1)

• When |li| < |li−1|+2, namely, the longest palindromic suffix ofw[1..i] is not an extension

of that of w[1..i]. In this case, si = min{sk | i− li ≤ k < i}+ 1.

For all 1 ≤ i ≤ n, we can compute li in O(n) time in an online manner in increasing order

of i [71]. We also compute si in increasing order of i. When |li| = |li−1| + 2, we can easily

33

CHAPTER 4. PALINDROMIC FACTORIZATION

i-1

i

aa

w

w

i-1

i

aa

w

w

Figure 4.1: To the left is the case where si = si−1, and to the right is the case where si =
si−li + 1.

i-1

i

ba

w

w b

Figure 4.2: The case where si = min{sk | i− li ≤ k < i}+ 1.

compute si in O(1) time. To efficiently compute si also in the case where |li| < |li−1| + 2, we

maintain a list such that its ith element is si. Now, given li and the list that stores sk for all

1 ≤ k < i, which is augmented with the data structure of Lemma 6, each si can be computed

in O(1) time. We append si to the list and the data structure of Lemma 6 in O(1) time. Hence,

the total time complexity is O(n).

To answer a smallest-sized palindromic cover of a prefix w[1..j] for a given position 1 ≤
j ≤ n in O(sj) time, we do the following. For each 1 ≤ i ≤ n let bi = i− li + 1, i.e., bi is the

beginning position of the longest palindromic suffix ofw[1..i]. We maintain a list that represents

bi for all 1 ≤ i ≤ n in an online manner, which is also augmented with the data structure of

Lemma 6. After computing li and bi for position i, we compute r = min{bk | bi − 1 ≤ k < i}
in O(1) time by Lemma 6. Then, we have r = R[bi], where R is the array used in Theorem 7.

Therefore, given a position j, we can compute a smallest-sized palindromic cover of w[1..j]

from right to left, in O(sj) time.

4.6 Related Work

We mention two important related works. In 2014 Fici et al. [32] develeped an O(n log n)-time

algorithm for the smallest sized palindromic factoriazation problem, independently of our work.

The algorithm is essentially the same as ours. In 2017 Borozdin et al. [13] presented the first

34

CHAPTER 4. PALINDROMIC FACTORIZATION

linear time solution to the problem. Their algorithm is based on our O(n log n)-time algorithm

and utilizes the so-called four Russian technique.

35

Chapter 5

Diverse Palindromic Factorization is NP
Complete

A diverse palindromic factorization of a stringw is a palindromic factorization ofw such that the

factors are mutually distinct. In this chapter, we prove that the existence problem of the diverse

palindromic factorization is NP-complete, by showing a reduction from the circuit satisfiability

problem [58].

The results in this chapter were originally published in [11].

5.1 Outline of the proof

In complexity theory, a Boolean circuit is formally a directed acyclic graph in which each node

is either a source or one of a specified set of logic gates. The gates are usually AND, OR and

NOT, with AND and OR gates each having in-degree at least 2 and NOT gates each having

in-degree 1. A gate’s predecessors and successors are called its inputs and outputs, and sources

and sinks are called the circuit’s inputs and outputs. A circuit with a single output is said to

be satisfiable if and only if it is possible to assign each gate a value true or false such that the

output is true and all the gates’ semantics are respected: e.g., each AND gate is true if and only

if all its inputs are true, each OR gate is true if and only if at least one of its inputs is true, and

each NOT gate is true if and only if its unique input is false. Notice that with these semantics,

a truth assignment to the circuit’s inputs determines the truth values of all the gates.

The circuit satisfiability problem [58] (see also, e.g., [35]) is to determine whether a given

single-output Boolean circuit C is satisfiable. It was one of the first problems proven NP-

complete and is often the first such problem taught in undergraduate courses. We will show

36

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

NOT AND OR

Figure 5.1: Construction of NOT, AND and OR gates using NAND gates.

how to build, in time linear in the size of C, a string that has a diverse palindromic factorization

if and only if C is satisfiable. It follows that diverse palindromic factorization is also NP-

hard. Our construction is similar to the Tseitin Transform [73] from Boolean circuits to CNF

formulas.

We can make each AND or OR gate’s in-degree 2 and each gate’s out-degree 1 at the cost of

at most a logarithmic increase in the size and depth of the circuit, using splitter gates with one

input and two outputs that should have the same truth value as the input. A NAND gate is true if

and only if at least one of its inputs is false. AND, OR and NOT gates can be implemented with

a constant number of NAND gates (see Figure 5.1), so we assume without loss of generality

that C is composed only of NAND gates with two inputs and one output each and splitter gates.

Boolean circuits are a model for real circuits, so henceforth we assume the gates’ semantics are

respected, call the graph’s edges wires, say each splitter divides one wire in two, and discuss

wires’ truth values instead of discussing the truth values of the gates at which those wires

originate.

We assume each wire in C is labelled with a unique symbol (considering a split to be the end

of an incoming wire and the beginning of two new wires, so all three wires have different labels).

For each such symbol a, and some auxiliary symbols we introduce during our construction, we

use as characters in our construction three related symbols: a itself, ā and xa. We indicate

an auxiliary symbol related to a by writing a′ or a′′. We write xja to denote j copies of xa.

We emphasize that, despite their visual similarity, a and ā are separate characters, which play

complementary roles in our reduction. We use $ and # as generic separator symbols, which we

consider to be distinct for each use; to prevent confusion, we add different superscripts to their

different uses within the same part of the construction.

We can build a sequence C0, . . . , Ct of subcircuits such that C0 is empty, Ct = C and, for

1 ≤ i ≤ t, we obtain Ci from Ci−1 by one of the following operations (see Figure 5.2 for an

example):

37

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

A

B

C

D

a

b

c

d

f

e

g
h

i

j

k

l

Figure 5.2: To construct the circuit above (computing XOR) we need to add wires a and b, split
a into c and d, split b into e and f , add gate A, split g into h and i, and finally add gates B, C
and D.

• adding a new wire (which is both an input and an output in Ci),

• splitting an output of Ci−1 into two outputs,

• making two outputs of Ci−1 the inputs of a new NAND gate.

We will show how to build in time linear in the size of C, inductively and in turn, a sequence

of strings S1, . . . , St such that Si represents Ci according to the following definitions:

Definition 5. A diverse palindromic factorization P of a string Si encodes an assignment τ to

the inputs of a circuit Ci if the following conditions hold:

• if τ makes an output of Ci labelled a true, then a, xa and xaāxa are complete factors in

P but ā, xaaxa and xja are not for j > 1;

• if τ makes an output of Ci labelled a false, then ā, xa and xaaxa are complete factors in

P but a, xaāxa and xja are not for j > 1;

• if a is a label in C but not in Ci, then none of a, ā, xaaxa, xaāxa and xja for j ≥ 1 are

complete factors in P .

Definition 6. A string Si represents a circuitCi if each assignment to the inputs ofCi is encoded

by some diverse palindromic factorization of Si, and each diverse palindromic factorization of

Si encodes some assignment to the inputs of Ci.

Once we have St, we can easily build in constant time a string S that has a diverse palin-

dromic factorization if and only if C is satisfiable. To do this, we append $#xaaxa to St, where

$ and # are symbols not occurring in St and a is the label on C’s output. Since $ and # do

not occur in St and occur as a pair of consecutive characters in S, they must each be complete

38

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

factors in any palindromic factorization of S. It follows that there is a diverse palindromic fac-

torization of S if and only if there is a diverse palindromic factorization of St in which xaaxa is

not a factor, which is the case if and only if there is an assignment to the inputs of C that makes

its output true.

5.2 Adding a wire

Suppose Ci is obtained from Ci−1 by adding a new wire labelled a. If i = 1 then we set

Si = xaaxaāxa, whose two diverse palindromic factorizations xa, a, xaāxa and xaaxa, ā, xa

encode the assignments true and false to the wire labelled a, which is both the input and output

in Ci. If i > 1 then we set

Si = Si−1 $#xaaxaāxa ,

where $ and # are symbols not occurring in Si−1 and not equal to a′, a′ or xa′ for any label a′

in C.

Since $ and # do not occur in Si−1 and occur as a pair of consecutive characters in Si, they

must each be complete factors in any palindromic factorization of Si. Therefore, any diverse

palindromic factorization of Si is the concatenation of a diverse palindromic factorization of

Si−1 and either $, #, xa, a, xaāxa or $, #, xaaxa, ā, xa. Conversely, any diverse palindromic

factorization of Si−1 can be extended to a diverse palindromic factorization of Si by appending

either $, #, xa, a, xaāxa or $, #, xaaxa, ā, xa.

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci and let P be a

diverse palindromic factorization of Si−1 encoding τ restricted to the inputs of Ci−1. If τ makes

the input (and output) of Ci labelled a true, then P concatenated with $, #, xa, a, xaāxa is

a diverse palindromic factorization of Si that encodes τ . If τ makes that input false, then P

concatenated with $, #, xaaxa, ā, xa is a diverse palindromic factorization of Si that encodes

τ . Therefore, each assignment to the inputs of Ci is encoded by some diverse palindromic

factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the assignment to the

inputs of Ci−1 that is encoded by a prefix of P . If P ends with $, #, xa, a, xaāxa then P

encodes the assignment to the inputs of Ci that makes the input labelled a true and makes the

other inputs true or false according to τ . If P ends with $, #, xaaxa, ā, xa then P encodes the

assignment to the inputs of Ci that makes the input labelled a false and makes the other inputs

39

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

true or false according to τ . Therefore, each diverse palindromic factorization of Si encodes

some assignment to the inputs of Ci.

Lemma 14. We can build a string S1 that represents C1. If we have a string Si−1 that represents

Ci−1 and Ci is obtained from Ci−1 by adding a new wire, then in constant time we can append

symbols to Si−1 to obtain a string Si that represents Ci.

5.3 Splitting a wire

Now suppose Ci is obtained from Ci−1 by splitting an output of Ci−1 labelled a into two outputs

labelled b and c. We set

S ′i = Si−1 $#x3ab
′xaaxac

′x5a $′#′ x7ab
′xaāxac′x

9
a ,

where $, $′, #, #′, b′, b′, c′ and c′ are symbols not occurring in Si−1 and not equal to a′, a′ or

xa′ for any label a′ in C.

Since $, $′, # and #′ do not occur in Si−1 and occur as pairs of consecutive characters in S ′i,

they must each be complete factors in any palindromic factorization of S ′i. Therefore, a simple

case analysis shows that any diverse palindromic factorization of S ′i is the concatenation of a

diverse palindromic factorization of Si−1 and one of

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x2a, x
4
a, xab

′xa, ā, xac′xa, x
8
a ,

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x4a, x
2
a, xab

′xa, ā, xac′xa, x
8
a ,

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x6a, xab
′xa, ā, xac′xa, x

8
a ,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
3
a, x

6
a ,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
6
a, x

3
a ,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
9
a ;

In any diverse palindromic factorization of S ′i, therefore, either b′ and c′ are complete factors

but b′ and c′ are not, or vice versa.

Conversely, any diverse palindromic factorization of Si−1 in which a, xa and xaāxa are

complete factors but ā, xaaxa and xja are not for j > 1, can be extended to a diverse palindromic

40

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

factorization of S ′i by appending either of

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x2a, x
4
a, xab

′xa, ā, xac′xa, x
8
a ,

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x6a, xab
′xa, ā, xac′xa, x

8
a ;

any diverse palindromic factorization of Si−1 in which ā, xa and xaaxa are complete factors but

a, xaāxa and xja are not for j > 1, can be extended to a diverse palindromic factorization of S ′i
by appending either of

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
3
a, x

6
a ,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
9
a .

We set

Si = S ′i $′′#′′ xbbxbb
′xbb′xbb̄xb $′′′#′′′ xccxcc

′xcc′xcc̄xc ,

where $′′, $′′′, #′′ and #′′′ are symbols not occurring in S ′i and not equal to a′, a′ or xa′ for

any label a′ in C. Since $′′, $′′′, #′′ and #′′′ do not occur in S ′i and occur as pairs of con-

secutive characters in S ′i, they must each be complete factors in any palindromic factorization

of Si. Therefore, any diverse palindromic factorization of Si is the concatenation of a diverse

palindromic factorization of S ′i and one of

$′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc ,

$′′, #′′, xbbxb, b
′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c

′, xcc′xc, c̄, xc .

Conversely, any diverse palindromic factorization of S ′i in which b′ and c′ are complete

factors but b′ and c′ are not, can be extended to a diverse palindromic factorization of Si by

appending

$′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc ;

any diverse palindromic factorization of S ′i in which b′ and c′ are complete factors but b′ and c′

are not, can be extended to a diverse palindromic factorization of Si by appending

$′′, #′′, xbbxb, b
′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c

′, xcc′xc, c̄, xc .

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci−1 and let P be a

41

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

diverse palindromic factorization of Si−1 encoding τ . If τ makes the output of Ci−1 labelled a

true, then P concatenated with, e.g.,

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x2a, x
4
a, xab

′xa, ā, xac′xa, x
8
a,

$′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc

is a diverse palindromic factorization of Si. Notice b, c, xb, xc, xbb̄xb and xcc̄xc are complete

factors but b̄, c̄, xbbxb, xccxc, x
j
b and xjc for j > 1 are not. Therefore, this concatenation encodes

the assignment to the inputs of Ci that makes them true or false according to τ .

If τ makes the output of Ci−1 labelled a false, then P concatenated with, e.g.,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
3
a, x

6
a,

$′′, #′′, xbbxb, b
′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c

′, xcc′xc, c̄, xc

is a diverse palindromic factorization of Si. Notice b̄, c̄, xb, xc, xbbxb and xccxc are complete

factors but b, c, xbb̄xb, xcc̄xc, x
j
b and xjc for j > 1 are not. Therefore, this concatenation encodes

the assignment to the inputs of Ci that makes them true or false according to τ . Since Ci−1

and Ci have the same inputs, each assignment to the inputs of Ci is encoded by some diverse

palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the assignment to the

inputs of Ci−1 that is encoded by a prefix of P . If P ends with any of

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x2a, x
4
a, xab

′xa, ā, xac′xa, x
8
a ,

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x4a, x
2
a, xab

′xa, ā, xac′xa, x
8
a ,

$, #, x3a, b
′, xaaxa, c

′, x5a, $′, #′, x6a, xab
′xa, ā, xac′xa, x

8
a

followed by

$′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc ,

then a must be a complete factor in the prefix of P encoding τ , so τ must make the output of

Ci−1 labelled a true. Since b, c, xb, xc, xbb̄xb and xcc̄xc are complete factors in P but b̄, c̄, xbbxb,

xccxc, x
j
b and xjc for j > 1 are not, P encodes the assignment to the inputs of Ci that makes

them true or false according to τ .

42

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

If P ends with any of

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
3
a, x

6
a ,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
6
a, x

3
a ,

$, #, x2a, xab
′xa, a, xac

′xa, x
4
a, $′, #′, x7a, b

′, xaāxa, c′, x
9
a

followed by

$′′, #′′, xbbxb, b
′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c

′, xcc′xc, c̄, xc ,

then ā must be a complete factor in the prefix of P encoding τ , so τ must make the output of

Ci−1 labelled a false. Since b̄, c̄, xb, xc, xbbxb and xccxc are complete factors but b, c, xbb̄xb,

xcc̄xc, x
j
b and xjc for j > 1 are not, P encodes the assignment to the inputs of Ci that makes

them true or false according to τ .

Since these are all the possibilities for how P can end, each diverse palindromic factorization

of Si encodes some assignment to the inputs of Ci. This gives us the following lemma:

Lemma 15. If we have a string Si−1 that represents Ci−1 and Ci is obtained from Ci−1 by

splitting an output of Ci−1 into two outputs, then in constant time we can append symbols to

Si−1 to obtain a string Si that represents Ci.

