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Abstract

In this thesis, I clarify effects of interactions between colloidal particles on
nonequilibrium steady states in colloidal dispersion systems. I consider a probe
particle fixed in a flowing colloidal suspension comprised of hard-sphere colloidal
particles and a solvent. Particularly, in the field of microrheology, mechanical
properties of a suspension are determined from the relation between the force on
probe particles and the flux velocity. In order to examine the effects of interactions
between the colloidal particles, I calculate the force exerted by the colloidal parti-
cles on the probe particle via numerical calculations using two theoretical methods.
The methods are the time-dependent density functional theory (TDDFT) and the
combination of the density functional theory (DFT) with the two-fluid model.

In the first method, assuming that the solvent velocity field is uniform in the
whole system, I calculate the force exerted by the colloidal particles on the probe
particle via numerical calculations using the TDDFT. By solving numerically the
equation of the density field derived from the TDDFT, I obtain the density field
of colloidal particles around the probe particle. From the numerical integration
of the density field, I calculate the force exerted by the colloidal particles on the
hard-sphere probe particle. In order to examine the effects of interactions between
the colloidal particles, I compare the results for interacting colloidal particles and
those for noninteracting colloidal particles. For small flux velocity, the calculated
results show that the force decreases due to the interactions between the colloidal
particles. In contrast, for large flux velocity and the large volume fraction of
colloids, the force increases due to the interactions.

In the second method, considering the nonuniformity of the solvent velocity
field, I examine the modification of the effect of the interactions obtained in the first
method by this nonuniformity. In order to consider the nonuniform solvent velocity
field disturbed by the colloidal particles, I derive the equations of motion for the
colloidal particles and for the solvent by combining the DFT with the two-fluid
model. Here, I assume that the probe particle is a soft-core particle and the solvent
velocity field is disturbed only by the colloidal particles. Using the expansion
in powers of the volume fraction, I solve the second-order equations numerically
and obtain the density field of the colloidal particles and the nonuniform solvent
velocity field for small volume fractions. The calculated results of the force show
qualitatively the same effect of the interactions between the colloidal particles as
that obtained in the first study using the TDDFT. This means that for small
volume fractions, the effect of the interactions on the force is qualitatively not
modified by the nonuniformity of the solvent velocity field.
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Chapter 1

Introduction

Physical properties of many-particle systems are under the influence of interactions
between the constituting particles. Even a simple repulsive interaction has a great
influence on the arrangement of the particles (in other words, the structure of the
many-particle systems). The effects of interactions between particles are caused
not only by atoms or molecules in a liquid system, but also by large particles, such
as colloidal particles, in a soft-matter system. Therefore, interactions between
particles are an important factor in determining properties of soft matter.

Microrheology is the field of study for determining mechanical properties of
complex fluids (e.g., colloids, polymer solutions, and gels) using microsize probe
particles [1–10]. In microrheology, mechanical properties of complex fluids are
determined from the analysis of motion of the probe particles which are embedded
into the fluids. Experiments of microrheology are classified into two types: passive
microrheology and active microrheology. In experiments of passive microrheology,
the Brownian motion of probe particles in complex fluids is observed. In contrast,
in experiments of active microrheology, motion of probe particles driven by external
force (e.g., magnetic and optical tweezers) is observed.

Squires and Brady considered a simple model for the active microrheology and
obtained effective viscosity of a colloidal suspension by numerical calculation [7].
They considered a hard-sphere probe particle pulled at a constant velocity through
a colloidal suspension comprised of hard-sphere colloidal particles and a solvent.
Although complex fluids had been considered as the continuity in the majority of
theoretical studies of microrheology [1, 2], Squires and Brady focused on the mi-
croscopic distribution of the colloidal particles. They obtained the distribution of
the colloidal particles around the probe particle by numerically solving the Smolu-
chowski equation of the distribution. As a result, they obtained the dependence
of the effective viscosity on the velocity of the probe particle.

The results obtained by Squires and Brady have not been verified by experi-
mental studies. The verification is considered difficult because assumptions in their
study are difficult to be satisfied in experimental studies. One of the assumptions
is the neglect of interactions between colloidal particles. It has not been well
understood how the neglect of interactions between colloidal particles affects the
motion of the probe particle. Although this assumption is satisfied when the col-
loidal suspension is in the dilute limit, experimental studies for extremely dilute
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suspensions have not been conducted.
Additionally, Squires and Brady assumed that the solvent velocity is constant

in the whole system. However, the solvent velocity field should be nonuniform par-
ticularly in the vicinity of the probe particle because the solvent flows around the
probe particle. In solving the Smoluchowski equation, they assumed the uniform
solvent velocity field around the probe particle. It has not been well understood
how the neglect of the nonuniform solvent velocity field affects the distribution of
the colloidal particles.

In this study, considering a simple model similar to that studied by Squires and
Brady, I examine effects of interactions between colloidal particles. To examine the
effects of the interactions, I calculate the distribution of colloidal particles numeri-
cally by employing the time-dependent density functional theory (TDDFT) [11,12].
This theory gives the equation of the temporal development of the distribution
which includes the term of interactions between particles. Next, to examine how
the effects of the interactions are modified by the nonuniform solvent velocity field,
I calculate the distribution of the colloidal particles and the solvent velocity field
numerically by combining the density functional theory (DFT) with the two-fluid
model. The application of the two-fluid model to a colloidal suspension gives two
equations of motion: one for the colloidal particles and for the solvent.

This thesis is organized as follows. In Sect. 2, I introduce studies of microrheol-
ogy: mainly, the theoretical study by Squires and Brady [7] and the experimental
study by Wilson et al. [4] Next, I derive the equations of motion of the two-fluid
model, referring to the theoretical study by Doi and Onuki [13] (Sect. 3). In
Sect. 4, I explain the method and results of my numerical study based on the
TDDFT. Then, I explain the method of combining the DFT with the two-fluid
model (Sect. 5) and apply this method to a system comprised of a soft-core probe
particle, hard-sphere colloidal particles, and a solvent (Sect. 6).
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Chapter 2

Microrheology

Microrheology is the field of study of complex fluids (e.g., colloids, polymer solu-
tions, and gels), where microsize probe particles are used [1–10]. In experiments of
microrheology, researchers embed probe particles into complex fluids and observe
motion of the probe particles. From the analysis of the motion of the probe par-
ticles, mechanical properties of the complex fluids are determined. Microrheology
has been promoted by modern developments of devices of photographing and con-
trolling probe particles. To control probe particles, magnetic and optical tweezers
are often used in experiments of microrheology.

