
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Genome-wide DNA methylation analysis in
peripheral blood cells and Epstein-Barr virus-
transformed lymphoblastoid cell lines

谷口, 愛樹

https://doi.org/10.15017/1928615

出版情報：九州大学, 2017, 博士（理学）, 課程博士
バージョン：
権利関係：



 

 

 

 

 

 

 

 

Genome-wide DNA methylation analysis in peripheral blood cells and 

Epstein-Barr virus-transformed lymphoblastoid cell lines 

 

 

 

 

 

Itsuki Taniguchi 

 

 

 

 

 

 

Division of Genomics, 

Medical Institute of Bioregulation, 

Kyushu University 

 



 

i 

 

Contents 

Abstract ------------------------------------------------------------------------------------------- ii 

General introduction --------------------------------------------------------------------------- 1 

Chapter 1: Methylation level measurement and methylation site selection -------- 6 

Chapter 2: Global difference between PBCs and LCLs -------------------------------- 8 

Chapter 3: Association with CpG islands ------------------------------------------------ 16 

Chapter 4: Association with distance from transcription start site ---------------- 18 

Chapter 5: Association with promoter type --------------------------------------------- 21 

Chapter 6: The methylation level difference in age-associated methylation site 25 

Discussion --------------------------------------------------------------------------------------- 27 

Conclusion -------------------------------------------------------------------------------------- 28 

Acknowledgements --------------------------------------------------------------------------- 30 

Funding ----------------------------------------------------------------------------------------- 30 

Abbreviations ---------------------------------------------------------------------------------- 30 

References -------------------------------------------------------------------------------------- 31 

Supplementary files -------------------------------------------------------------------------- 36 

Appendix ---------------------------------------------------------------------------------------- 38 

 

  



 

ii 

 

Abstract 

DNA methylation profiles in epidemiological studies may uncover the molecular mechanisms 

through which genetic and environmental factors contribute to the risks of multifactorial diseases. 

There are two types of commonly used DNA bioresource, peripheral blood cells (PBCs) and 

Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs), which are available for 

genetic epidemiological study. Recently, several groups showed a substantial difference in DNA 

methylation status between them using the relatively small size of paired samples. To confirm and 

extend the results, I here analyzed the methylation status of autosomes for 192 and 92 DNA 

samples obtained from PBCs and LCLs, respectively using the Human Methylation 450K array. 

After excluding SNP-associated methylation sites and low call sites, 400,240 sites were subjected 

to analysis using a generalized linear model with cell type, sex, and age as the independent 

variables. I found that the large proportion of sites showed lower methylation level in LCLs in 

comparison with PBCs, which is consistent with previous reports. I also performed gene ontology 

(GO) enrichment analysis with the genes containing the significantly methylated sites, and found 

that the GO terms correlated with development are enriched. This trend is seen in the genes whose 

expression are changed whether the cells are infected with EBV. Furthermore, I investigated the 

correlation between DNA methylation level and gene expression in the differentially methylated 

sites, and it is uncovered that there is no significant correlation. Therefore, the DNA methylation 

changes correlate with gene expression change indirectly, and there may be various factors in the 

regulation of gene expression. I also found that significantly different methylation sites tend to be 

located on the outside of CpG island and in the region relatively far from transcription start site. 

In addition, I observed that the methylation change of the sites in the low-CpG promoter region 

was remarkable. Finally, it was shown that correlation between chronological age and aging-

associated methylation sites in ELOVL2 and FHL2 in LCLs was weaker than that in PBCs. In 
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conclusion, I found that the methylation levels of highly methylated sites of the low-CpG-density 

promoters in PBCs decreased in the LCLs, suggesting that the methylation sites located in low-

CpG-density promoters could be sensitive to demethylation in LCLs. Despite being generated 

from a single cell type, LCLs may not always be a proxy for DNA from PBCs in studies of 

epigenome-wide analysis attempting to elucidate the role of epigenetic change in disease risks. 
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General introduction 

Epidemiological study in multifactorial diseases 

Recent years, human genome analysis technology is developed dramatically, and we have 

become possible to identify disease-related DNA methylation changes at the genome-wide level. 

DNA methylation is one of the important epigenetic factors in the regulation of gene 

expression. In addition to sequence variants, it is increasingly accepted that this DNA 

modification may be implicated in the susceptibility of various multifactorial diseases (1–3). 

Since accomplishment of human genome project and improvement of the gene analysis 

technology, many studies targeted the association between gene alteration and disease have 

reported. Specifically, a lot of genes responsible for the hereditary disorder have been identified. 

However, there is some disease which is not able to identify the responsible gene only by 

analyzing the genome sequence. Such disorder caused by a combination of genetic and 

environmental factors, therefore these are called multifactorial disorders. Whereas most of the 

genetic factors have the congenital effect to disorder, the environmental factors give acquired 

change to the genome. The genome modification from environmental factors is called epigenome. 

Epigenome 

The epigenome is defined by Waddington et al. in 1942 (4, 5). Initially, it was defined to 

explain the mechanism of the gene expression change that was important to the cell differentiation 

at the developmental stage. 

Today, DNA methylation, histone modification, and nucleosome are studied actively in the 

study of the epigenome. In particular, a lot of researches of DNA methylation are supported and 

conducted by research organizations, for example, the Cold Spring Harbor Laboratory, American 

Association for Cancer Research (AACR), the Gordon Research Conferences (GRC), the 
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Federation of American Societies for Experimental Biology (FASEB), and Keystone Symposia. 

In addition, large-scale cooperative researches are launched in Europe (The Networks of 

Excellence ‘The Epigenome’ and ‘EpiGeneSys’), the USA (US National Institutes of Health 

(NIH) Roadmap Epigenomics Project and ENCODE), Canada, Asia, and worldwide (the 

International Human Epigenome Consortium (IHEC)). Therefore, the epigenome study, in 

particular, DNA methylation, is gathering attention from all over the world.  

DNA methylation 

In most of the DNA methylation studies, the researchers focus on the 5-methylcytosine in 

CpG dinucleotides. There are several types of research that report the methylation of non-CpG 

sequence in some species (6–8), however, which functions remain unknown. 

Most of the effects of DNA methylation on gene expression are suppression (9). X-

chromosome inactivation, imprinting, and some tissue-specific gene are common phenomena by 

DNA methylation alteration. Additionally, it is known that the DNA methylation changes in CpG-

rich regions known as CpG islands (CGIs) in the transcriptionally regulated region, for example, 

promoter, enhancer, and insulator, are closely associated with gene expression. 

The inducer of DNA methylation change 

The DNA methylation change is induced by various factors. Tobacco smoke is one of the 

most popular inducers of DNA methylation change (10–20). In particular, it is revealed that 

smoking in pregnancy period is strongly associated with the global DNA methylation change in 

the fetus (11, 19, 21). Additionally, traffic-related air pollution is also correlated with DNA 

methylation alteration (22–24). Furthermore, aging is the key factor of global DNA methylation 

change (25, 26). 
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DNA methylation change in cancer 

In cancer, the abnormality of DNA methylation status has reported. It is revealed that 

mutations and/or deletions in tumor suppressor genes are related to cancer development. 

Additionally, in the recent cancer epigenome study, it is revealed that the alteration of DNA 

methylation in tumor suppressor gene reduce its expression, and induce cancer development (27). 

The study of epigenome alteration in various types of the tumor was performed, and its data are 

available in The Cancer Genome Atlas (https://cancergenome.nih.gov/). 

Major bioresources for epidemiological studies 

Because it is essential to use relatively large samples in searching for genes that are 

susceptible to multifactorial diseases, the DNA sources are limited to some cell types. The 

peripheral blood cells (PBCs) are one of the suitable cell types for analysis.  