5.4 Adding a NAND gate

Finally, suppose Ci is obtained from Ci−1 by making two outputs of Ci−1 labelled a and b the

inputs of a new NAND gate whose output is labelled c. Let C ′i−1 be the circuit obtained from

Ci−1 by splitting the output of Ci−1 labelled a into two outputs labelled a1 and a2, where a1

and a2 are symbols we use only here. Assuming Si−1 represents Ci−1, we can use Lemma 15

to build in constant time a string S ′i−1 representing C ′i−1. We set

S ′i = S ′i−1 $#x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′

$′#′ x7c′a
′
2xc′a2xc′a2xc′a

′
2x

9
c′

$′′#′′ x11c′ b
′xc′bxc′ b̄xc′b′x

13
c′ ,

where all of the symbols in the suffix after S ′i−1 are ones we use only here.

43

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

Since $, $′, $′′, $′′′, # and #′ do not occur in Si−1 and occur as pairs of consecutive charac-

ters in S ′i, they must each be complete factors in any palindromic factorization of S ′i. Therefore,

any diverse palindromic factorization of S ′i consists of

1. a diverse palindromic factorization of S ′i−1,

2. $, #,

3. a diverse palindromic factorization of x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′ ,

4. $′, #′,

5. a diverse palindromic factorization of x7c′a
′
2xc′a2xc′a2xc′a

′
2x

9
c′ ,

6. $′′, #′′,

7. a diverse palindromic factorization of x11c′ b
′xc′bxc′ b̄xc′b′x

13
c′ .

If a1 is a complete factor in the factorization of S ′i−1, then the diverse palindromic factoriza-

tion of

x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′

must include either

a′1, xc′a1xc′ , a1, xc′a
′
1xc′ or a′1, xc′a1xc′ , a1, xc′ , a

′
1 .

Notice that in the former case, the factorization need not contain xc′ . If a1 is a complete factor

in the factorization of S ′i−1, then the diverse palindromic factorization of

x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′

must include either

xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1 or a′1, xc′ , a1, xc′a1xc′ , a

′
1 .

Again, in the former case, the factorization need not contain xc′ . Symmetric propositions hold

for a2 and b.

We set

S ′′i = S ′i $†#† x15c′ a
′
1xc′c

′xc′b′x
17
c′ $††#†† x19c′ a

′
2xc′dxc′b

′x21c′ ,

44

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

where $†, #†, $††, #††, c′ and d are symbols we use only here. Any diverse palindromic factor-

ization of S ′′i consists of

1. a diverse palindromic factorization of S ′i,

2. $†, #†,

3. a diverse palindromic factorization of x15c′ a
′
1xc′c

′xc′b′x
17
c′ ,

4. $††, #††,

5. a diverse palindromic factorization of x19c′ a
′
2xc′dxc′b

′x21c′ .

Since a1 and a2 label outputs in C ′i−1 split from the same output in Ci−1, it follows that a1 is

a complete factor in a diverse palindromic factorization of S ′i−1 if and only if a2 is. Therefore,

we need consider only four cases:

Case 1: The factorization of S ′i−1 includes a1, a2 and b as complete factors, so the factorization

of S ′i includes as complete factors either xc′a′1xc′ , or a′1 and xc′; either xc′a′2xc′ , or a′2 and xc′;

either xc′b′xc′ , or b′ and xc′; and b′. Trying all the combinations — there are only four, since xc′

can appear as a complete factor at most once — shows that any diverse palindromic factorization

of S ′′i includes one of

a′1, xc′c
′xc′ , b′, . . . , a′2, xc′ , d, xc′b

′xc′ ,

a′1, xc′c
′xc′ , b′, . . . , xc′a′2xc′ , d, xc′b

′xc′ ,

with the latter only possible if xc′ appears earlier in the factorization.

Case 2: The factorization of S ′i−1 includes a1, a2 and b as complete factors, so the factorization

of S ′i includes as complete factors either xc′a′1xc′ , or a′1 and xc′; either xc′a′2xc′ , or a′2 and xc′; b′;

and either xc′b′xc′ , or b′ and xc′ . Trying all the combinations shows that any diverse palindromic

factorization of S ′′i includes one of

a′1, xc′ , c
′, xc′b′xc′ , . . . , a′2, xc′dxc′ , b

′ ,

xc′a′1xc′ , c
′, xc′b′xc′ , . . . , a′2, xc′dxc′ , b

′ ,

with the latter only possible if xc′ appears earlier in the factorization.

45

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

Case 3: The factorization of S ′i−1 includes a1, a2 and b as complete factors, so the factorization

of S ′i includes as complete factors a′1; a′2; either xc′b′xc′ , or b′ and xc′; and b′. Trying all the

combinations shows that any diverse palindromic factorization of S ′′i includes one of

xc′a′1xc′ , c
′, xc′ , b′, . . . , xc′a′2xc′ , d, xc′b

′xc′ ,

xc′a′1xc′ , c
′, xc′b′xc′ , . . . , xc′a′2xc′ , d, xc′b

′xc′ ,

with the latter only possible if xc′ appears earlier in the factorization.

Case 4: The factorization of S ′i−1 includes a1, a2 and b as complete factors, so the factorization

of S ′i includes as complete factors a′1; a′2; b′; and either xc′b′xc′ , or b′ and xc′ . Trying all the com-

binations shows that any diverse palindromic factorization of S ′′i that extends the factorization

of S ′i includes one of

xc′a′1xc′ , c
′, xc′b′xc′ , . . . , xc′a′2xc′ , d, xc′ , b

′ ,

xc′a′1xc′ , c
′, xc′b′xc′ , . . . , xc′a′2xc′ , d, xc′b

′xc′ ,

with the latter only possible if xc′ appears earlier in the factorization.

Summing up, any diverse palindromic factorization of S ′′i always includes xc′ and includes

either xc′c′xc′ if the factorization of S ′i−1 includes a1, a2 and b as complete factors, or c′ other-

wise.

We set

S ′′′i = S ′′i $†††#††† x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′ ,

where $††† and #††† are symbols we use only here. Any diverse palindromic factorization of S ′′′i
consists of

1. a diverse palindromic factorization of S ′′i ,

2. $†††, #†††,

3. a diverse palindromic factorization of x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′ .

Since xc′ must appear as a complete factor in the factorization of S ′′i , if c′ is a complete

factor in the factorization of S ′′i , then the factorization of

x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′

46

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

must include

c′′, xc′c
′xc′ , c′, xc′c′′xc′ ;

otherwise, it must include

xc′c
′′xc′ , c

′, xc′c′xc′ , c′′ .

That is, the factorization of x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′ includes c′′, xc′ and xc′c′′xc′ but not c′′ or

xc′c
′′xc′ , if and only if the factorization of S ′′i includes c′; otherwise, it includes c′′, xc′ and

xc′c
′′xc′ but not c′′ or xc′c′′xc′ .

We set

Si = S ′′′i $‡#‡ xccxcc
′′xcc′′xccxc ,

where $‡, #‡, c, c and xc are symbols that do not appear in S ′′′i . Any diverse palindromic

factorization of Si consists of

1. a diverse palindromic factorization of S ′′′i ,

2. $‡, #‡,

3. a diverse palindromic factorization of xccxcc′′xcc′′xccxc.

Since exactly one of c′′ and c′′ must appear as a complete factor in the factorization of S ′′′i ,

the factorization of

xccxcc
′′xcc′′xccxc

must be either

xc, c, xcc
′′xc, c′′, xccxc

or

xccxc, c
′′, xcc′′xc, c, xc .

Thus if c′′ is a complete factor in the factorization of S ′′′i , then c, xc and xcc̄xc are complete

factors in the factorization of Si but c̄, xccxc and xjc are not for j > 1; otherwise, c̄, xc and xccxc

are complete factors but c, xcc̄xc and xjc are not for j > 1.

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci−1 and let P be a

diverse palindromic factorization of Si−1 encoding τ . By Lemma 15 we can extend P to P ′ so

that it encodes the assignment to the inputs of C ′i−1 that makes them true or false according to

τ . There are four cases to consider:

47

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

Case 1: τ makes the outputs of Ci−1 labelled a and b both true. Then P ′ concatenated with,

e.g.,

$, #, x3c′ , a
′
1, xc′a1xc′ , a1, xc′a

′
1xc′ , x

4
c′ ,

$′, #′, x7c′ , a
′
2, xc′a2xc′ , a2, xc′a

′
2xc′ , x

8
c′ ,

$′′, #′′, x11c′ , b
′, xc′bxc′ , b̄, xc′b′xc′ , x

12
c′

is a diverse palindromic factorization P ′′ of S ′i which, concatenated with, e.g.,

$†, #†, x15c′ , a
′
1, xc′c

′xc′ , b′, x
17
c′ ,

$††, #††, x19c′ , a
′
2, xc′ , d, xc′b

′xc′ , x
20
c′

is a diverse palindromic factorization P ′′′ of S ′′i which, concatenated with, e.g.,

$†††, #†††, x22c′ , xc′c
′′xc′ , c

′, xc′c′xc′ , c′′, x
25
c′

is a diverse palindromic factorization P † of S ′′′i which, concatenated with

$‡, #‡, xccxc, c
′′, xcc′′xc, c̄, xc

is a diverse palindromic factorization P ‡ of Si in which c̄, xc and xccxc are complete factors but

c, xcc̄xc and xjc are not for j > 1.

Case 2: τ makes the output of Ci−1 labelled a true but the output labelled b false. Then P ′

concatenated with, e.g.,

$, #, x3c′ , a
′
1, xc′a1xc′ , a1, xc′a

′
1xc′ , x

4
c′ ,

$′, #′, x7c′ , a
′
2, xc′a2xc′ , a2, xc′a

′
2xc′ , x

8
c′ ,

$′′, #′′, x10c′ , xc′b
′xc′ , b, xc′ b̄xc′ , b′, x

13
c′

is a diverse palindromic factorization P ′′ of S ′i which, concatenated with, e.g.,

$†, #†, x15c′ , a
′
1, xc′ , c

′, xc′b′xc′ , x
16
c′ ,

$††, #††, x19c′ , a
′
2, xc′dxc′ , b

′, x21c′

48

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

is a diverse palindromic factorization P ′′′ of S ′′i which, concatenated with, e.g.,

$†††, #†††, x23c′ , c
′′, xc′c

′xc′ , c′, xc′c′′xc′ , x
24
c′

is a diverse palindromic factorization P † of S ′′′i which, concatenated with

$‡, #‡, xc, c, xcc
′′xc, c′′, xcc̄xc

is a diverse palindromic factorization P ‡ of Si in which c, xcc̄xc and xc are complete factors but

c̄, xccxc and xjc are not for j > 1.

Case 3: τ makes the output of Ci−1 labelled a false but the output labelled b true. Then P ′

concatenated with, e.g.,

$, #, x2c′ , xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1, x

5
c′ ,

$′, #′, x6c′ , xc′a
′
2xc′ , a2, xc′a2xc′ , a

′
2, x

9
c′ ,

$′′, #′′, x11c′ , b
′, xc′bxc′ , b̄, xc′b′xc′ , x

12
c′

is a diverse palindromic factorization P ′′ of S ′i which, concatenated with, e.g.,

$†, #†, x14c′ , xc′a
′
1xc′ , c

′, xc′ , b′, x
17
c′ ,

$††, #††, x18c′ , xc′a
′
2xc′ , d, xc′b

′xc′ , x
20
c′

is a diverse palindromic factorization P ′′′ of S ′′i which, concatenated with, e.g.,

$†††, #†††, x23c′ , c
′′, xc′c

′xc′ , c′, xc′c′′xc′ , x
24
c′

is a diverse palindromic factorization P † of S ′′′i which, concatenated with

$‡, #‡, xc, c, xcc
′′xc, c′′, xcc̄xc

is a diverse palindromic factorization P ‡ of Si in which c, xcc̄xc and xc are complete factors but

c̄, xccxc and xjc are not for j > 1.

Case 4: τ makes the outputs of Ci−1 labelled a and b both false. Then P ′ concatenated with,

49

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

e.g.,

$, #, x2c′ , xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1, x

5
c′ ,

$′, #′, x6c′ , xc′a
′
2xc′ , a2, xc′a2xc′ , a

′
2, x

9
c′ ,

$′′, #′′, x10c′ , xc′b
′xc′ , b, xc′ b̄xc′ , b′, x

13
c′

is a diverse palindromic factorization P ′′ of S ′i which, concatenated with, e.g.,

$†, #†, x14c′ , xc′a
′
1xc′ , c

′, xc′b′xc′ , x
16
c′ ,

$††, #††, x18c′ , xc′a
′
2xc′ , d, xc′ , b

′, x21c′

is a diverse palindromic factorization P ′′′ of S ′′i which, concatenated with, e.g.,

$†††, #†††, x23c′ , c
′′, xc′c

′xc′ , c′, xc′c′′xc′ , x
24
c′

is a diverse palindromic factorization P † of S ′′′i which, concatenated with

$‡, #‡, xc, c, xcc
′′xc, c′′, xcc̄xc

is a diverse palindromic factorization P ‡ of Si in which c, xcc̄xc and xc are complete factors but

c̄, xccxc and xjc are not for j > 1.

Notice that in all cases P ‡ encodes the assignment to the inputs of Ci that makes them true

or false according to τ . Since Ci−1 and Ci have the same inputs, each assignment to the inputs

of Ci is encoded by some diverse palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the assignment to the

inputs of Ci−1 that is encoded by a prefix of P . Let P̂ be a diverse palindromic factorization of

S ′i−1. Since a1 and a2 are obtained by splitting a in Si−1, it follows that a1 is a complete factor

of P̂ if and only if a2 is. Therefore, in what follows we only consider any diverse palindromic

factorization P of Si in which either both a1 and a2 are complete factors, or neither a1 nor a2 is

a complete factor.

Let P ′ be the prefix of P that is a diverse palindromic factorization of S ′′′i .

Case A: Suppose the factorization of

x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′

50

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

in P ′ includes c′′ as a complete factor, which is the case if and only if P includes c̄, xc and

xccxc as complete factors but not c, xcc̄xc and xjc for j > 1. We will show that τ must make the

outputs of Ci−1 labelled a and b true. Let P ′′ be the prefix of P ′ that is a diverse palindromic

factorization of S ′′i . Since c′′ is a complete factor in the factorization of

x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′

in P ′, so is c′. Therefore, c′ is not a complete factor in the factorization of

x15c′ a
′
1xc′c

′xc′b′x
17
c′

in P ′′, so a′1 and b′ are.

Let P ′′′ be the prefix of P ′′ that is a diverse palindromic factorization of S ′i. Since a′1 and b′

are complete factors later in P ′′, they are not complete factors in P ′′′. Therefore, a1 and b̄ are

complete factors in the factorizations of

x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′ and x11c′ b

′xc′bxc′ b̄xc′b′x
13
c′

in P ′′′, so they are not complete factors in the prefix P † of P that is a diverse palindromic

factorization of S ′i−1. Since we built S ′i−1 from Si−1 with Lemma 15, it follows that a1 and b

are complete factors in the prefix of P that encodes τ . Therefore, τ makes the outputs of Ci−1

labelled a and b true.

Case B: Suppose the factorization of

x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′

in P ′ does not include c′′ as a complete factor, which implies that it does include xc′c′′xc′ as a

complete factor. Since, as noted earlier, we can assume that a1 is a complete factor of P if and

only if a2 is, it follows that the factorization of

x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′

must include

c′′, xc′c
′xc′ , c′, xc′c′′xc′ .

