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ABSTRACT 

Earthquake ground motions measures, such as acceleration time series and 

peak ground acceleration (PGA), are important and necessary in earthquake 

engineering. Although these measures can be obtained from seismic observations, 

they need to be simulated for the regions where records were not available during 

a past earthquake or for a future potential earthquake. For example, acceleration 

time series and PGA are necessary in hazard assessment of landslides induced by a 

potential earthquake on a specific active fault. However, there is no practical 

simulation system established for this purpose.  

The key issues in simulating earthquake ground motion are how to consider 

the source effect, path effect and site effect. Up to now, the effect of asperity, one 

of the important factors in estimating source parameters, and the effect of volcanic 

zone on estimating path parameters have not been well investigated. Also, how to 

estimate the site effect for the location without seismic sensors remains a not well 

solved problem although site amplification can be estimated by the seismic 

observations from both the surface and borehole sensors at the same station. For 

these reasons, this study aims at developing a practical system for simulating 

earthquake ground motions based on the so-called stochastic finite-fault method 

(SFFM), especially, paying attention to volcanic zone and asperity. The system 

consists of four modules: (1) a module for estimating the site amplification based 

on a method developed even for the location without strong ground-motion 

observations; (2) a module for estimating shear-wave attenuation based on a new 

analysis approach which can distinguish non-volcanic zone from volcanic zone; (3) 

a module for estimating slip distribution field by considering the characteristics of 

the asperity on a fault; (4) the SFFM module for calculating ground motions. Also, 

the system is applied to simulate the PGA distribution for landslide hazard 

assessment in Aso-bridge region, Kumamoto, Japan. It is shown that the assessment 

accuracy is improved using the simulated PGA than the conventional assumed PGA 

by comparing with the landslides induced by the 2016 Kumamoto earthquake. 
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This thesis consists of the following chapters. 

Chapter 1 introduces the background and objectives of the thesis. The needs 

and applications of ground-motion measures in earthquake engineering are 

introduced. Two popular methods for the generation of simulated acceleration time 

series are reviewed and their strengths and limitations are briefly summarized. The 

organization of the thesis is shown at the end of this chapter. 

Chapter 2 reviews the stochastic finite-fault method in detail. The principle 

of the stochastic finite-fault method is introduced. Three key issues mentioned 

above are clearly addressed. 

Chapter 3 develops a method for estimating the site amplification in 

considering site effects. Seismic site effects are related to the amplification of 

seismic waves in surficial geological layers. Firstly, a module is made for 

calculating site amplifications based on the spectral ratios between acceleration 

waves recorded by surface and borehole sensors in the same station. The site 

amplifications of 53 KiK-net stations in Kyushu region are calculated. And then, in 

order to estimate the site amplification for the location without strong motion 

records, an empirical relationship between site amplification and 30SV   (a 

parameter of time-averaged shear-wave velocity to 30 m) is established. Since 30SV  

is one of the widely-used measures and can be accessed in a regional scale, it is 

possible to estimate the site amplification just based on 30SV . By comparing the 

estimated results with those directly calculated from the records of both surface and 

borehole sensors, the good agreement shows the developed method is reasonable 

and adaptable. 

Chapter 4 proposes a method for determining the path parameter sQ  (the S-

wave attenuation) by considering the volcanic effect. sQ  values are usually 

estimated without distinguishing non-volcanic zone from volcano zone. In fact, it 

has been reported that there is a higher sQ  in the non-volcanic area of a region 

with active volcanoes relative to the normal values. Therefore, how to clarify the 

lateral sQ heterogeneities effect on the ground motions and how to estimate sQ  in 
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such regions are important issues. In this chapter, a method for calculating sQ by 

considering volcanic effect is presented and validated by simulating ground motions 

of 9 non-volcanic records from the 2016 Kumamoto earthquake. It has been shown 

that the accuracy of simulated ground motions is improved by using the proposed 

method. A module for estimating sQ  is developed based on the proposed method. 

Chapter 5 discusses the accuracy of the PGA simulated by using the slip 

distributions inversed from different kinds of data. The slip distribution field is one 

of the critical source parameters and it is related to the pattern, dimension and 

location of the asperity. Since the asperity of an earthquake can be inversed from 

the following three kinds of data: regional strong ground-motion data, teleseismic 

body-wave data, and geodetic GPS data, it is not clear which one can provide better 

results. By a lot of practical comparisons, it is found that the accuracy of simulated 

PGA based on anyone of the three kinds of slip distribution field is not good enough. 

Thus, a combination of the three results is proposed. It has been shown that the 

accuracy of the simulated PGA based on the combination analysis is much 

improved by practical simulations. 

Chapter 6 improves an approach for estimating the slip distribution field of a 

potential earthquake on a specific fault. Many earthquake engineering problems 

need to estimate seismic waves from an expected future earthquake. Since the slip 

distribution field before an earthquake occurs is unknown, the method proposed 

above cannot be applied. For this reason, an approach is improved for estimating 

the asperity on a specific fault for an expected magnitude of the potential earthquake. 

The slip distribution field is then obtained by using the assumed probability 

distribution in the asperity and rupture area. By analyzing 17 shallow crustal 

earthquakes in Japan from 1995 to 2016, it is found that a rectangle-ellipse asperity 

can be assumed. The scaling relations of asperity versus seismic moment are 

investigated, and empirical formulas are statistically obtained for estimating the 

dimension and location of the asperity. This approach is validated by the ground-

motion simulations of the 2016 Kumamoto earthquake. A module for estimating 

asperity and slip distribution field is developed based on the improved approach. 

Chapter 7 develops a system by combining the SFFM module for calculating 
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ground motions with the other three modules and presents an application of the 

developed practical system to the hazard assessment of landslides induced by a 

potential earthquake on a specific fault. In conventional landslide hazard mapping, 

an approximate PGA value for an area is used, which makes the accuracy very low. 

In this study, the PGA for each mesh is calculated based on the slip distribution field 

of the target earthquake on a specific fault by using the developed system. Slope 

stability analysis is carried out using the PGA of each mesh in landslide hazard 

mapping. Thus, a landslide hazard map related to a potential earthquake on a 

specific fault can be made. A landslide hazard map induced by an assumed M7.0 

earthquake on the Futagawa fault is made. It is shown that the assessment accuracy 

is improved using the simulated PGA than the conventional assumed PGA by 

comparing with the landslides induced by the 2016 Kumamoto earthquake. 

 Chapter 8 summarizes the conclusions of the thesis, and makes 

recommendations for future work. 
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CHAPTER   1 

1. INTRODUCTION 

1.1 BACKGROUND 

Earthquake is a sudden and quick shaking of the ground surface caused by 

rupture and movement of the rock in the crust and mantle (Varazanashvili et al. 

2012; Walker et al. 2013; Han et al. 2015; Badawy et al. 2017; Villar-Vega and Silva 

2017). There are three major seismic belts around the world, the circum-Pacific belt, 

the Alpine-Himalayan orogenic belt and the Mid-Ocean Ridge seismic zone. 

Among them, about 90% of the global earthquakes and 81% of the world largest 

earthquakes occurred in the circum-Pacific belt. 

 

Figure 1-1 Global seismic belts (access from internet) 
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The earthquake ground motions, as the direct triggering force of geo-disasters 

and seismic load of collapsed engineered structures (Khazai and Sitar 2004; Baker 

and Cornell 2006; Meunier et al. 2008; Bose et al. 2016; Han et al. 2016), are the 

most interesting targets of seismologists and earthquake engineers. With the rapid 

development of economy, geo-disaster prevention and earthquake-resistant design 

play more and more important roles in the earthquake-induced hazard mitigation 

and reduction of fatalities and economic loss caused by catastrophic earthquakes. 

Therefore, the researches on earthquake ground motions attract more attention of 

geotechnical engineering scientists. Among such studies, the development of 

ground-motion simulation method is the most important and necessary.  

Most of large earthquakes let people suffer huge loss, however, seismologists 

and engineers have never given up and proceeded to have research on ground 

motions. Fortunately, the past earthquakes provide us very rich information and 

encourage us to explore the mechanism of earthquakes. 

1.1.1 EARTHQUAKE DAMAGES 

A large earthquake usually causes so much loss, not only for fatalities but 

economic loss. In the past 5 centuries, over 8 million people have died due to 

earthquakes and their related geo-disasters, especially for the megathrust 

earthquakes. For example, the 2008 Wenchuan, China earthquake, and 2010 Haiti 

earthquake, caused about 87,000 and 220,000 fatalities, respectively (Hubbard and 

Shaw 2009; Gorum et al. 2013; Holzer and Savage 2013). Figure 1-1 lists the major 

catastrophic earthquakes occurred in the past two decades around the world.  
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Table 1-1 Catastrophic earthquakes in past two decades 

Event Date /County fatalities Economic 
loss 

Reference 

Haiti 
Earthquake 

2010/1/12 
Haiti 

220,000 $14 billion www.wikipedia.org

Christchurch 
Earthquake 

2011/02/22 
NewZealand 

185 $40 billion www.wikipedia.org

Wenchuan 
Earthquake 

2008/05/12 
China 

87,587 $148 billion www.wikipedia.org

Indonesian 
Earthquake 

2004/12/26 
Indonesia 

230,000 $29 billion www.wikipedia.ord

Tohoku 
Earthquake 

2011/03/11 
Japan 

15894 $300 billion Cabinet office of 
Japanese 

Government, 2011
Kumamoto 
Earthquake 

2016/04/15 
Japan 

110 $22 billion Cabinet office of 
Japanese 

Government, 2016
 

Only a small part of fatalities died from the earthquake itself, that is, the strong 

ground shaking and the rift of the surface. Most of the fatalities and economic loss, 

on the one hand, are caused by the subsequent geo-hazards, such as landslides, 

liquefaction, and tsunami, etc. (Guzzetti 2000; Lay et al. 2005; Nadim et al. 2006; 

Marano et al. 2010; Mori et al. 2011). Figure 1-2 shows the New Beichuan Middle 

School landslide, which is induced by the 2008 Wenchuan earthquake. It is reported 

that 1600 people were killed by this severe landslide, and the economic loss reached 

up to 35.5 million U.S. dollar (Huang et al. 2009; Sato and Harp 2009; Yin et al. 

2009). Therefore, it is important and urgent to perform landslide hazard mitigations, 

e.g. landslide susceptibility assessment. The landslide hazard assessment provides 

an evaluation for landslide susceptibility regions where landslides are prone to be 

triggered by a potential earthquake occurs on a specific fault, which is effective to 

help government make decisions for mitigating landslide hazards.  

On the other hand, the collapsed and damaged buildings and infrastructures 

are not too “strong” enough to resist the ground shaking. For some developing 

countries and regions, poor construction levels and inadequate seismic design codes 

caused numerous fatalities who died from the collapsed or damaged houses (Glass 

et al. 1977; Bird and Bommer 2004; Martin et al. 2015). For example, it is reported 



 

 4

that more than 5 million people lost their houses during the 2008 Wenchuan 

earthquake (Ye et al. 2008; Cui et al. 2011). Figure 1-3 shows the collapsed 

buildings caused by 2008 Wenchuan earthquake. To avoid these devastating 

accidents, structural engineers should estimate the seismic effect under given levels 

of intensity measures using dynamic or static methods. 

 

Figure 1-2 Image of the New Beichuan Middle School landslide induced by the 

2008 Wenchuan Earthquake, China. Source from NASA.  

 

 

Figure 1-3 Image of collapsed buildings during 2008 Wenchuan China 

earthquake. (access from internet) 
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1.1.2 APPLICATIONS OF SIMULATED GROUND MOTIONS TO EARTHQUAKE 

ENGINEERING   

In order to mitigate geo-hazards and collapsed buildings induced by large 

earthquakes, earthquake ground motions should be utilized to perform geo-hazard 

assessment and engineered structure stability evaluation (Wilson and Keefer 1983; 

Shou and Wang 2003; Wright and Rathje 2003; Idriss and Boulanger 2006; Jibson 

2011; Takatani and Nishikawa 2017; Wang et al. 2017a).  

One of the most important applications of acceleration time series is the geo-

hazard prevention. Generally speaking, in classical mechanics, the movement of 

bodies is controlled by the force applied on them (Strogatz 2014). The motion of 

geological unit is also without exception. Since complicated reasons of the 

occurrence of geo-hazards, it is very difficult to describe the movement of rock 

using analytical equations accurately (McDougall and Hungr 2004; Yoshimatsu and 

Abe 2006; Wu 2010). With the rapid development of computer science, numerical 

methods grow to be the major techniques to analyze the stability of geological unit. 

Among these geo-hazards, landslide and liquefaction are the two of most 

devastating disasters (Quigley et al. 2013; Rajendran et al. 2016; Tuttle et al. 2017). 

More attention is paid for them to mitigate the fatalities and economic loss during 

the recent years.  

During a devastating earthquake, the strong ground shaking makes the soil 

subject to the high strain level, which is the major reason of the occurrence of 

liquefaction (Papathanassiou et al. 2015; Bastin et al. 2016; Carey et al. 2017). 

Ground failure induced by liquefaction is one of the most important reasons of 

structural damage during a severe earthquake (King et al. 2014; Towhata et al. 2014; 

Baziar and Rostami 2017). Numerous structures, such as nuclear plants, bridges, 

and residential buildings are threatened by liquefaction as strong ground shaking 

happens (Van Ballegooy et al. 2014; Villamor et al. 2016).The most widely-used 

method to assess the liquefaction susceptibility is the simplified method (Seed and 

Idriss 1971; Seed 1979; Seed and Idriss 1982). In this method, the factor of safety 

against liquefaction ( LF ) is defined by the equation as follows, 
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,
/L

CRR
F

CSR MSF
                      (1.1) 

where CRR  is cyclic shear resistance ratio, CSR  is the cyclic shear stress ratio, 

and MSF   is magnitude scaling factor. The expression of CSR   is defined as 

follows, 

max 0
'

0

0.65 ,v
d

v

a
CSR r

g



 

  
 

                (1.2) 

where maxa   is the horizontal peak ground acceleration (PGA), g   is the 

acceleration of gravity, 0v  is the total overburden pressure, '
0v  is the effective 

overburden pressure at the same depth, and dr  is the stress reduction coefficient. 

Figure 1-4 shows the liquefaction hazard map of Vijayawada city, India. As one of 

the most important variables, maxa   is critical for evaluating liquefaction 

susceptibility. Therefore, the earthquake ground motion, which is specified as PGA 

in this case, should be estimated as accurate as possible for a future potential 

earthquake.  

 

Figure 1-4 Liquefaction hazard map of Vijayawada city, India (after Satyam and 

Towhata (2016)) 
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The other important application of earthquake ground motions to geo-hazard 

prevention is to evaluate the slope stability. Evaluating the stability of a slope and 

estimating the landslide run-out distance under the consideration of a seismic load 

are crucial for landslide hazard assessment and mitigation (Zhang et al. 2015; 

Sepúlveda et al. 2016; Cui et al. 2017). However, for a single slope, it is not easy to 

describe the displacement by an analytical function (Yang and Long 2015; Zhou et 

al. 2015; Zhang 2017). Therefore, as one of the most popular numerical methods, 

the discontinuous deformation analysis (DDA) method has been used to model the 

dynamic process for single slope (Zhang et al. 2016a; Jing et al. 2017; Wang et al. 

2017c; Zhang et al. 2017). For example, Jing (2016) develops a practical 3D DDA 

program considering the seismic loading for landslide hazard assessment (Figure 

1-5). To evaluate the slope stability under the consideration of a potential 

earthquake, a simulated acceleration time series should be provided. 

 

Figure 1-5 The final image of failure process of Daiganji slope under a seismic 

loading (after Jing (2016)) 

The other target of landslide hazard assessment is to evaluate the landslide 

susceptibility for a region. A large earthquake will induce thousands, even tens of 
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thousands landslides in mountainous region (McPhillips et al. 2014; Xu et al. 2014; 

Liu et al. 2016). GIS-based landslide hazard mapping technique has been widely-

used for identifying landslide susceptibility zones where landslides are prone to 

happen in a future earthquake (Chousianitis et al. 2016; Gaprindashvili and Van 

Westen 2016; Zhou et al. 2016a; Zhou et al. 2016b). A physically-based model to 

evaluate regional landslide susceptibility which using the PGA to represent the 

seismic loading is proposed and illustrated in Figure 1-6 (Zhou 2016). In the model, 

the factor of safety against landslide is defined in the following form, 

 ' 'cos sin tan

sin cos
w s

s
s

c n H k H g
F

H k H g

     
   

    


         (1.3) 

where 'c   is the soil cohesion,    and w   are unit weight of sliding mass and 

groundwater, respectively, n  is the percentage of saturated failure thickness, H  

is the slope normal thickness of the failure surface,   is the slope gradient,   is 

the angle between the ground surface and the incident direction of the seismic force, 

' is the friction angel of soil, sk  is the seismic coefficient, g  is the acceleration 

of gravity. For equation (1.3), the numerator represents the resisting force while the 

denominator is the driving force. It is easy to identify the landslide prone region, of 

which the sF  is lower than 1, and vice versa. 

 

Figure 1-6 (a) Limit equilibrium analysis method for infinite slope considering a 

seismic force; (b) Force analysis of unit soil slice (dash rectangle in the panel (a)) 

(after Zhou (2016)) 
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On the other hand, structural engineers usually use earthquake ground motions 

(e.g. acceleration time series or response spectra) as the intensity measures for 

analysis of structural response (Chen et al. 2016; Chopra and McKenna 2016; 

Seifried and Baker 2016; Sonmez et al. 2016). For example, Rossetto (2006) 

performs complicated dynamic inelastic time history finite element analyses of 

important buildings (Figure 1-7). 

 

Figure 1-7 Complicated dynamic inelastic time history finite element analysis of a 

structure (after Rossetto (2006)) 

In a word, earthquake ground motions measures, such as acceleration time 

series and peak ground acceleration (PGA), are important and necessary in 

earthquake engineering and geo-disaster prevention engineering. Although these 

measures can be obtained from seismic observations, they need to be simulated for 

the regions where records were not available during a past earthquake or for a future 

potential earthquake. For example, acceleration time series and PGA are necessary 

in hazard assessment of landslides induced by a potential earthquake on a specific 

active fault. With the development of economy and the boost of population, 

earthquake ground motion simulations are growing to be more and more important 

and necessary.  
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1.2 METHODOLOGIES OF SIMULATING ACCELERATION TIME SERIES 

With the rapid development of seismology during the past few decades, several 

ground-motion simulation methods boost. They are grown to be the most powerful 

tools for theoretical studies of earthquake engineering, earthquake-resistant design 

and geo-disaster prevention. Many scientists contribute to this research field and 

achieve fruitful work. In general, such methods can be classified into two major 

kinds, one is the deterministic method, including theoretical and empirical Green’s 

function methods (Hartzell 1978; Irikura 1983, 1986; Joyner and Boore 1986; Dan 

et al. 1989; Oth et al. 2007); the other is the stochastic method, including point-

source and finite-fault methods (Boore 1983; Beresnev and Atkinson 1997, 1998; 

Boore 2003; Motazedian and Atkinson 2005; Boore 2009; Boore and Thompson 

2014; Atkinson and Assatourians 2015; Boore and Thompson 2015). In the next 

two sections, the theory of both kinds of method and their strengths and limitations 

will be introduced and summarized. 

1.2.1 THE DETERMINISTIC METHOD 

The deterministic method is composed of theoretical and empirical Green’s 

function methods. In the theoretical method, seismogram is calculated by 

representation theorem, which transfers this issue to determine the source-time 

function and the Green’s function (Aki 1968; Haskell 1969). The source-time 

function is usually shown as a form of ramp or exponential function (Aki and 

Richards 2002). The prior of determining the response of the real earth material 

from a point-source dislocation, that is, the Green’s function, is assuming the earth 

as a homogeneous layered elastic half-space model (Hisada and Bielak 2003; 

Hartzell et al. 2005). However, real earth does not always consist of horizontal 

layered materials (Woodhouse and Dziewonski 1984; Su et al. 1994). Therefore, 

the 3D heterogeneous structural Green’s function should be determined. On the 

other hand, the second prior is the requirement of 3D seismic-wave velocity 

structure and the local site information (Ritsema et al. 1999; Shapiro et al. 2005; 

Sato et al. 2012). In general, it is difficult to clear these information, so as to hard 



 

 11

to specify the path and site effects. Both limitations mentioned above restrict its 

development and applications (Hartzell et al. 1999; Miyake et al. 2003).  

Since the seismic-wave velocity structure and local site information are not 

easy to obtain (Chiu et al. 1986; Quan and Harris 1997; Panning and Romanowicz 

2006), is there any wave to represent both of them by observed ground motion 

records? Such idea stimulates Hartzell (1978) to propose the empirical Green’s 

function method. Hartzell (1978) considers small-event records as the Green’s 

function, and sums the records to synthesize the ground motions of large 

earthquakes. The advantage of this method is the usage of small-event records 

which cover almost all the complicated factors, such as the rupture process of the 

source, the heterogeneous geological structures and local site information (Baltay 

et al. 2014; Abercrombie 2015; Mourhatch and Krishnan 2015). It is not easy to 

estimate such factors in existing manner. Irikura (1983) extends the empirical 

Green’s function method by considering the similarity of the observed small-event 

and simulated large earthquake. The schematic figure of this method is illustrated 

in Figure 1-8. The fault areas of the mainshock and aftershock are defined as L W  

and l w , respectively, which meets L l W w N  .  

 

Figure 1-8 Schematic illustration of the empirical Green’s function method 

The basis of this method is assuming the ground motion from the large 
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earthquake equals to the summation of ground motions from a suit of subsources. 

The small-event records, usually the aftershock or foreshock records, are regarded 

as the ground motions of each subsource. The equation of summation is shown as 

follows,  

     
1 1

[C ],
N N

i j ij

r
U t F t u t

r 

                  (1.4) 

where  U t   is the simulated large-event record,  u t   is the observed small-

event record,  F t   is the correction function for adjusting the difference of 

source-time functions of small- and large-events, r  and ijr  are the distance from 

source of small earthquake and thij  subsource of the large earthquake to the 

observation point, respectively.  

 

Figure 1-9 Three-component records  

The empirical Green’s function method has been used for the ground-motion 

simulations of some earthquakes (Kamae and Irikura 1998; Kamae et al. 2005; 

Suzuki et al. 2005; Kurahashi and Irikura 2011). The merit of the empirical Green’s 

function method is three-component records can be simulated for each station 

(Figure 1-9). Since three-component records can be observed for a small earthquake, 

the acceleration time series in three components of the large earthquake can be 

simulated by adjusting and summing the corresponding component record of the 

small earthquake. The directivity effect of the seismic wave can be investigated by 

this method, because three-component records can be simulated. 
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Figure 1-10 Different strategies to adjust the length of the mainshock fault 

 

Figure 1-11 The different path effects of the large and small earthquakes. Star and 

circle represent the sources of the large and small earthquakes, respectively 

 

Figure 1-12 The different site effects of the large and small earthquakes 
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However, the empirical Green’s function method also has some demerits. 

Firstly, the path and site effects of the large and small earthquakes are assumed to 

be the same, but they are not (Dreger 1994; Ordaz et al. 1995; Courboulex et al. 

1996; Pavic et al. 2000). The hypocentre of the selected small earthquake should be 

close to that of the large earthquake, which ensures the path effects of them are the 

same (Aki 1972; Kanamori and Anderson 1975). Although in simulation the path 

and the mainshock are assumed to be the same with those of the selected small 

earthquake, they have some differences (Figure 1-11). For the site effect, the 

responses of a target site to the large and small earthquakes are generally different 

(Figure 1-12). For a soft soil site, the site amplification calculated from a large-

earthquake record is larger than that of a small earthquake. Secondly, the times of 

summation for the small earthquake records are dependent of the researcher’s 

experience, which cause the differences in the simulation results (Hutchings and 

Wu 1990; Mori and Frankel 1990; Hough et al. 1991; Irikura and Kamae 1994). 