There are two methods of experiments of microrheology. One is the observation
of the Brownian motion of probe particles in complex fluids, which is called passive
microrheology. From the passive microrheology, the diffusion coefficients of the
complex fluid are obtained. The other method is the observation of probe particles
driven by magnetic and optical tweezers, which is called active microrheology.
From the active microrheology, the friction coefficients of the complex fluids are
obtained.

2.1 Theoretical study of microrheology

For the passive microrheology, the measured diffusion coefficients are generally re-
lated to the mechanical properties of the complex fluids via the generalized Stokes-
Einstein (GSE) relation [1, 2]. The GSE relation is based on the assumption that
the local mechanical properties around the probe particles equal the macroscopic
mechanical properties of the complex fluids. For the active microrheology, the
measured friction coefficients are generally related to the viscosity of the com-
plex fluids via the Stokes law [3, 4]. Here, the Stokes law is also employed on the
assumption that the local viscosity around the probe particles equals the macro-
scopic viscosity of the complex fluids. However, the validity of these assumptions
has not been verified adequately.

In principle, the local mechanical properties around the probe particles should
be different from the macroscopic mechanical properties because the structure of
the complex fluids is disturbed by the probe particles. The complex fluids in-
clude microsize constituting particles (e.g., colloidal particles and polymer chains)
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Figure 2.1: Model system for active microrheology. This figure is from Squires and
Brady [7]. A probe particle is pulled at a constant velocity U through a colloidal
suspension. ah and bh are hydrodynamic radii of the probe and colloidal particles,
respectively. Long-range repulsive interactions are modeled with a hard-sphere potential
at effective radii of a for the probe particle and b for the colloidal particles.

which have comparable sizes to those of the probe particles. The distribution of
the constituting particles around the probe particles depends on the motion of the
probe particles and interactions among the probe and constituting particles. If the
distribution around the probe particles is different from the average distribution
over the whole system, the local mechanical properties should be different from
the macroscopic mechanical properties. However, it has not been understood ade-
quately how the constituting particles are distributed around the probe particles.

Some theoretical studies of microrheology have intended to obtain the distri-
bution of constituting particles of complex fluids around probe particles [7–10].
In particular, Squires and Brady calculated the distribution of colloidal particles
around a probe particle by using a simple model for active microrheology [7].
From the calculated distribution, they determined the force exerted by the col-
loidal particles on the probe particle. The result of their study was compared with
the results of some experimental studies of microrheology [3, 4]. In this section, I
introduce the method and results of their study [7].

2.1.1 Model system for active microrheology

Squires and Brady considered a probe particle pulled at a constant velocity U
through a colloidal suspension comprised of hard spheres and a solvent (Fig. 2.1).
As the interaction between the probe and colloidal particles, they adopted the
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hard-sphere potential,

V (r) =

{
∞, at r < a+ b,
0, at r ≥ a+ b,

(2.1)

where a and b are the hard-sphere radii of the probe and colloidal particles, re-
spectively, and r is the distance between the probe and colloidal particles. Here,
they assumed that the probe and colloidal particles have the hydrodynamic radii
ah and bh, respectively, which are defined by

ah =
kBT

6πηDa

and bh =
kBT

6πηD
, (2.2)

where Da and D are the diffusion coefficients of the probe and colloidal particles,
respectively, and η is the viscosity of the solvent.

For simplicity, Squires and Brady neglected hydrodynamic interactions among
particles. The hydrodynamic interactions are negligible when the hard-sphere radii
are much larger than the hydrodynamic radii (a ≫ ah and b ≫ bh). They stated
that a ≫ ah and b ≫ bh are satisfied, for example, when the particles have large
ionic screening lengths or when long polymer hairs are grafted on the surfaces of
the particles. Although the neglect of the hydrodynamic interactions may seem
to be a poor approximation, they stated that their simple model captured and
illustrated the significant physics of the active microrheology. When the hydro-
dynamic interactions are negligible, the solvent is not disturbed by the probe and
colloidal particles so that the solvent velocity is constant in the whole system.

Additionally, Squires and Brady also neglected the hard-sphere interactions
among the colloidal particles. Effects of these interactions are negligible when the
colloidal suspension is in the dilute limit ϕ≪ 1, where ϕ is the volume fraction of
the colloidal particles defined by

ϕ =
4

3
πb3ρ0, (2.3)

where ρ0 is the homogeneous number density of the colloidal particles far from the
probe particle. In the dilute limit, the colloidal particles hardly collide with each
other so that the neglect of the interactions among them is valid.

2.1.2 Motion of probe particle

In the system represented by Fig. 2.1, the probe particle is subject to the forces
exerted by the solvent and colloidal particles. They assumed that the force exerted
by the solvent is obtained from the Stokes law and expressed by

Fsol = −6πηahU. (2.4)

The force exerted by the colloidal particles is expressed by

Fcol = −kBT
∮
S

ρ(r)ndS, (2.5)
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where ρ(r) is the density field of the colloidal particles at steady states, S is
the spherical surface satisfying |r| = a + b, and n is the normal vector of S.
Equation (2.5) is accurate when the velocity distribution of the colloidal particles
is given by the Maxwell–Boltzmann distribution. The derivation of Eq. (2.5) is
described in Append. A.