Then, P must include xc, c and c′′ as complete factors. We will show that τ must make at least

51

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

one of the outputs of Ci−1 labelled a or b false. Let P ′′ be the prefix of P ′ that is a diverse

palindromic factorization of S ′′i . Since xc′c′xc′ is a complete factor in the factorization of

x23c′ c
′′xc′c

′xc′c′xc′c′′x
25
c′

in P ′, c′ is a complete factor in the factorization of

x15c′ a
′
1xc′c

′xc′b′x
17
c′

in P ′′. Then, the factorization of

x15c′ a
′
1xc′c

′xc′b′x
17
c′

must include one of the following three:

xc′a′1xc′ , c
′, xc′b′xc′ , (5.1)

xc′a′1xc′ , c
′, xc′ , b′, (5.2)

a′1, xc′ , c
′, xc′b′xc′ . (5.3)

Case B-a: Assume the factorization of x15c′ a
′
1xc′c

′xc′b′x
17
c′ includes (5.1). Let P ′′′ be the prefix

of P ′′ that is a diverse palindromic factorization of S ′i. Since a′1 and b′ are not complete

factors later in P ′′, they are complete factors in P ′′′. Therefore, there are five combinations

of factorizations of

x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′ and x11c′ b

′xc′bxc′ b̄xc′b′x
13
c′

in P ′′′, as follows:

Case B-a1: The factorizations include

xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1 and xc′b′xc′ , b, xc′ b̄xc′ , b′.

In this case, a1 and b are not complete factors in the prefix of P that encodes τ .

Therefore, τ makes both the outputs of Ci−1 labelled a and b false.

Case B-a2: The factorizations include

xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1 and b′, xc′bxc′ , b̄, xc′ , b′.

52

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

In this case, a1 is not a complete factor and b is a complete factor in the prefix of P

that encodes τ . Therefore, τ makes the outputs of Ci−1 labelled a false and b true.

Case B-a3: The factorizations include

a′1, xc′a1xc′ , a1, xc′ , a
′
1 and xc′b′xc′ , b, xc′ b̄xc′ , b′.

In this case, a1 is a complete factor and b is not a complete factor in the prefix of P

that encodes τ . Therefore, τ makes the outputs of Ci−1 labelled a true and b false.

Case B-a4: The factorizations include

a′1, xc′ , a1, xc′a1xc′ , a
′
1 and xc′b′xc′ , b, xc′ b̄xc′ , b′.

In this case, a1 and b are not complete factors in the prefix of P that encodes τ .

Therefore, τ makes both the outputs of Ci−1 labelled a and b false.

Case B-a5: The factorizations include

xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1 and b′, xc′ , b, xc′ b̄xc′ , b′.

In this case, a1 and b are not complete factors in the prefix of P that encodes τ .

Therefore, τ makes both the outputs of Ci−1 labelled a and b false.

Case B-b: Assume the factorization of x15c′ a
′
1xc′c

′xc′b′x
17
c′ includes (5.2). Let P ′′ be the prefix

of P ′ that is a diverse palindromic factorization of S ′′i . Let P ′′′ be the prefix of P ′′ that is

a diverse palindromic factorization of S ′i. Since a′1 and xc′b′xc′ are not complete factors

later in P ′′, they are complete factors in P ′′′. Therefore, the factorizations of

x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′ and x11c′ b

′xc′bxc′ b̄xc′b′x
13
c′

must include

xc′a
′
1xc′ , a1, xc′a1xc′ , a

′
1 and b′, xc′bxc′ , b̄, xc′b′xc′

in P ′′′. Then a1 is not a complete factor and b is a complete factor in the prefix of P that

encodes τ . Therefore, τ makes the outputs of Ci−1 labelled a false and b true.

Case B-c: Assume the factorization of x15c′ a
′
1xc′c

′xc′b′x
17
c′ includes (5.3). Let P ′′ be the prefix

of P ′ that is a diverse palindromic factorization of S ′′i . Let P ′′′ be the prefix of P ′′ that is

53

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

a diverse palindromic factorization of S ′i. Since xc′a′1xc′ and b′ are not complete factors

later in P ′′, they are complete factors in P ′′′. Therefore, the factorizations of

x3c′a
′
1xc′a1xc′a1xc′a

′
1x

5
c′ and x11c′ b

′xc′bxc′ b̄xc′b′x
13
c′

must include

a′1, xc′a1xc′ , a1, xc′a
′
1xc′ and xc′b′xc′ , b, xc′ b̄xc′ , b′

in P ′′′. Then a1 is a complete factor and b is not a complete factor in the prefix of P that

encodes τ . Therefore, τ makes the outputs of Ci−1 labelled a true and b false.

The above arguments give the following lemma.

Lemma 16. If we have a string Si−1 that represents Ci−1 and Ci is obtained from Ci−1 by

making two outputs of Ci−1 the inputs of a new NAND gate, then in constant time we can

append symbols to Si−1 to obtain a string Si that represents Ci.

5.5 Summing up

By Lemmas 14, 15 and 16 and induction, given a Boolean circuit C composed only of splitters

and NAND gates with two inputs and one output, in time linear in the size of C we can build,

inductively and in turn, a sequence of strings S1, . . . , St such that Si represents Ci. As men-

tioned in introduction , once we have St we can easily build in constant time a string S that has a

diverse palindromic factorization if and only if C is satisfiable. Therefore, diverse palindromic

factorization is NP-hard. Since it is obviously in NP, we have the following theorem:

Theorem 9. Diverse palindromic factorization is NP-complete.

5.6 k-Diverse factorization

It is not difficult to check that our reduction is still correct even if factors of the forms $, # and

xj for j > 1 can appear arbitrarily often in the factorization, as long as factors of the forms a, x

and xax can each appear at most once. (By “of the form” we mean equal up to subscripts, bars

and superscripts apart from exponents; a stands for any letter except x.) It follows that it is still

NP-complete to decide for any fixed k whether a string can be factored into palindromes that

each appear at most k times in the factorization.

54

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

Suppose we are given k and a Boolean circuit C composed only of splitters and NAND

gates with two inputs and one output. In linear time we can build, as we have described, a string

S such that S has a diverse palindromic factorization if and only if C is satisfiable. In linear

time we can then build a string T as follows: we start with T equal to the empty string; for each

substring of S of the form a, we append to T a substring of the form

$1#1 a $2#2 a $3#3 · · · $k−1#k−1 a $k#k ,

where $1, . . . , $k,#1, . . . ,#k are symbols we use only here; for each substring of S of the form

x, we append to T a substring of the form

$′1#
′
1 x $′2#

′
2 x $′3#

′
3 · · · $′k−1#′k−1 x $′k#

′
k ,

where $′1, . . . , $
′
k,#

′
1, . . . ,#

′
k are symbols we use only here; for each substring of S of the form

xax, we append to T a substring of the form

$′′1#′′1 xax $′′2#′′2 xax $′′3#′′3 · · · $′′k−1#′′k−1 xax $′′k#
′′
k ,

where $′′1, . . . , $
′′
k,#

′′
1, . . . ,#

′′
k are symbols we use only here.

Notice that the only k-diverse palindromic factorization of T includes each substring of S

of the forms a, x and xax exactly k − 1 times each. In particular, any substring of T of the

form xax cannot be factored into x, a, x, because x must appear k − 1 times elsewhere in the

factorization. Therefore, there is a k-diverse palindromic factorization of S $#T , where $ and

are symbols we use only here, if and only if there is a diverse palindromic factorization of S

and, thus, if and only if C is satisfiable. This implies the following generalization of Theorem 9.

Theorem 10. For any fixed k ≥ 1, k-diverse palindromic factorization is NP-complete.

5.7 Binary alphabet

The reduction described above involves multiple distinct symbols for each component of the

circuit and thus requires an unbounded alphabet, but we will next show that a binary alphabet

is sufficient.

Let S be an arbitrary string and let Σ be the set of distinct symbols occurring in S. Let δ

be an (arbitrary) bijective mapping δ : Σ → {baib : i ∈ [1..|Σ|]}. We will also use δ to denote

55

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

the implied mapping from Σ∗ to {a, b}∗ defined recursively by δ(Xα) = δ(X) · δ(α) for any

X ∈ Σ∗ and α ∈ Σ.

Notice that δ preserves palindromes, i.e., for any palindrome P ∈ Σ∗, δ(P) is a palin-

drome too. Thus, if P = (P1, P2, . . . , Pk) is a palindromic factorization of S, then δ(P) =

(δ(P1), δ(P2), . . . , δ(Pk)) is a palindromic factorization of δ(S). Furthermore any palindrome

in δ(S) of the form (ba+b)+ must be a preserved palindrome, i.e., an image δ(P) of a palindrome

P occurring in S. Any palindromic factorization of δ(S) consisting of preserved palindromes

only corresponds to a palindromic factorization of S. We call this a preserved palindromic fac-

torization of δ(S). Notice that a preserved palindromic factorization δ(P) is diverse if and only

if P is diverse.

Now consider an arbitrary non-preserved palindromic factorization of δ(S). It is easy to

see that the first palindrome must be either a single b or a preserved palindrome. Furthermore,

any palindrome following a preserved palindrome in the factorization must be either a single b

or a preserved palindrome. Thus the palindromic factorization of δ(S) begins with a (possibly

empty) sequence of preserved palindromes followed by a single b. A symmetric argument shows

that the factorization also ends with a (possibly empty) sequence of preserved palindromes

preceded by a single b. The two single b’s cannot be the same b since one is the first b in an

image of a symbol in S, and the other is a last b. Thus a non-preserved palindromic factorization

can never be diverse.

The above discussion proves the following lemma.

Lemma 17. For any string S, δ(S) has a diverse palindromic factorization if and only if S has

a diverse palindromic factorization.

Applying the lemma to the string S constructed from a Boolean circuit C as described in

Sections 5.2, 5.3 and 5.4, shows that δ(S) has a diverse palindromic factorization if and only

if C is satisfiable. Since δ(S) can be constructed in time quadratic in the size of C, we have a

binary alphabet version of Theorem 9.

Theorem 11. Diverse palindromic factorization of binary strings is NP-complete.

If we allow each factor to occur at most k > 1 times, the above transformation to a binary

alphabet does not work anymore, because two single b’s is now allowed. However, a small

modification is sufficient to correct this. First, we replace δ with a bijection δ′ : Σ → {baib :

i ∈ [3..|Σ| + 2]}. Second, we append to δ′(S) the string Qk which is a length 20k prefix of

(abbaab)∗.

56

CHAPTER 5. DIVERSE PALINDROMIC FACTORIZATION IS NP COMPLETE

Let us first analyze the palindromic structure of Qk. It is easy to see that the only palin-

dromes in Qk are

a, b, aa, bb, aba, bab, abba, and baab.

The total length of these palindromes is 20 and thus the only possible k-diverse palindromic

factorization of Qk is one where all the above palindromes appear exactly k times. Such factor-

izations exist too. For example, k copies of

abba, aba, bb, aa, bab, baab

followed by 2k single symbol palindromes is such a factorization.

Now consider the string δ′(S)Qk. It is easy to verify that the only palindromes overlapping

both δ′(S) and Qk are aba and bab. However, in any palindromic factorization containing one

of them, the factorization of the remaining part of Qk together with the overlapping palindrome

would have to contain more than k occurrences of some factor. Thus in any k-diverse palin-

dromic factorization of δ′(S)Qk, there are no overlapping palindromes and the factorizations

of δ′(S) and Qk are separate. Since the factorization of Qk contains k single b’s, the factoriza-

tion of δ′(S) cannot contain any single b’s. Then, by the discussion earlier in this section, all

palindromes in δ′(S) must be preserved palindromes.

Lemma 18. For any string S and any k ≥ 1, the string δ′(S)Qk has a k-diverse palindromic

factorization if and only if S has a k-diverse palindromic factorization.

Combining this with Theorem 10, we obtain the following:

Theorem 12. For any fixed k ≥ 1, k-diverse palindromic factorization of binary strings is

NP-complete.

57

Chapter 6

Closed Factorization

In this chapter, we introduce a new string factorization problem, called the closed factorization

problem, and present a linear time algorithm that computes the closed factorization of a given

string.

The results in this chapter were originally published in [8].

6.1 Closed strings and closed factorization

A string X is said to be closed, if there exists a border b of X that occurs exactly twice in X ,

i.e., b = X [1..|b|] = X [|X | − |b|+ 1..|X |] and b 6= X [i..i+ |b| − 1] for any 2 ≤ i ≤ |X | − |b|.
We suppose that any single character c ∈ Σ is closed, assuming that the empty string ε occurs

exactly twice in c. A string X is a closed factor of w, if X is closed and is a substring of w. We

define the closed factorization of a string w as follows.

Definition 7 (Closed Factorization). The closed factorization of string w, denoted CF (w), is a

factorization f1, . . . , fk of w such that for any 1 ≤ i ≤ k,

fi is the longest prefix of w[j..|w|] that is closed, where j = |f1 · · · fi−1|+ 1.

Example 3. For string w = ababaacbbbcbcc$, CF (w) = ababa, a, cbbbcb, cc, $.

We remark that a closed factor fi is a single character if and only if |f1 · · · fi−1| + 1 is the

rightmost (last) occurrence of character w[|f1 · · · fi−1|+ 1] in w.

We also define the longest closed factor array of string w.

Definition 8 (Longest Closed Factor Array). The longest closed factor array of w is an array

A of integers such that for any 1 ≤ i ≤ n, A[i] = l if and only if l is the length of the longest

prefix of w that is closed.

58

CHAPTER 6. CLOSED FACTORIZATION

Example 4. For string w = ababaacbbbcbcc$, A = [5, 4, 3, 5, 2, 1, 6, 3, 2, 4, 3, 1, 2, 1, 1].

Clearly, given the longest closed factor array A of stringw, CF (w) can be computed inO(n)

time. However, the algorithm we describe in Section 6.3 to compute A requires O(n logn
log logn

)

time, and so using it to compute CF (w) would also takeO(n logn
log logn

) time overall. In Section 6.2

we present an optimal O(n)-time algorithm to compute CF (w) that does not require A.

6.2 Greedy longest closed factorization in linear time

In this section, we present how to compute the closed factorization CF (w) of a given string

w. Our high level strategy is to build a data structure that helps us to efficiently compute, for a

given position i in w, the longest closed factor starting at i. The core of this data structure is the

suffix tree for w, which we decorate in various ways.

Let S be the set of the beginning positions of the longest closed factors in CF (w). For any

i ∈ S, let G = w[i..i+ |G | − 1] be the longest closed factor of w starting at position i in w.

Let G ′ be the unique border of the longest closed factor G starting at position i of w, and bi

be its length, i.e., G ′ = G [1..bi] = w[i..i + bi − 1] (if G is a single character, then G ′ = ε and

bi = 0). The following lemma shows that we can efficiently compute CF (w) if we know bi for

all i ∈ S.

Lemma 19. Given bi for all i ∈ S, we can compute CF (w) in a total of O(n) time and space

independently of the alphabet size.

Proof. If bi = 0, then G = w[i]. Hence, in this case it clearly takes O(1) time and space to

compute G .

If bi > 1, then we can compute G inO(|G |) time andO(bi) space, as follows. We preprocess

the border G ′ of G using the Knuth-Morris-Pratt (KMP) string matching algorithm [49] (see

Section 2.3.4). This preprocessing takes O(bi) time and space. We then search for the first

occurrence of G ′ in w[i + 1..n] (i.e. the next occurrence of the longest border of G [1,m] to

the right of the occurrence w[i..i + bi − 1]). The location of the next occurrence tells us where

the end of the closed factor is, and so it also tells us G = w[i..i + |G | − 1]. The search takes

O(|G |) time — i.e. time proportional to the length of the closed factor. Because the sum of the

lengths of the closed factors is n, over the whole factorization we takeO(n) time and space. The

running time and space usage of the algorithm are clearly independent of the alphabet size.