The fault length ratio of the large and small earthquakes are required to be an integer 

in the method. Some empirical modifications of the fault geometry, such as 

extension or clip, should be done, which depends on the researcher’s experience 

(Figure 1-10) (Pacheco et al. 1992; Dalguer et al. 2008). For example, in Figure 

1-10, the lengths of fault of the large and small earthquake are assumed to be 35 km 

and 10 km, respectively. The ratio of them doesn’t equal to an integer. Different 

researcher’s will select different strategies, such as cutting or extending the fault 

plane, which are dependent of their own experiences. These empirical operation 

will result in different simulation results. Therefore, the assumptions of the 

empirical Green’s function method are still controversial.  

1.2.2 THE STOCHASTIC METHOD 

The stochastic method can be classified into point-source method and finite 

fault method (Atkinson et al. 2009). For the far-field ground-motion simulations, 

both methods perform similarly. While for the near-field ground-motion 

simulations, the finite-fault method performs better since the fault surface cannot 

be regarded as a point source (Wang et al. 2015). The major objective of this thesis 
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is to develop a practical system of simulating ground motions for landslide hazard 

assessment. In general, a slope under a seismic loading with the PGA value larger 

than 300 cm/s2 is prone to be unstable (Miles and Ho 1999; Dai et al. 2002; Van 

Westen et al. 2008; Xu et al. 2012). This threshold corresponds to a distance range 

of 0-20 km which is usually considered as near field (Reasenberg and Simpson 1992; 

Bozorgnia et al. 1995; Larson et al. 2003). Therefore, the stochastic finite-fault 

method is selected as the tool to perform the ground-motion simulations.  

Compare to the deterministic method, the stochastic method shows more 

merits. Firstly, it is originated from the theoretical derivation for the dislocation of 

a point source, which has a strong theoretical basis. Secondly, The source, path, and 

site effects are separately defined to describe the seismic-wave propagation clearly. 

(Motazedian and Atkinson 2002; Motazedian and Moinfar 2006; Poggi et al. 2011). 

Thirdly, in this method, the source, path and site processes of the seismic-wave 

propagation are specified using several meaningful geophysical parameters, such 

as site amplification, shear-wave (S-wave) attenuation and slip distribution, etc. 

These parameters can be extracted from the strong ground-motion records. The 

advantages of the observation data can be shown as much as possible. (Hartzell et 

al. 1999). The specific theory and equations of finite-fault method for synthetizing 

acceleration time series will be introduced in next chapter in detail. 

In the stochastic finite-fault method, the source, path, and site effects should 

be considered to establish the Fourier spectrum and then to determine the 

acceleration time series. If the methods to determine the high-accuracy parameters 

are not established, it is hard to say that a practical simulation technique is 

developed. Until now, the effect of asperity, one of the important factors in 

estimating source parameters, and the effect of volcanic zone on estimating path 

parameters have not been well investigated when performing the ground-motion 

simulation (Somerville et al. 1999; Murotani et al. 2008). Also, how to estimate the 

site effect for the location without seismic sensors remains a not well solved 

problem although site amplification can be estimated by the seismic observations 

from both the surface and borehole sensors at the same station. 

For the site effect, the site amplification should be considered in the ground 
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motion simulation. On the one hand, for the area with strong ground-motion stations, 

the site amplification can be determined based on the records of the seismic sensors 

on the surface and in the borehole. There are two commonly used method to 

estimate the site amplification, the S/B and H/V spectral ratios techniques (Satoh et 

al. 1995; Boore 2004; D'Amico and Mucciarelli 2002; Nath et al. 2008). Which is 

more suitable for the Kyushu region? On the other hand, for the area without strong 

ground motion stations, how to estimate site amplification is an important issue 

(Figure 1-13).  

 

Figure 1-13 Schematic illustration of the estimation of site amplification in the 

region without strong ground-motion stations. Triangles represent the strong 

ground motion stations; question marks represent the region without stations. 

For the path effect, the influence of volcano on the estimation of shear-wave 

attenuation ( sQ  ) has not been considered in the stochastic ground motion 

simulations. Many studies report that the Low-Q anomalies are observed beneath 

these volcanoes in the crust and the uppermost mantle, whereas the High-Q 

anomalies exist in the subduction of the Philippine Sea plate (Figure 1-14) 

(Yoshimoto et al. 2006; Arpa et al. 2013; Prudencio et al. 2015). For the volcanic 

zone, how does the sQ   heterogeneities influence on the ground motion 
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simulations is an important issue.  

 

Figure 1-14 Schematic illustration of sQ  structure of the Kyushu region (refer 

from Pei et al, (2009)) 

For the source effect, the slip distribution field should be specified to simulate 

ground motions. On the one hand, for a past earthquake, three kinds of geophysical 

data are usually used for slip distribution field inversion (Yamanaka and Kikuchi 

2003; Schmidt and Bürgmann 2006; Ji et al. 2015). Since the inversed asperities, 

the area with large slip amount on a fault plane, are not the same based on different 

data, the issue that which one will result in the most accurate simulation results 

should be clarified. On the other hand, for a future potential earthquake, the slip 

distribution field is unknown. The issue that how to establish the slip distribution 

field for a potential earthquake has not been well solved (Somerville et al. 1999; 

Murotani et al. 2008). For example, if a M7.0 earthquake occurs on the Futagawa 

fault (Figure 1-15), how will be the slip distribution field? Therefore, how to 

establish a slip distribution field for a potential earthquake occurs on a specific fault 

with an assumed magnitude is an important issue. 
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Figure 1-15 The locations of Futagawa fault and a potential earthquake with an 

assumed magnitude M7.0 

1.3 SCOPE AND OBJECTIVES 

This study aims at (1) developing a practical system for simulating earthquake 

ground motions based on the so-called stochastic finite-fault method, especially, 

paying attention to volcanic zone and asperity; (2) applying the new system to 

earthquake-induced landslide hazard assessment based on GIS-based hazard 



 

 19

mapping. The following three key issues to be solved in the estimation of source, 

path and site parameters of the stochastic finite-fault method:  

(i) how to estimate site amplification in the region without strong ground 

motion stations;  

(ii) How to determine the S-wave attenuation sQ  considering the volcanic 

effect;  

(iii) How to establish the slip distribution field for a potential earthquake occurs 

on a specific fault considering the effect of asperity. 

In this thesis, these key issues are solved by using the developed methods, 

which are also made as three modules. A practical system is developed by 

combining the developed modules with the SFFM module to simulate ground 

motions paying attention to the volcanic zone and asperity on a fault. The flowchart 

of this system is shown as follows. 

    

Figure 1-16 The flowchart of the developed practical system for simulating 

earthquake ground motions paying attention to volcanic zone and asperity on a 

fault 

1.4 FRAMEWORK OF THE THESIS 

This thesis consists of the 8 chapters. The framework of this thesis is shown in 

Figure 1-17 and introduced in detail as follows. 
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Figure 1-17 Framework of the thesis. 

The thesis consists of the following chapters: 

Chapter 1 introduces the background and objectives of the thesis. The needs 

and applications of ground-motion measures in earthquake engineering are 

introduced. Two popular methods for the generation of simulated acceleration time 

series are reviewed and their strengths and limitations are briefly summarized. The 

organization of the thesis is shown at the end of this chapter.  

Chapter 2 reviews the stochastic finite-fault method in detail. The principle 

of the stochastic finite-fault method is introduced. Three key issues mentioned 

above are clearly addressed. 

Chapter 3 develops a method for estimating the site amplification in 

considering site effects. Seismic site effects are related to the amplification of 

seismic waves in surficial geological layers. Firstly, a module is made for 

calculating site amplifications based on the spectral ratios between acceleration 

waves recorded by surface and borehole sensors in the same station. The site 

amplifications of 53 KiK-net stations in Kyushu region are calculated. And then, in 

order to estimate the site amplification for the location without strong motion 

records, an empirical relationship between site amplification and 30SV   (a 

parameter of time-averaged shear-wave velocity to 30 m) is established. Since 30SV  

is one of the widely-used measures and can be accessed in a regional scale, it is 



 

 21

possible to estimate the site amplification just based on 30SV . By comparing the 

estimated results with those directly calculated from the records of both surface and 

borehole sensors, the good agreement shows the developed method is reasonable 

and adaptable. 

Chapter 4 proposes a method for determining the path parameter sQ  (the S-

wave attenuation) by considering the volcanic effect. sQ  values are usually 

estimated without distinguishing non-volcanic zone from volcano zone. In fact, it 

has been reported that there is a lower sQ   in the region with active volcanoes 

relative to the normal values. Therefore, how to clarify the lateral sQ

heterogeneities effect on the ground motions and how to estimate sQ   in such 

regions are important issues. In this chapter, a method for calculating sQ  by 

considering volcanic effect is presented and validated by simulating ground motions 

of the 2016 Kumamoto earthquake. It has been shown that the accuracy of simulated 

ground motions is improved by using the proposed method. A module for estimating 

sQ  is developed based on the proposed method. 

Chapter 5 discusses the accuracy of the PGA simulated by using the slip 

distributions inversed from different kinds of data. The slip distribution field is one 

of the critical source parameters and it is related to the pattern, dimension and 

location of the asperity. Since the asperity of an earthquake can be inversed from 

the following three kinds of data: regional strong ground-motion data, teleseismic 

body-wave data, and geodetic GPS data, it is not clear which one can provide better 

results. By a lot of practical comparisons, it is found that the accuracy of simulated 

PGA based on anyone of the three kinds of slip distribution field is not good enough. 

Thus, a combination of the three results is proposed. It has been shown that the 

accuracy of the simulated PGA based on the combination analysis is much 

improved by practical simulations. 

Chapter 6 improves an approach for estimating the slip distribution field of a 

potential earthquake on a specific fault. Many earthquake engineering problems 

need to estimate seismic waves from an expected future earthquake. Since the slip 
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distribution field before an earthquake occurs is unknown, the method proposed 

above cannot be applied. For this reason, an approach is improved for estimating 

the asperity on a specific fault for an expected magnitude of the potential earthquake. 

The slip distribution field is then obtained by using the assumed probability 

distribution in the asperity and rupture area. By analyzing 17 shallow crustal 

earthquakes in Japan from 1995 to 2016, it is found that a rectangle-ellipse asperity 

can be assumed. The scaling relations of asperity versus seismic moment are 

investigated, and empirical formulas are statistically obtained for estimating the 

dimension and location of the asperity. This approach is validated by the ground-

motion simulations of the 2016 Kumamoto earthquake. A module for estimating 

asperity and slip distribution field is developed based on the improved approach. 

Chapter 7 develops a system by combining the SFFM module for calculating 

ground motions with the other three modules and presents an application of the 

developed practical system to the hazard assessment of landslides induced by a 

potential earthquake on a specific fault. In conventional landslide hazard mapping, 

an approximate PGA value for an area is used, which makes the accuracy very low. 

In this study, the PGA for each mesh is calculated based on the slip distribution field 

of the target earthquake on a specific fault by using the developed system. Slope 

stability analysis is carried out using the PGA of each mesh in landslide hazard 

mapping. Thus, a landslide hazard map related to a potential earthquake on a 

specific fault can be made. A landslide hazard map induced by an assumed M7.0 

earthquake on the Futagawa fault is made. It is shown that the assessment accuracy 

is improved using the simulated PGA than the conventional assumed PGA by 

comparing with the landslides induced by the 2016 Kumamoto earthquake. 

 Chapter 8 summarizes the conclusions of the thesis, and makes 

recommendations for future work. 
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CHAPTER   2 

2. REVIEW OF STOCHASTIC METHOD FOR STRONG GROUND‐

MOTION SIMULATION 

2.1 INTRODUCTION 

The stochastic finite-fault method has been widely used in the near-field 

ground-motion simulations during the past two decades (Ghasemi et al. 2010; 

Ugurhan and Askan 2010; Ghofrani et al. 2013; Safarshahi et al. 2013; Azarbakht 

et al. 2014; Zengin and Cakti 2014; Mittal and Kumar 2015; Holden and Kaiser 

2016; Zhang et al. 2016; Chen et al. 2017). All the ground-motion intensity 

measures, including acceleration time series, PGA, Fourier amplitude spectrum 

(FAS) and pseudo-acceleration response spectra (PSA), can be predicted for both 

the past and future earthquakes (Beresnev and Atkinson 1998; Boore 2003). It has 

been one of the most powerful tools to model strong ground motions near the 

epicenter at frequency range of engineering interest (Boore 1973; Toro et al. 1997; 

Atkinson and Boore 2003; Atkinson 2004; Rathje et al. 2004; Baker 2007; Atkinson 

et al. 2009). However, the effect of asperity, one of the important factors in 

estimating source parameters, and the effect of volcanic zone on estimating path 

parameters have not been well investigated when performing the ground-motion 

simulation (Somerville et al. 1999; Murotani et al. 2008). Also, how to estimate the 

site effect for the location without seismic sensors remains a not well solved 

problem although site amplification can be estimated by the seismic observations 
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from both the surface and borehole sensors at the same station. These key issues are 

introduced in this chapter in details. 

2.2 EVOLUTION OF STOCHASTIC FINITE‐FAULT METHOD 

Stochastic simulation technique of strong ground motion originated from the 

point-source model (Boore 1983), which regards the source as a propagating array 

of Brune point sources (Aki 1967; Brune 1970, 1971) regardless of the fault 

geometry during the simulation. Stochastic finite-fault model was then developed 

by Beresnev and Atkinson (1998), who took fault geometry and slip heterogeneity 

into calculation to overcome the limitations of point-source model. Motazedian and  

 

Figure 2-1 The evolution process of the stochastic finite-fault method 

Atkinson (2005) developed it by introducing the concept of dynamic corner 

frequency (code EXSIM) to conserve the total radiated energy and to make the 
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spectral shape and spectral level of the synthetic accelerograms relatively 

independent of subfault size. Further modifications and improvements to the 

EXSIM algorithm suggested by Boore (2009) include the scaling of high-frequency 

ground motions on the basis of the squared FAS rather than the velocity spectrum 

and no truncation applied to the time series from each subfault. Furthermore, the 

inverse of the subfault corner frequency for the duration of motions and a filter 

function to boost spectral amplitudes at frequencies near and less than the subfault 

corner frequencies are both used (Assatourians and Atkinson 2012). Figure 2-1 

shows the evolution process of the stochastic finite-fault method.  

2.3 METHODOLOGY 

The seismic-wave propagation consists of three processes, including the 

source rupture (source effect)(Hanks 1979; Somerville et al. 1997; Campbell and 

Bozorgnia 2003), the past attenuation through the earth (path effect) (Mele et al. 

1997; Faul et al. 2004; Jackson et al. 2004) and the site response on the surface (site 

effect), as shown in Figure 2-2 (Campillo et al. 1989; Chin and Aki 1991; Schneider 

et al. 1993). These three kinds of influences are all taken into the synthetization of 

acceleration wave using stochastic finite-fault method (Laba 2011; Shen et al. 2014; 

Carvalho et al. 2016; Heidari 2016). 

 

Figure 2-2 Schematic illustration of seismic wave propagation 
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The stochastic method originated from the point source model, which assumes 

that the source is a point (McGuire and Hanks 1980; Hanks and McGuire 1981; 

Atkinson and Boore 1997; Liu and Hong 2013). The acceleration time series are 

generated at an observation point considering both the deterministic and random 

parts of earthquake ground motions (Housner 1947; Saragoni and Hart 1974; Park 

et al. 1986). Since it is difficult to consider the source, path and site effects together 

in the time domain, the synthetization of the ground motion is performed in the 

frequency domain. The point-source spectrum at the observation point is derived 

by multiplication of source, path, and site spectra and shown as follows, 

       , , , ,A M R f Source M f Path R f Site f .          (2.1) 

The synthesized spectrum is multiplied by a normalized random-signal complex 

spectrum to obtain the Fourier amplitude spectrum (FAS) of ground motion at the 

site. Then the simulated acceleration time series is calculated by the inverse Fourier 

transform of FAS as follows, 

    2

0

i fta t A f e df


                     (2.2)  

The assumption of regarding the source as a point is only reasonable in the 

case of the source-to-site distance is much larger than the size of source (Spudich 

and Frazer 1984; Sabetta and Pugliese 1996; Halldórsson et al. 2010). On the one 

hand, if the seismogenic fault is so large, such as the Longmenshan fault on which 

the 2008 Wenchuan M8 earthquake occurred, the length of which is more than 300 

km, the source is cannot considered as a point (Lei and Zhao 2009; Xu et al. 2009; 

Zhang et al. 2009; Ran et al. 2010; Ran et al. 2013). On the other hand, if the target 

site is located at the near field, that is, the source-to-site distance is comparable to 

the fault size, such as the station KMMH16 of the 2016 Kumamoto earthquake with 

the epicentral distance of 2 km, the source also cannot be regarded as a point (Ohno 

et al. 1993; Sun and Okubo 1998; Yamazaki et al. 2013).  
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Figure 2-3 The sketch of stochastic finite-fault model 

Many significant factors which affect the ground motions from large 

earthquakes are neglected by the stochastic point-source model, such as the effects 

of faulting geometry, distributed slip, and slip heterogeneity (Aki 1984; Oglesby 

and Day 2002; Guatteri et al. 2003). In order to overcome such limitations and take 

the source process of the fault into the generation of ground motions, Hartzell (1978) 

suggested to divide a large seismic fault plane into N  subfaults, and each one is 

considered as a small point source (Figure 2-3). Beresnev and Atkinson (1998) 

implemented this idea and developed the point-source model to the finite-fault 

model. In the stochastic finite-fault method, the ground motions of subfaults are 

summed with a proper time delay to obtain the ground-motion acceleration at the 

observation,  a t , from the entire fault using the follow equation, 

 
1 1

( )
nl nw

ij ij
i j

a t a t t
 

                       (2.3) 

where ln  and wn  are the number of subfaults along the length and width of the 

main fault, ija  is the acceleration time series at recording site generated by thij

subfault, 
ijt  is the relative delay time for the radiation wave from the thij  

subfault to the observation point. The specific form of the source, path and site 
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terms of FAS is introduced in the following sections. 

2.2.1 SOURCE PARAMETERS 

From the observation of many earthquake displacement spectra (e.g. Figure 

2-4), and from the scaling of moment with earthquake size, Aki (1967) and Brune 

(1970) propose a simple 2  model to describe the displacement spectrum decay 

at high frequencies,  

 
 

0
2

01


 


 


                     (2.4) 

where,   is the angular frequency, given by 2 f , 0  is the so-called angular 

corner frequency, 0   is the zero-frequency limit of spectrum, given by 0CM  . 

Although this source model is so simple, it can represent the shape of spectra (Snoke 

1987; Miyake et al. 2003; Drouet et al. 2008). For example, the displacement 

spectrum of NS component of station KMMH16 and the best-fit 2   model is 

shown in Figure 2-5. It is easy to get the acceleration spectrum by twice 

differentiation for equation (2.4),  

 
 

2
0

2

01

CM
A


 




.                     (2.5) 

Then if   is replaced by 2 f , the source spectrum is shown as 
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Figure 2-4 Displacement spectra, California earthquake, presented with respect to 

azimuth of fault trace. Solid lines are spectral data from long-period instrument; 

points are spectral data from short-period instrument. Vertical scales are 10log  

amplitude, horizontal scales are 10log  frequency (after Hanks and Wyss (1972)). 
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Figure 2-5 The observed displacement spectrum of the NS component of the 

station KMMH16 from the 2016 Kumamoto earthquake 

     2 2

0 02 1s
ijA f CM f f f                    (2.6) 

where the constant C   is given by 34C R FV   , R   is the radiation 

pattern (0.55 for shear waves), F   is free surface amplification (2.0), V  is the 

partition factor into two horizontal components (0.71),   is density in 3g cm , 

  is shear-wave velocity in kilometres per second, f  is the frequency in Hertz, 

0f  is the corner frequency, given by  6
0 04.9 10f M    , in which the   

is the stress drop in bars (Boore 1983; Beresnev and Atkinson 1998), 0ijM  is the 

seismic moment of thij subfault in dyne centimetres, which is defined by 

0
0

0

ij
ij

M S
M

S
                          (2.7) 

where 0M  and 0S  are the total seismic moment and slip amount of the entire 

fault plane, ijS  is the relative slip weight of the thij  subfault (Motazedian and 

Atkinson 2005). For each subfault, the radiated elastic energy or the seismic 

moment is dependent of the slip amount on it.  
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Figure 2-6 The slip distribution field of 1997 M6.1 Kagoshima earthquake (after 

Horikawa (2001), refigured) 

Asperity, the area with large slip amount on a fault plane, plays an important 

role in generating the slip distribution field. For example, the slip distribution 

inversion of the 1997 Kagoshima earthquake shows that the asperity only occupies 

20% of the rupture area, but it makes up 40% of the total seismic energy (Figure 

2-6). However, the effect of asperity on the ground motion simulations has not been 

well investigated. On the one hand, for a past earthquake, three kinds of geophysical 

data are usually used for slip distribution field inversion (Yamanaka and Kikuchi 

2003; Schmidt and Bürgmann 2006; Ji et al. 2015). Since the inversed asperity is 

not the same based on different data, the issue that which one will result in the most 

accurate simulation results should be clarified. On the other hand, for a future 

potential earthquake, the slip distribution field is unknown. Therefore, how to 

establish a slip distribution field for a potential earthquake occurs on a specific fault 

with an assumed magnitude is an important issue. 

2.2.2 PATH PARAMETERS 

The amplitude decay of seismic wave as it propagates from the source, 
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including two components, the geometrical spreading and inelastic absorption 

(Boore and Atkinson 1987; Sharma et al. 2015). One of basic assumptions of 

geophysics is the seismic wave radiates from the source in the form of spherical 

wave (Blackstock 2000; Sato 2007; Ben-Menahem and Singh 2012). In physics, 

from the solution of wave functions, the amplitude of a spherical wave is inversely 

proportional to the travel distance. The decay rate is defined as the geometrical 

spreading,   1G R R  for body wave in the elastic whole space (Atkinson 1989; 

Atkinson and Mereu 1992; Zhao 2010). Besides, the seismic energy is also absorbed 

by the medium the wave travelled and turns to heat (Aki 1969; Aki and Chouet 

1975; Aki 1980; Bugeja 2011). To characterize this influence, the S-wave 

attenuation ( sQ ) is defined as  

 
2

s

E

Q E

 
                         (2.8) 

where E  is the energy of S wave, and E  is the change in energy per cycle 

(Knopoff 1964; Nigam 2004; Shearer 2009). The equation above indicates the 

fraction of energy dissipated per cycle of S-wave over total energy. It is well 

known that the energy is proportional to the squared amplitude A . Hence,  

1

s

A

Q A


                           (2.9) 

In one cycle,  

dA A

dr 


                          (2.10) 

where   is the wave length, given by f , r  is the S-wave propagation 

direction in spherical coordinates. Then take equation (2.9) into (2.10), giving 

1

s

f
dA dr

A Q




                       (2.11) 

Finally, do the integration and calculate the natural logarithm, we have 

  exp
s

fR
A f C

Q




 
  

 
                    (2.12) 

where C  is a constant when do the integration, R  is the distance. 



 

 45

Both the geometrical spreading and inelastic absorption (S-wave attenuation) 

are considered to modify the amplitude spectra to represent the path effect in the 

stochastic finite-fault method (Boore 1983; Beresnev and Atkinson 1998; Boore 

2003) in the form of  

    , expp

s

fR
A R f G R

Q




 
  

 
               (2.13) 

where R  is source-to-site distance in km, sQ  is the quality factor which shows 

the Shear-wave (S-wave) attenuation,  G R  is the geometrical spreading. For the 

region with heterogeneity of geological structures, such as the volcanoes, the sQ  

shows the lateral variations.  

 

Figure 2-7 Schematic illustration of sQ  structure of the Kyushu region (refer 

from Pei et al, (2009)) 

For the path effect, the influence of volcano on the estimation of shear-wave 

attenuation ( sQ ) has not been considered in the stochastic finite-fault modelling. 

Many studies report that the Low-Q anomalies are observed beneath these 

volcanoes in the crust and the uppermost mantle, whereas the High-Q anomalies 

exist in the subduction of the Philippine Sea plate (Figure 2-7) (Yoshimoto et al. 

2006; Arpa et al. 2013; Prudencio et al. 2015). For the volcanic zone, the sQ  
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determination is conventionally performed without distinguishing the non-volcanic 

area from the volcanic area. However, some large cities, such as Fukuoka city, are 

located in the non-volcanic area with a higher sQ  values compared to the normal 

sQ  . Since the sQ   is an critical parameter to represent the path effect, how to 

estimate the sQ  for volcanic zone accurately is an important and necessary issue 

for earthquake ground-motion simulations.  