Epstein-Barr Virus (EBV) -transformed immortalized lymphoblastoid cell lines (LCLs) are 

also used to obtain DNA. EBV, also known as human herpesvirus 4 (HHV-4), were found by 

Epstein et al. (28) in the tumor cell from the patient of Burkitt’s lymphoma. This finding is the 

first evidence of the tumor induced by viruses. EBV infection may also be associated with the 

development of the Hodgkin’s disease, undifferentiated nasopharyngeal carcinoma, 

immunoblastic lymphomas arising in immunocompromised individuals, and T and NK cell 

lymphomas (29). LCLs can be generated from both healthy individuals and patients and supply 

an unlimited source of genomic DNA. Additionally, LCLs and PBCs have been successfully used 

for gene expression analyses (30). 

However, it is known that DNA methylation status varies between cell types (31). Therefore, 

to extend our knowledge of the difference in DNA methylation status between LCLs and PBCs is 

important in human population studies that use these DNA sources to elucidate the epigenetic 
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risks for multifactorial diseases. 

Study design 

Figure 1 shows the general flow of this study. I designed experiments to compare the DNA 

methylation status between LCLs and PBCs at an epigenome-wide level using approximately 

400,000 methylation data sites from 92 LCL and 192 PBC samples obtained using the Human 

Methylation 450K array. I analyzed global differences in methylation profiles and the degree of 

difference in methylation level of each site in terms of location (inside or outside the CpG island, 

the distance from transcription start site and promoter type) between LCLs and PBCs. 

Additionally, the association strength of methylation levels at the aging-related methylation sites 

in FHL2 and ELOVL2 with chronological age was compared between LCLs and PBCs. 
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Figure 1: The study design. 
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Chapter 1: Methylation level measurement and methylation site selection 

Subjects 

EBV-transformed LCLs derived from 92 healthy Japanese subjects were provided by the 

Riken Bioresource Center Cell Bank (32). PBCs were obtained from 192 participants of a baseline 

survey of the general population from a Fukuoka-based cohort study (33, 34). This study was 

performed in accordance with the principles of the Declaration of Helsinki and was approved by 

the Institutional Review Board at Kyushu University. 

DNA methylation chip assay 

Genomic DNA was bisulfite-treated using the EZ-96 DNA Methylation Kit (Zymo Research 

Corporation, Orange, CA), which combines bisulfite conversion and DNA cleanup in a 96-well 

plate. Genome-wide DNA methylation profiles were obtained using the Illumina 

HumanMethylation450 BeadChip (Illumina, San Diego, CA) according to the manufacturer’s 

instructions. The GenomeStudio V2011.1 (Methylation Module version 1.9.0) was employed to 

determine the beta values that reflected the estimated methylation level for each CpG site. The 

beta value was calculated as: Max (signal for methylation, 0) / [Max (signal for methylation, 0) + 

Max (signal for unmethylation, 0) + 100]. Using this metric, the DNA methylation level was 

represented by a number between 0 (no methylation) and 1 (complete methylation). The signal 

intensities were normalized to the internal controls and background prior to beta value calculation. 

Selection and classification of DNA methylation sites 

The flowchart of methylation sites selection is shown in Figure 2. Among 473,864 

methylation sites on the autosomes, 1,305 sites showing low calls (< 0.95) were removed for 

further analyses. To eliminate SNP-associated methylation sites, I screened the nearest SNP for 

each methylation site using the dbSNP135 database (SNPs categorized in weight = 1 group, 
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http://www.ncbi.nlm.nih.gov/SNP/). I found 72,318 sites in which SNPs were located on the C or 

G site. Additionally, one methylation site demonstrated an outlier value. After removing these 

sites; 400,240 methylation sites on the array were available for further analyses.  

Statistical Analysis 

To evaluate the difference in methylation level of each site, the data were analyzed using 

modeling individual Illumina beta values using a generalized linear model (glm) with cell type 

(LCLs or PBCs), age and sex as the independent variables. P-values and the difference in 

methylation level for each cell type were obtained. The statistical power to detect methylation 

differences of 0.25 and 0.5 between 192 PBCs and 92 LCLs was estimated to be 50.2% and 97.5%, 

respectively at a significance level of P = 0.05 using G*Power 3.1 software (35).  

  

 

Figure 2: The selection of methylation sites. 

The methylation sites showing low call ratio, associated with SNPs, and outlier value are 

removed in this study, and remained 400,240 sites are used in follow analysis. 
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Chapter 2: Global difference between PBCs and LCLs 

Cluster analysis 

To assess the global difference of DNA methylation levels between LCLs and PBCs, I 

performed a hierarchical cluster analysis using the methylation data of 400,240 sites on autosomes 

obtained using the 450K methylation array. Figure 3 shows the results of hierarchical cluster 

analysis. The distance was calculated at Euclid distance and analyzed with the Ward method. Red 

rectangles show two major clusters. Sample names are shown as a list below the dendrogram. 

LCLs and PBCs were completely separated into different clusters by whole epigenome 

methylation status. 

  

 

Figure 3: Hierarchical cluster analysis. 

Upper part shows the dendrogram of the cluster analysis. Lower part shows the list of the 

samples classified in each cluster. 
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Principal component analysis 

The results of the principal component analysis are shown in Figure 4A. The LCL and PBC 

groups were clearly distinguished by their first principal component score. In addition, the PBC 

samples were distributed within a narrow range, whereas the LCL samples showed a relatively 

wide range in the second principal component score. These results suggest that there is a global 

difference in DNA methylation levels between these cell types and that the levels are more diverse 

in LCLs than in PBCs.   

Volcano plots 

I then examined the difference in methylation level for each site using a glm adjusted for age 

and sex. As shown in the volcano plot in Figure 4B, the sites showing lower levels in LCL than 

in PBC were predominant (low-met-LCL group). The 138,871 sites (34.7% of the total) showed 

−log10(P-value) > 10; among these sites, 85.1% were in the low-met-LCL group. This inclination 

was observed in each autosome (Figure 5). Therefore, it was suggested that the main difference 

in DNA methylation between LCLs and PBCs was hypomethylation in the LCLs and that the 

change in methylation levels occurred globally in the autosomes. 
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Figure 4: Global difference in the DNA methylation level between the LCLs and PBCs 

(A) Principal component analysis (PCA) plot. PCA was performed using the methylation level 

of the 400,240 sites on autosomes. The LCL and PBC samples are shown in black and blue 

dots, respectively. (B) Volcano plot with the difference of the average of DNA methylation 

level on the x-axis and the P-value (−log10(P-value)) obtained via glm analysis on the y-axis. 

Each color shows the dot density (100 < n, 80 < n ≤ 100, 60 < n ≤ 80, 40 < n ≤ 60, 20 < n ≤ 40, 

10 < n ≤ 20 and n ≤ 10 per unit area (0.002 × 1 for x and y-axis, respectively) in red, yellow, 

green, sky blue, blue, pink and black, respectively). 
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Figure 5: Volcano plot for each autosomal chromosome. 

Volcano plot for each autosome with the difference of the average of DNA methylation levels 

on the x-axis and the P-value (−log10(P-value)) obtained via glm analysis on the y-axis. Each 

color shows the dot density (100 < n, 80 < n ≤ 100, 60 < n ≤ 80, 40 < n ≤ 60, 20 < n ≤ 40, 10 < 

n ≤ 20 and n ≤ 10 per unit area (0.002 × 1 for the x-axis and y-axis, respectively) in red, yellow, 

green, sky blue, blue, pink and black, respectively). 
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Gene ontology analysis 

Additionally, to investigate the association between DNA methylation change and gene 

biological function, I performed gene ontology enrichment analysis. In this study, I annotated 

reference gene name from UCSC Genome Bioinformatics database 

(http://genome.ucsc.edu/index.html) to the 6,689 methylation sites located inside of gene region 

and have a significant difference of methylation level between PBCs and LCLs (−log10(P-value) 

> 100). The 3,779 genes were annotated to the methylation sites. The details of the result are 

shown in Table 1. 