59

CHAPTER 6. CLOSED FACTORIZATION

What remains is to be able to efficiently compute bi for a given i ∈ S. The following lemma

gives an efficient solution to this subproblem:

Lemma 20. We can preprocess the suffix tree of string w of length n in O(n) time and space,

so that bi for each i ∈ S can be computed in O(1) time.

Proof. In each leaf of the suffix tree, we store the beginning position of the suffix corresponding

to the leaf. For any internal node v of the suffix tree of w, let max(v) denote the maximum leaf

value in the subtree rooted at v,i.e.,

max(v) = max{i | w[i..i+ pathlabel(v)− 1], 1 ≤ i ≤ n− pathlabel(v)− 1}.

We can compute max(v) for every v in a total of O(n) time via a depth first traversal. Next,

let P be an array of pointers to suffix tree nodes (to be computed next). Initially every P [i] is

set to null. We traverse the suffix tree in pre-order, and for each node v we encounter we set

P [max(v)] = v if P [max(v)] is null. At the end of the traversal P [i] will contain a pointer to

the highest node w in the tree for which i is the maximum leaf value (i.e., i is the rightmost

occurrence of pathlabel(w)).

We are now able to compute bi, the length of the unique border of the longest closed factor

starting at any given i, as follows. First we retrieve node v = P [i]. Observe that, because of the

definition of P [i], there are no occurrences of substring w[i..i+ |pathlabel(v)|] to the right of i.

Let u = parent(v). There are two cases to consider:

• If u is not the root, then observe that there always exists an occurrence of substring

pathlabel(u) to the right of position i (otherwise i would be the rightmost occurrence

of pathlabel(u), but this cannot be the case since u is higher than v, and we defined

P [i] to be the highest node w with max(w) = i). Let j be the the leftmost occurrence

of pathlabel(u) to the right of i. Then, the longest closed factor starting at position

i is w[i..j + |pathlabel(u)| − 1] (this position j is found by the KMP algorithm as in

Lemma 19).

• If u is the root, then it turns out that i is the rightmost occurrence of character w[i] in w.

Hence, the longest closed factor starting at position i is w[i].

The thing we have not shown is that |pathlabel(u)| = bi. This is indeed the case, since the set

of occurrences of w[i..j+ |pathlabel(u)|] (i.e., leaves in the subtree corresponding to the string)

60

CHAPTER 6. CLOSED FACTORIZATION

root

u

v

i j

X
i j

pathlabel(v)

pathlabel(u)

G

w!

Figure 6.1: Illustration for Lemma 20. We consider the longest closed factor G starting at posi-
tion i of string w. We retrieve node P [i] = v, which implies max(v) = i. Let u be the parent of
v. The black circle represents a (possibly implicit) node which represents w[i..i+pathlabel(u)],
which has the same set of occurrences as pathlabel(v). Hence bi = |pathlabel(u)|, and therefore
G = w[i..j + pathlabel(u)− 1], where j is the leftmost occurrence of pathlabel(u) with j > i.

is equivalent to that of pathlabel(v), any substring starting at i that is longer than |pathlabel(u)|
does not occur to the right of i and thus bi cannot be any longer. Hence |pathlabel(u)| = bi.

(See also Figure 6.1).

Clearly v = P [i] can be retrieved in O(1) time for a given i, and then u = parent(v) can be

obtained in O(1) time from v. This completes the proof.

The main result of this section follows:

Theorem 13. Given a string w of length n over an integer alphabet, the closed factorization

CF (w) = f1, . . . , fk of w can be computed in O(n) time and space.

Proof. We compute fi in ascending order of i = 1, . . . , k. Let si be the beginning position of

fi in w, i.e., s1 = 1 and si = |f1 · · · fi−1| + 1 for 1 < i ≤ k. We compute f1 in O(|f1|) time

and space from bs1 using Lemma 19 and Lemma 20. Assume we have computed the first i− 1

factors f1, . . . , fi−1 for any 1 ≤ i < k − 1. We then compute fj in O(|fj|) time and space from

bfj , again using Lemmas 19 and 20. Since
∑k

i=1 |fi| = n, the proof completes.

The following is an example of how the algorithm presented in this section computes CF (w)

for a given string w.

Example 5. Consider the running example string w = ababaacbbbcbcc$.

1. We begin with node P [1] representing ababaacbbbcbcc$, whose parent represents aba.

Hence we get b1 = |aba| = 3. We run the KMP algorithm with pattern aba and find the

first factor f1 = ababa.

61

CHAPTER 6. CLOSED FACTORIZATION

2. We then check node P [6] representing a. Since its parent is the root, we get b2 = 0 and

therefore the second factor is f2 = a.

3. We then check node P [7] representing cbbbcbcc$, whose parent represents cb. Hence we

get b3 = |cb| = 2. We run the KMP algorithm with pattern cb and find the third factor

f3 = cbbbcb.

4. We then check node P [13] representing cc$, whose parent represents c. Hence we get

b4 = |c| = 1. We run the KMP algorithm with pattern c and find the fourth factor

f4 = cc.

5. We finally check node P [15] representing $. Since its parent is the root, we get b5 = 0 and

therefore the fifth factor is f5 = $.

Consequently, we obtain CF (w) = ababa, a, cbbbcb, cc, $, which coincides with Example 3.

6.3 Longest closed factor array

A natural extension of the problem in the previous section is to compute the longest closed factor

starting at every position in w in linear time — not just those involved in the factorization.

Formally, we would like to compute the longest closed factor array of w, i.e., an array A of

integers such that A[i] = l if and only if l is the length of the longest closed factor starting at

position i in w.

Our algorithm for closed factorization computes the longest closed factor starting at a given

position in time proportional to the factor’s length, and so does not immediately provide a linear

time algorithm for computing A; indeed, applying the algorithm naı̈vely at each position would

take O(n2) time to compute A. In what follows, we present a more efficient solution:

Theorem 14. Given a string w of length n over an integer alphabet, the closed factor array of

w can be computed in O(n logn
log logn

) time and O(n) space.

Proof. We extend the data structure of the last section to allow A to be computed inO(n logn
log logn

)

time and O(n) space. The main change is to replace the KMP algorithm scanning in the first

algorithm with a data structure that allows us to find the end of the closed factor in time inde-

pendent of its length.

62

CHAPTER 6. CLOSED FACTORIZATION

We first preprocess the suffix array SA for range successor queries, building the data struc-

ture of Yu, Hon and Wang [77]. A range successor query rsqSA(s, e, k) returns, given a range

[s, e] ⊆ [1, n], the smallest value x ∈ SA[s..e] such that x > k, or null if there is no value larger

than k in SA[s..e]. Yu et al.’s data structure allows range successor queries to be answered in

O(logn
log logn

) time each, takes O(n) space, and O(n logn
log logn

) time to construct.

Now, to compute the longest closed factor starting at a given position i in w (i.e. to compute

A[i]) we do the following. First we compute bi, the length of the border of the longest closed

factor starting at i, in O(1) time using Lemma 20.

Recall that in the process of computing bi we determine the node u having pathlabel(u) =

w[i..i + bi − 1]. To determine the end of the closed factor we must find the smallest j > i

such that w[j..j + bi − 1] = w[i..i + bi − 1]. Observe that j, if it exists, is precisely the

answer to rsqSA(u.s, u.e, i). (See also the left diagram of Figure 6.1. Assuming that the leaves

in the subtree rooted at u are sorted in the lexicographical order, the leftmost and rightmost

leaves in the subtree correspond to the u.s-th and u.e-th entries of SA, respectively. Hence,

j = rsqSA(u.s, u.e, i)). For each A[i] we spend O(logn
log logn

) time and so overall the algorithm

takes O(n logn
log logn

) time. The space requirement is clearly O(n).

We note that recently Navarro and Neckrich [65] described range successor data structures

with fasterO(
√

log n)-time queries, but straightforward construction takesO(n log n) time [64],

so overall this does not improve the runtime of our algorithm.

63

Chapter 7

Abelian Regularities

In this chapter, we consider three problems related to Abelian regularities of strings: computing

Abelian squares in a given string; computing regular Abelian periods of a given string; and com-

puting longest common Abelian factors of two given strings over. We show that computation

of these Abelian regularities can be accelerated via the run-length factorization.

The results in this chapter will be published in [72].

7.1 Notation

For any stringw ∈ Σ∗, its Parikh vector Pw is an array of length σ such that for any 1 ≤ i ≤ |Σ|,
Pw[i] is the number of occurrences of each character ci ∈ Σ in w. For example, for string

w = abaab over alphabet Σ = {a, b}, Pw = 〈3, 2〉. We say that strings x and y are Abelian

equivalent if Px = Py. Note that Px = Py iff x and y are permutations of each other. When x

is a substring of a permutation of y, then we write Px ⊆ Py. For any Parikh vectors P and Q,

let diff (P,Q) = |{i | P [i] 6= Q[i], 1 ≤ i ≤ σ}|.
A string w of length 2k > 0 is called an Abelian square if it is a concatenation of two

Abelian equivalent strings of length k each, i.e., Pw[1..k] = Pw[k+1..2k]. A string w is said to have

a regular Abelian period (p, t) if w can be factorized into a sequence v1, . . . , vs of substrings

such that p = |v1| = · · · = |vs−1|, |vs| = t, Pvi = Pv1 for all 2 ≤ i < s, and Pvs ⊆ Pv1 . For

any strings w1, w2 ∈ Σ∗, if a substring w1[i..i+ l − 1] of w1 and a substring w2[j..j + l − 1] of

w2 are Abelian equivalent, then the pair of substrings is said to be a common Abelian factor of

w1 and w2. When the length l is the maximum of such then the pair of substrings is said to be a

longest common Abelian factor of w1 and w2.

The run length encoding (RLE) of string w of length n, denoted RLE (w), is a compact

64

CHAPTER 7. ABELIAN REGULARITIES

representation of w which encodes each maximal character run w[i..i + p − 1] by ap, if (1)

w[j] = a for all i ≤ j ≤ i+p−1, (2) w[i−1] 6= w[i] or i = 1, and (3) w[i+p−1] 6= w[i+p] or

i+ p− 1 = n. E.g., RLE (aabbbbcccaaa$) = a2b4c3a3$1. The size of RLE (w) = ap11 · · · apmm is

the number m of maximal character runs in w, and each apii is called an RLE factor of RLE (w).

Notice that m ≤ n always holds. Also, since at most m distinct characters can appear in w, in

what follows we will assume that σ ≤ m. Even if the underlying alphabet is large, we can sort

the characters appearing in w in O(m logm) time and use this ordering in Parikh vectors. Since

all of our algorithms will require at least O(mn) time, this O(m logm)-time preprocessing is

negligible.

For any 1 ≤ i ≤ j ≤ n, let RLE (w)[i..j] = apii · · · a
pj
j . For convenience let RLE (w)[i..j] =

ε for i > j. For RLE (w) = ap11 · · · apmm , let RLE Bound(w) = {1 +
∑k

i=1 pk | 1 ≤ k <

m} ∪ {1, n}. For any 1 ≤ i ≤ n, let succ(i) = min{j ∈ RLE Bound(w) | j > i}. Namely,

succ(i) is the smallest position in w that is greater than i and is either the beginning position of

an RLE factor in w or the last position n in w.

7.2 Computing regular Abelian periods using RLEs

In this section, we propose an algorithm which computes all regular Abelian periods of a given

string.

Theorem 15. Given a string w of length n over an alphabet of size σ, we can compute all

regular Abelian periods of w in O(mn) time and O(n) working space, where m is the size of

RLE (w).

Proof. Our algorithm is very simple. We use a single window for each length d = 1, . . . , bn
2
c.

For an arbitrarily fixed d, consider a decomposition v1, . . . , vs of w such that vi = w[(i− 1)d+

1..id] for 1 ≤ i ≤ bn
d
c and vs = w[n − (n mod d) + 1..n]. Each vi is called a block, and each

block of length d is called a complete block.

There are two cases to consider.

Case (a): If w is a unary string (i.e., RLE (w) = an for some a ∈ Σ). In this case, (d, (n mod

d)) is a regular Abelian period of w for any d. Also, note that this is the only case where

(d, (n mod d)) can be a regular Abelian period of any string of length n with RLE (vi) = ad

for some complete block vi. Clearly, it takes a total of O(n) time and O(1) space in this case.

65

CHAPTER 7. ABELIAN REGULARITIES

a a b b a a a b a b a a a a b b a

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!

Figure 7.1: (3, 2) is a regular Abelian period of string w = aabbaaababaaaabbaa since
Pw[1..3] = Pw[4..6] = Pw[7..9] = Pw[10..12] = Pw[13..15] ⊃ Pw[16..17].

Case (b): If w contains at least two distinct characters, then observe that a complete block vi is

fully contained in a single RLE factor iff succ(1 + (i − 1)d) = succ(id). Let S be an array of

length n such that S[j] = succ(j) for each 1 ≤ j ≤ n. We precompute this array S inO(n) time

by a simple left-to-right scan over w. Using the precomputed array S, we can check in O(m)

time if there exists a complete block vi satisfying succ(1 + (i − 1)d) = succ(id); we process

each complete block vi in increasing order of i (from left to right), and stop as soon as we find

the first complete block vi with succ(1 + (i− 1)d) = succ(id). If there exists such a complete

block, then we can immediately determine that (d, (n mod d)) is not a regular Abelian period

(recall also Case (a) above.)

Assume every complete block vi overlaps at least two RLE factors. For each vi, let mi ≥ 2

be the number of RLE factors of RLE (w) that vi overlaps (i.e., mi is the size of RLE (vi)).

We can compute Pvi in O(mi) time from RLE (vi), using the exponents of the elements of

RLE (vi). We can compare Pvi and Pvi−1
in O(mi) time, since there can be at most mi distinct

characters in vi and hence it is enough to check the mi entries of the Parikh vectors. Since

there are bn
d
c complete blocks and each complete block overlaps more than one RLE factor,

we have bn
d
c ≤ 1

2

∑s−1
i=1 mi. Moreover, since each RLE factor is counted by a unique mi

or by a unique pair of mi−1 and mi for some i, we have
∑s

i=1mi ≤ 2m. Overall, it takes

O(σ + n
d

+
∑s

i=1mi) = O(m) time to test if (d, (n mod d)) is a regular Abelian period of w.

Consequently, it takes O(mn) total time to compute all regular Abelian periods of w for all d’s

in this case. Since we use the array S of length n and we maintain two Parikh vectors of the

two adjacent vi−1 and vi for each i, the space requirement is O(σ + n) = O(n).

For example, let w = aabbaaababaaaabbaa and d = 3. See also Figure 7.1 for illustration.

We have RLE(w) = a2b2a3b1a1b1a4b2a1. Then, we compute Pv1 = 〈2, 1〉 from RLE (v1) =

a2b1, Pv2 = 〈2, 1〉 from RLE (v2) = b1a2, Pv3 = 〈2, 1〉 from RLE (v3) = a1b1a1, Pv4 = 〈2, 1〉
from RLE (v4) = b1a2, Pv5 = 〈2, 1〉 from RLE (v5) = a2b1, and Pv6 = 〈1, 1〉 from RLE (v6) =

b1a1. Since Pvi = Pv1 for 1 ≤ i ≤ 5 and Pv6 ⊂ Pv1 , (3, 2) is a regular Abelian period of the

string w.

66

CHAPTER 7. ABELIAN REGULARITIES

7.3 Computing Abelian squares using RLEs

In this section, we describe our algorithm to compute all Abelian squares occurring in a given

string w of length n. Our algorithm is based on the algorithm of Cummings and Smyth [24]

which computes all Abelian squares in w in O(n2) time. We will improve the running time to

O(mn), where m is the size of RLE (w).