2.2.3 SITE PARAMETERS 

The site response in the stochastic model includes two parts, the site 

amplification and kappa effect (Boore 1983; Atkinson et al. 2009; Atkinson and 

Assatourians 2015), which is specified as the form of  

   explA f D f                       (2.14) 

where   is a high-cut filter to model commonly-observed near-surface rapid 

spectral decay at high frequencies,  D f  is the site amplification which is the 

increase in amplitudes of seismic waves as they traverse soft soil layers near the 

surface.  

The theoretical acceleration source spectrum (equation (2.6)) based on the 

2  model is plotted in Figure 2-8. There is an obvious problem: it predicts a flat 

acceleration at high frequencies, which is unmatched with the observed spectrum 

in practice (Figure 2-9). The decay of FAS can be considered as an approximately 

linear trend observed in log-linear space (Hough et al. 1988; Singh et al. 1989; 

Anderson and Humphrey 1991; Lay and Wallace 1995; Cotton et al. 2006; Van 

Houtte et al. 2011; Ktenidou et al. 2013; Laurendeau et al. 2013; Ktenidou et al. 

2014) . The slope of this linear trend is controlled by a spectral decay rate. 

Anderson and Hough (1984) propose the kappa model,  exp f  , for the 

prediction of the shape of FAS at high frequencies (Figure 2-10).  
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Figure 2-8 Acceleration source spectrum using 2  model 

 

Figure 2-9 Observed acceleration source spectrum (after Brune (1970)) 
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Figure 2-10 FAS of record at Cucapah during the Maxicali Valley earthquake of 9 

June 1980 (after Anderson and Hough (1984)) 

Site amplification refers to the increase in amplitude of seismic waves as they 

travel through soft-soil layers (Figure 2-11) (Nakamura 1989; Cadet et al. 2010; 

Cadet et al. 2012; Boore 2013). The amplified waves usually lead to significant 

damages to engineered structures at the surface (Borcherdt 1970; Lermo and 

Chávez-García 1994; Mahin 1998; Assimaki and Jeong 2013). One of the most 

widely-used techniques is the surface-to-borehole (S/B) spectral ratios method, 

which takes the in situ borehole recordings as reference data (Abercrombie 1997; 

Stephenson et al. 2005; Oth et al. 2011; Garofalo et al. 2016). Specifically, site 

amplification of each station is determined by the ratio of smoothed FAS recorded 

at the ground surface to those recorded at the bottom of a borehole (Alharbi et al. 

2015; Ogiso et al. 2016; Tallett-Williams et al. 2016). The KiK-net offers an 

appropriate opportunity to compute S/B spectral ratios due to having boreholes of 

100 m-200 m in depth (Fujiwara et al. 2004).  
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Figure 2-11 Schematic illustration of site amplification (accessed from 

http://pubs.usgs.gov/fs/fs-131-02/fs-131-02-p4.html) 

 

Figure 2-12 Schematic illustration of the estimation of site amplification in the 

region without strong ground-motion stations. Triangles represent the strong 

ground motion stations; question marks represent the region without stations. 

Although site amplification can be estimated based on the seismic 

observations from both the surface and borehole sensors at the same station, how 

to estimate the site effect for the location without seismic sensors remains an 

unsolved problem (Figure 2-12). It is important for the ground motion simulation 
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in the region where the records were unavailable during a past earthquake and for 

a future earthquake. To solve this problem, some relations between the accurate site 

amplification and regional site response measures, such as the 30SV  , should be 

established. The site amplification in the region without stations can be estimated 

by inputting the regional measures into the relations established. Therefore, how to 

estimate the site amplification for the region without seismic sensors is an important 

and necessary issue. 

2.4 CONCLUSIONS 

In this chapter, the stochastic finite-fault method is reviewed in detail. As one 

of the most powerful tools to simulate ground motions for earthquake engineering, 

it has been applied to some large and important earthquakes, such as the 2008 M7.9 

Wenchuan earthquake, 2011 M9.0 Tohoku earthquake, and 2016 M7.1 Kumamoto 

earthquake. The evolution process of the stochastic finite-fault method, includes 

some major improvement and modification, has been reviewed and summarized.  

In the existing stochastic finite-fault modelling, the effects of volcano and 

asperity have not been considered in the estimation of S-wave attenuation and the 

slip distribution field, respectively. Three processes of seismic-wave radiation and 

propagation, that is, the source, path and site effects are taken into consideration of 

the stochastic finite-fault simulations. They are characterized by some geophysical 

parameters, such as the slip distribution field on the fault plane, the S-wave 

attenuation, and site amplification, etc. However, how to estimate (1) the site 

amplification in the region without seismic sensors, (2) the S-wave attenuation 

considering the volcanic effect, and (3) the slip distribution field for a potential 

earthquake are still important and not well solved issues. Besides, there is no a 

practical system for simulating earthquake ground motions paying attention to the 

volcanic zone and asperity on a fault. In the following chapters, they will be 

discussed in detail and solved.  
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CHAPTER   3 

3. DEVELOPMENT OF A METHOD FOR ESTIMATING SITE 

AMPLIFICATION IN CONSIDERING THE SITE EFFECTS 

3.1 INTRODUCTION 

Let’s start with the definition of site amplification. Site amplification indicates 

the amplitude of seismic wave is increased as it propagates through the soft soil 

layers near the surface (Borcherdt 1970; Field and Jacob 1995; Seekins et al. 1996; 

Bonilla et al. 1997; Olsen 2000). A significant site amplification can induce severe 

damages to engineered structures, especially for the case that megathrust 

earthquakes occur (Lermo and Chávez-García 1994; Mucciarelli and Monachesi 

1999; Bakir et al. 2002; Boore et al. 2003; Dolce et al. 2003; Maruyama et al. 2010). 

Therefore, how to estimate site amplification accurately and evaluate the site 

response to large earthquakes is important in earthquake engineering. Besides, in 

the stochastic finite-fault method for simulating acceleration time series, site effect 

is one of three key factors which are considered to synthesize the amplitude 

spectrum (Ghasemi et al. 2010; Safarshahi et al. 2013; Zengin and Cakti 2014; 

Zhang et al. 2016b; Chen et al. 2017). Therefore, selecting the best method for 

estimating site amplification is important for the generation of acceleration time 

series.  

For the site effect, two issues should be discussed and solved. (1) For the area 

with strong ground-motion stations, the site amplification can be determined based 

on the records of the seismic sensors on the surface and in the borehole. For two 
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commonly used method mentioned above, the S/B and H/V spectral ratios 

techniques, which is more accurate? (2) For the area without strong ground motion 

stations, how to estimate site amplification? 

In this chapter, a module is made for calculating site amplification based on 

spectral ratios between acceleration waves recorded by surface and borehole 

sensors in the same station. The site amplifications of 53 stations in Kyushu area 

are calculated. Also, whether the site amplification can be estimated by using the 

H/V spectral ratios technique is investigated based on the same strong ground-

motion records. Before the estimation, the commonly used smoothing techniques 

are compared and the Konno-Ohmachi smoother is selected. And then, in order to 

estimate the site amplification for the location without strong motion records, an 

empirical relationship between site amplification and 30SV  is established. 

3.2 SURFACE‐TO‐BOREHOLE SPECTRAL RATIOS TECHNIQUE 

The most important step of estimating site amplification is the selection of a 

proper reference site. In the surface-to-borehole ratios technique, a borehole record 

in situ is considered as the reference site (Liu et al. 1992; Satoh et al. 1995; Boore 

2004; Satoh 2006; Kokusho and Sato 2008; Holt et al. 2017). In general, the 

observed acceleration time series on the surface and in the borehole are different in 

amplitude. For example, in Figure 3-1, the PGA of surface EW component of the 

station MYZH15 is more than ten times of that of borehole record. This difference 

rises from the site amplification of the soft soil layers.  
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Figure 3-1 The surface and borehole acceleration time series of station MYZH15 

EW component from the 13 July 2015 M5.7 Southern Oita earthquake 

As one important division of standard spectral ratio approach, the surface-to-

borehole ratios technique is more effective to determine the site amplification. The 

original standard spectral ratios technique takes the nearby rock site as the reference 

(Hartzell 1992; Kato et al. 1995; Hartzell et al. 1996; Su et al. 1996; Bard 1999). 

There are two problems in it. One is that it is hard to find a true reference rock site 

since the widespread weathered layer near the surface. The other is that the 

incidence wave field of the reference rock site may not be as same as that of the 

target soil site, if distance between them is not very close. Considering such 

limitations, the surface-to-borehole ratios technique is proposed to estimated site 

amplification. In the surface-to-borehole ratios technique, the reference rock site is 

at the bottom of a borehole, directly below the target soil site (Field and Jacob 1993; 

Steidl et al. 1996; Satoh et al. 1997; Margheriti et al. 2000; Bonilla et al. 2002; 

Rubinstein and Beroza 2005; Parolai et al. 2007; Oth et al. 2011). The depth effect 

in this thesis is also considered and corrected using the power spectral density ratios.  

The borehole recordings have been obtained in many countries and regions, 
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such as Japan, USA, and European counties (Trampert et al. 1993; Abercrombie 

1995, 1998; Ide et al. 2003; Stork and Ito 2004; Langbein 2015). Take Japan as an 

example. The 1995 M6.9 Kobe, Japan earthquake killed more than 6400 people. 

After this devastating earthquake, a strong-motion observation network consisting 

of nearly 700 stations grows to be established, the so-called Kiban-Kyoshin 

network (KiK-net). For each station of this network, the strong-motion instruments 

are installed on the surface and at the bottom of borehole (Figure 3-2). The borehole 

of each station is at the depth of 100-200 m, which is usually considered as the 

engineering bedrock depth (Kawase and Matsuo 2004; Sawada et al. 2004; 

Kinoshita 2005; Petukhin et al. 2008; Okada 2013). With the enough electricity 

supplement and high techniques (Figure 3-3), the collected strong-motion records 

by KiK-net stations can be stored and provided to publics for free (Aoi et al. 2004; 

Fujiwara et al. 2004).  

 

Figure 3-2 Sketch of KiK-net strong-motion network 

It should be noted that in this thesis, the strong-motion data are all accessed 

from the KiK-net, which is operated by National Research Institute for Earth 

Science and Disaster Prevention (NIED).  
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Figure 3-3 Observation facility for KiK-net. (after Aoi et al. (2004)) 

3.2.1 THEORETICAL BASIS 

The surface-to-borehole technique has its physical foundation. In theory, the 

seismic-wave propagation consists of three critical processes, including source, 

path, and site effects. In the frequency domain, they are multiplied to synthesize the 

Fourier amplitude spectrum, 

       s p lA f A f A f A f                   (3.1) 

where,  A f  is the synthesized Fourier amplitude spectrum, the variable on the 

right side of the equation (3.1) with superscript s , p , and l  indicates the 

source, path, and site spectra, respectively. In the surface-to-borehole ratios 

technique, the site amplification in one station,  D f , is determined using the 

equation 

     surface boreholeD f A f A f                  (3.2) 

where the variable on the right side of equation above with superscript surface and 

borehole indications the Fourier amplitude spectra of recordings on the surface 
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and in the borehole.  

For equation (3.2), the source and path effects are all corrected by performing 

the division. There is no doubt that the source effect can be dismissed since both 

recordings are same for one earthquake. As for the path effect, maybe someone will 

doubt that the distances of source-to-surface and source-to-borehole are different. 

However, compare to the tens of kilometers hypocentral distance, the effect of 100-

200 m borehole length can be neglected. For the site spectrum, in the stochastic 

method, it is composed of the kappa effect and site amplification. The specified 

kappa effect,  exp f   , is also removed by division. Therefore, the site 

amplification can be represented by the ratios of Fourier amplitude spectrum of 

surface and borehole recordings at the same site. The so-called depth effect (Cadet 

et al, 2012) is also corrected by the following equations 

 
   

 
2

12

11 22

'
'

S f
S B S B

S f S f
                   (3.3) 

Where  11S f  and  22S f  are the power spectral densities of the surface and 

borehole ground motions, respectively;  12S f  is the cross-power-spectral 

density function; S B  is the ratios determined by equation (3.2).   

 

Figure 3-4 The procedure of estimating site amplification using S/B method 

The procedure of determining the site amplification is illustrated in Figure 3-4 

and introduced as follows  

(1) Access the surface and borehole records in the same station; 

(2) Based on the spectral analysis, perform the Fourier transform for the S-wave 
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windows extracted from the acceleration time series; 

(3) Smooth the surface and borehole spectra; Since there are some noises, or the 

rapid random variations, in the raw S-wave amplitude spectrum, the smoothing 

operation guarantees the accuracy of estimating site amplification. 

(4) Calculate the site amplification by dividing the surface spectra over the borehole 

ones. 

For the spectral analysis, the Fourier transform is applied to the acceleration 

time series using the equation as follows, 

     2i fA f a t e dt






                     (3.4) 

where  a t  is the acceleration time series,  A f  is the Fourier acceleration 

spectrum. It should be noted that the baseline of the record should be corrected 

first. Since the purpose of estimating site amplification is to simulate ground 

motions using the stochastic finite fault method which is based on the shear 

dislocation of a point source, the shear-wave window needs to be extracted from 

the record. The extracted shear-wave window is taped with a 10% of Hanning 

window at both ends to avoid the leaky of frequency.  

An example of estimating site amplification based on the S/B spectral ratios 

technique is given as follows. The surface and borehole records in the NS 

component of station KGSH04 from the 2016 Kumamoto earthquake are selected 

to illustrate the process of estimating site amplification by S/B spectral ratios 

technique. (1) Extract the S-wave windows from the surface and borehole records 

(Figure 3-5); (2) Perform the spectral analysis for the surface and borehole records 

to determine the Fourier amplitude spectra (Figure 3-6); (3) Smooth the surface and 

borehole spectra using the Konno-Ohmachi smoother (Figure 3-7); (4) Calculate 

the surface-to-borehole spectral ratios (Figure 3-8). 
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Figure 3-5 Surface and borehole records at station KGSH04 in the NS component 

 

Figure 3-6 Spectral analysis of the S-wave windows of surface and borehole 
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Figure 3-7 Illustration of smoothing the surface and borehole spectra at station 

KGSH04 
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Figure 3-8 Site amplification of the station KGSH04 from the 2016 Kumamoto 

earthquake 

3.2.2 SMOOTHING TECHNIQUE 

As mentioned above, the smoothing operation should be done before the 

determination of spectral ratios to reduce the noise and evaluate the quality of signal 

(Bindi et al. 2006; Gueguen et al. 2011; Abdel-Rahman et al. 2012; Sivaram et al. 

2012; Akkaya 2015; Layadi et al. 2016). Here the commonly used triangular and 

the Konno-Ohmachi smoothing techniques are introduced and compared. 

3.2.2.1 COMMONLY USED SMOOTHING TECHNIQUES 

Smoothing techniques include weighted and unweighted sliding-average 

smooth (Savitzky and Golay 1964; Robin et al. 1991; Sun et al. 1994; Holt 2004; 

Heitler 2009; Deak et al. 2010; Harris et al. 2010). For the unweighted smoothing 

technique, the original spectrum at the central frequency is alternated by the average 

of m  adjacent frequencies, where is the so-called smooth width. For instance, for 

the case of 5m  , 

2 1 1 2

5

u u u u u
s i i i i i
i

A A A A A
A       

                   (3.5) 
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where s
iA  and u

iA  are the thi frequency in the smoothed and unsmoothed 

amplitude spectra, respectively, for 3i   to n-1, and n is the total number of 

frequencies in the spectra. Since the unweighted smoothing technique is so 

simple, it can be just used for some case without significant variation. 

The other kind of smoothing approaches is the weighted one. One of the 

most popular weighted smoothing techniques is the so-called triangular smooth. 

For the case of 5m  , 

2 1 1 22 3 2

9

u u u u u
s i i i i i
i

A A A A A
A       

 .                (3.6) 

In the triangular smoothing, the assigned weight for each frequency decays from 

the central frequencies, and they are symmetrically balanced around the central 

frequencies, which looks like a triangle. Figure 3-9 shows the unsmoothed and 

unsmoothed Fourier amplitude spectrum of the station KMMH09 NS component 

from the 2016 Kumamoto, Japan earthquake. The smoothing width for this case 

are 0.2 Hz, 0.3 Hz, 0.5 Hz, 1 Hz, and 2 Hz, respectively. A wider smoothing width 

(e.g. 2 Hz) cannot provide an enough smooth at low frequencies, whereas a 

thinner smoothing width (e.g. 0.2 Hz) provide too much smooth at high 

frequencies. Therefore, many trials should be done to test which one is reasonable.  
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Figure 3-9 The smoothed Fourier amplitude spectra of station KMMH09 NS 

component from the 2016 Kumamoto earthquake using traditional smoothing 

techniques  

3.2.2.2 KONNO‐OHMACHI SMOOTHER 

Based on the analysis above, the so-called Konno-Ohmachi weighted 

smoothing function is employed in the practical system for estimating site 

amplification more accurately (Konno and Ohmachi 1998). The specific form of 

this weighted smoothing function is shown as follows, 

       
4

10 10, sin log log
b b

c c cw f f f f f f 
 

          (3.7) 

where, b is an variable coefficient, f  is the frequency, cf  is the central 

frequency. Figure 3-10 shows the smoothed Fourier amplitude spectrum of the 

station KMMH09 NS component using Konno-Ohmachi smoothing technique 

with the 40b  . It is suggested to use this smoothing parameter ( 40b  ) for all 

the spectra since it can provide an appropriate smoothing at both low and high 

frequencies. 
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Figure 3-10 The smoothed Fourier amplitude spectra of station KMMH09 NS 

component from the 2016 Kumamoto earthquake using Konno-Ohmachi 

smoothing techniques 

3.2.2.3 COMPARISON OF DIFFERENT SMOOTHING TECHNIQUES 

The comparison of smoothed Fourier amplitude spectra using different 

techniques shows significant difference. How does this difference influence on the 

estimation of site amplification, and even on the simulated spectra? To solve this 

issue, we calculate the site amplification using smoothed Fourier amplitude spectra 

based on Konno-Ohmachi and triangular smoothers. Besides, the simulated Fourier 

amplitude spectra are also compared to validate the accuracy of Konno-Ohmachi 

smoother at both low and high frequencies. 

Figure 3-11 and Figure 3-12 show the unsmoothed and smoothed Fourier 

amplitude spectra for station KMMH09 NS component using the surface and 

borehole recordings from the 2016 Kumamoto earthquake. The low- and high 

frequency characteristics of the Fourier amplitude spectra for both the surface and 

borehole recordings are well remained when using the Konno-Ohmachi smoother. 



 

 73

 

Figure 3-11 Smoothed and unsmoothed Fourier amplitude spectrum for station 

KMMH09 NS component using the surface recording 

 

Figure 3-12 Smoothed and unsmoothed Fourier amplitude spectrum for station 

KMMH09 NS component using the borehole recording 

Then the site amplification of station KMMH09 is determined using the 

surface-to-borehole ratios technique (Figure 3-13). At low-frequency part ( 2f 

Hz in this case) , the site amplification shows significant differences. Compare to 

the commonly used techniques, the Konno-Ohmachi smoothing technique provides 

enough smoothing for the crest and trough of the spectrum.  
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Figure 3-13 site amplification of station KMMH09 using different smoothing 

techniques without correcting the depth effect 

 

Figure 3-14 Comparison of observed and simulated spectra using different 

smoothing techniques. 
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To validate the practical smoothing technique furtherly, Fourier amplitude 

spectra are simulated using the site amplification in Figure 3-13 based on the 

stochastic finite-fault method (Figure 3-14). The simulated Fourier amplitude 

spectrum based on the Konno-Ohmachi smoothing technique matches the observed 

one better than those based on the triangular smoothing technique at low and high 

frequencies. For the triangular smoother, a thinner smooth width (e.g. 0.2 Hz) 

cannot matches the high-frequency part well, whereas a wider smooth width (e.g. 2 

Hz) cannot matches the low-frequency part. Although the accuracy of 0.5 Hz- width 

is very close to that of Konno-Ohmachi, it is obtained after many trials. Therefore, 

the commonly used triangular smoother cannot provide a stable smoothing effect at 

both low and high frequencies. It is suggested to use the Konno-Ohmachi 

smoothing technique to smooth the Fourier spectra. 

3.3 THE  ESTIMATION OF  SITE AMPLIFICATION  IN THE REGION WITH  SEISMIC 

SENSORS 

Two commonly used techniques have been used to estimate the site 

amplification for the region with seismic sensors. The first method is the surface-

to-borehole (S/B) spectral ratios technique. In this method, the surface and borehole 

recordings are selected to calculate the site amplification. It will be introduced in 

the following sections in detail. Another commonly used method to estimate the site 

amplification is the horizontal-to-borehole (H/V) spectral ratios technique (Chávez-

García et al. 1996; Yamazaki and Ansary 1997; Albarello 2001; D'Amico and 

Mucciarelli 2002; Chavez-García et al. 2007; Gosar 2007; Nath et al. 2008). In this 

method, the vertical component is considered as the reference site to estimate the 

amplification. Since its simplicity and costly less, it is widely accepted. However, 

this method has some limitations. On the one hand, there is no physical basis to 

estimate the site amplifications. Specifically, there is no strong physical reason to 

take the vertical component as the reference (Paolucci 1999). On the other hand, in 

the H/V technique, the amplification in vertical component is neglected. In practical, 

although the vertical component of a record is considered as the reference site, 

strictly speaking, the vertical component is also amplified as seismic wave travels 
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through the soft soil layers (Tucker and King 1984; Yang and Sato 2000; 

Ahmadizadeh and Shakib 2004; Elgamal and He 2004; Kunnath et al. 2008; 

Yamada et al. 2009; Buech et al. 2010; Fry et al. 2011). Therefore, the accuracy of 

this technique is dependent of the amplification extent of vertical component. For 

example, if the vertical component is larger than that of two horizontal components, 

this technique is invalid. In this case, the vertical component cannot be regarded as 

the reference as usual. 

3.3.1 COMPARISON OF SITE AMPLIFICATION ESTIMATED BY USING S/B AND H/V 

SPECTRAL RATIOS TECHNIQUES 

To select a good method for the estimation of site amplification, two most 

popular methods are compared using the 53 strong ground-motion stations in 

Kyushu Island. In earthquake engineering, two methods are commonly used for the 

estimation of site amplification. One is the surface-to-borehole (S/B) spectral ratios 

technique, the other is the horizontal-to-vertical (H/V) spectral ratios technique. 

Their strengths and limits have been introduced above. However, whether the H/V 

spectral ratios can be used for site amplification in Kyushu region should be 

investigated. 53 KiK-net records from the 2016 Kumamoto earthquake are used for 

this comparison. It is found that less than 30% stations support this assumption.  

 

Figure 3-15 site amplification in two representative stations using S/B and H/V 

spectral ratios techniques 
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In Figure 3-15, the site amplification at two selected stations are shown. The 

left panel shows a bad agreement in both the amplification values and the 

fundamental frequency, which is the frequency corresponds to the peak 

amplification factors. There are more than 70% stations showing the bad agreement. 

The reason may come from the assumption that vertical component is considered 

does not amplify the seismic wave in the H/V method. However, in the real situation, 

the site amplification in the vertical component cannot be neglected. Therefore, in 

this thesis, we select the S/B spectral ratios technique to be the method for the 

estimation of site amplification. 

3.3.2 SITE AMPLIFICATION IN KYUSHU REGION 

According to the calculation and discussion above, the S/B spectral ratios 

technique is employed to determine the site amplification of the 53 KiK-net stations 

in Kyushu region (Figure 3-16).  
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Figure 3-16 The location of KiK-net stations in the Kyushu region. Black open 

triangles are the stations. 

The selected recordings should be the high-quality ones. Therefore, before the 

calculation of site amplification, signal-to-noise ratios of the records should be 

evaluated. In this thesis, we use the value of 3 as the cutoff threshold to pick the 

higher quality records. The signal-to-noise ratio is defined in this study as the ratio 

between the Fourier amplitude spectra of S-wave window and that of the pre-event 

noise window (Zaré and Bard 2002; Ktenidou et al. 2011). After the evaluation and 

selection of data source, the site amplification of KiK-net stations in Kyushu region 
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are calculated and shown in Figure 3-17. Based on the calculated site amplification, 

the strong ground motion simulations of the 2016 Kumamoto earthquake can be 

performed. 