From Eqs. (2.4) and (2.5), the force on the probe particle F is given by

F = −6πηahU− kBT

∮
S

ρ(r)ndS. (2.6)

Employing the simple Stokes drag, Squires and Brady defined the effective viscosity
of the colloidal suspension ηeff as

F = −6πηeffahU. (2.7)

From Eqs. (2.6) and (2.7), the effective viscosity ηeff is given by

ηeff
η

= 1 +
kBT

6πηah|U|

∮
S

ρ(r)nzdS, (2.8)

where nz is the z-component of the normal vector n (z-axis is parallel to U).
Additionally, Squires and Brady defined the viscosity increment ∆η ≡ ηeff − η.
From Eq. (2.8), the viscosity increment is given by

∆η

η
=

kBT

6πηah|U|

∮
S

ρ(r)nzdS. (2.9)

2.1.3 Density field of colloidal particles

To determine the viscosity increment [Eq. (2.9)], Squires and Brady calculated the
density field of the colloidal particles ρ(r) by using the Smoluchowski equation.
They considered the system of Fig. 2.1 in a frame fixed on the probe particle so
that the colloidal particles are advected with the constant velocity −U. In the
dilute limit (ϕ≪ 1), the density flux of the colloidal particles includes the diffusive
and advective terms,

j(r) = −D∇ρ(r)−Uρ(r). (2.10)

At steady states, since the continuity of the colloidal particles requires ∇· j(r) = 0,
the Smoluchowski equation is given by

D∇2ρ(r) +U · ∇ρ(r) = 0. (2.11)

The boundary condition for Eq. (2.11) is that the density flux is zero across the
surface of the probe particle,

n · j(r) = Dn · ∇ρ(r) + n ·Uρ(r) = 0, at |r| = a+ b. (2.12)

Another boundary condition is that the density field equals the homogeneous den-
sity ρ0 far from the probe particle,

ρ(r) = ρ0, as |r| → ∞. (2.13)
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−U

O(Pe−1)

ρ ∼ O(Pe)

ρ ∼ ρ0

ρ ∼ 0

Figure 2.2: Low- and high-Pe density fields. These figures are from Squires and Brady [7].
(a) The density field in the low-Pe limit. It forms a symmetric diffusive dipole. The
circle at the center represents the probe particle. A darker region corresponds to a lower
particle density. The direction of the flux −U is leftward. (b) The density field in the
high-Pe limit. It forms a thin convection-diffusion boundary layer. On the upstream
side outside of the boundary layer, the density field equals the homogeneous density
(ρ ∼ ρ0). On the downstream side outside of the boundary layer, the density field equals
zero (ρ ∼ 0).

Squires and Brady solved Eq. (2.11) approximately in the limits of the low
Péclet number Pe ≪ 1 and the high Péclet number Pe ≫ 1, where the Péclet
number Pe is defined by

Pe =
a+ b

D
|U|. (2.14)

In the low-Pe limit, they expanded ρ(r) in Pe and neglected the second- and
higher-order terms of Pe,

ρ(r) ≈ ρ(0)(r) + ρ(1)(r)Pe. (2.15)

Here, ρ(0)(r) is the density field at equilibrium states (Pe = 0),

ρ(0)(r) =

{
0, at |r| < a+ b,
ρ0, at |r| ≥ a+ b.

(2.16)

Neglecting the second- and higher-order terms of Pe, the Smoluchowski equation
[Eq. (2.11)] and the boundary conditions [Eqs. (2.12) and (2.13)] are reduced to

∇2ρ(1)(r) = 0, (2.17)

(a+ b)
∂ρ(1)(r)

∂r
= −ρ0 cos θ, at r = a+ b, (2.18)

ρ(1)(r) = 0, as r → ∞, (2.19)
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Figure 2.3: Density fields for intermediate Pe. These figures are from Squires and
Brady [7]. (a) The density field for Pe = 0.15. The circle at the center represents the
probe particle. A darker region corresponds to a lower particle density. The direction
of the flux −U is leftward. (b) The density field for Pe = 0.5. (c) The density field for
Pe = 1.5.

where r is the radial distance of the spherical coordinates and θ is the polar angle
to the vector U. From these equations, the density field in the low-Pe limit is
obtained analytically,

ρ(r ≥ a+ b, θ ; Pe ≪ 1) =

[
1 + Pe

(a+ b)2 cos θ

2r2

]
ρ0, (2.20)

while the density field at r < a + b equals zero. The density field at r ≥ a + b is
the simple diffusive dipole [Fig. 2.2 (a)].

In contrast, in the high-Pe limit, a thin convection-diffusion boundary layer
is formed at the front of the probe particle [Fig. 2.2 (b)]. Here, gradients of the
density field along this boundary layer are smaller than those across this layer.
Neglecting the gradients along the boundary layer, the Smoluchowski equation
[Eq. (2.11)] is reduced to

(a+ b)
∂2ρ(r)

∂ζ2
+ Pe

∂ρ(r)

∂ζ
cos θ = 0, (2.21)

where ζ is a coordinate perpendicular to the local surface of the boundary layer
(ζ = r − a − b at θ < π/2). Squires and Brady determined the coefficient of
the solution to Eq. (2.21) from the flux balance through the boundary layer and
obtained the density field in the high-Pe limit,

ρ

(
r ≥ a+ b, θ <

π

2
; Pe ≫ 1

)
∼

[
1 +

Pe

2
e−Pe ζ cos θ/(a+b) cos θ

]
ρ0, (2.22)

while the density field at r < a+b or π/2 < θ < π equals zero. Note that Eq. (2.22)
does not satisfy the boundary condition defined by Eq. (2.12).

Furthermore, Squires and Brady also solved Eq. (2.11) for arbitrary Pe. Ex-
pressing the density field by

ρ(r) = ρ0(1 + Pe f(r)e−Pe z/2), (2.23)
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they transformed the Smoluchowski equation [Eq. (2.11)] to the Helmholtz equa-
tion,

∇2f(r) = κ2f(r), (2.24)

κ =
Pe

2
. (2.25)

Here, f(r) satisfies the boundary conditions,

∂f(r)

∂r
+ κf(r) cos θ = −eκ cos θ cos θ, at r = a+ b, (2.26)

f(r) = 0, as r → ∞. (2.27)

The general solution to the Helmholtz equation [Eq. (2.24)] is given by

f(r, θ) =
∞∑
n=0

Cnhn(κr)Pn(cos θ), (2.28)

where Cn is the undetermined constant, hn(x) is the modified spherical Bessel
function of the second kind, and Pn(x) is the Legendre polynomials. From the
boundary conditions, Squires and Brady determined Cn for 0 ≤ n ≤ 18 via nu-
merical calculations. The density fields for some intermediate Pe are shown in
Fig. 2.3.