Then, I performed gene ontology (GO) enrichment analysis with DAVID 

(https://david.ncifcrf.gov/home.jsp), and the results in all sites, high-met-LCL, and low-met-LCL 

are shown in Supplementary Table 1, Supplementary Table 2, and Table 2, respectively. It is 

revealed that the GO terms associated with development are significantly enriched in low-met-

LCL group (GO:0007275 (multicellular organism development), P-value of 1.27×10-34; 

GO:0048731 (system development), P-value of 5.89×10-32; GO:0048856 (anatomical structure 

development), P-value of 4.43×10-29; GO:0044767 (single-organism developmental process), P-

value of 5.27×10-29; GO:0032502 (developmental process), P-value of 9.93×10-29). 

  

Table 1: Gene ontology analysis 

 

GO Term

site gene DAVID ID
Biological 

Process %
Cellular 

Component %
Molecular 

Function %

All 6,689 3,779 3,524 2,973 84.4 3,146 89.3 2,936 83.3 

High-met-LCL 568 427 408 366 89.7 385 94.4 378 92.6 

Low-met-LCL 6,121 3,448 3,208 2,694 84.0 2,851 88.9 2,644 82.4 
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Table 2: GO term enrichment analysis in low-met-LCL 

 

Term
(Biological Process) Description Count % P-Value FDR

GO:0044707 single-multicellular organism process 1,241 38.7 4.33E-36 8.80E-33

GO:0007275 multicellular organism development 1,048 32.7 9.49E-34 1.93E-30

GO:0032501 multicellular organismal process 1,409 43.9 2.75E-33 5.58E-30

GO:0048731 system development 938 29.2 4.24E-32 8.61E-29

GO:0048856 anatomical structure development 1,134 35.3 4.81E-30 9.77E-27

GO:0044767 single-organism developmental process 1,133 35.3 9.27E-30 1.88E-26

GO:0032502 developmental process 1,158 36.1 2.12E-29 4.30E-26

GO:0030154 cell differentiation 797 24.8 5.74E-26 1.17E-22

GO:0023052 signaling 1,236 38.5 5.50E-24 1.12E-20

GO:0044699 single-organism process 2,329 72.6 9.09E-24 1.85E-20

Term
(Cellular Component) Description Count % P-Value FDR

GO:0071944 cell periphery 1,168 36.4 3.76E-52 6.01E-49

GO:0005886 plasma membrane 1,141 35.6 3.71E-50 5.93E-47

GO:0044459 plasma membrane part 653 20.4 3.14E-40 5.01E-37

GO:0045202 synapse 243 7.57 6.75E-31 1.08E-27

GO:0097458 neuron part 367 11.4 7.46E-31 1.19E-27

GO:0005887 integral component of plasma membrane 414 12.9 1.43E-26 2.29E-23

GO:0031226 intrinsic component of plasma membrane 426 13.3 2.58E-26 4.12E-23

GO:0044456 synapse part 192 5.99 1.69E-23 2.70E-20

GO:0043005 neuron projection 262 8.17 5.05E-21 8.07E-18

GO:0030054 cell junction 344 10.7 7.10E-21 1.13E-17

Term
(Molecular Function) Description Count % P-Value FDR

GO:0022836 gated channel activity 122 3.8 9.34E-21 1.63E-17

GO:0022838 substrate-specific channel activity 148 4.61 1.60E-20 2.79E-17

GO:0005216 ion channel activity 143 4.46 5.88E-20 1.03E-16

GO:0046873 metal ion transmembrane transporter activity 141 4.4 8.58E-20 1.50E-16

GO:0005261 cation channel activity 112 3.49 3.32E-19 5.79E-16

GO:0022803 passive transmembrane transporter activity 152 4.74 6.51E-19 1.14E-15

GO:0015267 channel activity 151 4.71 1.35E-18 2.36E-15

GO:0015075 ion transmembrane transporter activity 209 6.51 8.37E-14 1.46E-10

GO:0005244 voltage-gated ion channel activity 72 2.24 1.56E-13 2.72E-10

GO:0022832 voltage-gated channel activity 72 2.24 1.56E-13 2.72E-10
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Association with gene expression and DNA methylation 

I also investigated the association with DNA methylation difference and gene expression. In 

this analysis, I used the gene expression data reported by Powell et al.(36). The association with 

DNA methylation difference between PBCs and LCLs and the changes of gene expression in the 

differentially methylated sites (-log10(P-value) > 100) are shown in Figure 6. It is revealed that 

there is no positive correlation between methylation level and gene expression. 

  

 

Figure 6: The association with DNA methylation difference and gene expression in genetic 

region. 

Scatter plot with the P-value (-log10(P-value)) obtained via glm analysis of DNA methylation 

difference between PBCs and LCLs on x-axis, and the ratio of gene expression change 

according to EB virus infection (log2(gene expression (EBV+) / gene expression (uninfected))) 

are on y-axis. The results in high-met-LCL group and low-met-LCL group are shown in Figure 

6A and Figure 6B, respectively. 
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It is already known that the DNA methylation in promoter region has an effect on the gene 

expression (9). To investigate the correlation between methylation level and gene expression in 

detail, I performed a similar analysis in the methylation sites located in the promoter region (-

500 bp < TSS < 2000 bp). In Figure 7, there is a slight correlation between DNA methylation 

changes and gene expression.  

  

 

Figure 7: The association with DNA methylation difference and gene expression in 

promoter region. 

Scatter plot with the P-value (-log10(P-value)) obtained via glm analysis of DNA methylation 

difference between PBCs and LCLs on x-axis, and the ratio of gene expression change 

according to EB virus infection (log2(gene expression (EBV+) / gene expression (uninfected))) 

are on y-axis. The results in high-met-LCL group and low-met-LCL group are shown in Figure 

7A and Figure 7B, respectively. 
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Chapter 3: Association with CpG islands 

The annotation of CpG islands 

Based on the CpG Islands (CGI) track of the UCSC table browser of the UCSC Genome 

Bioinformatics database (http://genome.ucsc.edu/index.html), the 400,240 sites on autosomes 

were classified into two groups, CGI-sites (135,674 sites, inside of CGI) or non-CGI-sites 

(264,566 sites, outside the CGI). Among the non-CGI sites, 95,625 sites were located near CGI 

(±2,000 bases) that were classified in a shore group. 

CpG island and non-CpG island 

I next assessed the distribution of the difference in methylation levels between LCLs and 

PBLs in terms of the location of the site (inside or outside the CpG island) (named CGI-site or 

non-CGI-site). As shown in Figure 8A, the distribution of difference was dissimilar between them; 

the proportion of the sites showing a low P-value was larger in the non-CGI-site group (black 

solid line) than in the CGI-site group (black dashed line). This trend was apparent in the low-met-

LCL group (compare the red solid and dashed lines), whereas a dissimilarity of distribution was 

not observed in the high-met-LCL group (compare the blue solid and dashed lines). These results 

prompted us to further classify the non-CGI-sites into shore or non-shore groups because the CGI 

shores were suggested to contribute to tissue-specific DNA methylation (37, 38). However, I did 

not find significant differences in the distribution between the shore and non-shore group of the 

low-met-LCL (Figure 8B). Taken together, these results suggested that the majority of 

hypomethylation observed in the LCLs occurred at sites outside the CGIs regardless of shores. 
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Figure 8: Distribution of the differences in methylation levels between LCLs and PBLs in terms 

of CGI. 