 

Figure 3-17 The site amplification of 53 KiK-net stations in Kyushu region 
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3.4 DEVELOPMENT OF A METHOD FOR ESTIMATING SITE AMPLIFICATION OF THE 

REGION WITHOUT STRONG‐GROUND STATIONS 

One of the most important purposes of earthquake engineering is to predict the 

ground motions for a region of most engineering interest. To achieve this goal, three 

kinds of information should be specified. That is, the source effect, path effect and 

the site response. Compare to the former two effects, the site response can be 

investigated before an earthquake in detail. Some necessary information, including 

thickness, depth, density and P- and S-wave velocity profile can be obtained from 

the logging database of strong ground-motion network. For example, the detailed 

soil condition data of Japan can be accessed from the KiK-net and K-NET logging 

profile. Figure 3-18 shows the soil condition image of the station FKOH09.  
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Figure 3-18 The soil condition image of the KiK-net station FKOH09. (Accessed 

from NIED) 

For a specific site where a strong ground-motion station is installed, it is not 

difficult to determine the accurate site amplification using the surface-to-borehole 
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spectral ratios technique. Rich data set is a strong support to the estimation of site 

amplification by considering the average response of the recorded events at one site. 

However, for the area without strong ground motion stations, how to estimate site 

amplification to meet the engineering demands is an important and urgent issue. 

The motivation for determining an empirical relation between the accurate site 

amplification and some other measures, which should relate to the geological 

conditions and are able to be accessed in a regional scale, rises from a practical 

demand to estimate the site amplification without strong ground motion stations. 

The so-called 30SV  meets these criteria.  

As the most widely used indicator for site classification, the 30SV  represent 

the response of shallow soil layers. Borcherdt (1994) evaluates the influence of soil 

depth on the natural period of response spectra and PGA, and suggests to use the 

30SV , the averaged shear-wave velocity to a depth of 30 m, to classify the site as 6 

categories. And then this advice is selected by the NEHRP (BSSC, 2000) and the 

International Building Code (IBC) as a recommendation measure to classify the 

engineering site. The 30SV  of 52 KiK-net stations in Kyuhsu region is determined 

and tabulated in Table 3-1. It should be noted that PS logging data of station 

KGSH08 is unavailable. 

Table 3-1 30SV  of KiK-net stations in Kyushu region 

Station code Longitude ( E ) Latitude ( N ) 30SV  (m/s) 

FKOH01 130.9798 33.8849 588.5 

FKOH03 130.5499 33.5608 497.0 

FKOH06 131.1348 33.5925 1001.8 

FKOH07 130.6354 33.3678 282.9 

FKOH08 130.8285 33.4654 535.8 

FKOH09 130.5432 33.8501 566.7 

FKOH10 130.817 33.2891 921.3 

KGSH01 130.1191 32.1554 603.0 

KGSH03 130.4438 31.9812 1196.2 
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KGSH04 130.3602 31.8374 280.4 

KGSH05 130.4958 31.8699 477.5 

KGSH06 130.4594 31.6988 454.9 

KGSH07 130.6149 31.714 260.0 

KGSH09 130.4333 31.5618 409.1 

KGSH10 130.6183 31.3741 254.9 

KGSH12 131.0877 31.2066 451.6 

KMMH01 130.6949 31.2583 574.6 

KMMH02 131.0629 33.1089 576.7 

KMMH03 130.8301 33.122 421.2 

KMMH06 131.101 32.8114 567.8 

KMMH09 130.9046 32.4901 399.7 

KMMH10 130.1811 32.3151 176.9 

KMMH11 130.5777 32.2918 1292.3 

KMMH12 130.7371 32.2054 409.8 

KMMH13 130.9096 32.2209 402.5 

KMMH14 130.7521 32.6345 248.3 

KMMH15 130.3647 32.1704 499.9 

KMMH16 130.8199 32.7967 279.7 

MYZH04 131.3349 32.5181 484.4 

MYZH05 131.2668 32.347 1072.5 

MYZH08 131.5309 32.2132 374.4 

MYZH09 131.0618 32.0421 973.0 

MYZH10 131.29 32.0215 494.7 

MYZH12 130.9454 31.8643 319.5 

MYZH13 131.0791 31.7301 251.2 

MYZH15 131.5893 32.3654 445.7 

MYZH16 131.6958 32.506 847.5 

NGSH01 129.4353 33.2116 397.8 

NGSH02 129.7652 33.2122 642.1 

NGSH03 129.8102 33.1256 634.5 
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NGSH04 129.8026 32.9553 633.2 

NGSH06 129.8625 32.6999 1421.1 

OITH01 131.0326 33.4122 865.1 

OITH03 131.6856 33.4736 486.0 

OITH05 131.542 33.1525 1269.4 

OITH08 131.5357 32.8392 657.4 

OITH10 131.8695 32.9278 836.9 

OITH11 131.2118 33.2844 458.0 

SAGH01 129.8877 33.508 980.2 

SAGH02 129.8798 33.2656 557.9 

SAGH04 130.4046 33.3654 724.1 

SAGH05 130.1046 33.1806 1000.0 

 

And then, the relation between the 30SV  and topography is established based 

on statistical analysis. Intuitively, the topography is a kind of indicators of rock type 

near the surface. The steep mountains usually indicate the existing hard rock, while 

the flat basin indicates the widely distributed soil layers. The strong correlations 

between the topography, such as the elevation and slope angle, and 30SV   are 

revealed by some literatures (Matsuoka et al. 2005; Chiou and Youngs 2006; Wald 

and Allen 2007). To some extent, the slope or gradient can be used to judge the 

value range of 30SV  , because most of the hard materials are more possible to 

combine as a steep slope, while the soft sediments are deposited mainly in the low 

gradient environments. Further, the fineness of the sedimentary materials should 

have a relationship with the slope. For instance, the steep and coarse mountain-front 

deposits generally grades to finer materials with the increasing distance and the 

decreasing slopes. Therefore, the empirical relation between the 30SV   and 

topography is reasonable. In a regional scale, the 30SV  can be estimated using these 

empirical relations. Figure 3-19 shows the 30SV  distribution in Kyushu Island.  
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Figure 3-19 30SV  distribution of the Kyushu region (Matsuoka et al. (2005)) 

After obtaining the 30SV   distribution, the site amplification of a region 

without strong ground-motion stations can be estimated by deriving the empirical 

relation between the site amplification and 30SV  . In this chapter, four forms of 

empirical relations are developed as follows, 

   30S refD f a V V b                     (3.8) 

   10 30log S refD f a V V b                  (3.9) 

   10 10 30log log S refD f a V V b                (3.10) 

   10 30log S refD f a V V b                   (3.11) 

Here, the reference velocity, refV  , referred as the value of 760 m/s, which is 

considered as the boundary of class A (hard rock) and B (firm to hard rock) sites in 

the NEHRP provisions (Table 3-2). The regression is performed in the frequency 

range of 0.1-25 Hz with a 0.05 Hz space. At each frequency, the linear-squares fit 

is used to obtain the regression coefficient of the 30SV  and then to calculate site 



 

 86

amplification of three components (NS, EW and UD), respectively. It should be 

noted that the site amplification in the regression are determined by equation (3.2). 

That is, the depth effect is neglected and not corrected. Figure 3-20 shows an 

example for the regression. It is clear that in log-linear space, the relation between 

site amplification and 30SV  shows a linear trend.  

Table 3-2 Site classification based on the 30SV  

NEHRP Category Description 
30SV  

A Hard rock > 1500 m/s 

B Firm to hard rock 760-1500 m/s 

C Dense soil, soft rock 360-760 m/s 

D Stiff soil 180-360 m/s 

E Soft clays < 180 m/s 

F Special study soils, e.g. 

liquefiable soils, sensitive 

clays, organic soils, soft clays 

> 36 m thick 

 

 

 

Figure 3-20 The relation between site amplification (EW) and 30SV  at 3.5 Hz 
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The strong ground-motion recordings used for the determination of site 

amplification is accessed from the 2016 Kumamoto earthquake. The comparison of 

R-squares of these four empirical relations developed above shows that the forth 

one is the best due to its largest R-squares at most of the frequencies. Therefore, it 

is suggested to use the relation of    10 30log S refD f a V V b   to estimate the 

site amplification for a region without strong ground-motion records in Kyushu. 

For simplicity, only a part of regression coefficients on the EW component is 

tabulated in Table 3-3. For a site of engineering interest, the 30SV   should be 

identified first. And then, the site amplification can be estimated using the empirical 

relation (4) with the regression coefficients list in this form. 

Table 3-3 Regression coefficients of equation (3.11) for site amplification, EW 

component 

Frequency (Hz) a b Frequency (Hz) a b 

0.10 -0.0270 0.0713 3.45 -0.3519 0.8172 

0.20 -0.0339 0.0393 3.95 -0.3317 0.8664 

0.30 -0.1186 0.1608 4.55 -0.3018 0.8995 

0.40 -0.1548 0.2119 5.50 -0.3355 0.9489 

0.55 -0.1739 0.2503 6.00 -0.3395 0.9605 

0.75 -0.2234 0.3698 7.00 -0.3103 0.9748 

0.95 -0.2548 0.4259 8.05 -0.3148 0.9944 

1.10 -0.2781 0.5093 9.25 -0.3258 0.9833 

1.25 -0.2795 0.5388 10.70 -0.2200 0.8506 

1.50 -0.2319 0.5294 12.30 -0.0713 0.6751 

1.70 -0.2793 0.6052 14.20 -0.0083 0.5473 

1.95 -0.3308 0.6607 16.35 -0.0196 0.4814 

2.25 -0.3895 0.7275 18.85 -0.0486 0.4377 

2.60 -0.4071 0.7930 21.70 -0.1022 0.4455 

3.00 -0.3475 0.7836 25.00 -0.2296 0.5479 

NEHRP: National Earthquake Hazard Reduction Program 
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Some stations which didn’t record the 2016 Kumamoto earthquake are used 

for validation. There are 18 KiK-net station which meet this condition in Kyushu 

Island. However, they recorded other earthquake such as the 2005 Fukuoka 

earthquake. The site amplification of these stations are also calculated using the 

surface-to-borehole spectral ratios method using the records from the 2005 Fukuoka 

earthquake. To validate the method for the estimation of site amplification 

developed in this chapter, the site amplification at these stations are also determined 

by using their 30SV . These station can be classified into 5 categories based on the 

Table 3-2. For each class, one station is selected for validation.  

Figure 3-21, Figure 3-22 and Figure 3-23 show the comparisons between the 

calculated and predicted site amplification for five-class sites on the NS, EW and 

UD components. By comparing the predicted results with those directly calculated 

from the records of both surface and borehole sensors, the good agreement in the 

frequency range of engineering interest shows the developed method is reasonable 

and adaptable. 

 

Figure 3-21 Comparison between calculated and predicted site amplification in 

the NS component of five-class sites  
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Figure 3-22 Comparison between calculated and predicted site amplification in 

the EW component of five-class sites 

 

Figure 3-23 Comparison between calculated and predicted site amplification in 

the UD component of five-class sites 
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3.5 THE FLOWCHART OF ESTIMATION OF SITE AMPLIFICATION  IN DEVELOPED 

PRACTICAL SYSTEM 

In this thesis, a practical system for estimating ground motion is developed. 

As one of three important parts, the site amplification should be estimated first. 

Figure 3-24 shows the flowchart of the estimation of site amplification in developed 

system. The procedure for estimating site amplification is shown as follows. 

 

 

Figure 3-24 The flowchart of the estimation of site amplification 

For the region with strong ground motion recordings, the procedures are 

(1) Extract the S-wave window from the surface and borehole records in the same 

station;  

(2) Based on the spectral analysis, perform the Fourier transform for the S-wave 

windows of surface and borehole; 

(3) Smooth the Fourier amplitude spectra using Konno-Ohmachi smoothing 

technique; 

(4) Calculate the site amplification by dividing the surface spectra over the borehole 

ones and correct the depth effect using equation (3.3). 

For the region without strong ground motion recording, the site amplification 

is predicted by using the empirical relation of    10 30log S refD f a V V b  .  
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Base on the procedure we designed, the site amplification will be prepared 

very well for the ground motion simulations.  

3.6 CONCLUSIONS 

The estimation of site amplification in the region without strong ground 

motion stations is an important issue for earthquake engineering. In this chapter, a 

method based on the surface-to-borehole spectral ratios technique and the 30SV  is 

developed. The surface-to-borehole ratios technique is selected since it can 

represent the real site amplification in situ and solve the problem about the selection 

of a reference site. In this technique, both the surface and borehole recordings are 

required. One of the important steps is to smooth the Fourier amplitude spectra 

before the division of surface spectra over the borehole spectra. A practical Konno-

Ohmachi smoothing technique is selected and incorporated into this module. The 

conclusions can be drawn as follows: 

(1)  A module of estimating the site amplification in the region with and 

without seismic sensors is made and incorporated in the developed 

practical system for earthquake ground-motion simulation. The specific 

procedure is introduced.  

(2) The site amplification of the 53 KiK-net stations in the Kyushu region are 

calculated using the ground motion recordings from the 2016 Kumamoto 

earthquake based on the surface-to-borehole (S/B) and horizontal-to-

vertical (H/V) spectral ratios techniques, respectively. It is found that less 

than 30% stations support the assumption of using the H/V methods to 

determine site amplification in the Kyushu region since the vertical 

amplification is obvious and cannot be neglected. Therefore, in this 

module, S/B spectral ratios technique is selected to determine the site 

amplification. 

(3) The method for estimating site amplification in the region without strong 

ground-motion stations is developed, which is based on the empirical 

relation between the calculated site amplification and the so-called 30SV . 
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Four kinds of relations are selected to perform the least-squares fit to 

determine the regression coefficient. The relation in the form of 

   10 30log S refD f a V V b    is employed due to its larger R-squares. 

This method is validated by comparing the calculated and predicted site 

amplification in five-class sites. 

(4)  A practical smoothing technique, the Konno-Ohmachi smoother, is 

employed to smooth the surface and borehole Fourier spectra. Compare to 

the commonly used triangular smoothing techniques, this technique can 

provide a good smooth at both low- and high-frequency parts. This 

smoothing technique is incorporated in the module for the estimation of 

site amplification. 
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CHAPTER   4 

4. DEVELOPMENT OF A PRACTICAL ANALYSIS METHOD FOR THE 

ESTIMATION OF SHEAR‐WAVE ATTENUATION CONSIDERING 

VOLCANIC EFFECT   

In the active tectonic regions, earthquakes usually occur with the severe 

magmatic activities (Wyss et al. 1997; Italiano et al. 1998; Ishizuka et al. 2015; 

Saita et al. 2015). Sometimes the active volcanoes play an important role in the 

nucleation of megathrust earthquakes due to the complex stress field, sometimes 

they stop the ruptures or dislocations propagating (Nakamura 1977; Giudice and 

Rasà 1992; Gudmundsson et al. 1997; Takada and Fukushima 2013). For example, 

in the 2016 Kumamoto, Japan, earthquakes, the surface ruptures on the Futagawa 

fault stopped in front of the Aso volcano, one of the 7 active volcanoes in Kyushu 

Island (Suleiman and Doser 1995; Davies et al. 2008; Lin et al. 2016; Lin et al. 

2017). Besides, low-frequency micro-earthquakes with the magnitude of 0.5-4.5 are 

identified and located beneath the active volcanoes (Hasegawa and Yamamoto 1994; 

Nakamichi et al. 2003; Giampiccolo et al. 2007; Takahashi et al. 2007). It is ensured 

that the magmatic activities change the tectonic settings and homogeneity of earth 

medium, which caused by dehydration of the subducting slab and corner flow in 

the mantle wedge above the slab (Cavinato and De Celles 1999; Long and van der 

Hilst 2006; Wada et al. 2008; Zhao et al. 2011). The high temperature in the medium 

beneath the volcanoes prompts the process of the dehydration and changes the 

properties of overburden rock layers (Iwamori 2000; Van Keken et al. 2002; Hattori 
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and Guillot 2003; Plank et al. 2009). Therefore, when seismic wave propagates 

through the volcanic area, the extent of decay loss of seismic wave is different from 

that in the non-volcanic area. Figure 4-1 shows the amplitude of seismic wave 

decays as it propagates from the source to the site. Since the seismic energy is 

proportional to the squared amplitude of the wave, this sketch also indicates the loss 

of seismic energy as it travel through the earth medium (Suyehrio et al. 1996; 

Haberland and Rietbrock 2001; Wong et al. 2001; Zhao et al. 2002; Schurr et al. 

2003; Judenherc and Zollo 2004). 

Since most of the seismic energy is contributed by shear wave (S wave), the 

major damages on the surface to engineering structures are also induced by the S 

wave (Kawase and Aki 1989; Tokimatsu et al. 1994; Kawase 1996; Tokimatsu et al. 

1996; Bakir et al. 2002; Dong et al. 2004; Krishnan et al. 2006; Snieder and Şafak 

2006; Zonno et al. 2010; Shiradhonkar and Shrikhande 2011). To characterize the 

loss of seismic energy with the increasing distance of the wave propagation, shear-

wave attenuation ( sQ ) is introduced into the path effect (Knopoff 1964). That is to 

say, the sQ  in the crust and the uppermost mantle beneath the volcanic area is 

different from that beneath non-volcanic area (Shelly et al. 2006; Snieder and Şafak 

2006; Zhao et al. 2010; Liu et al. 2014; Liu and Zhao 2016b, a, 2017). When 

synthesizing the seismic acceleration wave using the stochastic finite-fault method, 

the sQ   should be specified in a function of frequency. The sQ   is commonly 

shown as a power law in the form of 0
n

sQ Q f  , where 0Q  is the value of sQ  

at 1 Hz and n  is frequency parameter (Aki and Chouet 1975).  

In the conventional method, the sQ  in volcanic zone is determined without 

distinguishing the non-volcanic area from the volcanic area (Rogers et al. 1987; 

Abercrombie 1998; Bindi et al. 2004; Nakamura et al. 2006). In the volcanic zone, 

the sQ  is usually estimated from one specific earthquake without considering the 

volcanic effect mentioned above (Oth et al. 2011; Safarshahi et al. 2013; Zengin 

and Cakti 2014). The lateral sQ   heterogeneities are not taken into the 

determination. In fact, some large cities are located in the non-volcanic area with a 
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higher sQ . Using a unique sQ  expression is not appropriate to simulate ground 

motions in the volcanic zone, especially for the ground motion simulations of non-

volcanic area.  

In this chapter, an analysis method for estimating sQ   considering the 

volcanic effect is developed. First, the effect of sQ   on ground motions is 

investigated. Then, the procedure of determining the sQ  is introduced. Finally, the 

developed method is integrated in the practical system for simulating acceleration 

waves and validated by the ground motion simulations of the 2016 Kumamoto 

earthquake. 

 

Figure 4-1 Schematic illustration of seismic wave attenuation  

4.1 EFFECT OF S‐WAVE ATTENUATION ON GROUND MOTIONS 

The effect of S-wave attenuation ( sQ ) on ground motions is investigated first. 

A numerical test is performed by varying the value of sQ  at 1 Hz, that is the value 

of 0Q  , from 80 to 150 (Figure 4-2). Ghofrani et al. (2013) suggest to use the 

equation (4.1) to calculate the residual of simulated and observed Fourier amplitude 

spectra for the evaluation of simulation goodness.  

   10 10log logobs simres FAS FAS                  (4.1) 

where, obs  and sim  are the abbreviations of observed and simulated FAS. In 

this thesis, it is defined that if the absolute residual is smaller than 0.2, the 
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simulated spectrum is rational. The strong ground-motion record of station 

KGSH10 from the 2016 Kumamoto earthquake is selected to make this test.  

 

Figure 4-2 Effect of sQ  on the simulated FAS at station KGSH10 

Figure 4-2 shows the simulated and observed Fourier amplitude spectra and 

their residuals in a function of frequency. The upper inset shows the comparison of 

observed and simulated spectra, while the lower inset shows their residuals 

determined from equation (4.1). At low frequencies (f < 0.5 Hz in this case), no 

matter which expression of sQ  is used, its performance is the same. However, the 

systematic differences are observed at high frequencies when using different sQ  

to simulate the Fourier amplitude spectra. Specifically, the larger 0Q  are used, the 

higher spectral amplitude at high frequencies are simulated. The average residuals 



 

 107

at the frequency range of 0.5-25 Hz are 0.05, 0.32, 0.53, 0.71 for 0.6880sQ f , 

0.68100sQ f , 0.68120sQ f , 0.68150sQ f , respectively. Therefore, an accurate 

sQ  needs to employ in the ground motion simulations. The lateral sQ  

heterogeneities caused by the volcanic effect should be considered into the 

determination of sQ   in the volcanic zone, especially for the non-volcanic area 

with a high sQ . 

4.2 THE CONVENTIONAL METHOD OF ESTIMATING SHEAR‐WAVE ATTENUATION   

 

Figure 4-3 Flowchart of the conventional method of estimating sQ  

The most popular method to determine the sQ  based on the observations is 

the so-called spectral decay method (Anderson and Quaas 1988). The specific 

procedures of the calculation are illustrated in Figure 4-3 and introduced as follows. 

First, the S-wave window should be extracted from the records (Figure 4-4). The S-

wave arrival is determined by using the P-wave arrival and their time difference, 

since the initial motion of the amplitude is usually considered as the P-wave arrival 

and is easier to be detected. The time difference between the P- and S-wave arrival 
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is calculated from the epicentral distance and their average velocities. After 

finishing the extraction, the S-wave window is taped with a 10% of Hanning 

window at both ends to avoid the leaky of frequency. Finally, it is transformed to 

the Fourier amplitude spectrum.  

 

Figure 4-4 Schematic illustration of S-wave windows extraction. The acceleration 

time series is the surface record (NS component) at station KMMH16 from the 

2016 Kumamoto earthquake 

The observed spectra then are corrected by the geometrical spreading. In 

theory, the spectral amplitude of body wave decay as the it propagates only 

considering the elastic attenuation at the rate of 1R  . However, the complex 

geological structures will affect the geometrical spreading. Atkinson and Mereu 

(1992) investigate the attenuation characteristics of different wave phases in south 

eastern Canada and propose a trilinear model with the piecewise points of 70 km 

and 130 km. Zengin and Cakti (2014) use a bilinear model to fit the transition from 

the direct wave to Lg  phase at approximately 100 km for Turkey. Here we select 

the bilinear model to correct the Fourier amplitude. That is, at distances less than 

100 km, amplitudes decays at a rate of 1R , whereas more than 100 km, spectral 

amplitude decay slightly at a rate of 0.5R .  

The next step is to determine the sQ   at some specific frequencies. The 
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Fourier amplitude spectrum,  ,U f R , recorded at hypocentral distance R , can 

be represented by the following form, 

     , exp sU f R S G R fR Q                (4.2) 

where S  is the source and site term which is independent of distance R ,  G R  

is the geometrical spreading,    is the S-wave velocity. A linear relationship 

derived from the equation (4.2) by taking natural logarithm is showed as 

     ln( , ) ln
s

f
U f R G R R S

Q




   .            (4.3) 

The left hand of this equation represents the spectral amplitude corrected by 

geometrical spreading function. For a given frequency, plot the corrected spectral 

amplitude of all stations versus their hypocentral distances (Figure 4-5). Then the 

sQ  at each frequency can be calculated from the slope of equation (4.3) under an 

assumption of the S-wave velocity. And then, plot the sQ  versus the corresponding 

frequencies in log-log scale and perform the least-squares fit. The frequency-

dependent quality factor relation can be obtained (Figure 4-6) as the form of 

0.67103.5sQ f  in Kyushu.  