2.1.4 Results of viscosity increment

Using Eqs. (2.9), (2.20), and (2.22), Squires and Brady obtained the viscosity
increment in the limit of the low Pe and high Pe. From Eqs. (2.14) and (2.9), the
viscosity increment is given by

∆η

η
=
Da

D

a+ b

Pe

∮
S

ρ(r; Pe)nzdS. (2.29)

In the low-Pe limit, the viscosity increment is obtained from Eqs. (2.20) and (2.29),

∆η(Pe ≪ 1)

η
=
Da

D

(a+ b)3

Pe
2πρ0

∫ π

0

(
1 +

Pe

2
cos θ

)
cos θ sin θdθ

=
Da

D

(1 + α)3

2
ϕ, (2.30)

where α = a/b and Eq. (2.3) is used. In contrast, in the high-Pe limit, the viscosity
increment is obtained from Eqs. (2.22) and (2.29),

∆η(Pe ≫ 1)

η
=
Da

D

(a+ b)3

Pe
2πρ0

∫ π
2

0

(
1 +

Pe

2
cos θ

)
cos θ sin θdθ

=
Da

D

(1 + α)3

4
ϕ. (2.31)
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V
(P

e)

Pe
Figure 2.4: Péclet-number dependence of normalized viscosity increment. This figure
is from Squires and Brady [7]. V (Pe) is defined by Eq. (2.32) and Pe is defined by
Eq. (2.14).

Note that the integration range in Eq. (2.31) is 0 ≤ θ ≤ π/2 because the density
field at π/2 < θ < π equals zero [see Eq. (2.22)]. Equations (2.30) and (2.31) show
that the viscosity increment becomes half from the low-Pe limit to the high-Pe
limit.

Additionally, using the solution to the Helmholtz equation [Eq. (2.24)], Squires
and Brady obtained the viscosity increment for arbitrary values of Pe. They
defined the normalized viscosity increment as

V (Pe) =
2

ϕ(1 + α)3
D

Da

∆η(Pe)

η
, (2.32)

where V (Pe) = 1 in the low-Pe limit. Cn in Eq. (2.28) was numerically determined
up to n = 18 so that V (Pe) was expressed by the 19-term expansion in Pe. To
obtain V (Pe) for large values of Pe, Squires and Brady extrapolated V (Pe) to the
high-Pe limit by using the Padé approximation. The values of V (Pe) for arbitrary
Pe are plotted in Fig. 2.4. Figure 2.4 shows that the value of V (Pe) decreases as
Pe increases in the range of 1 ≤ Pe ≤ 100.

2.2 Experimental study of microrheology

Next, I introduce the experimental study by Wilson et al. [4] The purpose of their
study is the verification of the result obtained by Squires and Brady [7]. In the
experimental study, by using optical tweezers, the force exerted on probe particles
is measured, which is the similar system to that studied by Squires and Brady.

2.2.1 Preparation

In the experimental study by Wilson et al., they prepared the colloidal suspension
comprised of PMMA particles and a mixture of mixed (cis- and trans-) decalin
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U
Ftrap F

Figure 2.5: Schema of experimental system studied by Wilson et al. A probe particle
is trapped by optical tweezers in a flowing colloidal suspension. Colloidal particles and
a solvent flow at a constant velocity U. The probe particle is subject to the drag force
F exerted by the flowing suspension and the trapping force Ftrap caused by the optical
tweezers. At steady states, the magnitude of F balances with that of Ftrap.

and cycloheptylbromide (CHB). They grafted poly-12-hydroxystearic acid (PHSA)
on the PMMA particles and added tetrabutylammonium chloride to the solvent
mixture so that the PMMA particles behaved as hard spheres. The refractive index
of the solvent matched that of the PMMA particles (n = 1.49). The viscosity of
the solvent was η0 = 2.56 mPa · s measured by rheometer. Although Wilson et
al. prepared two batches of the PMMA particles with radii b = 860 and 960 nm
(measured by light scattering), there was no systematic difference between the
results of these batches.

To measure mechanical properties of this colloidal suspension, they used probe
particles made of melamine resin. These probe particles were coated with PHSA
so that the interaction between the probe and colloidal particles was given by
hard spheres. The radius of the probe particles was a = 1.04 µm measured by
light scattering. The refractive index of the probe particles was n = 1.7 different
from that of the colloidal particles and the solvent. Because of the mismatching
of the refractive indices, the probe particles are trapped by optical tweezers in the
colloidal suspension.

2.2.2 Method

Wilson et al. fixed the probe particles spatially by optical tweezers. The optical
tweezers trap microsize particles in the vicinity of a focus of a condensed laser
beam. If the trapped particles deviate from the focus, the particles are subject
to the restoring force directed to the focus. The magnitude of the restoring force
is determined from the deviation from the focus. Since the restoring force of the
optical tweezers is generated by refraction of a laser beam at the boundary between
trapped particles and a medium, the optical tweezers trap only the probe particles
with the refractive index different from that of the solvent.

Trapping the probe particles by the optical tweezers, Wilson et al. translated
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Figure 2.6: Péclet-number dependence of effective viscosity. This figure is from Wilson
et al. [4]. ηeff(Pe) and Pe are defined by Eq. (2.33) and (2.34), respectively. ηeff(Pe) is
scaled by the solvent viscosity η0 = 2.56 mPa · s.

the sample stage at a constant velocity U relative to the laser trap (Fig 2.5). They
measured positions of the trapped probe particles at steady states for various U
and the volume fraction of the colloidal particles ϕ. In the experimental system,
the trapped probe particles are subject to the drag force F exerted by the flowing
colloidal suspension and the restoring force Ftrap caused by the optical tweezers. At
steady states, the magnitude of F balances with that of Ftrap. Since the magnitude
of Ftrap is determined from the deviation from the focus of the condensed laser
beam, F is obtained from the measurement of the positions of the probe particles.

2.2.3 Results

Wilson et al. determined the effective viscosity of the colloidal suspension ηeff(Pe)
defined by

ηeff(Pe) =
|F|

6πa|U|
. (2.33)

Figure 2.6 represents the Péclet-number dependence of ηeff(Pe) for various values
of the volume fraction ϕ. Assuming a = b, Wilson et al. defined Pe as

Pe =
2a

Da

|U|, (2.34)

where Da is the diffusion coefficient of the probe particles in the solvent. Note
that Eq. (2.34) corresponds to Eq. (2.14) in the case of a = b. In Fig. 2.6, ηeff(Pe)
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is scaled by η0. Theoretically, from Eq. (2.32), ηeff(Pe)/η0 is expected to satisfy
the relation

ηeff(Pe)

η0
=
ϕ

2

(
a+ b

b

)3
Da

D
V (Pe) + 1, (2.35)

where D is the diffusion coefficient of the colloidal particles and V (Pe) is the
normalized viscosity increment obtained by Squires and Brady (Fig. 2.4).