7.3.1 Cummings and Smyth’s O(n2)-time algorithm

We recall the O(n2)-time algorithm proposed by Cummings and Smyth [24]. To compute

Abelian squares in a given string w, their algorithm aligns two adjacent sliding windows of

length d each, for every 1 ≤ d ≤ bn
2
c.

Consider an arbitrary fixed d. For each position 1 ≤ i ≤ n − 2d + 1 in w, let Li and

Ri denote the left and right windows aligned at position i. Namely, Li = w[i..i + d − 1]

and Ri = w[i + d..i + 2d − 1]. At the beginning, the algorithm computes PL1 and PR1 for

position 1 in w. It takes O(d) time to compute these Parikh vectors and O(σ) time to compute

diff (PL1 ,PR1). Assume PLi , PRi , and diff (PLi ,PRi) have been computed for position i ≥ 1,

and PLi+1
, PRi+1

, and diff (PLi+1
,PRi+1

) is to be computed for the next position i + 1. A key

observation is that given PLi , then PLi+1
for the left window Li+1 for the next position i+ 1 can

be easily computed inO(1) time, since at most two entries of the Parikh vector can change. The

same applies to PRi and PRi+1
. Also, given diff (PLi ,PRi) for the two adjacent windows Li and

Ri for position i, then it takes O(1) time to determine whether or not diff (PLi+1
,PRi+1

) = 0

for the two adjacent windows Li+1 and Ri+1 for the next position i + 1. Hence, for each d, it

takes O(n) time to find all Abelian squares of length 2d, and thus it takes a total of O(n2) time

for all 1 ≤ d ≤ bn
2
c.

7.3.2 Our O(mn)-time algorithm

We propose an algorithm which computes all Abelian squares in a given string w of length n in

O(mn) time, where m is the size of RLE (w).

Our algorithm will output consecutive Abelian squares w[i..i+2d−1], w[i+1..i+2d], . . . ,

w[j..j + 2d− 1] of length 2d each as a triple 〈i, j, d〉. A single Abelian square w[i..i+ 2d− 1]

of length 2d will be represented by 〈i, i, d〉.
For any position i in w, let beg(Li) and end(Li) respectively denote the beginning and

67

CHAPTER 7. ABELIAN REGULARITIES

ending positions of the left window Li, and let beg(Ri) and end(Ri) respectively denote the

beginning and ending positions of the right window Ri. Namely, beg(Li) = i, end(Li) =

i + d − 1, beg(Ri) = i + d, and end(Ri) = i + 2d − 1. Cummings and Smyth’s algorithm

described above increases each of beg(Li), end(Li), beg(Ri), and end(Ri) one by one, and

tests all positions i = 1, . . . , n − 2d + 1 in w. Hence their algorithm takes O(n) time for each

window size d.

In what follows, we show that it is indeed enough to check only O(m) positions in w for

each window size d. The outline of our algorithm is as follows. As Cummings and Smyth’s

algorithm, we use two adjacent windows of size d, and slide the windows. However, unlike

Cummings and Smyth’s algorithm where the windows are shifted by one position, in our algo-

rithm the windows can be shifted by more than one position. The positions that are not skipped

and are explicitly examined will be characterized by the RLE of w, and the equivalence of the

Parikh vectors of the two adjacent windows for the skipped positions can easily be checked by

simple arithmetics.

Now we describe our algorithm in detail. First, we compute RLE (w) and let m be its size.

Consider an arbitrarily fixed window length d ≥ 1.

Initially, we compute PL1 and PR1 for position 1. We can compute these Parikh vectors

in O(m) time and O(σ) space using the same method as in the algorithm of Theorem 15 in

Section 7.2.

Then, we describe the steps for positions larger than 1. For each position i ≥ 1 in a

given string w, let Di
1 = succ(beg(Li)) − beg(Li), Di

2 = succ(beg(Ri)) − beg(Ri), and

Di
3 = succ(end(Ri) + 1)− end(Ri)− 1. The break point for each position i, denoted bp(i), is

defined by i + min{Di
1, D

i
2, D

i
3}. Assume the left window is aligned at position i in w. Then,

we jump to the break point bp(i) directly from i. In other words, the two windows Li and Ri

are directly shifted to Lbp(i) and Rbp(i), respectively.

It depends on the value of diff (PLi ,PRi) whether there can be an Abelian square between

positions i and bp(i). Note that diff (PLi ,PRi) 6= 1. Below, we characterize the other cases in

detail.

Lemma 21. Assume diff (PLi ,PRi) = 0. Then, for any i < j ≤ bp(i), j is the beginning

position of an Abelian square of length 2d iff w[beg(Li)] = w[beg(Ri)] = w[end(Ri) + 1].

Proof. (⇐) By the definition of bp(i), w[beg(Li)] = w[beg(Lj)], w[beg(Ri)] = w[beg(Rj)], and

w[end(Ri) + 1] = w[end(Rj) + 1] for all i < j ≤ bp(i). Let c = w[beg(Li)] = w[beg(Ri)] =

68

CHAPTER 7. ABELIAN REGULARITIES

w[end(Ri) + 1]. Then we have w[beg(Lj)] = w[beg(Rj)] = w[end(Rj) + 1] = c. Thus the

Parikh vectors of the sliding windows do not change at any position between i and bp(i). Since

we have assumed PLi = PRi , PLj = PRj for any i < j ≤ bp(i). Thus w[j..j+ 2d− 1] = LjRj

is an Abelian square of length 2d for any i < j ≤ bp(i).

(⇒) Since j is the beginning position of an Abelian square of length 2d, PLj = PRj . Let

cp = w[beg(Li)], cq = w[beg(Ri)], and ct = w[end(Ri) + 1]. By the definition of bp(i),

w[beg(Lj)] = cp, w[beg(Rj)] = cq, and w[end(Rj) + 1] = ct for any i < j ≤ bp(i). Also, for

any i < j ≤ bp(i), PLj [x] = PLi [x]− j + i, PLj [y] = PLi [y] + j − i, PRj [y] = PRi [y]− j + i,

and PRj [z] = PRi [z] + j − i. Recall we have assumed that PLi = PRi and PLj = PRj for any

i < j ≤ bp(i). This is possible only if cp = cq = ct, namely, w[beg(Lj)] = w[beg(Rj)] =

w[end(Rj) + 1].

Lemma 22. Assume diff (PLi ,PRi) = 2. Let cp be the unique character which occurs more in

the left window Li than in the right window Ri, and cq be the unique character which occurs

more in the right window Ri than in the left window Li. Let x = PLi [p] − PRi [p] = PRi [q] −
PLi [q] > 0, and assume x ≤ min{Di

1, D
i
2, D

i
3}. Then, i + x is the beginning position of an

Abelian square of length 2d iff w[beg(Li)] = cp, w[beg(Ri)] = cq = w[end(Ri) + 1]. Also, this

is the only Abelian square of length 2d beginning at positions between i and bp(i).

Proof. (⇐) Since w[beg(Li)] = cp and w[beg(Ri)] = w[end(Ri) + 1] = cq, we have that

PLi [p] − PRi [p] − z = PLi+z [p] − PRi+z [p] and PRi [q] − PLi [q] + z = PRi+z [q] = PLi+z [q]
for any 1 ≤ z ≤ min{Di

1, D
i
2, D

i
3}. By the definition of x, the Parikh vectors of the sliding

windows become equal at position i+ x.

(⇒) Since x = PLi [p]−PRi [p] = PRi [q]−PLi [q] > 0, PLi+x [p] = PLi+x [p], and PLi+x [q] =

PLi+x [q], we have w[beg(Li)] = cp and w[beg(Ri)] = w[end(Ri) + 1] = cq. From the above

arguments, it is clear that i+x is the only position between i and bp(i) where an Abelian square

of length 2d can start.

Lemma 23. Assume diff (PLi ,PRi) = 2. Let cp be the unique character which occurs more in

the left window Li than in the right window Ri, and cq be the unique character which occurs

more in the right window Ri than in the left window Li. Let x = PLi [p] − PRi [p] = PRi [q] −
PLi [q] > 0, and assume x

2
≤ min{Di

1, D
i
2, D

i
3}. Then, i + x

2
is the beginning position of an

Abelian square of length 2d iff w[beg(Li)] = cp = w[end(Ri) + 1], w[beg(Ri)] = cq. Also, this

is the only Abelian square of length 2d beginning at positions between i and bp(i).

69

CHAPTER 7. ABELIAN REGULARITIES

Proof. (⇐) Since w[beg(Li)] = cp = w[end(Ri) + 1] and w[beg(Ri)] = cq, we have that

PLi [p]−PRi [p]−2z = PLi+z [p]−PRi+z [p] and PRi [q]−PLi [q] + 2z = PRi+z [q] = PLi+z [q] for

any 1 ≤ z ≤ min{Di
1, D

i
2, D

i
3}. Since x

2
≤ min{Di

1, D
i
2, D

i
3}, the Parikh vectors of the sliding

windows become equal at position i+ x
2
. (⇒) Since x = PLi [p]−PRi [p] = PRi [q]−PLi [q] > 0,

PLi+x2 [p] = PLi+x2 [p], and PLi+x2 [q] = PLi+x2 [q], we have w[beg(Li)] = cp = w[end(Ri) + 1]

and w[beg(Ri)] = cq. From the above arguments, it is clear that i + x
2

is the only position

between i and bp(i) where an Abelian square of length 2d can start.

Lemma 24. Assume diff (PLi ,PRi) = 3. Let cp = w[beg(Li)], cp′ = w[end(Ri) + 1], and cq =

w[beg(Ri)]. Then, i+x with i < i+x ≤ bp(i) is the beginning position of an Abelian square of

length 2d iff 0 < x = PLi [p]− PRi [p] = PLi [p′]− PRi [p′] =
PRi [q]−PLi [q]

2
≤ min{Di

1, D
i
2, D

i
3}.

Also, this is the only Abelian square of length 2d beginning at positions between i and bp(i).

Proof. (⇐) Since w[beg(Li)] = cp, w[end(Ri) + 1] = cp′ and w[beg(Ri)] = cq, we have that

PLi [p]− z = PLi+z [p], PLi [q] + z = PLi+z [q], PRi [q]− z = PRi+z [q], PLi [q] + z = PLi+z [q] and

PRi [p′] + z = PRi+z [p′] for any 1 ≤ z ≤ min{Di
1, D

i
2, D

i
3}. Since x ≤ min{Di

1, D
i
2, D

i
3}, the

Parikh vectors of the sliding windows become equal at position i+ x and i < i+ x ≤ bp(i).

(⇒) Since i < i + x ≤ bp(i), we have < x ≤ min{Di
1, D

i
2, D

i
3}. Since w[beg(Li)] = cp,

w[end(Ri) + 1] = cp′ , w[beg(Ri)] = cq, and PLi+x = PRi+x , we have x = PLi [p] − PRi [p] =

PLi [p′]− PRi [p′] =
PRi [q]−PLi [q]

2
.

From the above arguments, it is clear that i + x is the only position between i and bp(i)

where an Abelian square of length 2d can start.

Lemma 25. Assume diff (PLi ,PRi) ≥ 4. Then, there exists no Abelian square of length 2d

beginning at any position j with i < j ≤ bp(i).

Proof. By the definition of bp(i), we have that w[beg(Li)] = w[beg(Lbp(i))− 1], w[beg(Ri)] =

w[beg(Rbp(i)) − 1], and w[end(Ri)] = w[end(Rbp(i)) − 1]. Since the ending position of

the left sliding window is adjacent to the beginning position of the right sliding window, we

have diff (PLi ,PRi) − diff (PLj ,PRj) ≤ 3 for any i ≤ j ≤ bp(i). Since we have assumed

diff (PLi ,PRi) ≥ 4, we get diff (PLj ,PRj) ≥ 1. Thus there exist no Abelian squares starting at

position j.

We are ready to show the main result of this section.

70

CHAPTER 7. ABELIAN REGULARITIES

Theorem 16. Given a string w of the length n over an alphabet of size σ, we can compute all

Abelian squares in w in O(mn) time and O(n) working space, where m is the size of RLE (w).

Proof. Consider an arbitrarily fixed window length d. As was explained, it takes O(m) time to

compute PL1 , PR1 , and diff (PL1 ,PR1) for the initial position 1. Suppose that the two windows

are aligned at some position i ≥ 1. Then, our algorithm computes Abelian squares starting

at positions between i and bp(i) using one of Lemma 21, Lemma 22, Lemma 23, Lemma 24,

and Lemma 25, depending on the value of diff (PL1 ,PRi). In each case, all Abelian squares

of length 2d starting at positions between i and bp(i) can be computed in O(1) time by simple

arithmetics. Then, the left and right windows Li and Ri are shifted to Lbp(i) and Rbp(i), respec-

tively. Using the array S as in Theorem 15, we can compute bp(i) in O(1) time for a given

position i in w.

Let us analyze the number of times the windows are shifted for each d. Since bp(i) =

i + min{Di
1, D

i
2, D

i
3}, for each position p there can be at most three distinct positions i, j, k

such that p = bp(i) = bp(j) = bp(k). Thus, for each d we shift the two adjacent windows at

most 3m times.

Overall, our algorithm runs in O(mn) time for all window lengths d = 1, . . . , bn/2c. The

space requirement is O(n) since we need to maintain the Parikh vectors of the two sliding

windows and the array S.

7.3.3 Example for Computing Abelian squares using RLEs

Here we show some examples on how our algorithm computes all Abelian squares of a given

string based on its RLE.

Consider string w = a12b4a3c2d2c2a2 over alphabet Σ = {a, b, c, d} of size 4. Let d = 4.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.2: beg(L1) = 1, beg(R1) = 5, end(R1) + 1 = 9, w[beg(L1)] = w[beg(R1)] =
w[end(R1) + 1] = a.

See Figure 7.2 for the initial step of our algorithm, where i = 1. As diff (PL1 ,PR1) = 0,

w[1..8] = aaaaaaaa is an Abelian square. Since min{D1
1, D

1
2, D

1
3} = min{12, 8, 4} = 4, the

next break point is bp(1) = 1 + 4 = 5. Since w[beg(L1)] = w[beg(R1)] = w[end(R1) + 1] = a

and it follows from Lemma 21 that the substrings of length 2d = 8 between 1 and the break

71

CHAPTER 7. ABELIAN REGULARITIES

point are all equal, i.e., w[1..8] = w[2..9] = w[3..10] = w[4..11] = w[5..12], and all of them are

Abelian squares. Hence we output a triple 〈1, 5, 4〉 representing all these Abelian squares. We

update i← bp(1) = 5, and proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.3: beg(L5) = 5, beg(R5) = 9, end(R5) + 1 = 13, w[beg(L5)] = w[beg(R5)] =
a, w[end(R5) + 1] = b.

Next, see Figure 7.3 where the left window has been shifted to L5 = w[5..6] = aaaa and

the right window has been shifted to R5 = w[8..12] = aaaa. Since min{D5
1, D

5
2, D

5
3} =

min{8, 4, 4} = 4, the next break point is bp(5) = 5 + 4 = 9. Since PL5 = PR5 and

w[beg(L5)] = w[beg(R5)] = a 6= w[end(R5) + 1] = b, it follows from Lemma 21 that there are

no Abelian squares between 5 and the break point 9. We update i← bp(5) = 9, and proceed to

the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.4: beg(L9) = 9, beg(R9) = 13, end(R9) + 1 = 17, w[beg(L9)] = a, w[beg(R9)] =
b, w[end(R9) + 1] = a.