(A) The proportion of P-values obtained from non-CGI and CGI sites in all samples (black solid 

and dashed lines, respectively), non-CGI and CGI sites in the low-met-LCL group (red solid and 

dashed lines, respectively), and non-CGI and CGI sites in the high-met-LCL group (blue solid 

and dashed lines, respectively) are indicated. (B) The proportion of P-values obtained from the 

non-shore and shore sites (solid and dashed lines, respectively) in the non-CGI sites of the low-

met-LCL group are indicated. 
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Chapter 4: Association with distance from transcription start site 

Transcription start site position 

The distance between the methylation site and the nearest transcription start site (TSS) was 

calculated using the NCBI RefSeq database. The physical positions on the human genome were 

based on the Genome Reference Consortium Human Build 37 (GRCh37, 

http://www.ncbi.nlm.nih.gov/assembly/). 

Distance from TSS and DNA methylation difference 

I further examined the relationship between the distance from the TSS and the difference in 

DNA methylation levels observed among LCLs and PBCs. I plotted −log10(P-value) for each site 

against the distance from the nearest TSS (shown in gray dots in Figure 9) and indicated a 

proportion of the site showing −log10(P-value) > 10, 25 and 50 in blue, green and pink dots, 

respectively (Figure 9). The proportion was calculated by dividing the number of the sites meeting 

the P-value criteria by the total number of sites within ±50 bases of window size. I found that the 

proportion of significantly different sites was lower near the TSS. For instance, approximately 

25% of the sites near the TSS showed −log10(P-value) > 10, whereas this proportion increased to 

approximately 45% for the sites located approximately ±1,000 bases from the TSS in the low-

met-LCL group (blue dots, Figure 9A). This trend was also observed even in the lower P-value 

threshold group (green and pink dots) and in the high-met-LCL group (Figure 9B).  
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Synergistic action of CGI and TSS 

I then analyzed the sites showing −log10(P-value) > 10 separately for CGI- and non-CGI-site 

groups. As shown in Figure 10, the proportion of non-CGI-sites near the TSS was high in both 

the low- and high-met-LCL groups (red and blue dots, respectively, Figure 10). However, the 

lowest proportion was observed near the TSS in the case of CGI-sites (orange and sky-blue dots 

for low- and high-met-LCL groups, respectively, Figure 10). These results suggested that the low 

CpG promoter would show a more significant difference in DNA methylation levels than the high 

CpG promoter.  

  

 

Figure 9: Distribution of the differences in methylation levels between LCLs and PBLs in 

terms of TSS. 

P-values were plotted against the distance from the nearest TSS (gray dots). The proportion of 

the sites with P-values (−log10(P-value)) greater than 10 (blue dots), 25 (green dots) and 50 

(pink dots) in a window size of ±50 bases were plotted. Figure 9A and Figure 9B show the 

results in the high-met-LCL group and the low-met-LCL group, respectively. 
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Figure 10: Synergistic effect of CGI and TSS 

The proportion of the sites with P-values (−log10(P-value)) greater than 10 obtained from non-

CGI and CGI sites in the low-met-LCL group (red and orange dots, respectively), and from non-

CGI and CGI sites in the high-met-LCL group (blue and sky-blue dots, respectively) in a window 

size of ±50 bases were plotted against TSS. 
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Chapter 5: Association with promoter type 

Definition of promoter type 

Of 400,240 probes, 159,688 demonstrated a TSS between -500 bases and +2,000 bases; 

among these, 85,700 sites could be classified into high-CpG-density promoters (HCP), 

intermediate-CpG-density promoters (ICP) and low-CpG-density promoters (LCP), as reported 

by Mikkelsen et al. (39) (69,836, 10,719 and 5,145 in HCP, ICP and LCP, respectively). 

Differentially methylated sites in promoter region 

I analyzed the distribution of −log10(P-value) in all, low- and high-met-LCL groups and 

results are shown in Figure 11. It was shown that the proportion of differentially methylated sites 

was higher in the LCPs than the HCPs. In the LCPs, the proportion of the sites showing −log10(P-

value) > 25 was 30.7%, whereas that in HCPs was 4.1% in all sites (compare Figure 11A and 

Figure 11G). This was more pronounced in the low-met-LCL group (compare Figure 11B, Figure 

11C, Figure 11H and Figure 11I). The sites located in ICPs showed intermediate values between 

HCPs and LCPs (Figure 11D, Figure 11E, and Figure 11F). These results suggested that the 

methylation sites located in low CpG promoters could be sensitive to demethylation in LCLs. 
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To further assess promoter type differences, I compared the HCPs, ICPs, and LCPs 

methylation level profiles. As shown in Figure 12, nearly half of the sites in ICPs and LCPs 

showed more than 0.6 methylation levels, whereas almost all sites in HCPs were hypomethylated 

in PBCs. Additionally, it was observed that the methylation levels of highly methylated sites of 

the LCPs decreased in the LCLs. Therefore, I concluded that highly methylated sites of LCPs 

caused the difference in DNA methylation levels observed between HCPs and LCPs, especially 

in the low-met-LCL group.  

 

Figure 11: Difference in methylation levels between LCLs and PBLs in terms of promoter 

type. 

The proportion of the sites with P-values (−log10(P-value)) ≤ 25, 25-50, 50-100 and ≥ 100 are 

indicated in white, blue, green and pink, respectively. The results obtained from the HCP, ICP 

and LCP sites in all samples (A, D and G, respectively) in the low-met-LCL group (B, E and H, 

respectively) and in the high-met-LCL (C, F and I, respectively) are shown. 
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Figure 12: Distribution of the methylation levels of the sites in HCPs, ICPs, and LCPs. 

The results in HCPs, ICP, and LCPs are shown in A, B, and C, respectively. 

(Upper panel) The distribution of the methylation levels of the sites.  

(legend continued on next page) 
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(Lower panel) Volcano plot with the difference of the average of DNA methylation level on 

the x-axis and the P-value (−log10(P-value)) obtained via glm analysis on the y-axis. Each plot 

shows the sites with methylation level of 0-0.25, 0.25-0.5, 0.5-0.75 and 0.75-1 in PBCs. 
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Chapter 6: The methylation level difference in age-associated methylation site 

Age-associated methylation sites 

Using DNA obtained from PBCs, it has been reported that the methylation levels of several 

CpG sites are associated with chronological age. However, it remains unclear whether LCLs 

should be utilized for studies on epigenetic aging biomarkers. To address this issue, I performed 

a regression analysis for chronological age and known aging-related CpG sites located in FHL2 

and ELOVL2 (25, 26). FHL2 encodes a member of the four-and-a-half-LIM-only protein family 

that is suggested to have a role in the assembly of extracellular membranes and in the 

transformation of normal myoblasts to rhabdomyosarcoma cells (OMIM 602633). ELOVL2 

encodes an enzyme that catalyzes the first and rate-limiting reaction of the long-chain fatty acids 

elongation cycle (OMIM 611814). As shown in Figure 13, the methylation level of the PBCs was 

highly correlated with chronological age (blue dots, P = 1.7E-18 and r2 = 0.33 for FHL2, P = 

3.1E-25 and r2 = 0.44 for ELOVL2). In contrast, the methylation level of the LCLs was varied and 

the association was weak (black dots, P = 0.04 and r2 = 0.05 for FHL2, P = 1.9E-5 and r2 = 0.18 

for ELOVL2). Therefore, these results suggest that DNA obtained from LCLs may not always be 

an alternative to DNA from PBCs. 
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Figure 13: Regression analyses of the methylation levels and chronological age at the FHL2 

and ELOVL2 loci.  