From Fig. 2.6, Wilson et al. stated that the results for ϕ = 0.3 and 0.45
showed the decrease in the effective viscosity at large values of Pe but the results
for the other values of ϕ did not represent the decrease. They considered that
the decrease in the effective viscosity might be related with the decrease in the
normalized viscosity increment shown in Fig. 2.4. Similar results showing the
decrease in the effective viscosity had been obtained by Meyer et al. [3] However,
Wilson et al. also stated that the decrease in the effective viscosity might be caused
by the correction of the measurement at the edge of a condensed laser beam.

I consider that it is difficult to regard the experimental results obtained by Wil-
son et al. (Fig. 2.6) as the verification of the numerical result obtained by Squires
and Brady (Fig. 2.4). First, the effective viscosity for ϕ = 0.3 and 0.45 decreases
at Pe > 100 in Fig. 2.6, while the normalized viscosity increment in Fig. 2.4 de-
creases at 1 ≤ Pe ≤ 100. Next, although Fig. 2.4 was obtained by assuming the
dilute limit, values of ϕ in Fig. 2.6 (ϕ = 0.3 and 0.45) are so large that effects of
interactions between the colloidal particles are not negligible. Furthermore, since
error bars in Fig. 2.6 are large, it is difficult to see the Pe-dependence of the effec-
tive viscosity clearly. I consider that the differences between the numerical results
(Fig. 2.4) and the experimental results (Fig. 2.6) are caused by excessive simpli-
fication in the study by Squires and Brady: neglect of the nonuniform solvent
velocity field and interactions between colloidal particles.

2.3 Summary

Squires and Brady considered a simple model for active microrheology in a colloidal
suspension (Fig. 2.1). They obtained the density field of colloidal particles around
a probe particle by solving the Smoluchowski equation. In the limits of low Pe and
high Pe, they obtained the approximate solutions to the Smoluchowski equation
analytically. They also obtained the density field for arbitrary Pe by solving the
Smoluchowski equation numerically. By using the obtained density field, they
calculated the viscosity increment due to the colloidal particles [Eq. (2.29)]. The
results (Fig. 2.4) show that the viscosity increment in the high-Pe limit is half of
that in the low-Pe limit.

The results obtained by Squires and Brady have not been verified by experi-
mental studies of microrheology. Wilson et al. obtained the effective viscosity of a
hard-sphere colloidal suspension (Fig. 2.6) from the experiment of active microrhe-
ology using hard-sphere probe particles and the optical tweezers. Although some
of their results shows the Pe-dependence similar to that shown in Fig. 2.4, the error
bars in Fig. 2.6 are so large that it is difficult to see the Pe-dependence clearly. In
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addition, the Pe- and ϕ-dependence shown in Fig. 2.6 is different from that shown
in Fig. 2.4. I consider that the differences between these results are caused by
excessive simplification in the theoretical study: neglect of the nonuniform solvent
velocity field and interactions between colloidal particles. In my study, I examine
effects of the nonuniform solvent velocity field and interactions between particles
on probe particles in active microrheology.
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Chapter 3

Two-fluid model

3.1 Introduction

In the theoretical study by Squires and Brady [7], the solvent velocity was assumed
to be constant in the whole system (see Sect. 2.1). In fact, since motion of a
solvent is disturbed by the probe and colloidal particles, the solvent velocity field
should be nonuniform. However, the nonuniform solvent velocity field cannot be
treated in the framework of the Smoluchowski equation used in their study. To
consider the disturbance due to the particles, the solvent velocity field should be
obtained simultaneously with the distribution of the particles. I consider that
these difficulties can be resolved by use of the two-fluid model.

For the mixture of two types of fluids, the two-fluid model gives two equations
of motion for the fluids [13–15]. This model has often been applied to polymer
solutions and binary polymer blends by regarding an aggregation of polymers as
a fluid. In my study, regarding colloidal particles and a solvent as two types of
fluids, I apply the two-fluid model to a colloidal suspension (Chap. 5). Here, to
treat interactions between the colloidal particles, I combine the density functional
theory (DFT) with the two-fluid model (Chap. 5). In this chapter, referring to
the study by Doi and Onuki [13], I derive the equations of motion of the two-fluid
model as the preparation for my study.

3.2 Derivation of equations

3.2.1 Continuity equation and incompressibility condition

Here, I consider a complex fluid comprised of colloidal particles and a solvent, in
which the velocity of the colloidal particles differs from that of the solvent velocity.
The velocity fields of the colloidal particles and the solvent are represented by
vc(r, t) and vs(r, t), respectively. The volume-fraction field of the colloidal particles
is represented by ϕ(r, t). I assume that the volume-fraction field of the solvent is
represented by 1−ϕ(r, t). The continuity equation is derived from the conservation
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law and expressed by

∂ϕ(r, t)

∂t
= −∇ · (ϕ(r, t)vc(r, t)). (3.1)

Additionally, the incompressibility condition is expressed by

0 = ∇ · [ϕ(r, t)vc(r, t) + (1− ϕ(r, t))vs(r, t)]. (3.2)

3.2.2 Rayleigh’s variational method

To obtain the equations of motion for the colloidal particles and for the solvent,
I employ the Rayleigh’s variational method [16, 17]. The equations of motion are
derived from the condition that ϕ(r, t), vc(r, t), and vs(r, t) change with the lapse
of time, minimizing the sum of the energy dissipation per unit time and the time
derivative of the free energy of the complex fluid. I define the Rayleighian as

R =
W

2
+ Ḟ , (3.3)

where W is the energy dissipation per unit time and F is the free energy of the
complex fluid. By use of the Rayleigh’s variational method, the equations of
motion at steady states are obtained from the condition that the derivatives of
R equal zero. The obtained equations do not include the terms of acceleration,
which are derived from the Lagrangian formalism.

To obtain the equations of motion under the incompressibility condition [Eq. (3.2)],
I add the term of the constraint condition to the Rayleighian defined by Eq. (3.3).
The modified Rayleighian including the constraint condition is given by

R′ =
W

2
+ Ḟ −

∫
p(r, t)∇ · [ϕ(r, t)vc(r, t) + (1− ϕ(r, t))vs(r, t)]dr, (3.4)

where p(r, t) is the undetermined multiplier of the Lagrange multiplier method.
From the obtained equations, p(r, t) turns out to be the pressure field of the
complex fluids. To determine the pressure field p(r, t) satisfying the incompress-
ibility condition [Eq. (3.2)], I derive the equations of motion from the modified
Rayleighian given by Eq. (3.4).