 

Figure 4-5 The sQ  results at some frequencies in conventional method  
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Figure 4-6 sQ  estimation in conventional method 

4.3 LATER S‐WAVE ATTENUATION HETEROGENEITIES IN KYUSHU ISLAND 

There are many active volcanoes in Kyushu Island (Figure 4-9). Tsurumidake-

Garandake, Kuju, Aso, Unzen, Kirishima, Sakurajima, and Ikeda-Yamagawa 

volcanoes locates as a sequence from the north to south (Zhao et al. 2000; Wang 

and Zhao 2006; Zhao et al. 2011). Many studies report that the Low-Q anomalies 

are observed beneath these volcanoes in the crust and the uppermost mantle, while 

the High-Q anomalies exists in the subduction of the Philippine Sea plate (Figure 

4-7) (Patanè et al. 1994; Obara and Sato 1995; Whitman et al. 1996; Ben‐Zion 

1998; Takanami et al. 2000; Tsumura et al. 2000; Kanno et al. 2006; Yoshimoto et 

al. 2006; Arpa et al. 2013; Prudencio et al. 2015). Zhao et al. (2011) suggest the 

widely-spread sQ  anomalies in the western Japan subduction zone are caused by 

dehydration of the Philippine Sea plate and the corner flow in the mantle. Such 

magmatic activities induced the eruption of active volcanoes and the occurrence of 

large earthquakes in the shallow crustal area.  
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Figure 4-7 sQ  tomography results of the Kyushu region at the depth of 10 km 

(clipped from Liu and Zhao (2015)) Black solid triangles indicates the active 

volcanoes. 

Figure 4-8 shows the schematic figure of the sQ  distribution in the Kyushu 

Island. Such lateral sQ  heterogeneities will affect the decay loss of seismic energy 

as the seismic wave travels through the magmatic and fluid regions. This effect 

should be considered into the ground motion simulations, since it would seriously 

affect the amplitude and frequency content of ground motions.  
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Figure 4-8 Schematic illustration of sQ  structure of the Kyushu region (refer 

from Pei et al. (2009)) 

Figure 4-9 shows the locations of active volcanoes in Kyushu Island. The 

comparison between Figure 4-7 and Figure 4-9 indicates most of the area of the 

Kyushu Island is in low-Q anomalies due to the volcanic effect. In the conventional 

method, the sQ  in Kyushu Island is determined using one unique formula or value 

for an entire region. The lateral sQ  heterogeneities are not taken into account. The 

effect of sQ   on ground motions has been proved in the last section and a 

suggestion of considering the volcanic effect is also given. Therefore, the 

conventional method should be modified for the determination of sQ  using the 

spectral decay method. Besides, some large cities, such as the Fukuoka city, the 5th 

largest cities of Japan, are usually located at the non-volcanic area. It is necessary 

and important to estimate the sQ  in such area, which can be used for earthquake 

ground motion simulations and then for the earthquake-resistant design.  
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Figure 4-9 The active volcanoes in Kyushu Island. The red circles show the 

location and possible range of volcanoes. 

4.3 DEVELOPMENT  OF  A  PRACTICAL  ANALYSIS  METHOD  CONSIDERING  THE 

VOLCANIC EFFECT 
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Figure 4-10 The flowchart of developed practical method for the estimation of 

sQ  

In this chapter, we propose a method considering the volcanic effect in 

estimating sQ  . sQ   values are usually estimated without distinguishing non-

volcanic area from volcanic area in one region. In fact, it has been reported that 

there is a Low sQ  in the region with active volcanoes comparing to the normal 

values. Therefore, we propose to separate the strong ground-motion stations into 

volcanic and non-volcanic ones based on the tomographic results. The specific 

procedures are illustrated in Figure 4-10 and shown as follows, 

1. Separate the stations, that is, the strong ground motion records as the volcanic 

and non-volcanic ones based on the published tomographic results  

2. Calculate the sQ   using the spectral decay method for volcanic and non-

volcanic region separately. 
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Figure 4-11 The sQ  results at some central frequencies for the Kyushu region. The 

red and blue circles are spectral amplitudes of the volcanic and non-volcanic records 

corrected by the geometrical spreading,    ln( , )U f R G R , respectively. 

 

Figure 4-12 sQ  estimation in the Kyushu Island, Japan by using the least square 

linear fit 

It should be noted that when calculate the sQ  in the volcanic area, the strong 

ground-motion records for calculating sQ  should be accessed from the earthquake 

which the hypocentre is located in the volcanic area. This criterion ensures the 

calculated sQ  only shows the volcanic effect on the S-wave attenuation. For the 

non-volcanic area, the criterion is vice versa. That is, to calculate the sQ  for the 
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non-volcanic area, the earthquake should be selected as the one which the 

hypocentre should be surrounded by the non-volcanic stations, which ensures the 

direct S wave will reach the stations without travelling through the volcanic area 

and containing the information from the non-volcanic area only. The sQ  beneath 

the volcanic and non-volcanic area in Kyushu are expressed in the form of 

0.6695.7sQ f  and 0.74122.6sQ f , respectively. 

4.4 VALIDATION: THE CASE OF THE 2016 KUMAMOTO EARTHQUAKE 

To validate the method proposed in this chapter, the Kyushu region is selected 

as an example due to its active magmatic activities. The tomography result shows 

the sQ  perturbations at different depths (Zhao 2015; Zhao et al. 2016; Wang et al. 

2017d; Zhao 2017; Zhao et al. 2017). In earthquake engineering, such as the 

landslide hazard assessment, only the large PGA values in a site will be considered 

in the evaluation. As the focal depth increases, the hypocentral distance will also 

increase. The amplitudes of seismic wave on the surface will be smaller since a lot 

of seismic energy decays as the seismic wave travel through the longer distance. 

Therefore, in our calculation, only the sQ  tomography result at the depth of 10 km 

is considered, which is also the average focal depth of devastating earthquakes in 

Kyushu Island, such as the 2016 Kumamoto earthquake (Asano and Iwata 2016a; 

Hata et al. 2016; Mukunoki et al. 2016; Sano et al. 2016; Yagi et al. 2016; Yoshida 

et al. 2016; Dai et al. 2017; Kobayashi 2017; Setiawan et al. 2017; Wang et al. 

2017e). 
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Figure 4-13 The KiK-net stations in the Kyushu region, Japan. Triangles are the 

KiK-net stations, the red and black ones are volcanic and non-volcanic stations, 

respectively.  

At first, the separation of volcanic and non-volcanic stations should be done. 

According to the sQ  tomography results (Figure 4-7), the High-Q region should 

be considered as the non-volcanic area, while the Low-Q region should be regarded 

as the volcanic area based on the analysis and discussion from Liu and Zhao (2015). 

The separation results are shown in Figure 4-13.  

Secondly, based on the separation of ground-motion stations, two earthquakes 

should be selected to estimate the sQ  for these two regions separately. Here the 

strong ground-motion records from the 2016 Kumamoto earthquake are employed 
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to calculate the sQ   in the volcanic region, whereas those from the 2005 M6.6 

Fukuoka earthquake are used for sQ   determination in the non-volcanic region 

(Asano and Iwata 2006; Horikawa 2006; Kobayashi et al. 2006b; Matsumoto et al. 

2006; Sekiguchi et al. 2006b; Furumura 2016; Irikura et al. 2017; Nagasaka and 

Nozu 2017; Suzuki et al. 2017; Xie et al. 2017). Besides, to compare with the 

conventional method, the sQ  for the entire Kyushu Island is determined using the 

whole records from the 2016 Kumamoto earthquake due to the widely-spread active 

volcanoes. It should be noted that the calculation is performed by using the EW 

component of surface recordings. Then the sQ   at some central frequencies are 

calculated using the spectral decay method (Castro et al. 1997; Castro and Group 

1998; Castro et al. 1999; Akyol et al. 2002; Castro et al. 2003; Polatidis et al. 2003; 

Kamalian et al. 2007; Castro et al. 2008; Padhy and Subhadra 2010; Vidales‐

Basurto et al. 2014). To obtain an accurate regression between the selected 

frequencies and the corresponding sQ  values, the space of frequency in log-log 

scale should be almost equal. Finally, the expressions of sQ  are determined by 

plotting the sQ   versus the corresponding frequencies in log-log scale. The sQ  

beneath the volcanic and non-volcanic area are expressed in the form of 

0.6695.7sQ f  and 0.74122.6sQ f , respectively.  

To validate the method proposed in this chapter, the ground motion simulations 

are performed and compared with the observations for 9 non-volcanic stations. The 

Kyushu region is usually considered as a volcanic zone due to the widely-spread 

active volcanoes. The conventional way to determine the sQ   in such region is 

using as many as strong ground motion records without any separation. The sQ  

without considering the volcanic effect, is determined and expressed as the form of 

0.67103.5sQ f . This sQ  is totally determined using the recordings from the 2016 

Kumamoto earthquake. The ground motions are simulated using the sQ  with and 

without considering the volcanic effect and compared with the observations 

separately.  
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Table 4-1 Comparison of simulated PGA using the conventional and proposed 

methods 

Station 

code 

Obs. PGA 

(in cm/s2) 

Sim. PGA 

conventional 

method 

(in cm/s2) 

Relative 

Error 

Sim. PGA 

proposed 

method 

(in cm/s2) 

Relative 

Error 

FKOH01 60 20.06 66.57% 30.65 48.92% 

FKOH06 75 41.96 44.05% 56.65 24.47% 

FKOH08 103 70.49 31.56% 94.68 8.08% 

FKOH09 43 25.77 40.07% 39.63 7.84% 

NGSH01 42 19.79 52.88% 33.31 20.69% 

OITH01 70 69.38 0.89% 73.40 4.86% 

SAGH01 37 23.02 37.78% 35.69 3.54% 

SAGH04 149 76.97 48.34% 103.07 30.83% 

SAGH05 32 47.16 47.38% 61.49 92.16% 

 

The comparison shows that the accuracy of simulated PGA is improved when 

considering the volcanic effect. Compare to using the conventional method, the 

average relative error of simulated PGA in the non-volcanic area is reduced from 

41% to 27% using the proposed method. Here the relative error is defined as 

Relative Error of PGA obs sim

obs

PGA PGA

PGA


 ,             (4.4) 

where the subscripts of obs and sim indicate the observed and simulated PGA, 

respectively. Then the differences are also compared in the frequency domain. To 

show the difference with and without considering the volcanic effect clearly, one 

representative station in the non-volcanic area is selected. In Figure 4-14, the 

average residual of station FKOH01 at the frequency range of 0.4 to 25 Hz are 

reduced from 0.33 to 0.1 when considering the lateral sQ   heterogeneities. It is 

concluded that ground-motion results are improved when considering the volcanic 

effect. The method proposed in this chapter is useful and acceptable in determining 
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the path parameter, sQ . 

 

Figure 4-14 Comparison of simulated FAS and their residuals with and without 

considering the volcanic effect at station FKOH01. 

4.5 CONCLUSIONS 

In this chapter, an analysis method for estimating the S-wave attenuation ( sQ ) 

considering the volcanic effect is proposed. The following conclusions can be 

drawn: 

(1) The effect of S-wave attenuation on the ground motion is evaluated by 

varying the sQ  values. At high frequencies, the spectral amplitude level 

is systematically increased as a larger sQ   is used, whereas the low-

frequency part of the Fourier amplitude spectra is not sensitive to the sQ . 

It is in agreement with the definition of sQ , which is an indicator of decay 

loss of seismic energy during the wave propagation. The larger sQ  

indicates less decay of seismic energy. The influence of sQ   on the 

simulated Fourier amplitude spectra is quantified.  

(2) An analysis method for estimating the sQ  considering the volcanic effect 

is developed and complied as a module. The detailed procedure for 

determining the sQ   of the region with active volcanoes is introduced. 

This module is also integrated in the practical system for simulating 
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earthquake ground motions. 

(3) The proposed analysis method is validated by simulating the ground 

motions of 9 non-volcanic records from the 2016 Kumamoto earthquake. 

Compare to without distinguishing, the accuracy of simulated PGA is 

improved when considering the volcanic effect. The simulated Fourier 

amplitude spectra also match the observations better than the situation 

without considering the sQ  heterogeneities. The difference of simulated 

FAS with and without considering the lateral sQ  heterogeneities are also 

quantified. It is concluded that the developed method is useful and 

acceptable for the estimation of sQ  in the volcanic zone.  
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CHAPTER   5 

5. DISCUSSION ABOUT A COMBINATION OF SIMULATED PGA BASED 

ON DIFFERENT SLIP DISTRIBUTIONS   

In earthquake engineering, peak ground acceleration (PGA) is one of the most 

important intensity measures to evaluate the seismic response to engineering 

structures and to perform the hazard assessments (Tsai et al. 1993; Cramer et al. 

1996; Bracci et al. 1997; Wahlström and Grünthal 2000; Christopoulos et al. 2002; 

Konstantinidis and Makris 2005; Dueñas‐Osorio et al. 2007; Kunnath et al. 2008; 

Stucchi et al. 2011; Wang 2011). The stochastic finite-fault method is a powerful 

and simple tool to simulate earthquake ground motions, including the acceleration 

time series, PGA, Fourier amplitude spectra and the response spectra. When 

performing the simulations, the source information should be specified. As one of 

the critical source parameters, the slip distribution field has a significant influence 

on the simulated ground motions at near field.  

The slip distribution field is defined as the relative motions of the hanging wall 

relative to the footwall of the fault during an earthquake, including the slip amount 

and motion direction. For example, Figure 5-1 shows the slip distribution field of 

the 2016 Kumamoto earthquake on the fault plane. Three kinds of major data can 

be used for the slip distribution inversion, including the strong ground motion 

(SGM) data (Sekiguchi et al. 1996; Honda et al. 2004; Asano et al. 2005; Ji et al. 

2015), teleseismic body-wave (TBW) data (Kikuchi and Kanamori 1996; Antolik 

and Dreger 2003; Yamanaka and Kikuchi 2003; Shao et al. 2011), and the geodetic 

data (GPS or InSAR data) (Wright et al. 2003; Schmidt and Bürgmann 2006; Xu et 
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al. 2010; Wu et al. 2016). However, it is not clear which kind of data can provide 

better results in ground motion simulations.  

In this chapter, we discuss the accuracy of the PGA estimated based on the slip 

distributions inversed from different kinds of data. Further, a combination of 

simulated PGA for the past earthquakes is proposed to improve the accuracy of 

simulated PGA based on three or two kinds of PGA.  

 

Figure 5-1 Slip distribution field of the 2016 Kumamoto earthquake using the 

teleseismic body-wave data (reproduced from Hayes (2016a)). The hypocentre 

location is denoted by a star. The slip amplitude is shown in colour and motion 

direction of the hanging wall relative to the footwall is denoted by black arrows 

5.1 DATA SOURCE FOR ESTIMATING THE SLIP DISTRIBUTION 

Many kinds of geophysical data can be used for slip distribution inversion, 

including the strong ground motion (SGM) data, teleseismic body-wave (TBW) 

data, and the geodetic data. The most widely-used geodetic data is the Global 

Positioning System (GPS) data. Besides, the Interferometric Synthetic Aperture 

Radar (InSAR) data, levelling, trilateration, tsunamic waveform data or other 



 

 134

geophysical data are also used sometimes.  

 

Figure 5-2 Three different slip distribution fields to simulate ground motions 

Figure 5-2 shows the commonly used three different slip distribution field to 

simulate the ground motions using the stochastic finite-fault method. The multiple 

time-window linear waveform inversion method is usually used for the slip 

distribution inversion from the SGM data (Asano and Iwata, 2011;2016). Besides, 

the wavelet transform analysis inversion method can be used for the slip distribution 

field inversion from the TBW data (Ji et al, 2002). Further, the linearized frequency 

domain inversion method is developed and applied to the slip distribution inversion 

of the 2000 Tottori earthquake from the GPS data (Semmane et al, 2005) 

Figure 5-3 shows the strong ground-motion stations used for the slip 

distribution inversion of the 2016 Kumamoto earthquake. Asano and Iwata (2016b) 

estimated the source processes of the mainshock and foreshock of the 2016 

Kumamoto earthquake sequence using the so-called multiple time-window linear 

waveform inversion method based on the strong ground motions located around the 

epicentre. Since the inversion accuracy is dependent of the density of the strong 

ground-motions stations, a relative accurate slip distribution field can be obtained 

based on a dense observation network. Only some developed countries or regions 

could support such ground-motion network due to the high cost for operating and 

maintaining. For example, two strong ground-motion networks, the K-NET and the 
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KiK-net are installed and covered most of Japan with nearly 1000 and 700 stations 

respectively. In addition, the California and Taiwan can also provide rich strong 

ground-motion records for source process inversion. 

 

 

Figure 5-3 Strong motion stations used for the inversion of slip distribution field 

of 2016 Kumamoto, Japan earthquake (after Asano and Iwata (2016a)) 

Figure 5-4 shows the teleseismic body-wave stations used for the slip 

distribution inversion of the 2008 Iwate-Miyagi earthquake. Yagi (2008) inversed 

the source process of 2008 M6.9 Iwate-Miyagi earthquake using the waveform 

inversion method based on 48 teleseismic P-wave waveforms. Since the teleseismic 

data operated by IRIS (Incorporated Research Institutions for Seismology) is the 

most quickly available ones compare to other data, which are usually received just 

a few hours after an earthquake occurs, it is usually regarded as the initial data to 

have a research on the source process.  
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Figure 5-4 Teleseismic stations used for the inversion of slip distribution field of 

2008 Iwate-Miyagi, earthquake, Japan ( after Yagi (2008)) 

Figure 5-5 shows the GPS stations used for the slip distribution inversion of 

the 1999 Chi-Chi earthquake. Johnson et al. (2001) inverse the source process of 

the 1999 Chi-Chi, Taiwan earthquake using displacement inversion method based 

on the 111 GPS stations. The GPS technique is a relatively new one to investigate 

the displacement of the earth surface, which is generally considered starting from 

the end of 1980s. As the dislocation theory developed, the slip on the fault plane 

can be inversed using the displacement on the surface which is observed by GPS 

stations (Delouis et al. 2004; Gahalaut et al. 2006; Hashimoto et al. 2009; Page et 

al. 2009; Iinuma et al. 2011; Vigny et al. 2011; Yue and Lay 2011; Crowell et al. 

2012; Wright et al. 2012; Jiang et al. 2014). Since the displacement observed by 

GPS stations is the direct response of the fault motions, they are usually adopted to 

analyse the co-seismic displacement field and inverse the source process on the 

fault plane. 
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Figure 5-5 GPS stations used for the inversion of slip distribution field of 1999 

Chi-Chi, earthquake, Taiwan ( after Johnson et al. (2001)) 

5.2 COMPARISON OF SIMULATED PGA USING DIFFERENT SLIP DISTRIBUTION 

For one earthquake, the slip distribution field can be estimated using the strong 

ground motion data, teleseismic body-wave data, and GPS data. For example, three 

different slip distributions of the 2008 Iwate-Miyagi earthquake are obtained.  

Figure 5-6, Figure 5-7 and Figure 5-8 show the source process of this earthquake 

using the strong ground motion data, teleseismic body-wave data and high-

frequency GPS data, respectively. The comparison of them shows that neither the 

slip amount nor motion direction of fault plane is the same. 
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Figure 5-6 The slip distribution field of 2008 Iwate-Miyagi earthquake from the 

inversion of SGM data (accessed from SRCMOD) 

 

Figure 5-7 The slip distribution field of 2008 Iwate-Miyagi earthquake from the 

inversion of TBW data (accessed from SRCMOD) 

 



 

 139

 

Figure 5-8 The slip distribution field of 2008 Iwate-Miyagi earthquake from the 

inversion of GPS data (after Yokota et al. (2009)) 

One of the major purposes in this thesis is to simulate ground motions for the 

region where the records are unavailable during a past earthquake. When 

performing the ground motion simulations, the slip distribution field should be 

input. Then the question is coming. Which slip distribution field inversed from 

different data performs best? To obtain relatively accurate simulated ground 

motions, this question mentioned above should be clarified. 

The effect of slip distribution on ground motion is investigate and discussed 

deeply in this chapter. Mai and Thingbaijam (2014) established a rich finite-fault 

database named as SRCMOD to collect the finite-fault inversion results for global 

earthquakes. There are more than 300 slip distributions from 146 earthquakes 

containing in this database. It is convenient to investigate the effect of slip 

distribution based on this source. In this chapter, most of slip distributions are 

accessed from it.  

To investigate the effect of slip distribution field better, some criteria should 

be set. Firstly, the event should be inversed using strong ground motion data, 

teleseismic body-wave data and GPS data separately. That is, at least three slip 

distributions can be obtianed for one earthquake. Secondly, some near-field strong 

ground- motion recordings should be available to compare the simluation and 

observation results. This is because our target to apply the simulation results to 

landslide hazard assessment. A simulated PGA at middle or far field usually can not 
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attract more attention from engineers due to the small value of PGA. In this study, 

for the selected earthquakes, only the record with the PGA value larger than 300 

cm/s2 and the epicenter distance less than 100 km is considered.  

Table 5-1 The earthquakes and their slip distributions using different data 

Earthquake Refference 

1999 Chi-Chi earthquake, Taiwan Zhang et al. (2004) 

 Hayes (2014) 

 Johnson et al. (2001) 

2000 Tottori earthquake, Japan Iwata et al. (2000) 

 Yagi and Kikuchi (2000) 

 Semmane et al. (2005) 

2005 Fukuoka earthquake, Japan Sekiguchi et al. (2006a) 

 Yamanaka (2005) 

 Kobayashi et al. (2006a) 

2007 Noto Hanto earthquake, Japan Asano and Iwata (2011b) 

 Yagi (2007) 

 Asano and Iwata (2011b) 

2008 Iwate-Miyagi earthquake, Japan Asano and Iwata (2011a) 

 Hayes and Ji (2008) 

 Yokota et al. (2009) 

2016 Kumamoto earthquake, Japan Asano and Iwata (2016b) 

 Hayes (2016b) 

 Fukahata and Hashimoto (2016) 

 

Based on these criteria, 45 records from 6 earthquakes occurred in Japan and 

Taiwan are selected. The references of slip distribution field of these earthquakes 

are listed in Table 5-1. The sort of slip distribuitons follows the sequense that strong 

gorund motion data, teleseismic body-wave data and GPS data. The information of 

strong ground motion recordings used in this chpater is tabulated in Table 5-2.   
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Table 5-2 The information of stations used in this study 

Earthquake Station Code Longtitude 

( E ) 

Latitude 

( N ) 

PGA (cm/s2)

1999 Chi-Chi C006 120.5520 23.5815 360 

 C028 120.6052 23.632 755 

 C034 120.5443 23.5212 305 

 C041 120.5957 23.4388 650 

 C101 120.5622 23.6862 400 

 NST 121.0005 24.6312 407 

 T045 120.9137 24.5412 525 

 T047 120.9387 24.6188 420 

 T052 120.7393 24.1980 455 

 T065 120.6912 24.0588 800 

 T067 120.7200 24.0912 500 

 T068 120.7658 24.2772 502 

 T071 120.7883 23.9855 650 

 T072 120.8488 24.0407 470 

 T074 120.9618 23.9622 600 

 T075 120.6778 23.9827 330 

 T076 120.6757 23.9077 430 

 T078 120.8455 23.812 450 

 T079 120.8942 23.8395 590 

 T088 121.1758 24.2533 525 

 T089 120.8565 23.9037 348 

 T095 121.0135 24.6917 700 

 T102 120.7208 24.2493 300 

 T129 120.6843 23.8783 1000 

 WGK 120.5622 23.6862 460 

 WNT 120.6843 23.8783 940 

2000 Tottori HRSH03 133.137 34.518 361 
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 HRSH06 132.912 34.914 304 

 OKYH08 133.405 34.910 306 

 OKYH09 133.677 35.181 337 

 OKYH10 133.926 35.283 303 

 OKYH14 133.620 34.936 489 

 SMNH01 133.260 35.296 849 

 SMNH02 133.086 35.224 597 

 TTRH02 133.391 35.231 1142 

2005 Fukuoka FKOH03 130.550 33.561 307 

2007 Noto Hanto ISKH01 137.284 37.527 360 

 ISKH02 137.041 37.364 380 

2008 Iwate-Miyagi IWTH24 141.012 39.198 538 

 IWTH25 140.864 39.009 1450 

 IWTH26 141.001 38.969 1372 

2016 Kumamoto KMMH02 131.0629 33.122 687 

 KMMH03 130.8301 32.9984 801 

 KMMH14 130.7521 32.6345 612 

 KMMH16 130.8199 32.7967 1362 

In order to disscuss which slip distribution field performs best in ground 

motion simulations, we use the strochastic finite fault method to investigate it. 