Next, see Figure 7.4 where the left window has been shifted to L9 = w[9..12] = aaaa

and the right window has been shifted to R9 = w[13..16] = bbbb. Since min{D9
1, D

9
2, D

9
3} =

min{4, 4, 3} = 3, the next break point is bp(9) = 9 + 3 = 12. Since diff (PL9 ,PR9) = 2,

w[beg(L9)] = w[end(R9) + 1] = a 6= w[beg(R9)] = b, and PL9
[a]−PR9

[a]=PR9
[b]−PL9

[b]

2
= 2 ≤

min{D9
1, D

9
2, D

9
3} = 3, it follows from Lemma 23 that w[11..18] is the only Abelian square of

length 2d = 8 starting at positions between 9 and 12. We hence output 〈11, 11, 4〉. We update

i← bp(9) = 12, and proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.5: beg(L12) = 12, beg(R12) = 16, end(R12) + 1 = 20, w[beg(L12)] =
a, w[beg(R12)] = b, w[end(R12) + 1] = c.

Next, see Figure 7.5 where the left window has been shifted to L12 = w[12..15] = abbb and

the right window has been shifted to R12 = w[16..19] = baaa. Since min{D12
1 , D

12
2 , D

12
3 } =

72

CHAPTER 7. ABELIAN REGULARITIES

min{1, 1, 1} = 1, the next break point is bp(12) = 12 + 1 = 13. Since diff (PL12 ,PR12) = 3

and w[beg(L12)] = a 6= w[beg(R12)] = b 6= w[end(R12) + 1] = c, it follows from Lemma 22

and Lemma 23 that there are no Abelian squares starting at positions between 12 and 13. We

update i← bp(12) = 13, and proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.6: beg(L13) = 13, beg(R13) = 17, end(R13)+1 = 21, w[beg(L13)] = b, w[beg(R13)] =
a, w[end(R13) + 1] = c.

Next, see Figure 7.6 where the left window has been shifted to L13 = w[13..16] = bbbb and

the right window has been shifted to R13 = w[17..20] = aaac. Since min{D13
1 , D

13
2 , D

13
3 } =

min{4, 3, 1} = 1, the next break point is bp(13) = 13 + 1 = 14. Since diff (PL13 ,PR13) = 3

and PL13 [b]− PR13 [b] = 4 6= −1 = PL13 [c]− PR13 [c], it follows from Lemma 24 that 14 is not

the beginning position of an Abelian square of length 2d = 8. We update i ← bp(13) = 14,

and proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.7: beg(L14) = 14, beg(R14) = 18, end(R14)+1 = 22, w[beg(L14)] = b, w[beg(R14)] =
a, w[end(R14) + 1] = d.

Next, see Figure 7.7 where the left window has been shifted to L14 = w[14..17] = bbba and

the right window has been shifted to R14 = w[18..21] = aacc. Since min{D14
1 , D

14
2 , D

14
3 } =

min{3, 2, 2} = 2, the next break point is bp(14) = 14 + 2 = 16. Since diff (PL14 ,PR14) = 3

and PL14 [b]− PR14 [b] = 3 6= −1 = PL14 [c]− PR14 [c], it follows from Lemma 24 that there are

no Abelian squares starting at positions between 14 and 16. We update i ← bp(14) = 16, and

proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.8: beg(L16) = 16, beg(R16) = 20, end(R16)+1 = 24, w[beg(L16)] = b, w[beg(R16)] =
w[end(R16) + 1] = c

Next, see Figure 7.8 where the left window has been shifted to L16 = w[16..19] = baaa and

the right window has been shifted to R16 = w[20..23] = ccdd. Since min{D16
1 , D

16
2 , D

16
2 } =

73

CHAPTER 7. ABELIAN REGULARITIES

min{1, 2, 2} = 1, the next break point is bp(16) = 16 + 1 = 17. Since diff (PL16 ,PR16) = 3

and PL16 [b]− PR16 [b] = 1 6= −2 = PL16 [c]− PR16 [c], it follows from Lemma 24 that 16 is not

the beginning position of an Abelian square of length 2d = 8. We update i ← bp(16) = 17,

and proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.9: beg(L17) = 17, beg(R17) = 21, end(R17) + 1 = 25, w[beg(L17)] =
a, w[beg(R17)] = c, w[end(R17) + 1] = a

Next, see Figure 7.9 where the left window has been shifted to L17 = w[17..20] = aaac and

the right window has been shifted to R17 = w[21..24] = cddc. Since min{D17
1 , D

17
2 , D

17
2 } =

min{3, 1, 1} = 1, the next break point is bp(17) = 17 + 1 = 18. Since diff (PL17 ,PR17) = 3

and PL17 [a]− PR17 [a] = 3 6= −2 = PL17 [c]− PR17 [c], it follows from Lemma 24 that 17 is not

the beginning position of an Abelian square of length 2d = 8. We update i ← bp(17) = 18,

and proceed to the next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.10: beg(L18) = 18, beg(R18) = 22, end(R18) + 1 = 26, w[beg(L18)] =
a, w[beg(R18)] = d, w[end(R18) + 1] = c

Next, see Figure 7.10 where the left window has been shifted toL18 = w[18..21] = aacc and

the right window has been shifted to R18 = w[20..25] = ddcc. Since min{D18
1 , D

18
2 , D

18
2 } =

min{2, 2, 2} = 2, the next break point is bp(18) = 18 + 2 = 20. Since diff (PL18 ,PR18) = 3,

we use Lemma 24. Since PL18 [a] − PR18 [a] = PL18 [c] − PR18 [c] =
PR18

[d]−PL18
[d]

2
= 1 ≤

min{D18
1 , D

18
2 , D

18
3 } = 2, it follows from Lemma 24 that w[19..26] is an Abelian square of

length 2d = 8. We hence output 〈19, 19, 4〉. We update i ← bp(19) = 20, and proceed to the

next step.

 a a a a a a a a a a a a b b b b a a a c c d d c a c c

1 2! 3! 4! 5! 6! 7! 8! 9!10!11!12!13!14!15!16!17!18!19!20!21!22!23!24!25!26!27!

Figure 7.11: beg(L20) = 20, beg(R20) = 24, w[beg(L20)] = c, w[beg(R20)] = c

Next, see Figure 7.11 where the left window has been shifted to L20 = w[20..23] = ccdd

and the right window has been shifted to R20 = w[24..27] = cacc. Since diff (PL20 ,PR20) = 3

74

CHAPTER 7. ABELIAN REGULARITIES

the right end of the right window has reached the last positions of the input string, the algorithm

terminates here. Recall that this algorithm computed all the Abelian squares of length 2d = 8

in this string.

7.4 Computing longest common Abelian factors using RLEs

In this section, we introduce our RLE-based algorithm which computes longest common Abelian

factors of two given strings w1 and w2. Formally, we solve the following problem. Let

n = min{|w1|, |w2|}. Given two strings w1 and w2, compute the length l = max{d ∈ [1, n] |
1 ≤ ∃i ≤ |w1|, 1 ≤ ∃k ≤ |w2| s.t. Pw1[i..i+d−1] = Pw2[k..k+d−1]} of the longest common

Abelian factor(s) of w1 and w2, together with a pair (i, k) of positions on w1 and w2 such that

Pw1[i..i+l−1] = Pw2[k..k+l−1].

Our algorithm uses an idea from Alattabi et al.’s algorithm [2]. For each window size d,

their algorithm computes the Parikh vectors of all substrings of w1 and w2 of length d in O(σn)

time, using two windows of length d each. Then they sort the Parikh vectors in O(σn) time,

and output the largest d for which common Parikh vectors exist for w1 and w2, together with the

lists of respective occurrences of longest common Abelian factors. The total time requirement

is clearly O(σn2).

Our algorithm is different from Alattabi et al.’s algorithm in that (1) we use RLEs of strings

w1 and w2 and (2) we avoid to sort the Parikh vectors. As in the previous sections, for a given

window length d (1 ≤ n), we shift two windows of length d over both RLE (w1) and RLE (w2),

and stops when we reach a break point of RLE (w1) or RLE (w2). We then check if there is a

common Abelian factor in the ranges of w1 and w2 we are looking at.

Since we use a single window for each of the input strings w1 and w2, we need to modify

the definition of the break points. Let Ui and Vk be the sliding windows for w1 and w2 that are

aligned at position i of w1 and at position k of w2, respectively. For each position i ≥ 1 in w1,

let bp1(i) = i+min{Di
1, D

i
2}, whereDi

1 = succ(beg(Ui))−i andDi
2 = succ(end(Ui))−i. For

each position k ≥ 1 in w2, bp2(k) is defined analogously. Let pl = beg(Ui), pr = end(Ui) + 1,

ql = beg(Vk) and qr = end(Vk) + 1.

Consider an arbitrarily fixed window length d. Assume that we have just shifted the window

on w1 from position i (i.e., Ui = w1[i..i + d − 1]) to the break point bp1(i) (i.e., Ubp1(i) =

w1[bp1(i)..bp1(i) + d− 1]). Let cpl = w1[i] and cpr = w1[i+ d] (see also Figure 7.12).

For characters cpl and cpr , we consider the minimum and maximum numbers of their oc-

75

CHAPTER 7. ABELIAN REGULARITIES

w
1
!

w
2
!

cpl! cpr!

cql! cqr!

d!

d!

Figure 7.12: Conceptual drawing of cpl , cpr , cqr , and cql .

currences during the slide from position i to bp1(i). Let min(pl) = Pw1[bp1(i)..bp1(i)+d−1][pl],

max(pl) = Pw1[i..i+d−1][pl],min(pr) = Pw1[i..i+d−1][pr] andmax(pr) = Pw1[bp1(i)..bp1(i)+d−1][pr].

We will use these values to determine if there is a common Abelian factor of length d for w1

and w2.

Also, assume that we have just shifted the window on w2 from position k (i.e., Vk =

w2[k..k + d − 1]) to the break point bp2(k) (i.e., Vbp2(k) = w2[bp2(k)..bp2(k) + d − 1]). Let

cql = w2[k] and cqr = w2[k + d] (see also Figure 7.12). For characters cql and cqr , we also con-

sider the minimum and maximum numbers of occurrences of of these characters during the slide

from position k to bp2(k). Letmin(ql) = Pw2[bp2(k)..bp2(k)+d−1][ql],max(ql) = Pw2[k..k+d−1][ql],

min(qr) = Pw2[k..k+d−1][qr] and max(qr) = Pw2[bp2(k)..bp2(k)+d−1][qr].

Let m be the total size of RLE (w1) and RLE (w2), and l be the length of longest common

Abelian factors of w1 and w2. Our algorithm computes an O(m2)-size representation of every

pair (i, k) of positions for which (w1[i..i+ l−1], w2[k..k+ l−1]) is a longest common Abelian

factor of w1 and w2.

In the lemmas which follow, we assume that Pw1[i..i+d−1][v] = Pw2[k..k+d−1][v] for any v ∈
{1, .., σ} \ {pl, pr, ql, qr}. This is because, if this condition is not satisfied, then there cannot

be an Abelian common factor of length d for positions between i to bp1(i) in w1 and position

between k to bp2(k) in w2.

Lemma 26. Assume cpl = cpr and cql = cqr . Then, for any pair of positions i ≤ i′ ≤ bp1(i)

and k ≤ k′ ≤ bp2(k), (w1[i
′..i′ + d − 1], w2[k

′..k′ + d − 1]) is an Abelian common factor of

length d iff Pw1[i..i+d−1] = Pw2[k..k+d−1].

Proof. Since cpl = cpr and cql = cqr , the Parikh vectors of the sliding windows do not change

during the slides from i to bp1(i) and from k to bp2(k). Thus the lemma holds.

Lemma 27. Assume cpl = cql 6= cpr = cqr . There is a common Abelian common factor

(w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) of length d iff 0 ≤ x ≤ bp1(i) − i,

0 ≤ y ≤ bp2(k)− k and x− y = max(pl)−max(ql) = min(qr)−min(pr).

76

CHAPTER 7. ABELIAN REGULARITIES

Proof. During the slide of the window on w1, the number of occurrences of cpl decreases and

that of cpr increases. That is, Pw1[i+x..i+x+d−1][pl] = Pw1[i..i+d−1][pl] − x = max(pl) − x and

Pw1[i+x..i+x+d−1][pr] = Pw1[i..i+d−1][pr] + x = min(pr) + x. On the other hand, during the

slide of the window on w2, the number of occurrence of cql decreases and that of cqr increases.

That is, Pw2[k+y..k+y+d−1][ql] = Pw2[k..k+d−1][ql]− y = max(ql)− y and Pw2[k+y..k+y+d−1][pr] =

Pw2[k..k+d−1][qr] + y = min(qr) + y.

Assume a pair (w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) is a common Abelian

factor of length d. Then,Pw1[i+x..i+x+d−1][pl] = Pw2[k+y..k+y+d−1][ql] andPw1[i+x..i+x+d−1][pr] =

Pw2[k+y..k+y+d−1][qr], that is, max(pl)− x = max(ql)

− y and min(pr) + x = min(qr) + y. Therefore x − y = max(pl) −max(ql) = min(qr) −
min(pr).

Assume that x − y = max(pl) − max(ql) = min(qr) − min(pr). Then, we have that

max(pl) − max(ql) = Pw1[i..i+d−1][pl] − Pw2[k..k+d−1][ql] = Pw1[i+x..i+x+d−1][pl] + x−
Pw2[k+y..k+y+d−1][ql]− y = x− y, that is, Pw1[i+x..i+x+d−1][pl] = Pw2[k+y..k+y+d−1][ql]. Also, we

have that min(qr) − min(pr) = Pw2[k..k+d−1][qr] − Pw1[i..i+d−1][pr] = Pw2[k+y..k+y+d−1][qr] −
y − Pw1[i+x..i+x+d−1][pr] + x = x − y, that is, Pw2[k+y..k+y+d−1][qr] = Pw1[i+x..i+x+d−1][pr].

Therefore, a pair (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) is a common Abelian factor

of w1 and w2.

Lemma 28. Assume cpr 6= cpl = cql 6= cqr and cpr 6= cqr . There is a common Abelian factor

(w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length diff bp1(i)−i ≥ x = Pw2[k..k+d−1][pr]−
min(pr) ≥ 0, bp2(k) − k ≥ y = Pw1[i..i+d−1][qr] − min(qr) ≥ 0 and Pw1[i..i+d−1][pl] − x =

Pw2[k..k+d−1][ql]− y.

Proof. During the slides of the windows on w1 and w2, the numbers of occurrences of cqr in w1

and cpr in w2 do not change.

Assume there is a common Abelian factor (w1[i + x..i + x + d − 1], w2[k + y..k + y +

d − 1]) of length d. Clearly 0 ≤ x ≤ bp1(i) − i and 0 ≤ y ≤ bp2(k) − k. Then, we have

Pw1[i+x..i+x+d−1][pr] = Pw2[k+y..k+y+d−1][pr], Pw2[k+y..k+y+d−1][qr] = Pw1[i+x..i+x+d−1][qr] and

Pw1[i+x..i+x+d−1][pl] = Pw2[k+y..k+y+d−1][ql], that is, min(pr)+x = Pw2[k..k+d−1][pr], min(qr)+

y = Pw1[i..i+d−1][qr] and Pw1[i..i+d−1] [pl] − x = Pw2[k..k+d−1][ql] − y. Consequently, we obtain

x = Pw2[k..k+d−1][pr]−min(pr) and y = Pw1[i..i+d−1][qr]−min(qr).