The methylation levels in the LCLs (black dots) and PBCs (blue dots) were plotted against the 

age of the donors at the time of providing the specimens. The P-values and r2 were obtained 

by correcting for sex. 
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Discussion 

In this study, I used a 450K methylation array to investigate the methylation differences 

between LCLs and PBCs, which are commonly used in genetic epidemiological studies. In all 

genomes, the majority of the sites in the LCLs showed lower methylation levels than those of the 

PBCs, and these sites were primarily located in non-CGI regions. Additionally, I found that 

differentially methylated sites were predominantly located in the LCP region. 

In the differentially methylated sites, I found that GO terms that associated with development 

are enriched. Such tendency was not seen in the list of genes known as oncogene reported in 

Futreal et al. (40). On the other hand, there are such trend in the top 500 genes differentially 

expressed in EBV-infected cells (41), therefore it is suggested that this tendency may be caused 

by EBV infection.  

I investigated the correlation of DNA methylation and gene expression, and I found that there 

was no significant correlation in the methylation sites located in the gene region. However, if I 

limited to the methylation sites located in the promoter region, there is a slight correlation. These 

results suggest that DNA methylation changes are not directly associated with gene expression 

change, however, there may be some interactions with other various factors. 

Although a relatively small sample number and a number of methylation sites were analyzed, 

previous studies showed that methylation status in LCLs is different from that of PBCs and that 

the methylation level in LCLs is lower than that of PBCs in the majority of sites (42–47). Because 

a large number of samples and more sites were examined, I could investigate the differences in 

methylation levels between LCLs and PBCs in terms of CGI location, distance from TSS and 

promoter type as characterized by CG density. I found that a fraction showing a significant 

difference in methylation level between the LCLs and PBCs was observed near the TSS in the 

non-CGI sites but not in the CGI sites. This result suggests that the difference in the methylation 
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level of these cell types would be high in the genes in which the promoter shows a low GC content. 

I found that significantly different methylation sites were predominant in LCPs but not in 

HCPs. It has been demonstrated that LCPs are generally associated with tissue-specific genes, 

whereas HCPs are associated with two classes of genes, including ubiquitous ‘housekeeping’ 

genes and highly regulated ‘key developmental’ genes (39, 48, 49). Therefore, my results suggest 

that the methylation sites located in promoters classified as LCP could have a functional role in 

distinguishing between LCLs and PBCs by regulating the corresponding gene expression. 

The epigenome-wide association studies using human population samples to identify the 

disease risk loci and epigenomes that are affected by intrinsic or extrinsic factors, such as aging 

and smoking, have been progressing (14, 15, 25, 26). I evaluated the differences in association 

strength between well-known aging methylation sites and the chronological age of the samples 

between LCLs and PBCs and found that the correlation was more significant in PBCs than LCLs. 

This was due to a larger variance of methylation levels in LCLs than in PBCs. In addition to the 

differences in cell type, artificial experimental processes, including in vitro culture, culture period 

and culture freezing and thawing could cause the large variances in data observed in the LCLs. 

Therefore, I concluded that DNA obtained from LCLs may not always be a proxy for DNA from 

PBCs in studies of epigenome-wide analysis attempting to elucidate the role of epigenetic change 

in disease risks.  

Conclusion 

There is a global difference in DNA methylation levels between LCLs and PBCs, and the 

main difference was hypomethylation in the LCLs. The methylation levels of highly methylated 

sites of the low-CpG-density promoters in PBCs decreased in the LCLs, suggesting that the 

methylation sites located in low-CpG-density promoters could be sensitive to demethylation in 

LCLs. The correlation between well-known ageing methylation sites and the chronological age 
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of the samples was more significant in PBCs than LCLs, indicating that despite being generated 

from a single cell type, LCLs may not always be a proxy for DNA from PBCs in studies of 

epigenome-wide analysis attempting to elucidate the role of epigenetic change in disease risks. 
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Supplementary files 

  

Supplementary Table 1: GO term enrichment analysis in all methylation sites. 

 

Term
(Biological Process) Description Count % P-Value FDR

GO:0044707 single-multicellular organism process 1,343 38.1 2.31E-34 4.72E-31

GO:0007275 multicellular organism development 1,134 32.2 1.27E-32 2.59E-29

GO:0048731 system development 1,018 28.9 5.89E-32 1.20E-28

GO:0032501 multicellular organismal process 1,520 43.1 7.42E-30 1.51E-26

GO:0048856 anatomical structure development 1,230 34.9 4.43E-29 9.03E-26

GO:0044767 single-organism developmental process 1,230 34.9 5.27E-29 1.07E-25

GO:0032502 developmental process 1,258 35.7 9.93E-29 2.03E-25

GO:0030154 cell differentiation 865 24.5 7.31E-26 1.49E-22

GO:0048869 cellular developmental process 913 25.9 3.10E-22 6.32E-19

GO:0009653 anatomical structure morphogenesis 644 18.3 3.94E-22 8.03E-19

Term
(Cellular Component) Description Count % P-Value FDR

GO:0071944 cell periphery 1,251 35.5 4.22E-48 6.79E-45

GO:0005886 plasma membrane 1,218 34.6 3.31E-45 5.33E-42

GO:0044459 plasma membrane part 687 19.5 2.35E-35 3.79E-32

GO:0045202 synapse 259 7.3 7.60E-31 1.22E-27

GO:0097458 neuron part 388 11.0 6.31E-29 1.02E-25

GO:0044456 synapse part 202 5.7 2.32E-22 3.73E-19

GO:0005887 integral component of plasma membrane 429 12.2 5.64E-22 9.09E-19

GO:0031226 intrinsic component of plasma membrane 442 12.5 9.00E-22 1.45E-18

GO:0042995 cell projection 469 13.3 4.98E-21 8.03E-18

GO:0043005 neuron projection 279 7.9 2.68E-20 4.32E-17

Term
(Molecular Function) Description Count % P-Value FDR

GO:0022838 substrate-specific channel activity 150 4.3 3.88E-17 6.81E-14

GO:0022836 gated channel activity 122 3.5 4.65E-17 8.17E-14

GO:0046873 metal ion transmembrane transporter activity 144 4.1 5.33E-17 9.36E-14

GO:0005216 ion channel activity 145 4.1 2.14E-16 3.89E-13

GO:0005261 cation channel activity 113 3.2 4.01E-16 7.77E-13

GO:0022803 passive transmembrane transporter activity 154 4.4 2.61E-15 4.67E-12

GO:0015267 channel activity 153 4.3 4.93E-15 8.57E-12

GO:0005509 calcium ion binding 197 5.6 8.13E-12 1.43E-08

GO:0015075 ion transmembrane transporter activity 217 6.2 2.09E-11 3.67E-08

GO:0008092 cytoskeletal protein binding 223 6.3 2.37E-11 4.16E-08
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Supplementary Table 2: GO term enrichment analysis in high-met-LCL. 