The input parameters for each earthquake are tabulated in Table S1-6, while the 

slip distribution fieds are illustrated in Figure S1-18. For each record, we simulate 

by ten trials and use the average PGA as its simulated one. The simulated PGA  

and their relative errors using different slip distributions are compared and listed 

in Table 5-3 and Table 5-4. Here the reletive error is defined as the formula of 

Relative Error of PGA obs sim

obs

PGA PGA

PGA


 ,             (5.1) 

where the subscripts of obs and sim indicate the observed and simulated PGA, 

respectively. Both the average and maximum relative errors of three slip 

distributions based on the strong ground motion (SGM) data, the teleseismic 
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body-wave (TBW) data and GPS data are all very large, although the one using 

SGM data performs better than others. 

Table 5-3 Simulated PGA using different slip distribution fields 

Station code SGM (in cm/s2) TBW (in cm/s2) GPS (in cm/s2) 

C006 142 192 143 

C028 410 749 485 

C034 121 179 131 

C041 500 789 510 

C101 178 280 203 

NST 247 300 409 

T045 228 255 543 

T047 231 302 425 

T052 746 894 2662 

T065 485 1461 1125 

T067 558 1114 2319 

T068 939 580 1854 

T071 866 635 926 

T072 468 464 625 

T074 531 553 622 

T075 328 1367 686 

T076 374 1774 814 

T078 543 574 595 

T079 409 474 506 

T088 317 270 240 

T089 345 417 474 

T095 482 591 712 

T102 352 374 729 

T129 390 1083 867 

WGK 289 453 322 

WNT 390 1083 867 
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HRSH03 60 53 53 

HRSH06 126 111 94 

OKYH08 214 215 182 

OKYH09 288 285 280 

OKYH10 135 129 112 

OKYH14 187 166 173 

SMNH01 980 935 903 

SMNH02 343 334 285 

TTRH02 1924 2096 2283 

FKOH03 262 133 243 

ISKH01 143 205 180 

ISKH02 351 615 488 

IWTH24 291 452 395 

IWTH25 1488 1065 1821 

IWTH26 1311 716 1373 

KMMH02 221 165 290 

KMMH03 439 477 612 

KMMH14 638 590 361 

KMMH16 1027 2152 1524 

 

 Table 5-4 Comparison of relative errors of simulated PGA using different slip 

distributions 

 SGM TBW GPS 

Aver. Rel. Err. 36.7% 50.5% 61.8% 

Max. Rel. Err 87.0% 314.1% 485.0% 

5.3 A COMBINATION ANALYSIS 

Though the simulated PGA using three kinds of slip distribution field are all 

not good enough, is there any possible way to have a composite consideration to 

improve the simulation accuracy? In this chpater, a combination of three kinds of 
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results is proposed to solve this issue. Since different slip distributions have their 

own contributions to the real rupture process of one earthquake, their characteristics 

have been reflected by the simulations. Therefore, the combination of individual 

results is reasonable which incorparating the composite contributions in the 

combined results.  

5.4.1 THE COMBINATION OF THREE KINDS OF SIMULATED PGA 

To have a comprehensive consideration for the contributions of three slip 

distributions to the simulation results, a linear model containing three kinds of PGA 

is proposed, 

0 1 1 2 2 3 3PGA b b PGA b PGA b PGA                 (5.2) 

where the subscripts 1, 2, 3 of PGA indicate the simulated PGA using the slip 

distributions based on the strong ground motion data, the teleseismic body-wave 

data and the geodetic data, respectively. The coefficient b  with the subscripts 0, 

1, 2, 3 is the adjustment for individual PGA. To solve this equation, a linear least-

squares fit is performed.  

The investigation process introduced above is then made as a module and 

integrated in the practical system for simulating earthquake ground motions. One 

of the major purposes is to simulate earthquake ground motions during a past 

earthquake. It is achieved by combining the simulated PGA based on the individual 

simulation using different slip distributions. The specific process is illustrated in 

Figure 5-9. The flowchart of the combination of simulated PGA is beginning from 

the individual simulations. The simulated PGA is then extracted from the 

acceleration time series. Finally, the combination of simulated PGA is made using 

the regression coefficients in Table 5-5 and Table 5-9, which is dependent of the 

kinds of slip distribution field available.  
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Figure 5-9 The flowchart for the estimation of PGA using the combination of 

simulated results 

To avoid the problem of over validation, that is, all the data used for training 

and a part of data selected for validation, the 45 records used in this study should 

be separated into training data and validating data. Under this consideration, nearly 

20% of all the 45 records (8) is selected for validation and the rest 80% (37) is for 

training. The validation data are from the 2007 Noto Hanto earthquake, the 2008 

Iwate-Miyagi earthquake, and the 2016 Kumamoto earthquake. Regression 

coefficient and their 95% confidence intervals of the combined equation using three 

kinds of PGA are tabulated in Table 5-5.  

Table 5-5 Regression coefficients of combined equation using three kinds of PGA 

Regression coefficient Value 95% confidence intervals 

0b  300.1002 (200.6594, 399.5410) 

1b  0.5358 (0.2863, 0.7852) 

2b  0.1428 (-0.0249, 0.3105) 

3b  -0.1178 (-0.2649, 0.0292) 

 

After the regression, the average and maximum relative errors between 

combined and observed PGA for training and vlidation are also determined and 

listed in Table 5-6 and Table 5-7 with those of individual PGA. The abbreviation of 
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Comb in both tables indicates the combined PGA obtianed by equation (5.2). Both 

the average and maximum relative errors of combined PGA show significant 

advantages over each of individual simulated PGA.  

Table 5-6 Comparison of relative errors of combined PGA of 37 records for 

training 

 Comb. SGM TBW GPS 

Aver. Rel. Err. 22.6% 37.6% 52.6% 68.0% 

Max. Rel. Err. 78.8% 87.0% 314.1% 485.0% 

Table 5-7 Comparison of relative errors of combined PGA of 8 records for 

validation 

 Comb. SGM TBW GPS 

Aver. Rel. Err. 24.7% 32.3% 40.7% 33.1% 

Max. Rel. Err. 40.6% 67.8% 75.9% 57.8% 

 

The combined PGA in 8 records for validation are specified in Table 5-8. 

Although some combined PGA are not as good as the individual simulated PGA, 

the average relative error is less than either of them. For example, in the station 

ITWH25, the simulated PGA based on the slip distribution field using SGM data 

matches the obversed PGA better than the combined one. However, it can not 

represent all the records. In general, the regional PGA should be simulated for a 

landslide susceptability region. Therefore, the average relative error is a more useful 

indicator for a region than focusing on the individual site. In short, the accuracy of 

simulated PGA based on the combination analysis is much improved. 
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Table 5-8 Comparison of simulated PGA in cm/s2 using different slip distributions  

Station code Obs. Comb. SGM TBW GPS 

ISKH01 360.3 384.5 142.5 204.5 179.9 

ISKH02 380.3 518.4 351.0 615.3 488.4 

IWTH24 538.0 473.6 290.6 451.2 395.2 

IWTH25 1450.0 1034.7 1487.6 1065.0 1820.5 

KMMH02 687.0 408.2 221.2 165.2 290.0 

KMMH03 800.5 531.6 439.4 477.0 611.8 

KMMH14 612.3 683.7 638.1 590.4 361.1 

KMMH16 1362.1 978.1 1027.3 2151.6 1524.3 

 

5.4.2 THE COMBINATION OF TWO KINDS OF SIMULATED PGA 

Let’s have a deep insight into the regression coefficients of equation (5.2). 

Besides the constant term 0b  , the combined PGA is mostly contributed by the 

simulated PGA using the slip distribution field from the SGM data due to its largest 

coefficient, 1b . It is also should be noted that the third coefficient 3b , that is, the 

contribution from the simulated PGA based on the slip distribution field from GPS 

data is negative. Therefore, a trial is performed to combined the PGA without using 

the simulated PGA based on the slip distribution field using GPS data. Another 

reason to neglect the third term is that its average relative error is the largest one 

among three kinds of simulated PGA. So, the other combination should be tried 

only considering the contribution of simulated PGA based on the slip distribution 

field using the SGM and TBW data. Then, another combined equation is proposed 

as follows, 

0 1 1 2 2PGA b b PGA b PGA                     (5.3) 

where the subscripts 1 and 2 of PGA indicate the simulated PGA based on the slip 

distribution using SGM and TBW data, respectively. The regression coefficients 

of combined equation (5.3) are tabulated in Table 5-9.  
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Table 5-9 Regression coefficients of combined equation using two slip 

distributions 

Regression coefficient Value 95% confidence intervals 

0b  299.6273 (197.9080, 401.3466) 

1b  0.4231 (0.2124, 0.6338) 

2b  0.0920 (-0.0669, 0.2508) 

 

The average and maximum relative errors of combined PGA for training and 

validation are listed in Table 5-10 and Table 5-11, respectively. Such accuracy is 

also much improved compare to the individual simulated PGA. Similarly, the 

combined PGA of 8 stations for validation are determined and tabulated in Table 

5-12. In short, the combined PGA is much closer to the observed ones due to its 

lower average relative error, although some exceptions are still existing.  

Table 5-10 Comparison of relative errors of combined PGA of 37 records for 

training 

 Comb. SGM TBW 

Aver. Rel. Err. 24.1% 37.6% 52.6% 

Max. Rel. Err. 70.9% 87.0% 314.1% 

 

Table 5-11 Comparison of relative errors of simulated PGA of 8 records for 

validation 

 Comb. SGM TBW 

Aver. Rel. Err. 23.6% 32.3% 40.7% 

Max. Rel. Err. 40.6% 67.8% 75.9% 
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Table 5-12 Comparison of simulated PGA in cm/s2 using different slip 

distributions 

Station Code Obs. Comb. SGM TBW 

ISKH01 360.3 379.3 142.5 204.5 

ISKH02 380.3 504.9 351.0 615.3 

IWTH24 538.0 464.4 290.6 451.2 

IWTH25 1450.0 1028.0 1487.6 1065.0 

KMMH02 687.0 408.4 221.2 165.2 

KMMH03 800.5 529.4 439.4 477.0 

KMMH14 612.3 623.9 638.1 590.4 

KMMH16 1362.1 932.1 1027.3 2151.6 

 

Two combination models are compared using the average relative errors for 

training and validation. The differences between two combination models are listed 

in Table 5-13. The differences between two model are not very significant, although 

the combination model based on 3 kinds of PGA performs better in most records. It 

is concluded that when the slip distribution using the geodetic data is unavailable, 

the combined PGA based on slip distributions using SGM and TBW data are also 

acceptable.  

Table 5-13 Comparison of relative errors of different combination modes 

Comb. Model Aver. Rel. Err. Training Aver. Rel. Err. Validation 

3 kinds of PGA 22.6% 24.7% 

2 kinds of PGA 24.1% 23.6% 

5.4 CONCLUSIONS 

The issue that which slip distribution will result in the most accurate ground 

motion simulations is clarified in this chapter. A linear combination of PGA 

simulated using the slip distribution inversion from different data is proposed. The 

following conclusions can be drawn:  

(1) The question of which kind of slip distribution field performs best in the 
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ground motion simulations is clarified. 45 near-field records from 6 

earthquakes are selected to investigate this issue. The ground motion 

simulations are performed for these records and compared with the 

observations. The average and maximum relative errors of these records 

are calculated and compared. It is suggested that neither of them performs 

well enough although the simulated PGA based on the slip distribution 

field using the SGM data match the observations better than others.  

(2) A linear combination of the simulated PGA is proposed to fix the problem 

that low-accuracy simulated PGA using individual slip distribution. Two 

linear combination models are proposed to combine the PGA. The records 

are separated into two parts, the major part (nearly 80% of records) is used 

for training the model and the rest part is used for validation. Comparison 

of the average and maximum relative errors of the combined PGA and the 

individual simulated PGA shows the accuracy of results is much improved. 

The difference of accuracy of combined PGA between two combined 

model is not very significant.  

(3) The combination process is made as a module and integrated into the 

practical system. The PGA in a region without enough observation records 

can be simulated using the individual slip distribution field and then 

combined together using this module to improve the accuracy.  
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CHAPTER   6 

6. IMPROVEMENT OF A PRACTICAL APPROACH OF ESTABLISHING 

SLIP DISTRIBUTION FIELD FOR A POTENTIAL EARTHQUAKE   

6.1 INTRODUCTION 

In the ground motion simulations, the source term plays an important role in 

synthesizing source spectrum (Aki 1967; Brune 1970; Boore 1983; Boore et al. 

2003). Among all the source parameters, the slip distribution field decides the 

weight of seismic moment on each subfault, which controls the radiation energy 

(Beresnev and Atkinson 1998; Motazedian and Atkinson 2005; Boore 2009; 

Atkinson and Assatourians 2015). Therefore, it is very important to estimate the 

source rupture process, not only for the understating of the details of the earthquake 

rupture on the fault plane, but for applying to the ground motion prediction. For a 

past earthquake, the process of the fault rupture can be inversed from the 

observation data mentioned in the last chapter. In the ground motion simulations 

using the stochastic finite-fault method, the slip distribution field should be 

specified (Ugurhan and Askan 2010; Zengin and Cakti 2014; Holden and Kaiser 

2016; Zhang et al. 2016b; Chen et al. 2017). However, it is difficult to estimate the 

slip distribution field for a potential earthquake. 

In this chapter, an approach of establishing the slip distribution field of a 

potential earthquake with an assumed magnitude occurs on a specific fault is 

improved. Specifically, a rectangle-ellipse pattern of the slip distribution field is 

proposed on the basis of a lot of observations for the slip distribution inversions of 
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past earthquakes. The scaling relations of slip distribution versus seismic moment 

are established from 17 shallow crustal earthquakes around Japan occurred from 

1995 to 2016 with a wider moment magnitude range of M5.8-9.0. A slip distribution 

field is established by assuming a potential M7 earthquake occurs on the Futagawa 

fault. Finally, the generated slip distribution field is input into stochastic finite-fault 

model for the ground motion simulations of 53 KiK-net stations. The simulated 

PGA and envelopes are compared with the ground-motion recordings from the 2016 

Kumamoto earthquake.  

6.2 THE PROCEDURE OF ESTABLISHING SLIP DISTRIBUTION 

The procedure of establishing the slip distribution field for a potential 

earthquake occurs on a specific fault is made as a module and incorporated in the 

practical system for simulating earthquake ground motions. Figure 6-1 shows the 

flowchart of the module to generating slip distribution field for a potential 

earthquake.  

 

Figure 6-1 The flowchart of generating slip distribution field for a potential 

earthquake 

The procedure is summarized as below: 

(1) Calculate the seismic moment 0M  based on the relation between the seismic 

moment versus the magnitude and the assumed magnitude of an earthquake; 
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(2) Calculate the rupture areas and average slips of the fault and asperity based on 

the scaling relations; 

(3) Determine the geometries of the rupture and asperity using the average length-

to-width ratios; 

(4) Generate the slip distribution on the background fault and asperity using the 

normal probability density function; 

(5) Determine the location of asperity using the average normalized distances from 

the strike and down-dip or the probability method. 

It should be noted that the normal distribution of slip on the rupture area and 

asperity is calculated from a normal probability density function (Figure 6-2). The 

mean value and the standard deviation of this function is restricted by the maximum, 

minimum, and the average slip on the asperity. 

 

Figure 6-2 The normal probability density function used to determine the slip 

distribution. The 1x  and 2x  indicate boundary of asperity in the x direction, the

L  represents the length of the rupture area in km, the maxS  and minS  indicate 

the maximum and minimum slip on the asperity. 

6.3 THE SCALING RELATIONS OF SLIP DISTRIBUTION 

The source models reviewed above cannot represent the realistic situations 

very well. Specifically, an asperity or SMGA is usually defined or determined as a 

rectangular area (Oth et al. 2007; Maeda et al. 2008; Suzuki and Iwata 2009; Oth 
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2013; Nozu et al. 2014; Riahi et al. 2015; Adams et al. 2016; Iwaki et al. 2016; 

Moratto et al. 2017; Walter et al. 2017), which is not consistent with all the slip 

distribution inversions. Actually, from a lot of observations for the slip distribution 

results, the region with large slip amount or velocity is an elliptical shape, rather 

than a normal rectangle. Further discussion will be given in the following section.  

This issue has been discussed by some previous studies and some possible 

ways are provided for approximately estimating the slip distribution field for a 

future earthquake. For example, Kanamori (1975) define the asperity as the region 

on the fault rupture surface with large slip amount relative to the average slip on the 

fault. Somerville et al. (1999) combine the asperity model with the wavenumber 

spectrum analysis method to quantify the slip heterogeneity on the fault. Irikura and 

Miyake (2011) develop a recipe for predicting the ground motions from earthquake 

scenarios based on the empirical Green’s function method, which uses outer, inner 

and extra fault parameters to characterize the source model based on Somerville et 

al. (1999)’s strategy. Miyake et al. (2003) define the strong motion generation areas 

(SMGA) as the region with relative large slip velocity on the fault plane and suggest 

the high-frequency contents of seismic wave are mainly radiated from such areas 

with high stress drop. They also find the SMGAs coincide with the asperities in size 

and location. Such representative work suggest to relate the area and stress drop of 

asperity or SMGA to the seismic moment, which are usually inversed using the 

empirical Green’s function method (Maeda and Sasatani 2009; Bykova et al. 2010; 

Kurahashi and Irikura 2010; Tanırcan and Savaş 2011; Sadeghi et al. 2013; Sharma 

et al. 2013; Xia et al. 2015; Sharma et al. 2016; Li et al. 2017; Wang et al. 2017b).  

The scaling laws of slip distribution established by Somerville et al. (1999) are 

based on the onshore earthquakes occurred in western North America mainly, which 

are not suitable for all the situation, especially for the interplate earthquakes. The 

reasonability of these scaling laws are still controversial. For example, Suzuki and 

Iwata (2006, 2007) conclude that the area of SMGA for the interplate earthquake is 

generally smaller than that of crustal earthquake under the same seismic moment 

by analysing several M6-7 earthquakes occurred in northeast Japan. Miyake et al. 

(2006) suggest the predicted area of SMGA for interplate earthquake is larger than 



 

 162

that for the crustal earthquakes by investigating the earthquakes with the magnitude 

range of M6.7-8.4 around Japan. Murotani et al. (2008) establish the scaling 

relations of source rupture model for interplate earthquakes around Japan which 

occurred from 1923-2003 with the magnitude range of M6.7-8.4. In their database, 

some source rupture models are inversed for the same earthquake using different 

geophysical data. It will restrict the application of the regressed scaling relations 

due to the narrow seismic moment range. Besides, their suggestion for the 

identification of asperity without starting from the row- or column-wise operation 

leads to an irregular asperity, which is not readily to be used for determining the 

dimension of asperity in the prediction for a potential earthquake. Gonzales et al. 

(2012) apply the procedure of Somerville et al. (1999) to establish the scaling 

relations of Mexican subduction zone for the strong ground-motion prediction. 

However, Rodríguez-Pérez and Ottemöller (2013) determine the scaling relations 

for the Mexico based on the teleseismic body-wave inversion using the method of 

Murotani et al. (2008) to identify the irregular asperity. These literatures provide 

possible solutions to establish slip distribution field for a potential earthquake 

occurs on a specific fault but with their own limitations. 

In geophysics, the fault ruptures on the fault plane start from the shear 

dislocation of nucleation point or initial rupture point (Dieterich 1992; Rice 1992; 

Rice and Beltz 1994; Scholz 2002). Then it is considered that the seismic waves 

radiate from the source by the sphercal propagation (Boore 1972; Sato 1977; 

Ursin 1983; Jahnke et al. 2008; Ben-Menahem and Singh 2012). As the seimic-

wave propagaton, the slip on the fault plane decays from the initial rupture point 

since the seimic energy transforms to the heat (Lee and Delaney 1987; Mitchell 

1995; Nielsen et al. 2000; Goldsby and Tullis 2002; Fialko and Khazan 2005; 

Mizoguchi et al. 2007). Therefore, a rectangular model is not so much approparate 

to fit this process. For example, the slip distribution field of the 2008 M6.9 Iwate-

Miyagi earthquake inversed from the GPS data shows the significant elliptical 

distribution of relative large slip area (Figure 6-3). In addtion, the slip amounts of 

the rectangular asperity model on the four corners are usually significantly less 

than their nearby region. These small-slip parts of asperity cannot approparately 
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represent the major characteristics of slip on the fault plane. Therefore, in this 

chapter, an elliptial asperity model is developed as the representative of large slip 

region on the fault plane.  

 

Figure 6-3 The slip distribution field of 2008 Iwate-Miyagi earthquake inversed 

from the GPS data (after Yokota et al. (2009)) 

In the slip distribution inversion, the slip distribution field on the fault plane is 

usually shown as a rectangle. As we know that the ruptures induced by an 

earthquake cannot spread on the whole fault plane. For example, during the 2008 

M7.9 Wenchuan, China earthquake, only the central and western segments of the 

Longmenshan fault ruptured. Therefore, in this thesis, only the region with obvious 

slip amount are considered as the so-called rupture area. The specific criterion of 

the selection of rupture area follows Somerville et al. (1999)’s definition. That is, 

the average slip of each row or column of the rupture area should be larger than 0.3 

times of the average slip of the entire fault plane. If any edge of a region doesn’t 

meet this rule, it will be snipped and excluded.  

In this thesis, one pattern of the slip distribution field is proposed to represent 

the characteristics of the fault slip during an earthquake. This model consists of two 

parts, a rectangular rupture area and an elliptical asperity. For example, In Figure 

6-4, the slip distribution field of the 1997 M6.1 Kagoshima earthquake is 

represented in this pattern.  
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Figure 6-4 The slip distribution field of 1997 M6.1 Kagoshima earthquake 

(after Horikawa (2001), refigured) 

To investigate the characteristics of the rupture area and asperity on the fault 

plane, 17 earthquakes occurred in Japan are selected. It is not difficult to relate the 

area and slip of the rupture area and asperity to the seismic moment, because the 

seismic moment is determined as the multiplication of the shear modulus, the area 

and average slip of the fault plane. Therefore, the scaling relations of slip 

distribution field can be established by using the past earthquakes. In this chapter, 

17 shallow crustal earthquakes at the depth of 0-25 km and the magnitude of 5.8-

9.0 are collected based on the database of Japan from 1995 to 2016. The reason to 

select the shallow and moderate-to-large earthquakes is the amplitude of seismic 

wave is generally dependent of the focal depth and the magnitude. A deeper 

earthquake usually corresponds to smaller amplitudes of the seismic wave 

comparing with a shallower earthquake. Similarly, an earthquake with a large 

magnitude usually causes a large PGA values in the observed waveforms at the 

same condition. One of the major purposes of this thesis is to apply the developed 

practical system to the landslide hazard assessment. A smaller PGA cannot attract 

more attention from the engineers. Therefore, only the earthquake meets these two 
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criteria will be used in this study. 

 

Figure 6-5 The epicentres of earthquakes used in this chapter  

 

Table 6-1 shows the information of earthquakes used in the statistics. In this 

table, the abbreviation of mech. indicates the focal mechanism of the earthquake, 

including the strike-slip (shown in SS) and the reverse (RV) earthquakes. To avoid 

the uncertainty of the slip distributions, only the earthquakes occurred at the inland 

region are taken into consideration except of the 2005 Fukuoka earthquake, the 

2003 Tokachi-oki earthquake, and the megathrust 2011 Tohoku earthquake. The 

epicentres of the 17 earthquakes are shown in Figure 6-5.  
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Table 6-1 The information of earthquakes used in the statistics 

Earthquake 

location 

Date Mech. Mag.

( wM )

Lon./Lat. 