Assume that bp1(i) − i ≥ x = Pw2[k..k+d−1][pr] − min(pr) ≥ 0, bp2(k) − k ≥ y =

Pw1[i..i+d−1][qr] − min(qr) ≥ 0 and Pw1[i..i+d−1][pl] − x = Pw2[k..k+d−1][ql] − y. Then, we

77

CHAPTER 7. ABELIAN REGULARITIES

have that min(pr) + x = Pw1[i..i+d−1][pr] + x = Pw1[i+x..i+x+d−1][pr] = Pw2[k..k+d−1][pr] =

Pw2[k+y..k+y+d−1][pr], min(qr) + y = Pw2[k..k+d−1][qr] + y = Pw2[k+y..k+y+d−1][qr] =

Pw1[i..i+d−1][qr] = Pw1[i+x..i+x+d−1][qr] and Pw1[i+x..i+x+d−1][pl] = Pw2[k+y..k+y+d−1][ql]. There-

fore, a pair (w1[i+ x..i+ x+ d− 1], w2[k + y..k + y + d− 1]) is a common Abelian factor of

w1 and w2.

Lemma 29. Assume cpl 6= cpr = cqr 6= cql and cpl 6= cql . There is a common Abelian factor

(w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]) of length d iff x = max(pl)−Pw2[k..k+d−1][pl] ≥ 0,

y = max(ql)− Pw1[i..i+d−1][ql] ≥ 0 and Pw1[i..i+d−1][pr] + x = Pw2[k..k+d−1][qr] + y.

Lemma 29 can be proved by a similar argument to the proof of Lemma 28.

Lemma 30. Assume cpl = cqr 6= cpr = cql . There is a common Abelian factor (w1[i+x..i+x+

d−1], w2[k+y..k+y+d−1]) of length d iff x+y = min(pr)−max(ql) = max(ql)−min(pr),

0 ≤ x ≤ bp1(i)− i and 0 ≤ y ≤ bp2(k)− k.

Proof. When the window on w1 slides by x positions, the occurrence of cpl in the window

decreases by x and the occurrence of cpr in the window increases by x. When the window on

w2 slides by y positions, the occurrence of cql in the window decreases by y and the occurrence

of cqr in the window increases by y.

Assume there is a common Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]).

Then Pw1[i+x..i+x+d−1][pr] = Pw1[i..i+d−1][pr] + x = min(pr) + x, Pw2[k+y..k+y+d−1][ql] =

Pw2[k..k+d−1][ql]− y = max(ql)− y, Pw1[i+x..i+x+d−1][pl] = Pw1[i..i+d−1][pl]− x = max(pl)− x
and Pw2[k+y..k+y+d−1][qr] = Pw2[k..k+d−1][qr]+y = min(qr)+y. Therefore Pw1[i+x..i+x+d−1][pr]

= Pw2[k+y..k+y+d−1][ql] ⇔ x + y = max(ql) − min(pr) and Pw1[i+x..i+x+d−1][pl]

= Pw2[k+y..k+y+d−1][qr]⇔ x+ y = max(pl)−min(qr).

Assume x+y = max(ql)−min(pr) = max(pl)−min(qr). Clearly 0 ≤ x ≤ bp1(i)−i and

0 ≤ y ≤ bp2(k)−k. Thenmax(ql)−y = min(pr)+x andmax(pl)−x = min(qr)+y, that is,

Pw2[k+y..k+y+d−1][ql] = Pw1[i+x..i+x+d−1][pr] and Pw1[i+x..i+x+d−1][pl] = Pw2[k+y..k+y+d−1][qr].

Therefore a pair (w1[i+x..i+x+ d− 1], w2[k+ y..k+ y+ d− 1]) is a common Abelian factor

of w1 and w2.

Lemma 31. Assume cpl , cpr , cql and cqr are mutually distinct. There is a common Abelian fac-

tor (w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) of length d iff 0 ≤ x = max(pl) −
Pw2[k..k+d−1][pl] = Pw2[k..k+d−1][pr] − min(pr) ≤ bp1(i) − i and 0 ≤ y = max(ql) −
Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr]−min(qr) ≤ bp2(k)− k.

78

CHAPTER 7. ABELIAN REGULARITIES

Proof. During the slides, the numbers of occurrences of cql and cqr in the window on w1 do not

change, and those of cpl and cpr in the window on w2 do not change.

Assume there is a common Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]).

Then, Pw1[i+x..i+x+d−1][pr] = min(pr) + x = Pw2 [pr], Pw1[i+x..i+x+d−1] [pl] = max(pl) − x =

Pw2 [pl], Pw2[k+y..k+y+d−1][qr] = min(qr) + y = Pw1 [qr] and Pw2[k+y..k+y+d−1][ql] = max(ql)−
y = Pw1 [ql]⇔ 0 ≤ x = max(pl) − Pw2 [pl] = Pw2 [pr] −min(pr) ≤ bp1(i) − i and 0 ≤ y =

max(ql)− Pw1 [ql] = Pw1 [qr]−min(qr) ≤ bp2(k)− k.

Assume 0 ≤ x = max(pl) − Pw2[k..k+d−1][pl] = Pw2[k..k+d−1][pr] − min(pr) ≤ bp1(i) −
i and 0 ≤ y = max(ql) − Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr] − min(qr) ≤ bp2(k) − k.

Then, x = Pw1[i..i+d−1][pl] − Pw2[k..k+d−1][pl] = Pw2[k..k+d−1][pr] − Pw2[k..k+d−1][qr] and y =

Pw2[k..k+d−1][ql]−Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr]−Pw2[k..k+d−1][qr]. That is, Pw2[k..k+d−1][pl]

= Pw2[k+y..k+y+d−1][pl] = Pw1[i..i+d−1] [pl] − x = Pw1[i+x..i+x+d−1][pl], Pw2[k..k+d−1][pr]

= Pw2[k+y..k+y+d−1][pr] = Pw1[i..i+d−1][pr] + x = Pw1[i+x..i+x+d−1][pr], Pw1[i..i+d−1][ql]

= Pw1[i+x..i+x+d−1] [ql] = Pw2[k..k+d−1][ql] − y = Pw2[k+y..k+y+d−1][ql], and Pw1[i..i+d−1][qr] =

Pw1[i+x..i+x+d−1][qr] = Pw2[k..k+d−1][qr] + y = Pw2[k+y..k+y+d−1][qr]. Therefore, a pair (w1[i +

x..i+ x+ d− 1], w2[k + y..k + y + d− 1]) is a common Abelian factor of w1 and w2.

Lemma 32. Assume cql 6= cpl = cpr 6= cqr and cql 6= cqr . There is a common Abelian factor

(w1[i+ x..i+ x+ d− 1], w2[k+ y..k+ y+ d− 1]) of length d iff 0 ≤ x ≤ bp1(i)− i, 0 ≤ y =

max(ql) − Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr] −min(qr) ≤ bp2(k) − k and Pw1[i..i+d−1][pl] =

Pw2[k..k+d−1][pl].

Proof. During the slide, the number of occurrences of cpl (= cpr) in the window on w1 does not

change.

Assume that there is a common Abelian factor (w1[i+x..i+x+d−1], w2[k+y..k+y+d−1]).

Clearly 0 ≤ x ≤ bp1(i)− i and 0 ≤ y ≤ bp2(k)−k. Then, it holds that Pw2[k+y..k+y+d−1][ql] =

max(ql)−y = Pw1[i+x..i+x+d−1][ql], Pw2[k+y..k+y+d−1][qr] = min(qr)+y = Pw1[i+x..i+x+d−1][qr]

and Pw2[k+y..k+y+d−1] [pl] = Pw1[i+x..i+x+d−1][pl], that is, 0 ≤ y = max(ql)− Pw1[i..i+d−1][ql] =

Pw1[i..i+d−1][qr]−min(qr) and Pw1[i..i+d−1][pl] = Pw2[k..k+d−1][pl].

Assume y = max(ql)−Pw1[i..i+d−1][ql] = Pw1[i..i+d−1][qr]−min(qr) and Pw1[i..i+d−1][pl] =

Pw2[k..k+d−1][pl]. Then, Pw2[k..k+d−1][ql] − y = Pw1[i..i+d−1][ql] and Pw2[k..k+d−1][qr] + y =

Pw1[i..i+d−1][qr], that is, Pw2[k+y..k+y+d−1][ql] = Pw1[i..i+d−1][ql] and Pw2[k+y..k+y+d−1][qr] =

Pw1[i..i+d−1][qr]. Therefore, a pair (w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) is a

common Abelian factor of length d of w1 and w2.

79

CHAPTER 7. ABELIAN REGULARITIES

Lemma 33. Assume cpl 6= cql = cqr 6= cpr and cpl 6= cpr . There is a common Abelian factor

(w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) of length d iff 0 ≤ y ≤ bp2(k) − k and

x = max(pl)− Pw2[k..k+d−1][pl] = Pw2[k..k+d−1][pr]−min(pr) ≥ 0.

Lemma 33 can be proved by a similar argument to the proof of Lemma 32.

Lemma 34. Assume cpr 6= cpl = cqr 6= cql and cpr 6= cql . There is a common Abelian factor

(w1[i+ x..i+ x+ d− 1], w2[k + y..k + y + d− 1]) of length d iff 0 ≤ x = Pw2[k..k+d−1][pr]−
min(pr) ≤ bp1(i) − i, 0 ≤ y = max(ql) − Pw1[i..i+d−1][ql] ≤ bp2(k) − k and x + y =

Pw1[i..i+d−1][pl]− Pw2[k..k+d−1][qr] = max(pl)−min(qr).

Proof. During the slides of the windows, the number of occurrences of cql in the window on w1

and that of cpr in the window on w2 do not change.

Assume there is a common Abelian factor (w1[i + x..i + x + d − 1], w2[k + y..k + y +

d − 1]). Then, Pw1[i..i+d−1][ql] = Pw2[k+y..k+y+d−1][ql] = max(ql) − y, Pw2[k..k+d−1][pr] =

Pw1[i+x..i+x+d−1][pr] = min(pr)+x, Pw1[i+x..i+x+d−1][pl] = min(pl)+x = Pw2[k+y..k+y+d−1][qr]

= max(qr) − y, that is, y = max(ql) − Pw1[i..i+d−1][ql], x = Pw2[k..k+d−1][pr] −min(pr) and

x+ y = max(pl)−min(qr).

Assume y = max(ql) − Pw1[i..i+d−1][ql], x = Pw2[k..k+d−1][pr] − min(pr) and x + y =

max(pl) − min(qr). Then, y = Pw2[k..k+d−1][ql] − Pw1[i..i+d−1][ql], x = Pw2[k..k+d−1][pr] −
Pw1[i..i+d−1][pr] and x + y = Pw1[i..i+d−1][pl] − Pw2[k..k+d−1][qr], that is, Pw1[i..i+d−1][ql] =

Pw1[i+x..i+x+d−1][ql] = Pw2[k..k+d−1][ql] − y = Pw2[k+y..k+y+d−1][ql], Pw2[k..k+d−1][pr]

= Pw2[k+y..k+y+d−1][pr] = Pw1[i..i+d−1] [pr] + x = Pw1[i+x..i+x+d−1][pr] and Pw1[i..i+d−1][pl] −
x = Pw1[i+x..i+x+d−1][pl] = Pw2[k..k+d−1][qr] + y = Pw2[k+y..k+y+d−1][qr]. Therefore, a pair

(w1[i+ x..i+ x+ d− 1], w2[k + y..k + y + d− 1]) is a common Abelian factor of length d of

w1 and w2.

Lemma 35. Assume cpl 6= cql = cpr 6= cqr and cpl 6= cqr . There is a common Abelian factor

(w1[i + x..i + x + d − 1], w2[k + y..k + y + d − 1]) of length d iff 0 ≤ x = max(pl) −
Pw2[k..k+d−1][pl] ≤ bp1(i)− i, 0 ≤ y = Pw1[i..i+d−1][qr]−min(qr) ≤ bp2(k)− k and x + y =

Pw2[k..k+d−1][ql]− Pw1[i..i+d−1][pr] = max(ql)−min(pr).

Lemma 35 can be proved by a similar argument to the proof of Lemma 34.

Theorem 17. Given two strings w1 and w2, we can compute an O(m2)-size representation of

all longest common Abelian factors of w1 and w2 in O(m2n) time with O(σ) working space,

where m and n are the total size of the RLEs and the total length of w1 and w2, respectively.

80

CHAPTER 7. ABELIAN REGULARITIES

Proof. The correctness follows from Lemmas 26–35.

Letm1,m2 be the sizes of RLE (w1) and RLE (w2), respectively. Let nmin = min{|w1|, |w2|}.
For each fixed window size d, the window for w1 shifts over w1 O(m1) times. For each

shift of the window for w1, the window for w2 shifts over w2 O(m2) times. Thus, we have

O(m1 · m2 · nmin) total shifts. Since all the conditions in Lemmas 26–35 can be tested in

O(1) time each by simple arithmetic, the total time complexity is O(m1m2nmin + n), where

the n term denotes the cost to compute RLE (w1) and RLE (w2). Thus, it is clearly bounded by

O(m2n). Next, we focus on the output size. Let l be the length of the longest common Abelian

factors of w1 and w2. Using Lemmas 27–35, for each pair of the shifts of the two windows we

can compute an O(1)-size representation of the longest common Abelian factors found. Since

there are O(m1 · m2) shifts for window length l, the output size is bounded by O(m2). The

working space is O(σ), since we only need to maintain two Parikh vectors for the two sliding

windows.

Examples.

We show an example of how our algorithm computes a common Abelian factor of length 4 for

two input strings w1 = aaaaacbbbcc and w2 = cccaaccbbbb.

w
1
 : a a a a a c b b b c c

w
2
 : c c c a a c c b b b b

1 2! 3! 4! 5! 6! 7! 8! 9! 10! 11!

Figure 7.13: Showing two sliding windows
of length d = 4, where i = 3, bp1(i) = 6,
k = 1, bp2(k) = 2, cpl = a, cpr = b,
cql = c, cqr = a.

w
1
 : a a a a a c b b b c c

w
2
 : c c c a a c c b b b b

1 2! 3! 4! 5! 6! 7! 8! 9! 10! 11!

Figure 7.14: Showing two sliding windows
of length d = 4, where i = 3, bp1(i) = 6,
k = 2, bp2(k) = 4, cpl = a, cpr = b,
cql = c, cqr = c.

Suppose that the window for w1 is now aligned at position 3 of w1 (namely U3 = w1[3..6] =

aaac). We then shift it to position bp1(3) = 6 (namely U6 = w1[6..9] = cbbb). For this shift of

the window on w1, we test O(m2) shifts of the window over the second string w2, as follows.

We begin with position 1 of the other string w2 (namely V1 = w2[1..4] = ccca), and shift

the window to position bp2(1) = 2. See also Figure 7.13. It follows from Lemma 34 that there

is no common Abelian factor during these slides. We move on to the next step.

Next, the window for w2 is shifted from position 2 to position bp2(2) = 4 (namely, V4 =

81

CHAPTER 7. ABELIAN REGULARITIES

w2[4..7] = aacc). See also Figure 7.14. It follows from Lemma 33 that there is no common

Abelian factor during the slides. We move on to the next step.

w
1
 : a a a a a c b b b c c

w
2
 : c c c a a c c b b b b

1 2! 3! 4! 5! 6! 7! 8! 9! 10! 11!

Figure 7.15: Showing two sliding windows
of length d = 4, where i = 3, bp1(i) = 3,
k = 4, bp2(k) = 6, cpl = a, cpr = b,
cql = a, cqr = b.

w
1
 : a a a a a c b b b c c

w
2
 : c c c a a c c b b b b

1 2! 3! 4! 5! 6! 7! 8! 9! 10! 11!

Figure 7.16: Showing two sliding windows
of length d = 4, where i = 3, bp1(i) = 3,
k = 6, bp2(k) = 3, cpl = a, cpr = b,
cql = c, cqr = b.

Next, the window for w2 is shifted from position 4 to position bp2(4) = 6 (namely, V6 =

w2[6..9] = ccbb). See also Figure 7.4. Since the numbers of occurrences of c on w1 and w2 are

different and c is not equal to a or b, there is no common Abelian factor during the slides. We

move on to the next step.