 

Term
(Biological Process) Description Count % P-Value FDR

GO:0048518 positive regulation of biological process 160 39.2 6.32E-07 0.001201

GO:0048522 positive regulation of cellular process 147 36 6.94E-07 0.00132

GO:0006996 organelle organization 120 29.4 3.41E-06 0.006486

GO:0016043 cellular component organization 175 42.9 5.20E-06 0.009885

GO:0044237 cellular metabolic process 263 64.5 5.56E-06 0.010562

GO:0006366 transcription from RNA polymerase II promoter 68 16.7 1.04E-05 0.019721

GO:0030036 actin cytoskeleton organization 30 7.35 1.19E-05 0.022713

GO:0071840 cellular component organization or biogenesis 176 43.1 1.76E-05 0.033453

GO:0007010 cytoskeleton organization 48 11.8 1.87E-05 0.035525

GO:0051128 regulation of cellular component organization 79 19.4 4.58E-05 0.08703

Term
(Cellular Component) Description Count % P-Value FDR

GO:0031974 membrane-enclosed lumen 156 38.2 2.72E-12 4.05E-09

GO:0005622 intracellular 351 86 4.23E-12 6.29E-09

GO:0044424 intracellular part 345 84.6 6.87E-12 1.02E-08

GO:0043233 organelle lumen 153 37.5 9.14E-12 1.36E-08

GO:0070013 intracellular organelle lumen 151 37 1.08E-11 1.61E-08

GO:0044428 nuclear part 141 34.6 2.99E-11 4.45E-08

GO:0031981 nuclear lumen 131 32.1 3.30E-11 4.91E-08

GO:0043226 organelle 331 81.1 6.73E-11 1.00E-07

GO:0044446 intracellular organelle part 237 58.1 6.92E-11 1.03E-07

GO:0044422 organelle part 240 58.8 1.21E-10 1.79E-07

Term
(Molecular Function) Description Count % P-Value FDR

GO:0005515 protein binding 289 70.8 1.19E-07 1.87E-04

GO:0001067 regulatory region nucleic acid binding 39 9.56 4.48E-05 0.070073

GO:0005488 binding 347 85 6.85E-05 0.107158

GO:0044212 transcription regulatory region DNA binding 38 9.31 8.93E-05 0.139794

GO:0016740 transferase activity 83 20.3 8.96E-05 0.140264

GO:0000975 regulatory region DNA binding 38 9.31 9.56E-05 0.14961

GO:0097159 organic cyclic compound binding 171 41.9 1.17E-04 0.183252

GO:1901363 heterocyclic compound binding 169 41.4 1.22E-04 0.191656

GO:1990837 sequence-specific double-stranded DNA binding 33 8.09 1.97E-04 0.308156

GO:0003690 double-stranded DNA binding 35 8.58 2.82E-04 0.441188
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Appendix 

R Script Code 

Cluster analysis 

## Data import ==== 
ClusterData   <-   read.table("cluster_30CpG.txt", header=T) 
 
## Distance calculation (Euclidean distance) ==== 
d   =   dist(ClusterData) 
 
## Cluster analysis with Ward method ==== 
hc_w   <-   hclust(d, method = "ward.D2") 
 
## Save to png file ==== 
png("dendrogram.png", width=1860, height=492, unit="px") 
plot(hc_w, cex = 0.5, ann = F, axes = F) #plot dendrogram 
cluster <- rect.hclust(hc_w,k=2) 
dev.off() 
 
## Make a list of each cluster ==== 
write.table(cluster[1],file = "cluster1.txt", sep = "¥t") #First cluster 
write.table(cluster[2],file = "cluster2.txt", sep = "¥t") #Second cluster 

Making of the dataset for GO term enrichment analysis 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:12,20:23)] 
 
## Making of the gene list containing logP>100 sites(All sites) ==== 
refIN <- subset(df,df$ref_IN == "IN") 
logP100 <- subset(refIN,refIN$logP > 100) 
a <- unique(logP100$ref_name) 
A <- data.frame(ref = a) 
write.table(A, "logP100Gene.txt", quote=F, sep="¥t", dec=".", row.names=F, 
col.names=T) 
 
## Making of the gene list containing logP>100 sites(high-met-LCL) ==== 
high_met <- subset(logP100, logP100$EB_PBL == "+") 
h <- unique(high_met$ref_name) 
H <- data.frame(ref = h) 
write.table(H, "high_logP100Gene.txt", quote=F, sep="¥t", dec=".", 
row.names=F, col.names=T) 
 
## Making of the gene list containing logP>100 sites(low-met-LCL) ==== 
low_met <- subset(logP100, logP100$EB_PBL == "-") 
l <- unique(low_met$ref_name) 
L <- data.frame(ref = l) 
write.table(L, "low_logP100Gene.txt", quote=F, sep="¥t", dec=".", 
row.names=F, col.names=T) 
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The association with DNA methylation and Gene expression 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:12,20:23)] 
df <- subset(df,df$ref_IN == "IN") 
dfR <- nrow(df) 
gewl <- read.table("gene expression wb vs lcl.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F, quote="") 
 
## Add expression data to methylation sites ==== 
refgewl <- data.frame(NULL) 
geR <- nrow(gewl) 
  for(j in 1:geR){ 
    symbol_ge <- gewl[j, 7] 
    ident_df <- subset(df,df$ref_name == symbol_ge) 
    idR <- nrow(ident_df) 
    if(idR != 0){ 
      for(k in 1:idR){ 
        ident_df$adj_P_val[k] <- gewl$adj.P.Val[j] 
        ident_df$P_value[k] <- gewl$P.Value[j] 
        ident_df$t[k] <- gewl$t[j] 
        ident_df$B[k] <- gewl$B[j] 
        ident_df$logFC[k] <- gewl$logFC[j] 
      } 
      refgewl <- rbind(refgewl,ident_df) 
    } 
} 

 
## Selection of the sites showing mehtylation level difference ==== 
refgewl_100 <- subset(refgewl,refgewl$logP > 100) 
 
## Making graph in low-met-LCL and high-met-LCL ==== 
high_refgewl <- subset(refgewl_100,refgewl_100$EB_PBL == "+") 
low_refgewl <- subset(refgewl_100,refgewl_100$EB_PBL == "-") 
png("ref_high_Gene expression_wbvslcl.png", width = 450, height = 450) 
plot(high_refgewl$logP, high_refgewl$logFC , pch=20,cex=0.5, axes=F,ann=F, 
xlim=c(100,300), ylim=c(-5,5)) 
axis(1, pos=-5, xaxp=c(100,300,4), labels=F) 
axis(2, pos=100, yaxp=c(-5,5,4), labels=F) 
dev.off() 
png("ref_low_Gene expression_wbvslcl.png", width = 450, height = 450) 
plot(low_refgewl$logP, low_refgewl$logFC , pch=20,cex=0.5, axes=F,ann=F, 
xlim=c(100,350), ylim=c(-8,8)) 
axis(1, pos=-8, xaxp=c(100,350,5), labels=F) 
axis(2, pos=100, yaxp=c(-8,8,4), labels=F) 
dev.off() 

The association with DNA methylation and Gene expression in promoter region 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:12,17:19)] 
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df <- subset(df,df$tx_dis > -500 & df$tx_dis < 2000)  
dfR <- nrow(df) 
gewl <- read.table("gene expression wb vs lcl.txt",  
                   header=TRUE, sep="¥t", stringsAsFactors=F, quote="") 
 
## Add expression data to methylation sites ==== 
txgewl <- data.frame(NULL) 
  geR <- nrow(gewl) 
  for(j in 1:geR){ 
    symbol_ge <- gewl[j,7] 
    ident_df <- subset(df,df$gene == symbol_ge) 
    idR <- nrow(ident_df) 
    if(idR != 0){ 
      for(k in 1:idR){ 
        ident_df$adj_P_val[k] <- gewl$adj.P.Val[j] 
        ident_df$P_value[k] <- gewl$P.Value[j] 
        ident_df$t[k] <- gewl$t[j] 
        ident_df$B[k] <- gewl$B[j] 
        ident_df$logFC[k] <- gewl$logFC[j] 
      } 
      txgewl <- rbind(txgewl,ident_df) 
    } 
  } 
 
## Selection of the sites showing mehtylation level difference ==== 
txgewl_100 <- subset(txgewl,txgewl$logP > 100) 
 
## Making graph in low-met-LCL and high-met-LCL ==== 
high_txgewl <- subset(txgewl_100,txgewl_100$EB_PBL == "+") 
low_txgewl <- subset(txgewl_100,txgewl_100$EB_PBL == "-") 
png("tx_high_Gene expression.png", width = 450, height = 450) 
plot(high_txgewl$logP, high_txgewl$logFC , pch=20,cex=0.5, axes=F,ann=F, 
xlim=c(100,200), ylim=c(-5,5)) 
axis(1, pos=-5, xaxp=c(100,200,4), labels=F) 
axis(2, pos=100, yaxp=c(-5,5,4), labels=F) 
dev.off() 
png("tx_low_Gene expression.png", width = 450, height = 450) 
plot(low_txgewl$logP, low_txgewl$logFC , pch=20,cex=0.5, axes=F,ann=F, 
xlim=c(100,300), ylim=c(-7,7)) 
axis(1, pos=-7, xaxp=c(100,300,4), labels=F) 
axis(2, pos=100, yaxp=c(-7,7,4), labels=F) 
dev.off() 