3.2.3 Energy dissipation

The energy dissipation W is the sum of the dissipation due to relative motion
between the colloidal particles and the solvent Wf and that due to the solvent
viscosity Wvisc. Here, Wf is given by

Wf =

∫
Γ(ϕ(r, t))(vc(r, t)− vs(r, t))

2dr, (3.5)

where Γ(ϕ(r, t)) is the friction coefficient between the colloidal particles and the
solvent. In the Rayleigh’s variational method, Wvisc is defined as the function
including only the second-order terms of vs(r, t). Additionally, to determineWvisc,
I make the following assumptions,
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1. Wvisc has the translational symmetry, so that it includes only the terms of
the gradient of vs(r, t);

2. Wvisc does not include the second- or higher-order differential terms of vs(r, t).

Under these assumptions, Wvisc is given by

Wvisc =

∫ ∑
α,β

[
µ
∂vαs
∂xβ

∂vαs
∂xβ

+ (µ+ λ)
∂vαs
∂xα

∂vβs
∂xβ

]
dr, (3.6)

vs(r, t) = (vxs , v
y
s , v

z
s), (3.7)

where µ and λ are the shear viscosity and volume viscosity of the solvent, respec-
tively, and α and β represent either of three components of the vector r.

3.2.4 Time derivative of free energy

The free energy F consists of the mixing free energy Fmix and the elastic free energy
Fel. The mixing free energy Fmix is generated by mixing the colloidal particles
with the solvent. The elastic free energy Fel is associated with the conformation
of the constituting particles such as polymer chains. For simplicity, I assume
that the conformation of the colloidal particles is in equilibrium so that Fel is
negligible. Additionally, I neglect the terms of ∇ϕ(r, t) in Fmix, which arises from
the inhomogeneity of ϕ(r, t). Here, Fmix depends on ϕ(r, t) only.

When Fmix is the functional of ϕ(r, t), Fmix is given by

Fmix =

∫
f(ϕ(r, t))dr, (3.8)

where f(ϕ(r, t)) is the mixing free energy per unit volume with the volume-fraction
field ϕ(r, t). From the continuity equation [Eq. (3.1)], the time derivative of Fmix

is given by

Ḟmix =

∫
∂f(ϕ(r, t))

∂ϕ(r, t)
ϕ̇(r, t)dr

= −
∫
∂f(ϕ(r, t))

∂ϕ(r, t)
∇ · (ϕ(r, t)vc(r, t))dr. (3.9)

Since Fel has been assumed to be negligible, the total free energy F corresponds
to Fmix. Therefore, the time derivative of F is given by Eq. (3.9).
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3.2.5 Motion equations at steady states

Eventually, the modified Rayleighian is given by

R′ =

∫ {
1

2
Γ(ϕ(r, t))(vc(r, t)− vs(r, t))

2

+
1

2

∑
α,β

[
µ
∂vαs
∂xβ

∂vαs
∂xβ

+ (µ+ λ)
∂vαs
∂xα

∂vβs
∂xβ

]
− ∂f(ϕ(r, t))

∂ϕ(r, t)
∇ · (ϕ(r, t)vc(r, t))

− p(r, t)∇ · [ϕ(r, t)vc(r, t) + (1− ϕ(r, t))vs(r, t)]

}
dr. (3.10)

The equation of motion for the colloidal particles at steady states is obtained from
the condition that the functional derivative of R′ by vc(r, t) equals zero. The
obtained equation for the colloidal particles is given by

0 = Γ(ϕ(r, t))(vc(r, t)− vs(r, t)) + ϕ(r, t)∇∂f(ϕ(r, t))

∂ϕ(r, t)

+ ϕ(r, t)∇p(r, t). (3.11)

In the same way, the equation of motion for the solvent is obtained from the
functional derivative of R′ by vs(r, t). The obtained equation for the solvent is
given by

0 = Γ(ϕ(r, t))(vs(r, t)− vc(r, t)) + (1− ϕ(r, t))∇p(r, t)
− µ∇2vs(r, t)− (µ+ λ)∇(∇ · vs(r, t)). (3.12)

3.2.6 Approximate incompressibility condition

In addition to the incompressibility condition given by Eq. (3.2), I consider the
approximate incompressibility condition defined by

0 = ∇ · vs(r, t). (3.13)

This is the standard incompressibility condition for a simple fluid composed of a
solvent. The approximate incompressibility condition is accurate in the dilute limit
because the incompressibility of the colloidal particles is neglected in Eq. (3.13).
Under this incompressibility condition, the energy dissipation due to the solvent
viscosity Wvisc is given by

Wvisc = µ

∫
dr

∑
α,β

∂vαs
∂xβ

∂vαs
∂xβ

. (3.14)

From Eqs. (3.13) and (3.14), the modified Rayleighian is given by

R′ =

∫ {
1

2
Γ(ϕ(r, t))(vc(r, t)− vs(r, t))

2 +
1

2

∑
α,β

µ
∂vαs
∂xβ

∂vαs
∂xβ

− ∂f(ϕ(r, t))

∂ϕ(r, t)
∇ · (ϕ(r, t)vc(r, t))− p(r, t)∇ · vs(r, t)

}
dr. (3.15)
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From the condition that the functional derivative of R′ by vc(r, t) equals zero,
the equation of motion for the colloidal particles at steady states is obtained,

0 = Γ(ϕ(r, t))(vc(r, t)− vs(r, t)) + ϕ(r, t)∇∂f(ϕ(r, t))

∂ϕ(r, t)
. (3.16)

In the same way, the equation of motion for the solvent is obtained from the
functional derivative of R′ by vs(r, t),

0 = Γ(ϕ(r, t))(vs(r, t)− vc(r, t)) +∇p(r, t)− µ∇2vs(r, t). (3.17)

These equations are simpler than Eqs. (3.11) and (3.12). However, note that
Eqs. (3.16) and (3.17) are accurate only in the dilute limit.
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Chapter 4

Application of time-dependent
density functional theory to
numerical study of microrheology

4.1 Introduction

Squires and Brady considered a simple model for active microrheology in a colloidal
suspension and obtained the force exerted by colloidal particles on a probe particle
(see Sect. 2.1). In their study, they assumed the dilute limit and neglected effects
of interactions between colloidal particles. In this chapter, I examine effects of
interactions between colloidal particles on the force acting on a probe particle via
numerical calculations. Here, I consider a simple model for active microrheology in
a colloidal suspension similar to that studied by Squires and Brady. To examine
effects of interactions between colloidal particles, I employ the time-dependent
density functional theory (TDDFT).