( E / N ) 

Source 

Reference 

Yamaguchi 1997.6.25 SS 5.8 131.66/34.44 F-net 

Iwate 1998.9.3 RV 5.9 140.91/39.80 F-net 

Kagoshima 1997.3.26 SS 6.1 130.36/31.97 F-net 

Miyagi 2003.7.25 RV 6.1 141.17/38.40 F-net 

Kumamoto,f* 2016.4.14 SS 6.1 130.81/32.74 F-net 

Niigata 2004.10.23 RV 6.6 138.87/37.29 F-net 

Fukuoka 2005.3.20 SS 6.6 130.18/33.74 F-net 

Tottori 2000.10.6 SS 6.6 133.35/35.28 F-net 

Niigata 2007.12.2 RV 6.6 138.61/37.56 F-net 

Hyuga-Nata2 1996.12.2 RV 6.7 131.72/31.76 Harvard 

Noto Hanto 2007.3.25 RV 6.7 136.69/37.22 F-net 

Hyuga-Nada1 1996.10.19 RV 6.7 131.78/31.78 Harvard 

Kobe 1995.1.17 SS 6.9 134.99/34.78 Harvard 

Iwate-Miyagi 2008.6.13 RV 6.9 140.88/39.03 F-net 

Kumamoto 2016.4.15 SS 7.1 130.76/32.75 F-net 

Tokachi-oki 2003.9.25 RV 7.9 144.08/41.78 F-net 

Tohoku 2011.3.11 RV 9.0 143.05/37.52 Harvard  

* means the largest foreshock of Kumamoto earthquake 

The information of slip distributions of 17 earthquakes are listed in Table 6-2, 

Table 6-3, and Table 6-4. The asperities of each earthquake are identified following 

the procedure of Somerville et al. (1999). The normalized distances of strike and 

down-dip indicate the distances from centre of asperity to the left and upper sides 

of the fault plane over the length and width of the fault plane, respectively.  
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Table 6-2 Slip distributions used for regression 

Earthquake 

location 

Focal 

depth (km)

Data for source 

process inversion

Reference 

Yamaguchi 8 TELE Ide (1999) 

Iwate 5 SGM Nakahara et al. (2002) 

Kagoshima 8 SGM Horikawa (2001) 

Miyagi 5 SGM Hikima and Koketsu (2004)

Kumamoto,f 11 SGM Asano and Iwata (2016a) 

Niigata 5 SGM Asano and Iwata (2009) 

Fukuoka 11 SGM Sekiguchi et al. (2006b) 

Tottori 11 SGM Iwata et al. (2000) 

Niigata 8 SGM+GPS Cirella et al. (2008) 

Hyuga-Nata2 20.4 SGM+TRIL Yagi et al. (1999) 

Noto Hanto 8 SGM+GPS Asano and Iwata (2011b) 

Hyuga-Nada1 11.6 SGM+TRIL+GPS Yagi et al. (1999) 

Kobe 16.37 SGM Sekiguchi et al. (2002) 

Iwate-Miyagi 5 SGM Asano and Iwata (2011a) 

Kumamoto 11 SGM Asano and Iwata (2016a) 

Tokachi-oki 23 SGM+GPS Koketsu et al. (2004) 

Tohoku 20 SGM Ide et al. (2011) 
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Table 6-3 The information of slip distributions of 17 earthquakes used in this 

chapter 

Moment 

25
0 10M 

(dyne-cm) 

Rupture area

in km2 

Aver. Slip of 

Rupt. in cm 

Asperity area 

in km2 

Aver. Slip of 

Asp. in cm 

0.566 99 20.63 19.6 38.7 

0.753 81 47.67 14.1 116.1 

1.4 150 33.91 27.5 68.2 

1.53 180 31.11 6.3 86.5 

2.04 182 35.86 25.9 67.5 

7.53 504 66.63 62.8 146.8 

7.8 576 71.34 37.7 269.4 

8.62 630 90.54 84.82 187 

9.3 572 54.29 76.9 157.1 

12.3 852 42.18 157.3 83.5 

13.6 480 108.64 75.4 227.5 

14.3 1032 54.15 133.9 139.7 

24.3 1303 79.28 207.9 175.0 

27.2 684 120.5 100.5 264.6 

44.2 756 186.51 166.5 336.36 

821 12000 310.88 1570.8 557.9 

53100 94668 1117.84 24976.4 1923.0 
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Table 6-4 The location information of asperity 

Moment 

25
0 10M 

(dyne-cm) 

Norm. dist. 

from strike 

Norm. dist. 

from down-dip

L/W of 

rupture area 

L/W of 

asperity 

0.566 0.5 0.5 0.82 1 

0.753 0.44 0.17 1 2 

1.4 0.3 0.65 1.5 1.4 

1.53 0.44 0.1 1.8 2 

2.04 0.67 0.54 1.08 0.5 

7.53 0.46 0.56 1.56 0.5 

7.8 0.81 0.17 1.78 1.3 

8.62 0.6 0.36 1.43 1.3 

9.3 0.35 0.5 1.55 1.2 

12.3 0.5 0.5 1 0.68 

13.6 0.53 0.5 1.88 0.67 

14.3 0.45 0.41 1 0.8 

24.3 0.11 0.35 3.1 1 

27.2 0.59 0.28 2.11 1.2 

44.2 0.40 0.39 2.33 1 

821 0.58 0.45 1.2 0.8 

53100 0.39 0.23 1.86 2.88 

 

Scaling relations of slip distribution field are established for Japan, based on 

the statistical work for these 17 earthquakes. After the 1995 Kobe earthquake, the 

strong ground-motion networks of Japan, the KiK-net and K-NET, are installed 

over the entire Japan. The discussion in the last chapter shows that the slip 

distribution inversion from the strong ground motion is relatively more accurate. 

That is to say, although some slip distributions can be obtained using other 

geophysical data before the 1995 Kobe earthquake in Japan, its accuracy may not 

be good enough. It is meaningful to derive the scaling relations from the slip 

distribution inversed from the strong ground motion data, besides the situation that 
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it is not calculated or the lower signal-to-noise ratios of the data. In this thesis, the 

slip distribution field based on the SGM inversion is the first choice.  

In this chapter, all the measures or indicators to establish the slip distribution 

should relate to seismic moment first. For a potential earthquake which will occur 

on a specific fault, only the given magnitude is known. The magnitude is usually 

determined based on the relation (Hanks and Kanamori 1979), 

02 3 10.7M M                       (6.1) 

where M  is the moment magnitude and 0M  is the seismic moment. Since the 

seismic moment is a scale of the released energy of an earthquake, the relation 

between other scales versus the seismic moment is reasonable if they are able to 

be obtained in a good accuracy. 

 

Figure 6-6 The relation of the rupture area versus seismic moment 

The relation between the rupture area versus the seismic moment is obtained 
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firstly. The R-squared value of the least-squares regression here is very high, 

because the seismic moment is directly determined from the rupture area. The 

relation between the rupture area and the seismic moment shown as 

14 0.62
04.38 10A M                        (6.2) 

where A  is the rupture area in km2, and 0M  is the seismic moment in dyne-cm.  

And then the relation between the combined area of asperity against the 

seismic moment is derived. Due to the same reason, the R-squared value of linear 

least-squares regression is as high as 94.6%. It should be noted that the combined 

area of asperity indicates the summation of all the asperities of a slip distribution. 

The specific form of the relation is 

16 0.68
02.11 10aA M                        (6.3) 

where aA  is the combined area of asperity.  

 

Figure 6-7 The relation of the asperity area versus moment  
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In addition to the area, the average slip on the rupture area and asperity is 

equally important since they are also controls the seismic moment. The average slip 

of rupture area is derived firstly and shown as follows, 

7 0.33
01.38 10D M                          (6.4) 

where D  is the average slip of the rupture area. The R-squares value of 

regression is as high as 90%.  

 

Figure 6-8 The relation of the average slip on the rupture area versus seismic 

moment 

Similarly, the relation between the average slip of asperity versus the seismic 

moment is also determined. Figure 6-9 shows the average slip of each 

earthquakes. The relation is formulated as follows, 

6 0.30
01.56 10aD M                     (6.5) 

where aD  is the average slip of the asperity. 
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Figure 6-9 The relation of average slip of the asperity versus seismic moment 

 

In addition to the area and average slip, the scaling relations between seismic 

moment and other variables are also investigated but failed. The length over width 

ratios of the rupture area and asperity for 17 earthquakes are determined and plotted 

in Figure 6-10 and Figure 6-11. The average value of them are 1.6 and 1.2. These 

ratios can be finally used in the geometry determination of the rupture area and 

asperity.  
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Figure 6-10 The histogram of length over width ratios of the rupture area  

 

Figure 6-11 The histogram of length over width ratios of asperity 

To locate the asperity on a fault plane, the relative coordinates of the asperity 

centre to the rupture area should be specified. The normalized distance along strike 

is determined using the ratio of the distance of asperity centre to the left side of 

rupture area over the length of rupture area. Similarly, the normalized distance along 

down-dip is calculated using the ratio of the distance of asperity centre to the upper 

side of rupture area over the width of rupture area. The histograms of them are 

shown in Figure 6-12 and Figure 6-13. The average values of these two normalized 

distance are 0.48 and 0.39, respectively. An alternative way to determine the 
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coordinates of asperity centre is the probability method. For example, the 

normalized distance range of 0.4 to 0.6 has the largest probability in which the 

asperity locates. Correspondingly, the PGA value determined using the estimated 

slip distribution field on the basis of the normalized distance in this range also is 

the most possible value than determined from other normalized distances.  

 

Figure 6-12 The histogram of normal distance of the asperity centre along strike  

 

 

Figure 6-13 The histogram of normal distance of the asperity centre along down-

dip 

Although some recipes have been proposed to generate slip distribution field 

for future earthquakes, the approach improved in this thesis is simple and 
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reasonable to operate and apply. Compare to the wavenumber spectrum analysis 

method (Somerville et al. 1999), a normal distribution is employed in this approach 

to represent the slip heterogeneity of the source model. Since the stochastic finite-

fault method assumes the rupture initially starts from a point dislocation and the 

seismic wave is radiated as the form of spherical pattern, the assumed normal 

distribution of slip on the asperity and rupture area is reasonable. That is, the slip 

amount of subfaults decay from the centre of asperity to the edge. Compare to the 

recipe proposed by Irikura and Miyake (2011), the extra fault parameters, including 

the initial rupture point and the rupture pattern, are not required to estimate, which 

is simpler to apply. In the stochastic finite-fault method, the simulated PGA is less 

sensitive to the so-called extra fault parameters than other critical parameters. In a 

word, the approach improved in this thesis is simpler to be applied for simulating 

ground motions and the results are also acceptable.  

6.4 THE CASE OF A M7 EARTHQUAKE OCCURS ON THE FUTAGAWA FAULT 

The improved method for generating slip distribution field needs to be 

validated. The 2016 Kumamoto earthquake is selected to be a target earthquake 

since its importance to the Kyushu region. Here we assume that a M7.0 earthquake 

occurs on the Futagawa fault, which is the seismogenic fault of the 2016 M7 

Kumamoto earthquake. Figure 6-14 shows the Futagawa fault which induced the 

M7.0 earthquake.  
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Figure 6-14 The locations of Futagawa fault and a potential earthquake with an 

assumed magnitude M7.0 

6.4.1 THE SPECIFIC PROCEDURES   

Then the slip distribution field of the M7.0 earthquake is established using 

the method we improved in the chapter. The specific procedures are introduced.  

(1) The seismic moment of the assumed earthquake can be determined using 

the equation (6.1). 26
0 3.55 10M dyne cm   . 
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(2) The rupture area ( A ), asperity area ( aA ), average slips of the rupture area 

( D ) and asperity ( aD ) are determined using equation (6.2-6.5), 

respectively. 21211.2A km , 2178.98aA km , 106.2D cm , 

228.33aD cm .  

(3) The lengths and widths of the rupture area and asperity are determined 

using the average length-to-width ratios of 17 shallow crustal 

earthquakes. 44.02L km , 27.5W km , 16.54aL km , 

13.78aW km . 

(4) The slip on the asperity and rupture area are generated using the normal 

distribution. The slip are assigned following the rule that the larger slip is 

in the central part and then linearly decays to the edge. It should be noted 

that the slips on the background equal to the whole slip amount on the 

rupture minuses those of the asperity and are assigned following the same 

rule as on the asperity (Figure 6-15 and Figure 6-16). 

(5) The location of asperity centre is determined using the average 

normalized distances to the length and width of the 17 earthquakes. 

1 21.13D km , 2 10.73D km . 

The geometric parameters calculated above should be adjusted further 

because they are not scalars and hard to be divided in the implementation. Their 

values before and after the adjustment are tabulated in Table 6-5. The rupture area 

is divided into 88 (11 8 ) subfaults, and the size of each one is 4 3.5km km . 

Besides, the average slip of the background fault plane is 85 cm, which is 

determined from the step 4. 
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Table 6-5 The geometric parameters of asperity and rupture area of a M7 

earthquake 

Variable Calculated Adjusted 

A 1211.2 km2 1232 km2 

Aa 178.98 km2 176 km2 

L 44.02 km 44 km 

W 27.5 km 28 km 

La 16.54 km 16 km 

Wa 13.78 km 14 km 

D1 21.13 km 20 km 

D2 10.73 km 10.5 km 

 

 

Figure 6-15 The histogram of slip on the asperity 
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Figure 6-16 The histogram of the slip on the background rupture area 

 

Figure 6-17 The generated slip distribution field of the a M7 earthquake 

Then the slip distribution field of a M7 earthquake are established and 

plotted in Figure 6-17. The asperity is highlighted by an ellipse. 

6.4.2 RESULTS AND VALIDATION 

To validate the approach for the estimation of slip distribution field of a 
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potential M7 earthquake, 53 KiK-net records from the 2016 Kumamoto earthquake 

are used. The acceleration time series are simulated using the stochastic finite-fault 

method with the established slip distribution field and then compared with the 

observations. The input parameters are tabulated in Table S7. The comparison of 

observed and simulated PGA are shown in Table 6-6. Figure 6-18 shows the 

comparison of observed and simulated acceleration time series at one representative 

station KMMH09. Both the waveform envelops and PGA at the selected station 

match the observation very well. The average relative error of PGA at the 53 KiK-

net station is 35.9%, which is acceptable for a prediction.  

 

Figure 6-18 The comparison of observed and simulated acceleration time at 

station KMMH09 

Table 6-6 Comparison of observed and simulated PGA using the estimated slip 

distribution field 

Station code Observed PGA (in cm/s2) Simulated PGA (in cm/s2) 

FKOH01 60 43 

FKOH03 135 53 

FKOH06 75 58 
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FKOH07 94 89 

FKOH08 103 101 

FKOH09 43 39 

FKOH10 89 88 

KGSH01 49 26 

KGSH03 37 25 

KGSH04 41 18 

KGSH05 74 25 

KGSH06 30 15 

KGSH07 47 17 

KGSH08 10 10 

KGSH09 13 9 

KGSH10 6 6 

KGSH12 3 5 

KMMH01 252 212 

KMMH02 687 266 

KMMH03 800 510 

KMMH06 180 344 

KMMH09 246 235 

KMMH10 195 39 

KMMH11 88 74 

KMMH12 218 62 

KMMH13 113 72 

KMMH14 612 671 

KMMH15 76 42 

KMMH16 1362 1231 

MYZH04 175 121 

MYZH05 142 78 

MYZH08 143 39 

MYZH09 17 25 

MYZH10 98 37 
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MYZH12 96 25 

MYZH13 50 18 

MYZH15 118 45 

MYZH16 45 41 

NGSH01 42 27 

NGSH02 23 23 

NGSH03 39 25 

NGSH04 40 25 

NGSH06 30 30 

OITH01 70 78 

OITH03 25 25 

OITH05 89 72 

OITH08 86 91 

OITH10 49 37 

OITH11 598 95 

SAGH01 37 35 

SAGH02 70 26 

SAGH04 149 83 

SAGH05 32 48 

 

6.6 CONCLUSIONS 

Many earthquake engineering problems need to estimate seismic waves 

induced by an expected future earthquake. Since the slip distribution field before 

an earthquake occurs is unknown, the proposed method in the last chapter cannot 

be applied. For this reason, an approach is improved for establishing the slip 

distribution field of a potential earthquake with an expected magnitude on a specific 

fault. Some conclusions can be drawn as follows: 

(1) A rectangle-ellipse pattern of the slip distribution field is proposed by a lot 

of observations. Since the seismic wave is radiated and propagated as the 

form of spherical wave, the elliptical asperity patter is reasonable. 
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(2) The scaling relations of the slip distribution field for Japan are established 

using the rectangle-ellipse pattern based on 17 shallow crustal earthquakes 

with the magnitude range of 5.8-9.0 from 1995 to 2016. These relations 

with very high R-squares when performing the linear least-squares 

regression are reliable. 

(3) The procedures of generating the slip distribution field are then proposed. 

They are made as a module and incorporated in practical system for 

simulating ground motions. 

(4) The improved method, finally, is validated by the case of a potential M7 

earthquake occurs on the Futagawa fault. The generated slip distribution 

field is input into the stochastic finite fault method for simulating the 

earthquake ground motions. The average error of PGA in 53 records from 

the 2016 Kumamoto earthquake is 35.9%. The good agreement of the 

simulated and observed acceleration time series shows the improved 

approach is reasonable and acceptable. 
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CHAPTER   7 

7. A PRACTICAL APPLICATION FOR LANDSLIDE HAZARD 

ASSESSMENT 

7.1 INTRODUCTION   

Landslide is one of the most catastrophic geo-hazards causing human injury, 

fatality and loss of property (Fell 1994; Anbalagan and Singh 1996; Shang et al. 

2003; Kanungo et al. 2008). Landslide hazard map using a physically-based 

approach has been widely used to make decisions for landslide prevention and 

mitigation (Aleotti and Chowdhury 1999; Ohlmacher and Davis 2003; Lee and 

Pradhan 2007; Ray and De Smedt 2009). Ground motion intensity measures (e.g. 

peak ground acceleration (PGA)), are introduced into this approach to identify 

landslide prone slopes and susceptible areas for the situation that an earthquake 

occurs (Klein et al. 2001; Capolongo et al. 2002; Nath et al. 2008; Papadopoulou-

Vrynioti et al. 2013). To estimate earthquake ground motions so as to carry out 

practical prediction and landslide prevention measures, the prediction of PGA from 

a potential earthquake occurs on a specific fault is very important and useful.  

Generally, the landslide inventory map can be identified from the pictures 

taken by satellites or drones after an earthquake (Tantianuparp et al. 2013; Singleton 

et al. 2014; Turner et al. 2015; Suh and Choi 2017). It is one of the useful data to 

verify the landslide hazard map by comparing them using GIS (Gupta and Joshi 

1990; Carrara et al. 1999; Saha et al. 2002; Ayalew and Yamagishi 2005). The three 
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modules made in the above chapters are combined with the SFFM module to be a 

practical system for earthquake ground motion simulations. The flowchart of the 

developed practical system is shown as follows. 

 

Figure 7-1 The flowchart of the developed practical system for simulating 

earthquake ground motions paying attention to volcanic zone and asperity on a 

fault 

In this chapter, our practical system is verified by simulating ground motions 

in the Aso-bridge region, Kumamoto, Japan. The generated slip distribution field is 

applied to the simulation of acceleration time series. The landslide hazard map 

based on GIS is produced and compared with the landslides induced by the 2016 

Kumamoto earthquake.   

7.2 LANDSLIDE HAZARD ASSESSMENT BASED ON THE GIS‐BASED MAPPING 

One of the most important work of landslide hazard assessment is to evaluate 

the landslide susceptibility for a region. A large earthquake will induce thousands, 

even tens of thousands landslides in mountainous region (McPhillips et al. 2014; 

Xu et al. 2014; Liu et al. 2016). The landslide hazard assessment provides an 

evaluation for landslide susceptibility regions where landslides are prone to be 

triggered by a potential earthquake occurs on a specific fault, which is effective to 

help government make decisions for mitigating landslide hazards. GIS-based 

landslide hazard mapping technique has been widely-used for identifying landslide 

susceptibility zones where landslides are prone to happen in a future earthquake 
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(Chousianitis et al. 2016; Gaprindashvili and Van Westen 2016; Zhou et al. 2016a; 

Zhou et al. 2016b).  

 

Figure 7-2 (a) Limit equilibrium analysis method for infinite slope considering a 

seismic force; (b) Force analysis of unit soil slice (dash rectangle in the panel (a)) 

(after Zhou (2016)) 

The famous infinite slope model has been widely used for the static slope 

stability analysis and illustrate in Figure 7-2. In this model, the weight of the sliding 

mass under its own weight loading is 

G HL                           (7.1) 

where G is the weight of the sliding mass,   is the unit weight of sliding mass, 

H is the normal thickness of the failure surface, and L is length of the sliding 

mass. This weight loading can be divided into two orthogonal force, the normal 

force nT  and the shear force sT  in the form of  

 cos cosnT G HL                      (7.2) 

sin sinsT G HL                      (7.3) 

where   is the slope gradient. Then the effective normal stress and shear stress 

are represented in the form of  

 = cos cosn w wT L nH r nr H     ’              (7.4) 

sinsT L H                        (7.5) 

where wr  is the unit weight of water, n  is the percentage of saturated thickness. 
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The static factor of safety can be expressed in the form of  

 ' '' ' ' cos tantan w
s

c r nr Hc
F

  
 

                (7.6) 

For equation (7.6), the numerator represents the resisting force while the 

denominator is the driving force. It is easy to identify the landslide prone region, of 

which the sF  is lower than 1, and vice versa. 

In this model, when the effect of earthquake is considered into the calculation 

of sF  under a seismic loading, the equation derived above should be modified. 

The seismic force can be represented by the product of a seismic coefficient sk , 

the PGA value of the seismic wave, and mass weight. In Figure 7-2, the angle 

between the incident direction of the seismic loading and the surface is  , and 

this force can be divided into two orthogonal force, the normal force nS  and the 

shear force sS  in the form of 

sin sinn sS a H g k PGA H g                     (7.7) 

cos coss sS a H g k PGA H g                     (7.8) 

Considering the seismic loading, equation (7.6) turns to 

 ' 'cos sin tan

sin cos
w s

s
s

c n H k PGA H g
F

H k PGA H g

     
   

    


       (7.9) 

In this chapter, the equation (7.9) is used to assess the regional slope susceptibility.  

7.3 PGA SIMULATIONS 

The practical system for simulating ground motions is applied to the Aso-

bridge region. The location of study area is shown in Figure 7-3. During the 2016 

Kumamoto earthquake, the largest landslide is triggered by this devastating 

earthquake in the Aso-bridge region. For this purpose, this region is selected as our 

study area.  
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Figure 7-3 The study area of the application 

First, the slip distribution field is generated using the module developed in 

chapter 6. To use this module, an assumed magnitude and a fault should be specified. 

Here we assume it as the same magnitude as the 2016 Kumamoto earthquake, that 

is 7.0M   . Correspondingly, the seismic moment can be estimated using the 

equation (6.1) with the value of 3.55e26 dyne-cm. And then the area of rupture 

region and asperity are also derived from equation (6.2) and (6.3), respectively. The 

rupture area is 1211.2 km2 and the asperity area is 178.98 km2. Further, the average 

slip on the rupture and asperity is determined with the value of 106.2 cm and 228.33 

cm. Next, the slip distributions on the asperity and background of the rupture region 

are generated using the normal distribution based on the average values. Finally, 

the location of asperity is fixed on the basis of the averaged normalized distance 

along strike and down-dip of the 17 shallow crustal earthquake occurred in Japan. 

The location is also the most possible point due to its largest probability. 

The generated slip distribution field is illustrated in Figure 7-4. Compare to 

the slip distribution inversion from the strong ground motion, it is found that they 

are very similar. Therefore, it is suggested that the predicted slip distribution field 

is acceptable.  
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Figure 7-4 The generated slip distribution field of the 2016 Kumamoto earthquake 

To furtherly validate the practical system, the earthquake ground motions are 

simulated based on the meshed grids of this region. The input parameters are listed 

in Table S7. The site amplification factor used in here are those of the nearby sites 

KMMH06, KMMH09 and KMMH16 (Figure 3-17). Figure 7-5 shows the 

simulated PGA distribution of Aso-bridge area by inputting the estimated slip 

distribution.  

 

Figure 7-5 The PGA distribution predicted for the Aso-bridge region 
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7.4 LANDSLIDE HAZARD MAPS 

Generally speaking, to forecast the landslide hazard using the physically-based 

model, one approximate PGA value can be used for a region. For example, the 1995 

Kobe earthquake is usually considered as one of the most representative event in 

Japan. To investigate the effect of a M7 earthquake on the slope susceptibility for a 

region, some waveforms or PGA from the Kobe earthquake will be used. One of 

the most widely-used way is to transform the approximate seismic intensity scale 

to the corresponding PGA values, which is based on the probability of exceedance. 