Volcano Plot in all sites 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,1:12] 
df$PBL_EB <- df$ave_PBL12-df$ave_EB 
 
## Save to png file ==== 
png("Volcano Plot_Global.png", width = 500, height = 400) 
plot(df$PBL_EB, df$logP, type="n", ann=F, axes=F,  
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xlim=c(-1,1), ylim=c(0,350)) 
axis(1, pos=0, xaxp=c(-1,1,4), labels=F) 
axis(2, pos=0, yaxp=c(0,350,7), labels=F) 
par(new=T) 
 
for(i in 1:500){ 
   A   <- subset(df, ((i-1)/500*2)-1 < df$PBL_EB) #x-axis division(every 
1/1000) 
   B   <- subset(A, A$PBL_EB < (i/500*2)-1) 
   for(j in 1:330){ 
      C   <- subset(B, (j-1) < B$logP) #y-axis division(every 1) 
      D   <- subset(C, C$logP < j) 
      r   <- nrow(D) 
      plot(D$PBL_EB, D$logP, pch=20, cex=0.5,  
         col = ifelse(r>100, "#FF0000FF", 
                ifelse(r>80, "#FFFF00FF", 
                ifelse(r>60, "#00FF00FF", 
                ifelse(r>40, "#00FFFFFF", 
                ifelse(r>20, "#0000FFFF", 
                ifelse(r>10, "#FF00FFFF", "black")))))),  
         ann = F, axes = FALSE, xlim = c(-1,1),  

ylim = c(0,350)) #Classifying with site density in each area 
      par(new = T) 
      }    
} 
dev.off() 

 

Volcano Plot in each chromosome 
## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,1:12] 
df$PBL_EB <- df$ave_PBL12-df$ave_EB 
 
## Save to png file ==== 
png("Volcano Plot_EachCHR.png", width = 1600, height = 1300) 
par(mfrow=c(4,6)) 
par(mar=c(2,2,2,2)) 
 
## plot ==== 
for (k in 1:22){ 
  df_chr <- subset(df,df$chr == k) #chromosome data 
plot(df$PBL_EB, df$logP, type="n", ann=F, axes=F,  

xlim=c(-1,1), ylim=c(0,350)) 
  axis(1, pos=0, xaxp=c(-1,1,4), labels=F) 
  axis(2, pos=0, yaxp=c(0,350,2), labels=F) 
  par(new=T) 
   
  for(i in 1:500){ 
    A   <- subset(df_chr, ((i-1)/500*2)-1 < df_chr$PBL_EB) #x-axis 
division(every 1/1000) 
    B   <- subset(A, A$PBL_EB < (i/500*2)-1) 
    for(j in 1:330){ 
      C   <- subset(B, (j-1) < B$logP) #y-axis division(every 1) 
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      D   <- subset(C, C$logP < j) 
      r   <- nrow(D) 
      plot(D$PBL_EB, D$logP, pch=20, cex=0.5,  
           col = ifelse(r>100, "#FF0000FF", 
                 ifelse(r>80, "#FFFF00FF", 
                 ifelse(r>60, "#00FF00FF", 
                 ifelse(r>40, "#00FFFFFF", 
                 ifelse(r>20, "#0000FFFF", 
                 ifelse(r>10, "#FF00FFFF", "black")))))),  
           ann = F, axes = FALSE, xlim = c(-1,1),  

ylim = c(0,350)) # Classifying with site density in each area 
      par(new = T) 
    }    
  } 
  par(new = F) 
} 
dev.off() 

TSS distance and P value in high-met-LCL 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:12,17,18)] 
 
## Save to png file ==== 
png("txdis_high.png", width = 400, height = 500) 
 
## Selecting the sites located in promoter region ==== 
prom <- subset(df,df$tx_dis>-1001&df$tx_dis<1001) 
high <- subset(prom,prom$EB_PBL == "+") 
plot(high$tx_dis, high$logP, type="n", ann=F, axes=F,  
     xlim=c(-1000,1000), ylim=c(0,350)) 
par(new=T) 
 
## Plotting the background data ==== 
plot(high$tx_dis, high$logP, pch = 20, cex = 0.5,  
     xlim=c(-1000,1000),ylim=c(0,350),axes=F, ann=F,col="gray") 
par(new=T) 
axis(1, pos=0, xaxp=c(-1000,1000,10), labels=F) 
axis(2, pos=-1000, yaxp=c(0,350,7), labels=F) 
axis(4, pos=1000, yaxp=c(0,350,6), labels=F) 
par(new=T) 
 
## Calculating the proportion of differentially methylated sites ==== 
prom_ave <- subset(df,df$tx_dis>-1051&df$tx_dis<1051) 
high_ave <- subset(prom_ave,prom_ave$EB_PBL == "+") 
reg <- c(-1000:1000) 
per_logP10 <- as.numeric(NULL) 
per_logP25 <- as.numeric(NULL) 
per_logP50 <- as.numeric(NULL) 
for(i in 1:length(reg)){ 
  reg3 <- reg[i]-50 
  reg5 <- reg[i]+50 
  high_reg <- subset(high_ave,high_ave$tx_dis>reg3&high_ave$tx_dis<reg5) 
  logP10 <- subset(high_reg,high_reg$logP > 10) 
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  logP25 <- subset(high_reg,high_reg$logP > 25) 
  logP50 <- subset(high_reg,high_reg$logP > 50) 
  per_logP10[i] <- nrow(logP10)/nrow(high_reg) 
  per_logP25[i] <- nrow(logP25)/nrow(high_reg) 
  per_logP50[i] <- nrow(logP50)/nrow(high_reg) 
} 
high_aveR <- data.frame(tx_dis=reg, logP10=per_logP10,  

logP25=per_logP25, logP50=per_logP50) 
 
## Plotting line graph of the sites proportion ==== 
plot(high_aveR$tx_dis,high_aveR$logP10,  

ylim = c(0,0.6),axes=F,ann=F,col="blue",pch=20, cex=0.5) 
par(new=T) 
plot(high_aveR$tx_dis,high_aveR$logP25, 

 ylim = c(0,0.6),axes=F,ann=F,col="green",pch=20, cex=0.5) 
par(new=T) 
plot(high_aveR$tx_dis,high_aveR$logP50, 

 ylim = c(0,0.6),axes=F,ann=F,col="red",pch=20, cex=0.5) 
par(new=T) 
 
dev.off() 
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TSS distance and P value in low-met-LCL 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:12,17,18)] 
 
## Save to png file ==== 
png("txdis_low.png", width = 400, height = 500) 
 
## Selecting the sites located in promoter region ==== 
prom <- subset(df,df$tx_dis>-1001&df$tx_dis<1001) 
low <- subset(prom,prom$EB_PBL == "-") 
 
plot(low$tx_dis, low$logP, type="n", ann=F, axes=F,  
     xlim=c(-1000,1000), ylim=c(0,350))  
par(new=T) 
 
## Plotting the background data ==== 
plot(low$tx_dis, low$logP, pch = 20, cex = 0.5,  
     xlim=c(-1000,1000),ylim=c(0,350),axes=F, ann=F,col="gray") 
par(new=T) 
axis(1, pos=0, xaxp=c(-1000,1000,10), labels=F) 
axis(2, pos=-1000, yaxp=c(0,350,7), labels=F) 
axis(4, pos=1000, yaxp=c(0,350,6), labels=F) 
par(new=T) 
 