The TDDFT is a powerful tool for studying effects of interactions between
particles [18–38]. In particular, this theory has been successful in describing the
dynamics of simple liquids [18–33]. For instance, the application of the TDDFT
has allowed one to examine effects of interactions between solvent particles on the
dynamics of them around a solute [18–26]. The TDDFT has also been applied
to systems of large particles constituting soft matter because the application of
the TDDFT is not restricted by particle size [34–38]. Applying the TDDFT to
a system of active microrheology in a colloidal suspension, I examine effects of
interactions between colloidal particles via numerical calculations [11,12].

4.2 Model and method

4.2.1 Model system

A probe particle is fixed at the origin in a colloidal suspension flowing at a constant
velocity U (Fig. 4.1). Here, I focus on the force F exerted by the colloidal particles
on the probe particle. I assume that the probe and colloidal particles are hard
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U

F

Figure 4.1: Model system for active microrheology in colloidal suspension. A probe
particle is fixed spatially in a colloidal suspension. The colloidal suspension flows at
a constant velocity U. The probe particle is subject to the force F exerted by the
colloidal particles. The probe and colloidal particles are hard spheres with radii a and
b, respectively.

spheres with radii a and b, respectively. The colloidal particles interact with each
other as well as with the probe particle. To examine effects of the hard-sphere
interactions between the colloidal particles on F, I calculate the density field of
the colloidal particles at steady states.

This system (Fig. 4.1) is similar to the system studied by Squires and Brady
(Fig. 2.1) [7]. In the same way as their study, I assume that the solvent velocity is
constant in the whole system. However, unlike their study, the colloidal particles
interact with each other in the system shown in Fig. 4.1. To study effects of
interactions between the colloidal particles, I employ the time-dependent density
functional theory (TDDFT).

4.2.2 Time-dependent density functional theory

Applying the TDDFT to the system shown in Fig. 4.1, I calculate the temporal
development of the density field of the colloidal particles ρ(r) by the basic equation
[18,34,35,39],

∂ρ(r, t)

∂t
+U · ∇ρ(r, t) = D∇ ·

(
ρ(r, t)∇δβF [ρ(r, t)]

δρ(r, t)

)
. (4.1)

Here, D is the diffusion coefficient of the colloidal particles, β = 1/kBT , and
F [ρ(r, t)] is the free-energy functional of ρ(r, t). In Eq. (4.1), the second term on
the left-hand side is the advective term arising from the flux of the colloidal suspen-
sion. Because of the advective term with constant U, ρ(r, t) is in a nonequilibrium
steady state even in the t → ∞ limit. The boundary condition for Eq. (4.1) is
that ρ(r, t) equals the homogeneous density ρ0 far from the probe particle.

In order to obtain the free-energy functional F [ρ(r, t)] in Eq. (4.1), I employ
the density functional theory (DFT). In the DFT, F [ρ(r, t)] is defined through
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the Legendre transformation; F [ρ(r, t)] is obtained from the Legendre transforma-
tion of the thermodynamic potential which is defined by the virtual external field
that the intensive variable paired with ρ(r, t). The derivation of the equation of
F [ρ(r, t)] is explained in detail in Append. B. When the density field ρ(r, t) is close
to the homogeneous density ρ0, F [ρ(r, t)] is given by [18,21,39]

βF [ρ(r, t)] = βFideal[ρ(r, t)]− βΨ[ρ0]

−
∞∑
n=1

1

n!

∫
cn(r1, · · · , rn)∆ρ(r1, t) · · ·∆ρ(rn, t)dr1 · · · drn, (4.2)

where

Ψ[ρ(r, t)] = Fideal[ρ(r, t)]− F [ρ(r, t)], (4.3)

∆ρ(r, t) = ρ(r, t)− ρ0. (4.4)

The n-particle direct correlation function cn(r1, · · · , rn) is defined in the homoge-
neous system which is in the absence of the probe particle,

cn(r1, · · · , rn) =
βδnΨ[ρ(r, t)]

δρ(r1, t) · · · δρ(rn, t)

∣∣∣∣
ρ(r,t)=ρ0

, (4.5)

and Fideal[ρ(r, t)] is the free-energy functional for ideal gas,

βFideal[ρ(r, t)] =

∫
ρ(r, t)[ lnρ(r, t) + βV (r) + lnΛ3 − 1 ]dr. (4.6)

Here, V(r) denotes the interaction between the probe and colloidal particles and
Λ is the thermal de Broglie wave length given by

Λ =

(
h2

2πmkBT

)1/2

, (4.7)

where h is the Planck’s constant and m is the mass of a colloidal particle.
To obtain a computable expression of Eq. (4.2), I neglect the three- and more-

particle direct correlation functions. Hence, I obtain the free-energy functional
F [ρ(r, t)],

βF [ρ(r, t)] = βFideal[ρ(r, t)]− βΨ[ρ0]− c1

∫
∆ρ(r, t)dr

− 1

2

∫
c2(r1 − r2)∆ρ(r1, t)∆ρ(r2, t)dr1dr2. (4.8)

The neglect of the three- and more-particle direct correlation corresponds to the
hypernetted-chain (HNC) approximation [40]. In the interest of consistency, the
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HNC approximation should be employed in the calculation of c2(r). By substitut-
ing Eq. (4.8) into Eq. (4.1), I obtain

∂ρ(r, t)

∂t
+U · ∇ρ(r, t) = D∇ ·

[
∇ρ(r, t) + βρ(r, t)∇V (r)

− ρ(r, t)∇
∫
c2(r− r′)∆ρ(r′, t)dr′

]
, (4.9)

where the convolution-integral term of c2(r − r′) is related to the interactions
between the colloidal particles.