Next, the window for w2 is shifted from position 6 to position bp2(6) = 8. See Figure 7.4.

It follows from Lemma 29 that there is a common Abelian factor (w1[6..9], w2[7..10]) of length

d = 4.

82

Chapter 8

Conclusion

In this thesis, we studied the problem of factorizing a string into combinatorial objects.

In Chapter 3, we considered the reversed Lempel Ziv factorization. We then presented an

algorithm that computes the reversed Lempel Ziv factorization of input string of length n in

O(n log σ) time and O(n log n) time in an online manner.

In Chapter 4, we defined the palindromic cover and the palindromic factorization. We pro-

posed an algorithm that computes the palindromic cover in O(n) time and space, and an algo-

rithm that computes the palindromic factorization in O(n log n) time in online manner, where

n is the length of input string. Moreover we showed an online algorithm computes the maximal

palindromic factorization in O(n log n) time.

In Chapter 5, we introduced the diverse palindromic factorization problem, and we showed

that the problem is NP-complete.

In Chapter 6, we defined the closed factorization. We proposed an algorithm that computes

the closed factorization in O(n) time and an algorithm that computes the longest closed factor

array in O(n logn
log logn

) time.

In Chapter 7, we considered Abelian regularities and algorithms that efficiently compute

their regularities via run length encoding. We proposed an algorithm that computes all Abelian

periods in O(mn) time, an algorithm that comptues all Abelian squares in O(mn) time, and an

algorithm that computes all longest common Abelian factors in O(m2n) time.

83

Bibliography

[1] A. Al-Hafeedh, M. Crochemore, L. Ilie, J. Kopylov, W. Smyth, G. Tischler, and M. Yusufu.

A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM Comput-

ing Surveys, 45(1):5:1–5:17, 2012.

[2] A. Alatabbi, C. S. Iliopoulos, A. Langiu, and M. S. Rahman. Algorithms for longest

common Abelian factors. International Journal of Foundations of Computer Science,

27(5):529–544, 2016.

[3] A. Alatabbi, C. S. Iliopoulos, and M. S. Rahman. Maximal palindromic factorization. In

Proc. Prague Stringology Conference 2013 (PSC2013), pages 70–77, 2013.

[4] S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic

trees. In Proc. 27th International Colloquium on Automata, Languages, and Program-

ming (ICALP2000), volume 1853 of Lecture Notes in Computer Science, pages 73–84,

2000.

[5] A. Amir, A. Apostolico, T. Hirst, G. M. Landau, N. Lewenstein, and L. Rozenberg. Algo-

rithms for jumbled indexing, jumbled border and jumbled square on run-length encoded

strings. In Proc. 21st International Symposium on String Processing and Information

Retrieval (SPIRE 2014), pages 45–51, 2014.

[6] A. Apostolico, D. Breslauer, and Z. Galil. Parallel detection of all palindromes in a string.

Theoretical Computer Science, 141(1&2):163–173, 1995.

[7] A. Apostolico and M. Crochemore. Fast parallel Lyndon factorization with applications.

Mathematical Systems Theory, 28(2):89–108, 1995.

[8] G. Badkobeh, H. Bannai, K. Goto, T. I, C. S. Iliopoulos, S. Inenaga, S. J. Puglisi, and

S. Sugimoto. Closed factorization. Discrete Applied Mathematics, 212:23–29, 2016.

84

BIBLIOGRAPHY

[9] G. Badkobeh, G. Fici, and Z. Lipták. A note on words with the smallest number of closed

factors. http://arxiv.org/abs/1305.6395, 2013.

[10] G. Badkobeh, T. Gagie, S. Grabowski, Y. Nakashima, S. J. Puglisi, and S. Sugimoto.

Longest common Abelian factors and large alphabets. In Proc. 23rd International Sym-

posium on String Processing and Information Retrieval (SPIRE 2016), pages 254–259,

2016.

[11] H. Bannai, T. Gagie, S. Inenaga, J. Kärkkäinen, D. Kempa, M. Piatkowski, S. J. Puglisi,

and S. Sugimoto. Diverse palindromic factorization is NP-complete. In Proc. 19th In-

ternational Conference on Developments in Language Theory (DLT 2015), pages 85–96,

2015.

[12] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. I. Seiferas. The

smallest automaton recognizing the subwords of a text. Theoretical Computer Science,

40:31–55, 1985.

[13] K. Borozdin, D. Kosolobov, M. Rubinchik, and A. M. Shur. Palindromic length in linear

time. In Proc. 28th Annual Symposium on Combinatorial Pattern Matching (CPM2017),

pages 23:1–23:12, 2017.

[14] S. Brlek, J.-O. Lachaud, X. Provençal, and C. Reutenauer. Lyndon + Christoffel = digitally

convex. Pattern Recognition, 42(10):2239–2246, 2009.

[15] S. Buss and M. Soltys. Unshuffling a square is NP-hard. Journal of Computer and System

Sciences, 80(4):766–776, 2014.

[16] K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid. On the complexity of

grammar-based compression over fixed alphabets. In Proc. 43rd International Colloquium

on Automata, Languages, and Programming (ICALP2016), pages 122:1–122:14, 2016.

[17] K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus. iv. the quotient groups

of the lower central series. Annals of Mathematics, 68(1):81–95, 1958.

[18] S. Constantinescu and L. Ilie. Fine and Wilf’s theorem for Abelian periods. Bulletin of the

EATCS, 89:167–170, 2006.

85

BIBLIOGRAPHY

[19] M. Crochemore and L. Ilie. Computing longest previous factor in linear time and applica-

tions. Information Processing Letters, 106(2):75–80, 2008.

[20] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, J. Pachocki, J. Radoszewski,

W. Rytter, W. Tyczyński, and T. Waleń. A note on efficient computation of all Abelian

periods in a string. Information Processing Letters, 113(3):74–77, 2013.

[21] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, R. Kundu, S. P. Pissis, J. Radoszewski,

W. Rytter, and T. Walen. Near-optimal computation of runs over general alphabet via non-

crossing LCE queries. In Proc. 23rd International Symposium on String Processing and

Information Retrieval (SPIRE 2016), pages 22–34, 2016.

[22] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A subquadratic sequence alignment

algorithm for unrestricted scoring matrices. SIAM Journal on Computing, 32(6):1654–

1673, 2003.

[23] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York,

1994.

[24] L. J. Cummings and W. F. Smyth. Weak repetitions in strings. Journal of Combinatorial

Mathematics and Combinatorial Computing, 24:33–48, 1997.

[25] J. W. Daykin, C. S. Iliopoulos, and W. F. Smyth. Parallel RAM algorithms for factorizing

words. Theoretical Computer Science, 127(1):53–67, 1994.

[26] M. Dumitran, F. Manea, and D. Nowotka. On prefix/suffix-square free words. In Proc.

22nd International Symposium on String Processing and Information Retrieval (SPIRE

2015), pages 54–66, 2015.

[27] J.-P. Duval. Factorizing words over an ordered alphabet. Journal of Algorithms, 4(4):363–

381, 1983.

[28] J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre. Linear-time compu-

tation of local periods. Theoretical Computer Science, 326(1-3):229–240, 2004.

[29] P. Erdös. Some unsolved problems. Hungarian Academy of Sciences Mat. Kutató Intézet

Közl, 6:221–254, 1961.

86

BIBLIOGRAPHY

[30] H. Fernau, F. Manea, R. Mercaş, and M. L. Schmid. Pattern matching with variables: Fast

algorithms and new hardness results. In Proc. 32nd Symposium on Theoretical Aspects of

Computer Science (STACS2015), pages 302–315, 2015.

[31] G. Fici. A classification of trapezoidal words. In Proc. 8th International Conference Words

2011 (WORDS 2011), Electronic Proceedings in Theoretical Computer Science 63, pages

129–137, 2011. See also http://arxiv.org/abs/1108.3629v1.

[32] G. Fici, T. Gagie, J. Kärkkäinen, and D. Kempa. A subquadratic algorithm for minimum

palindromic factorization. Journal of Discrete Algorithms, 28:41–48, 2014.

[33] G. Fici, T. Lecroq, A. Lefebvre, and É. Prieur-Gaston. Algorithms for computing Abelian

periods of words. Discrete Applied Mathematics, 163:287–297, 2014.

[34] G. Fici, T. Lecroq, A. Lefebvre, É. Prieur-Gaston, and W. F. Smyth. A note on easy and

efficient computation of full Abelian periods of a word. Discrete Applied Mathematics,

212:88–95, 2016.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Co., 1979.

[36] P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen. Faster longest common ex-

tension queries in strings over general alphabets. In Proc. 27th Annual Symposium on

Combinatorial Pattern Matching (CPM2016), pages 5:1–5:13, 2016.

[37] J. Y. Gil and D. A. Scott. A bijective string sorting transform. CoRR, abs/1201.3077,

2012.

[38] K. Goto and H. Bannai. Simpler and faster Lempel Ziv factorization. In Proc. Data

Compression Conference (DCC2013), pages 133–142, 2013.

[39] S. Grabowski. A note on the longest common Abelian factor problem. CoRR,

abs/1503.01093, 2015.

[40] D. Hucke, M. Lohrey, and C. P. Reh. The smallest grammar problem revisited. In Proc.

23rd International Symposium on String Processing and Information Retrieval (SPIRE

2016), pages 35–49, 2016.

87

BIBLIOGRAPHY

[41] T. I, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Efficient lyndon factorization

of grammar compressed text. In Proc. 24th Annual Symposium on Combinatorial Pattern

Matching (CPM2013), pages 153–164, 2013.

[42] T. I, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Faster Lyndon factorization

algorithms for SLP and LZ78 compressed text. Theoretical Computer Science, 656:215–

224, 2016.

[43] T. I, S. Sugimoto, S. Inenaga, H. Bannai, and M. Takeda. Computing palindromic factor-

izations and palindromic covers on-line. In Proc. 25th Annual Symposium on Combinato-

rial Pattern Matching (CPM2014), pages 150–161, 2014.

[44] H. Inoue, Y. Matsuoka, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Com-

puting smallest and largest repetition factorizations in O(n log n) time. In Proc. Prague

Stringology Conference 2016 (PSC2016), pages 135–145, 2016.

[45] J. Jansson, K. Sadakane, and W.-K. Sung. Compressed dynamic tries with applications

to LZ-compression in sublinear time and space. In Proc. IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science (FSTTCS2007),

pages 424–435, 2007.

[46] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Lightweight Lempel-Ziv parsing. In Proc.

12th International Symposium on Experimental Algorithms (SEA2013), pages 139–150,

2013.

[47] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Linear time Lempel-Ziv factorization: Sim-

ple, fast, small. In Proc. 24th Annual Symposium on Combinatorial Pattern Matching

(CPM2013), pages 189–200, 2013.

[48] D. Kempa and S. J. Puglisi. Lempel-Ziv factorization: Simple, fast, practical. In Proc.

Meeting on Algorithm Engineering & Experiments (ALENEX2013), pages 103–112, 2013.

[49] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM Journal

on Computing, 6(2):323–350, 1977.

[50] T. Kociumaka, J. Radoszewski, and W. Rytter. Fast algorithms for Abelian periods in

words and greatest common divisor queries. In Proc. 30th Symposium on Theoretical

Aspects of Computer Science (STACS2013), pages 245–256, 2013.

88

BIBLIOGRAPHY

[51] T. Kociumaka, J. Radoszewski, and B. Wisniewski. Subquadratic-time algorithms for

Abelian stringology problems. In Proc. 6th International Conference on Mathematical

Aspects of Computer and Information Sciences (MACIS2015), pages 320–334, 2015.

[52] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In

Proc. 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS1999),

pages 596–604, 1999.

[53] R. Kolpakov and G. Kucherov. Searching for gapped palindromes. Theoretical Computer

Science, 410(51):5365–5373, 2009.

[54] D. Kosolobov. Computing runs on a general alphabet. Information Processing Letters,

116(3):241–244, 2016.

[55] S. Kreft and G. Navarro. LZ77-like compression with fast random access. In Proc. Data

Compression Conference (DCC2010), pages 239–248, 2010.

[56] S. Kreft and G. Navarro. Self-indexing based on LZ77. In Proc. 22nd Annual Symposium

on Combinatorial Pattern Matching (CPM2011), pages 41–54, 2011.

[57] M. Kufleitner. On bijective variants of the Burrows-Wheeler transform. In Proc. Prague

Stringology Conference 2010 (PSC2009), pages 65–79, 2009.

[58] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):115–

116, 1973.

[59] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text in-

dexes. ACM Transactions on Algorithms, 4(3), 2008.

[60] G. K. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial

palindrome of a string. Journal of the ACM, 22(3):346–351, 1975.

[61] U. Manber and G. W. Myers. Suffix arrays: a new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[62] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto.

Efficient algorithms to compute compressed longest common substrings and compressed

palindromes. Theoretical Computer Science, 410(8–10):900–913, 2009.

89

BIBLIOGRAPHY

[63] Y. Matsuoka, S. Inenaga, H. Bannai, M. Takeda, and F. Manea. Factorizing a string into

squares in linear time. In Proc. 27th Annual Symposium on Combinatorial Pattern Match-

ing (CPM2016), pages 27:1–27:12, 2016.

[64] G. Navarro and Y. Neckrich. Personal Communication.

[65] G. Navarro and Y. Neckrich. Sorted range reporting. In Proc. 13th Scandinavian Sym-

posium and Workshops on Algorithm Theory (SWAT2012), LNCS 7357, pages 271–282.

Springer, 2012.

[66] D. Okanohara and K. Sadakane. An online algorithm for finding the longest previous

factors. In Proc. 16th Annual European Symposium on Algorithms (ESA2008), pages

696–707, 2008.

[67] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-

based compression. Theoretical Computer Science, 302(1-3):211–222, 2003.

[68] M. L. Schmid. Computing equality-free and repetitive string factorizations. Theoretical

Computer Science, 618(7):42–51, 2016.

[69] R. Siromoney and L. Mathew. A public key cryptosystem based on Lyndon words. Infor-

mation Processing Letters, 35(1):33–36, 1990.

[70] T. A. Starikovskaya. Computing Lempel-Ziv factorization online. In Proc. 37th Inter-

national Symposium on Mathematical Foundations of Computer Science (MFCS2012),

pages 789–799, 2012.

[71] S. Sugimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Computing reversed Lempel-

Ziv factorization online. In Proc. Prague Stringology Conference 2013 (PSC2013), pages

107–118, 2013.

[72] S. Sugimoto, N. Noda, S. Inenaga, H. Bannai, and M. Takeda. Computing abelian regu-

larities on rle strings. In Proc. 28th International Workshop on Combinatorial Algorithms

2017 (IWOCA2017), 2017. To appear.

[73] G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O. Slisenko,

editor, Structures in Constructive Mathematics and Mathematical Logic, Part II, pages

115–125. 1968.

90

BIBLIOGRAPHY

[74] P. Weiner. Linear pattern-matching algorithms. In Proc. 14th IEEE Annual Symposium on

Switching and Automata Theory, pages 1–11, 1973.

[75] T. A. Welch. A technique for high-performance data compression. IEEE Computer,

17(6):8–19, 1984.

[76] J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda. Faster compact on-line Lempel-

Ziv factorization. In Proc. 31st Symposium on Theoretical Aspects of Computer Science

(STACS2014), 2014.

[77] C.-C. Yu, W.-K. Hon, and B.-F. Wang. Improved data structures for the orthogonal range

successor problem. Computational Geometry, 44(3):148–159, 2011.

[78] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, 23(3):337–349, 1977.

[79] J. Ziv and A. Lempel. Compression of individual sequences via variable-length coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

91