## Calculating the proportion of differentially methylated sites ==== 
prom_ave <- subset(df,df$tx_dis>-1051&df$tx_dis<1051) 
low_ave <- subset(prom_ave,prom_ave$EB_PBL == "-") 
 
reg <- c(-1000:1000) 
per_logP10 <- as.numeric(NULL) 
per_logP25 <- as.numeric(NULL) 
per_logP50 <- as.numeric(NULL) 
for(i in 1:length(reg)){ 
  reg3 <- reg[i]-50 
  reg5 <- reg[i]+50 
  low_reg <- subset(low_ave,low_ave$tx_dis>reg3&low_ave$tx_dis<reg5) 
  logP10 <- subset(low_reg,low_reg$logP > 10) 
  logP25 <- subset(low_reg,low_reg$logP > 25) 
  logP50 <- subset(low_reg,low_reg$logP > 50) 
  per_logP10[i] <- nrow(logP10)/nrow(low_reg) 
  per_logP25[i] <- nrow(logP25)/nrow(low_reg) 
  per_logP50[i] <- nrow(logP50)/nrow(low_reg) 
} 
low_aveR <- data.frame(tx_dis=reg, logP10=per_logP10,  

logP25=per_logP25, logP50=per_logP50) 
 
## Plotting line graph of the sites proportion ==== 
plot(low_aveR$tx_dis,low_aveR$logP10, 

 ylim = c(0,0.6),axes=F,ann=F,col="blue",pch=20, cex=0.5) 
par(new=T) 
plot(low_aveR$tx_dis,low_aveR$logP25, 
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 ylim = c(0,0.6),axes=F,ann=F,col="green",pch=20, cex=0.5) 
par(new=T) 
plot(low_aveR$tx_dis,low_aveR$logP50, 

 ylim = c(0,0.6),axes=F,ann=F,col="red",pch=20, cex=0.5) 
par(new=F) 
 
dev.off() 

The association with TSS distance and CpG island 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:18)] 
 
## Selecting the sites located in promoter region ==== 
prom_ave <- subset(df,df$tx_dis>-1051&df$tx_dis<1051) 
 
## Classifying with high-met or low-met ==== 
high <- subset(prom_ave,prom_ave$EB_PBL == "+") 
low <- subset(prom_ave,prom_ave$EB_PBL == "-") 
 
## Classifying with in CpG island or out ==== 
high_IN <- subset(high,high$CpG_island == "IN") 
high_OUT <- subset(high,high$CpG_island == "OUT") 
low_IN <- subset(low,low$CpG_island == "IN") 
low_OUT <- subset(low, low$CpG_island == "OUT") 
 
## Save to png file ==== 
png("CGI_txdis.png", width=700, height=600) 
 
## Calculating and plotting the proportion of the logP>10 sites ==== 
CGItx_list <- list(high_IN, high_OUT, low_IN, low_OUT) 
list_col <- c("sky blue", "blue", "orange", "red") 
for(j in 1:4){ 
  DF <- as.data.frame(CGItx_list[j]) 
  reg <- c(-1000:1000) 
  per_logP10 <- as.numeric(NULL) 
  for(i in 1:length(reg)){ 
    reg3 <- reg[i]-50 
    reg5 <- reg[i]+50 
    DF_reg <- subset(DF,DF$tx_dis>reg3 & DF$tx_dis<reg5) 
    logP10 <- subset(DF_reg,DF_reg$logP > 10) 
    per_logP10[i] <- nrow(logP10)/nrow(DF_reg) 
  } 
  DF_aveR <- data.frame(tx_dis=reg,logP10=per_logP10) 
plot(DF_aveR$tx_dis,DF_aveR$logP10,  

ylim = c(0,0.8),axes=F,ann=F,col=list_col[j],pch=20, cex=0.5) 
  par(new=T) 
} 
axis(1, pos=0, xaxp=c(-1000,1000,10), labels=F) 
axis(2, pos=-1000, yaxp=c(0,0.8,4), labels=F) 
dev.off() 
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The methylation level distribution in HCPs, ICPs, and LCPs 

## Data import ==== 
df <- read.table("selection_P_CGI_refG_GIO_HIL_txdis.txt",  
                 header=TRUE, sep="¥t", stringsAsFactors=F) 
df <- df[,c(1:12,24,25)] 
 
## Classifying with HCP, ICP, or LCP ==== 
HCP <- subset(df,df$HIL == "HCP") 
ICP <- subset(df,df$HIL == "ICP") 
LCP <- subset(df,df$HIL == "LCP") 
HIL <- list(HCP,ICP,LCP) 
 
## Calculating the proportion of the sites in every methylation level (PBC) 
==== 
PBC_freq <- NULL 
for(i in 1:3){ 
  A <- as.data.frame(HIL[i]) 
  met <- seq(0,1, by=0.125) 
  num <- as.numeric(NULL) 
  for(j in 1:length(met)-1){ 
    A_reg <- subset(A,A$ave_PBL12>met[j] & A$ave_PBL12<met[j+1]) 
    num_reg <- nrow(A_reg) 
    num[j] <- num_reg 
  } 
  num_freq <- num/nrow(A)*100 
  PBC_freq <- cbind(PBC_freq,num_freq) 
} 
write.table(PBC_freq, "PBC_HIL_freq.txt", quote=F, sep="¥t", dec=".", 
row.names=F, col.names=T) 
 
## Calculating the proportion of the sites in every methylation level (LCL) 
==== 
LCL_freq <- NULL 
for(i in 1:3){ 
  A <- as.data.frame(HIL[i]) 
  met <- seq(0,1, by=0.125) 
  num <- as.numeric(NULL) 
  for(j in 1:length(met)-1){ 
    A_reg <- subset(A,A$ave_EB>met[j] & A$ave_EB<met[j+1]) 
    num_reg <- nrow(A_reg) 
    num[j] <- num_reg 
  } 
  num_freq <- num/nrow(A)*100 
  LCL_freq <- cbind(LCL_freq,num_freq) 
} 
write.table(LCL_freq, "LCL_HIL_freq.txt", quote=F, sep="¥t", dec=".", 
row.names=F, col.names=T) 
 
## Checking the alteration in every methylation level ==== 
pName_HCP <- c("HCP_000-025.png","HCP_025-050.png", 

"HCP_050-075.png","HCP_075-100.png") 
pName_ICP <- c("ICP_000-025.png","ICP_025-050.png", 

"ICP_050-075.png","ICP_075-100.png") 
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pName_LCP <- c("LCP_000-025.png","LCP_025-050.png", 
"LCP_050-075.png","LCP_075-100.png") 

plot_name <- list(pName_HCP,pName_ICP,pName_LCP) 
met <- seq(0,1, by=0.25) 
for(i in 1:3){ 
  A <- as.data.frame(HIL[i]) 
  A$PBL_EB <- A$ave_PBL12 - A$ave_EB 
  pName <- as.data.frame(plot_name[i]) 
  for(j in 1:4){ 
    Amet <- subset(A,A$ave_PBL12 > met[j] & A$ave_PBL12 < met[j+1]) 
    png(pName[j,],width = 150,height = 100) 
    par(mar=c(0,0,0,0)) 
    plot(Amet$PBL_EB, Amet$logP, xlim=c(-1,1), ylim=c(0,300),ann=F, axes=F, 
pch=20, cex=0.5) 
    axis(1, pos=0, xaxp=c(-1,1,4), labels=F) 
    axis(2, pos=0, yaxp=c(0,300,2), labels=F) 
    dev.off() 
  } 
} 

 