For example, the seismic intensity map in Kyushu Island is shown in Figure 7-6. 

For the study area of this thesis, the approximate intensity scale is 5 upper. In Table 

7-1, the corresponding PGA range for each intensity scale is tabulated on the basis 

of Japan Meteorological Agency and the records from the 2016 Kumamoto 

earthquake. For this case, the 5 upper corresponds to the PGA value range of 250-

600 cm/s2. Here the median value of this range, 450 cm/s2, is selected to represent 

the PGA for the entire study area under an assumption of a M7 earthquake occurs.  
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Figure 7-6 Seismic intensity map in Kyushu Island (from Japan Seismic Hazard 

Information) 
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Table 7-1 Approximate corresponding PGA range in intensity scale 

Intensity PGA (cm/s2) 

0 < 0.8 

1 0.8-2.5 

2 2.5-8 

3 8-25 

4 25-150 

5 lower 150-250 

5 upper 250-600 

6 lower 600-800 

6 upper 800-1300 

7 upper >1300 

 

Table 7-2 The geological parameters used in the determination of sF  

Geology 

Unit 

Cohesion 

(kPa) 

Friction 

angle (°) 

Gamma 

(kN/m3) 

Soil thickness 

(m) 

Deposits and 

Terrace 
5-10 15-25 18 10 

Sedimentary 10-15 25-35 19 7 

Volcanic 8-15 20-30 20 5 

 

We make the landslide hazard maps for Aso-bridge region using the 

approximate PGA and the ones we simulated using the practical system. Since the 

area of the study region is only 12.6 km2, the general way of using one approximate 

value to represent the PGA of the entire area is reasonable. Here we use the value 

of 450 cm/s2 to make the landslide hazard map for comparison. To calculate the 

factor of safety, other parameters of equation (7.9) are tabulated in Table 7-2. It 

should be noted that the cohesion and friction angle are generated by Mente Carlo 

simulation in 1000 times. Besides, the seismic coefficient in this case is 0.16 , the 



 

 201

ground water level is 0.3, the slope angle is extracted from the 

https://earthexplorer.usgs.gov/.  

 

 

Figure 7-7 Landslide hazard maps (a) based on the approximate PGA (b) based on 

the PGA simulated in this study 

The landslide hazard maps using the approximate value and the PGA we 

estimated are illustrated in Figure 7-7. From the hazard maps we can visually 

inspect at the right down corner, some regions are unstable as our prediction 

whereas is quasi stable predicted by the approximate PGA value. Figure 7-8 shows 

the comparisons of the inventory maps and landslide hazard maps. It is suggested 

that our results are in good agreement with the landslides induced by the 2016 

Kumamoto earthquake. Besides, the contingency matrix computed for occurred 

landslides and alerts is determined and tabulated in Table 7-3. The false-alarm is 

almost the same, whereas the miss-alarm rate drops and the success rate rises when 

using the proposed method. In general, the miss-alarm rate is more important than 

other two measures in the landslide hazard assessment, because if a miss-alarmed 

landslide happens, it would cause a devastate loss of properties and fatalities. The 

reduced miss-alarm rate proves our simulation results are improved and acceptable 

for landslide hazard assessment. It is also concluded that the developed system for 

simulating earthquake ground motions is useful and reliable.  
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Figure 7-8 Comparison between landslides induced by the 2016 Kumamoto 

earthquake and the hazard maps (a) based on the approximate PGA (b) based on 

the PGA simulated in this study 

Table 7-3 The contingency matrix of the Aso-bridge area 

 Success rate Miss-Alarm rate False-Alarm rate

Conventional method 68% 36% 30% 

Developed system 72% 18% 31% 

7.4 CONCLUSIONS 

The three modules made in the above chapters are combined with the SFFM 

module to be a practical system for earthquake ground motion simulations. The 

developed practical system is validated by the application to landslide hazard 

assessment in Aso-bridge region, Kumamoto, Japan. In conventional landslide 

hazard mapping, an approximate PGA value for an area is used, which makes the 

accuracy very low. In this study, the PGA for each mesh is calculated based on the 

generated slip distribution field of the target earthquake on a specific fault by using 

the developed system. Slope stability analysis is carried out using the PGA of each 

mesh in landslide hazard mapping. Thus, a landslide hazard map related to a 

potential earthquake on a specific fault can be made. A landslide hazard map 

induced by a M7.0 earthquake assumed on the Futagawa fault is made and 
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compared with the landslides induced by the 2016 Kumamoto earthquakes. 

Compare with the conventional method, the success rate rises from 68% to 72% 

and the miss alarm rate drops from 36% to 18%. It is suggested that the developed 

practical system is adaptable and useful in landslide hazard assessment. 
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CHAPTER   8 

8. CONCLUSIONS AND FUTURE STUDIES 

a) CONCLUSIONS 

Earthquake ground-motion intensity measures, such as acceleration time series 

and peak ground acceleration (PGA), are important and necessary data in 

earthquake engineering. They need to be simulated for the locations where records 

were not available during a past earthquake or for a future potential earthquake. 

This thesis provides a possible solution to these target problems and solves some 

key issues. The following major conclusions can be drawn: 

(1) A practical system for simulating earthquake ground motions paying 

attenuation to volcanic zone and asperity on a fault is established. The 

developed system is successfully applied to the landslide hazard 

assessment of the Aso-bridge region based on GIS-based hazard mapping. 

(2) A method for estimating site amplification in the region without strong 

ground motion stations is developed by using the empirical relations 

between the calculated site amplification and the so-called 30SV  . The 

relation in the form of    10 30log S refD f a V V b   is employed. This 

method is validated by comparing the calculated and predicted site 

amplification in five-class sites. This developed method is made as a 

module for the estimation of site amplification and incorporated in the 

developed practical system.  

(3) A practical Konno-Ohmachi smoothing technique is employed to smooth 
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the surface and borehole Fourier spectra. Compare to the commonly used 

triangular smoothing techniques, this technique can provide a good smooth 

at both low- and high-frequency parts. This smoothing technique is 

incorporated in the module for the estimation of site amplification.  

(4) An analysis method for estimating the S-wave attenuation sQ  

considering the volcanic effect is developed and complied as a module. 

The detailed procedure for determining the sQ  of the region with active 

volcanoes is specified and integrated in the practical system for simulating 

earthquake ground motions. The presented method is validated by 

simulating the ground motions of 9 non-volcanic records from the 2016 

Kumamoto earthquake. The accuracy of simulated ground motions is 

improved using the proposed method. 

(5) The question of which kind of slip distribution field performs best in the 

ground motion simulations is clarified. 45 near-field records from 6 

earthquakes are selected to investigate this issue. The ground motion 

simulations are performed for these records and compared with the 

observations. The average and maximum relative errors of these records 

are calculated and compared. It is suggested that neither of them performs 

well enough although the simulated PGA based on the slip distribution 

field using the SGM data match the observations better than others. 

(6) A combination of the simulated PGA is proposed to solve the problem that 

low-accuracy simulated PGA using individual slip distribution. Two 

combination models are proposed to combine the PGA. The records are 

separated into two parts, the major part (nearly 80% of records) is used for 

training the model and the rest part is used for validation. Comparison of 

the average and maximum relative errors of the combined PGA and the 

individual simulated PGA shows the accuracy of results is much improved. 

The difference of accuracy of combined PGA between two combined 

model is not very significant. The combination process is made as a 

module and integrated in the practical system for the simulation of 

earthquake ground motions. The PGA in a region without records during a 
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past earthquake can be simulated using the individual slip distribution field 

first and then combined together to improve the accuracy. 

(7) A method for estimating slip distribution field of a potential earthquake on 

a specific fault is improved. At first, a rectangle-ellipse pattern based on a 

lot of observations is proposed to characterize the slip distribution field. 

Then the scaling relations of slip distribution field are statistically 

established from the 17 shallow crustal earthquake in Japan from 1995 to 

2016. The improved method is made as a module and also incorporated in 

the practical system. The method is validated by the ground motion 

simulations of a M7 earthquake occurs on the Futagawa fault. The 

accuracy of simulated acceleration time series is acceptable.  

(8) An application of the developed practical system to the landslide hazard 

assessment for a potential earthquake on a specific fault is presented. The 

slip distribution field is established for the Futagawa fault under an 

assumption that a M7.0 earthquake occurs using the developed system. 

The ground motion simulations for the Aso-bridge region, Kumamoto, 

Japan are performed. Slope stability analysis is carried out using the PGA 

of each mesh in landslide hazard mapping. The results are in good 

agreement with the landslides induced by the 2016 Kumamoto earthquake. 

Comparison of the landslide hazard maps using the approximate PGA and 

the simulated one based on the practical system shows that the developed 

practical system is useful and adaptable in landslide hazard assessment.  

b) FUTURE STUDIES 

(1) An effort of separating the synthesizing acceleration time series should be 

encouraged in the future study. Since the stochastic finite-fault method starts 

from the shear dislocation of a point and the radiated seismic waves are assumed 

to propagate as the way of spherical wave, the direction effect has not been 

considered into the calculation. Some studies report that the so-called direction 

effect by the observations along and perpendicular to the fault are different at 

the same epicentre distance.  
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(2) Since the simulated acceleration time series are the synthesized shear waves, 

the vertical component of ground motions cannot be simulated. Some relations 

between the synthesized horizontal and the observed vertical ground motions 

can be tried to establish. Due to the requirement of vertical component in some 

engineering problems, these relations is useful for practical applications when 

considering the effect of vertical component.  

(3) The relations proposed in this thesis are almost based on the Japanese database, 

if other data sources are integrated into the determination of some relationships, 

such as the relation between site amplification and 30SV  , the accuracy will 

higher than those derived in this thesis.  

(4) The relations of the site amplification and the 30SV  is based on the records from 

the 2016 Kumamoto earthquake. As we know that the site responses for a large 

earthquake and a small earthquake are usually different. Therefore, the 

regression coefficients of the relations between the site amplification and the 

30SV  derived in this thesis may not be suitable to evaluate the site amplification 

for a small earthquake. This issue is very important for evaluating the site 

response of an engineering site for different assumed earthquakes. It is 

necessary to investigate the relation between site amplification calculated from 

some earthquakes and the 30SV . 
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APPENDIX   1 

9. APPENDIX 1 

 

Figure S1 Slip distribution field of 1999 Chi-Chi, Taiwan earthquake inversed by 

SGM data (refigured from Zhang et al (2004)) 
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Figure S2 Slip distribution field of 1999 Chi-Chi, Taiwan earthquake inversed by 

TBW data (refigured from Hayes (2014)) 

 

Figure S3 Slip distribution field of 1999 Chi-Chi, Taiwan earthquake inversed by 

GPS data (refigured from Johnson et al (2001)) 
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Figure S4 Slip distribution field of 2000 Tottori earthquake inversed by SGM data 

(refigured from Iwata et al (2000)) 

 

Figure S5 Slip distribution field of 2000 Tottori earthquake inversed by TBW data 

(refigured from Yagi and Kikuchi (2000)) 
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Figure S6 Slip distribution field of 2000 Tottori earthquake inversed by GPS data 

(refigured from Semmane et al. (2005)) 

 

Figure S7 Slip distribution field of 2005 Fukuoka earthquake inversed by SGM 

data (refigured from Sekiguchi et al. (2006)) 
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Figure S8 Slip distribution field of 2005 Fukuoka earthquake inversed by TBW 

data (refigured from Yamanaka (2005)) 

 

Figure S9 Slip distribution field of 2005 Fukuoka earthquake inversed by GPS 

data (refigured from Kobayashi et al. (2005)) 
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Figure S10 Slip distribution field of 2007 Noto Hanto earthquake inversed by 

SGM data (after Asano and Iwata (2011b)) 

 

Figure S11 Slip distribution field of 2007 Noto Hanto earthquake inversed by 

TBW data (refigured from Yagi (2007)) 
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Figure S12 Slip distribution field of 2007 Noto Hanto earthquake inversed by 

GPS data (after Asano and Iwata (2011b)) 

 

Figure S13 Slip distribution field of 2008 Iwate-Miyagi earthquake inversed by 

SGM data (accessed from SRCMOD) 
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Figure S14 Slip distribution field of 2008 Iwate-Miyagi earthquake inversed by 

TBW data (accessed from SRCMOD) 

 

Figure S15 The slip distribution field of 2008 Iwate-Miyagi earthquake inversed 

by GPS data (after Yokota et al. (2009)) 
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Figure S16 The slip distribution field of 2016 Kumamoto earthquake inversed by 

SGM data (refigured from Asano and Iwata. (2016)) 

 

Figure S17 The slip distribution field of 2016 Kumamoto earthquake inversed by 

TBW data (clipped from Hayes (2016)) 
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Figure S18 The slip distribution field of 2016 Kumamoto earthquake inversed by 

GPS data (refigured from Futahata and Hashimoto (2016)) 
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Figure S19 Site amplification used in the combination analysis 
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APPENDIX   2 

10. APPENDIX 2 

Table S1 Input parameters for the stochastic finite-fault model of the 1999 Chi-

Chi, Taiwan, earthquake 

Parameters Value Reference 

Source   

Moment magnitude ( wM ) 7.6 CWBSN of Taiwan 

Hypocenter location 23.87°N, 120.75°E, 7km CWBSN of Taiwan 

Strike and dip angle (  ) 5 and 34 CWBSN of Taiwan 

subfault length and width 

(km) 

3 and 3   

8 and 5.65 

4.5 and 5 

Zhang et al. (2004) 

Hayes (2014) 

Johnson et al. (2001) 

Slip distribution Figure S1 

Figure S2 

Figure S3 

Zhang et al. (2004) 

Hayes (2014) 

Johnson et al. (2001) 

Stress drop (bars) 50  This study 

S-wave velocity (km/s) 3.7 Roumelioti and Beresnev 

(2003) 

Density (g/cm3) 2.7 Roumelioti and Beresnev 

(2003) 

Rupture propagation 

velocity 

0.8  Atkinson and Boore 

(2006) 
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Pulsing area percentage 50% Atkinson and Boore 

(2006) 

Path   

Geometric spreading, Rb: 

b= 

-1.0 (0-50km) 

0 (50-150km) 

-0.5 (>150km) 

Sokolov (2000) 

Ground-motion duration, 

dR, d= 

0.0 (0-10km) 

+0.16 (10-70km) 

-0.03 (70-130km) 

+0.04 (>130km) 

Atkinson and Boore 

(1995) 

Quality factor 0.77117sQ f  Chen et al. (1989) 

Site   

Site amplification approximate sites This study 

Kappa (s) 0.07 Roumelioti and Beresnev 

(2003) 

11. CWBSN: Central Weather Bureau Seismological Center 

12.  ：S-wave velocity 

Table S2 Input parameters for the stochastic finite-fault model of the 2000 Tottori, 

Japan, earthquake 

Parameters Value Reference 

Source   

Moment magnitude ( wM ) 6.6 F-net 

Hypocenter location 35.2752°N, 

133.3498°E, 11 km 

F-net 

Strike and dip angle (  ) 150 and 85 F-net 

subfault length and width 

(km) 

3 and 3   

2 and 2 

2 and 2 

Iwata et al. (2000) 

Yagi and Kikuchi (2000)

Semmane et al. (2005) 

Slip distribution Figure S4 Iwata et al. (2000) 
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Figure S5 

Figure S6 

Yagi and Kikuchi (2000)

Semmane et al. (2005) 

Stress drop (bars) 71 Pulido and Kubo (2004)

S-wave velocity (km/s) 3.55 Pulido and Kubo (2004)

Density (g/cm3) 2.8 Atkinson et al. (2009) 

Rupture propagation 

velocity 

0.65  Pulido and Kubo (2004)

Pulsing area percentage 50% Atkinson and Boore 

(2006) 

Path   

Geometric spreading, Rb: 

b= 

-1.0 (0-100km) 

-0.5 (>100km) 

Zengin and Cakti (2014)

Ground-motion duration, 

dR, d= 

0.0 (0-10km) 

+0.16 (10-70km) 

-0.03 (70-130km) 

+0.04 (>130km) 

Atkinson and Boore 

(1995) 

Quality factor 0.67146sQ f  Pulido and Kubo (2004)

Site   

Site amplification approximate sites This study 

Kappa (s) 0.05 Zhang et al. (2016) 

 

Table S3 Input parameters for the stochastic finite-fault model of the 2005 

Fukuoka, Japan, earthquake 

Parameters Value Reference 

Source   

Moment magnitude ( wM ) 6.6 F-net 

Hypocenter location 33.74°N, 130.17°E,  

9.84 km 

F-net 

Strike and dip angle (  ) 122 and 87 F-net 
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subfault length and width 

(km) 

2 and 2   

5 and 5 

4 and 4 

Sekiguchi et al. (2006) 

Yamanaka (2005) 

Kobayashi et al. (2006) 

Slip distribution Figure S7 

Figure S8 

Figure S9 

Sekiguchi et al. (2006) 

Yamanaka (2005) 

Kobayashi et al. (2006) 

Stress drop (bars) 53 This study 

S-wave velocity (km/s) 3.68 Matsumoto et al. (2006)

Density (g/cm3) 2.6 Matsumoto et al. (2006)

Rupture propagation 

velocity 

0.8  Atkinson and Boore 

(2006) 

Pulsing area percentage 50% Atkinson and Boore 

(2006) 

Path   

Geometric spreading, Rb: 

b= 

-1.0 (0-100km) 

-0.5 (>100km) 

Zengin and Cakti (2014)

Ground-motion duration, 

dR, d= 

0.0 (0-10km) 

+0.16 (10-70km) 

-0.03 (70-130km) 

+0.04 (>130km) 

Atkinson and Boore 

(1995) 

Quality factor 0.5892.5sQ f  This study 

Site   

Site amplification Figure S19 This study 

Kappa (s) 0.0514 This study 
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Table S4 Input parameters for the stochastic finite-fault model of the 2007 Noto 

Hanto, Japan, earthquake 

Parameters Value Reference 

Source   
Moment magnitude ( wM ) 6.7 F-net 

Hypocenter location 37.2207°N, 136.6860°E, 
8 km 

F-net 

Strike and dip angle (  ) 58 and 60 Asano and Iwata 
(2011b) 

subfault length and width 
(km) 

2 and 2   
5 and 5 
2 and 2 

Asano and Iwata 
(2011b) 

Yagi (2007) 
Asano and Iwata 

(2011b) 
Slip distribution Figure S10 

Figure S11 
Figure S12 

Asano and Iwata 
(2011b) 

Yagi (2007) 
Asano and Iwata 

(2011b) 
Stress drop (bars) 200 This study 

S-wave velocity (km/s) 3.7 Maeda et al. (2008) 
Density (g/cm3) 2.8 Maeda et al. (2008) 

Rupture propagation 
velocity 

0.8  Atkinson and Boore 
(2006) 

Pulsing area percentage 50% Atkinson and Boore 
(2006) 

Path   
Geometric spreading, Rb: 

b= 
-1.0 (0-100km) 
-0.5 (>100km) 

Zengin and Cakti 
(2014) 

Ground-motion duration, 
dR, d= 

0.0 (0-10km) 
+0.16 (10-70km) 
-0.03 (70-130km) 
+0.04 (>130km) 

Atkinson and Boore 
(1995) 

Quality factor 0.7150sQ f  Ghofrani and Atkinson 
(2011) 

Site   
Site amplification approximate sites This study 

Kappa (s) 0.05 Zhang et al. (2016) 
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Table S5 Input parameters for the stochastic finite-fault model of the 2008 Iwate-

Miyagi, Japan, earthquake 

Parameters Value Reference 
Source   

Moment magnitude ( wM ) 6.9 F-net 

Hypocenter location 39.0298°N, 
140.8807°E, 5 km 

F-net 

Strike and dip angle (  ) 209 and 51 F-net 
subfault length and width 

(km) 
2 and 2   
3 and 2 
2 and 2 

Asano and Iwata (2011a)
Hayes and Ji (2008) 
Yokota et al. (2009) 

Slip distribution Figure S13 
Figure S14 
Figure S15 

Asano and Iwata (2011a)
Hayes and Ji (2008) 
Yokota et al. (2009) 

Stress drop (bars) 140 Ghofrani and Atkinson. 
(2011) 

S-wave velocity (km/s) 3.5 Yoshida et al. (2015) 
Density (g/cm3) 2.8 Atkinson et al. (2009) 

Rupture propagation 
velocity 

0.8  Atkinson and Boore 
(2006) 

Pulsing area percentage 50% Atkinson and Boore 
(2006) 

Path   
Geometric spreading, Rb: 

b= 
-1.0 (0-100km) 
-0.5 (>100km) 

Zengin and Cakti (2014)

Ground-motion duration, 
dR, d= 

0.0 (0-10km) 
+0.16 (10-70km) 
-0.03 (70-130km) 
+0.04 (>130km) 

Atkinson and Boore 
(1995) 

Quality factor 0.69110sQ f  Cultrera et al. (2013) 

Site   
Site amplification approximate sites This study 

Kappa (s) 0.074 Cultrera et al. (2013) 
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Table S6 Input parameters for the stochastic finite-fault model of the 2016 

Kumamoto, Japan, earthquake 

Parameters Value Reference 
Source   

Moment magnitude 
( wM ) 

7.1 F-net 

Hypocenter location 32.7545°N, 130.763°E, 
11 km 

F-net 

Strike and dip angle (  ) 224 and 65 F-net 
subfault length and width 

(km) 
2 and 2   

5 and 2.9 
2 and 2 

Asano and Iwata (2016)
Hayes (2016) 

Fukahata and Hashimoto 
(2016) 

Slip distribution Figure S16 
Figure S17 
Figure S18 

Asano and Iwata (2016)
Hayes (2016) 

Fukahata and Hashimoto 
(2016) 

Stress drop (bars) 64 Zhang et al. (2016) 
S-wave velocity (km/s) 3.7 Atkinson et al. (2009) 

Density (g/cm3) 2.8 Atkinson et al. (2009) 
Rupture propagation 

velocity 
0.8  Atkinson and Boore 

(2006) 
Pulsing area percentage 50% Atkinson and Boore 

(2006) 
Path   

Geometric spreading, Rb: 
b= 

-1.0 (0-100km) 
-0.5 (>100km) 

Zengin and Cakti (2014)

Ground-motion duration, 
dR, d= 

0.0 (0-10km) 
+0.16 (10-70km) 
-0.03 (70-130km) 
+0.04 (>130km) 

Atkinson and Boore 
(1995) 

Quality factor 0.6885.5sQ f  Zhang et al. (2016) 

Site   
Site amplification S/B’ ratios Zhang et al. (2016) 

Kappa (s) 0.0514 Zhang et al. (2016) 
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Table S7 Input parameters for the stochastic finite-fault model of a M7 potential 

earthquake  

Parameters Value Reference 
Source   

Moment magnitude ( wM ) 7.0 Assumed 

Hypocenter location 32.7545°N, 130.763°E, 
11 km 

Assumed 

Strike and dip angle (  ) 224 and 65 F-net 
subfault length and width 

(km) 
4 and 3.5   This study 

Slip distribution Figure 6-17 This study 
Stress drop (bars) 64 Zhang et al. (2016) 

S-wave velocity (km/s) 3.7 Atkinson et al. (2009) 
Density (g/cm3) 2.8 Atkinson et al. (2009) 

Rupture propagation 
velocity 

0.8  Atkinson and Boore 
(2006) 

Pulsing area percentage 50% Atkinson and Boore 
(2006) 

Path   
Geometric spreading, Rb: 

b= 
-1.0 (0-100km) 
-0.5 (>100km) 

Zengin and Cakti 
(2014) 

Ground-motion duration, 
dR, d= 

0.0 (0-10km) 
+0.16 (10-70km) 
-0.03 (70-130km) 
+0.04 (>130km) 

Atkinson and Boore 
(1995) 

Quality factor 0.6695.7sQ f  

(volcanic) 
0.74122.6sQ f  

(non-volcanic) 

This study 

Site   
Site amplification Figure 3-17 This study 

Kappa (s) 0.0514 Zhang et al. (2016) 
 

 