In order to examine effects of the interactions between the colloidal particles,
I also calculate the density field of noninteracting colloidal particles. The non-
interacting colloidal particles do not interact with each other, but they interact
with the probe particle through the potential V (r). Thus, the noninteracting col-
loidal particles are the same as the colloidal particles in the studied by Squires and
Brady [7]. By removing the term of c2(r) from Eq. (4.9), I obtain the equation of
the TDDFT for the noninteracting colloidal particles [7, 9, 10],

∂ρid(r, t)

∂t
+U · ∇ρid(r, t) = D∇ · [∇ρid(r, t) + βρid(r, t)∇V (r)]. (4.10)

I calculate the density field at steady states ρid(r,∞) by solving Eq. (4.10), and
determine the effects of the interactions from the difference between its value and
ρ(r,∞).

4.2.3 Application to system of hard-sphere particles

Applying the TDDFT to the system comprised of hard-sphere particles (Fig. 4.1),
I calculate density fields of the colloidal particles at steady states. In this system,
I define V (r), the interaction between the probe and colloidal particles, as

V (r) =

{
∞, at |r| < a+ b,
0, at |r| ≥ a+ b,

(4.11)

where a and b are the radii of the probe and colloidal particles, respectively. Here,
the origin of the vector r is placed at the center of the probe particle. The in-
teraction between the colloidal particles is also given by the hard sphere with the
diameter 2b. By substituting Eq. (4.11) into Eqs. (4.9) and (4.10), I obtain the
equations of the TDDFT for |r| ≥ a+ b,

∂ρ(r, t)

∂t
= D∇2ρ(r, t)−U · ∇ρ(r, t)

−D∇ ·
[
ρ(r, t)∇

∫
c2(r− r′)∆ρ(r′, t)dr′

]
, (4.12)

∂ρid(r, t)

∂t
= D∇2ρid(r, t)−U · ∇ρid(r, t), (4.13)
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while ρ(r, t) = 0 and ρid(r, t) = 0 at |r| < a+ b, independently of t.
To consider the hard-sphere interaction between the probe and colloidal parti-

cles, I impose a boundary condition on the spherical surface satisfying |r| = a+ b.
This condition stipulates that the density flux equals zero across the surface,

n · j(r, t)||r|=a+b = 0, (4.14)

where n is the normal vector of the surface at |r| = a + b. In Eq. (4.14), j(r, t) is
the density flux of the interacting colloidal particles [Eq. (4.12)], which is given by

j(r, t) = D∇ρ(r, t)−Uρ(r, t)

−Dρ(r, t)∇
∫
c2(r− r′)∆ρ(r′, t)dr′. (4.15)

Note that for the noninteracting colloidal particles [Eq. (4.13)], j(r, t) is defined in
the same manner as Eq. (4.15) but for c2(r) = 0.

Using the density fields at steady states ρ(r,∞) and ρid(r,∞), I calculate the
forces exerted by the colloidal particles on the probe particle. The equations of
the forces are given by [7]

F = −kBT
∮
S

ρ(r,∞)ndS, (4.16)

Fid = −kBT
∮
S

ρid(r,∞)ndS, (4.17)

where, F and Fid are the forces exerted by the interacting and noninteracting
colloidal particles, respectively, S is the spherical surface satisfying |r| = a + b,
and n is the normal vector of S. The derivation of these equations is described in
Append. A. Equations (4.16) and (4.17) show that the forces are generated by the
anisotropies of the density fields around the probe particle. As the anisotropy of
ρ(r,∞) differs from that of ρid(r,∞), the value of F differs from that of Fid. The
difference between F and Fid gives the effects of interactions between the colloidal
particles.

4.2.4 Numerical calculation

In numerical calculations of Eqs. (4.12) and (4.13), the parameters are the reduced
velocity Ũ , the probe/colloidal particles size ratio a/b, and the volume fraction of
the colloidal particles ϕ. Here, Ũ and ϕ are defined by

Ũ ≡ a+ b

D
|U|, (4.18)

ϕ ≡ 4

3
πb3ρ0. (4.19)
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Ũ is related to the advective term in nondimensional forms of Eqs. (4.12) and
(4.13) and a/b is related to the boundary condition given by Eq. (4.14). ϕ is
related to c2(r) as well as to the boundary condition far from the probe particle.

In order to obtain ρ(r,∞) and ρid(r,∞), I solve Eqs. (4.12) and (4.13) via
iterative calculations, under the condition that the time derivative equals zero.
Here, the spatial derivatives in Eqs. (4.12) and (4.13) are calculated via the finite
difference method in the axially-symmetric cylindrical coordinate system (r, z). I
calculate the convolution integral in Eq. (4.12) by using the fast Fourier transform
[41] on the z-axis and the discrete Hankel transform on the r-axis. In the numerical
calculation, the convolution-integral term is updated only at every 100 steps of
the iterative calculation, so that the calculation cost is reduced. The details of the
numerical method are described in Append. C.

To calculate the term of the interactions between the colloidal particles, I use
the c2(r) defined in the homogeneous system which is in the absence of the probe
particle. I calculate c2(r) by employing the Ornstein–Zernike relation and the
hypernetted-chain (HNC) approximation [40]. In the homogeneous system, the
Ornstein–Zernike relation is given by

h(r) = c2(r) + ρ0

∫
c2(|r− r′|)h(r′)dr′, (4.20)

where h(r) is the pair correlation function in the homogeneous system. The HNC
approximation is given by

c2(r) = h(r)− ln[h(r) + 1]− βVc(r), (4.21)

where Vc(r) is the potential of the interaction between the colloidal particles (hard-
sphere potential with diameter 2b). From Eqs. (4.20) and (4.21), I obtain c2(r)
and h(r) numerically via the iterative calculation.

In the numerical calculation of Eqs. (4.12) and (4.13), the data points are
placed on the z-axis at constant intervals of b/50 and b/100 for Eq. (4.12) and
(a+ b)/100 for Eq. (4.13). The data points on the r-axis are placed on the zeros of
the order-zero Bessel function of the first kind J0(r) to ensure the orthogonality of
the discrete Hankel transform [42, 43], so that the average values of the intervals
equal those on the z-axis. The numerical calculation ranges are 0 < r/b ≤ 16
and −20.48 ≤ z/b ≤ 20.48 for Eq. (4.12) and 0 < r/(a + b) ≤ 8 and −10.24 ≤
z/(a+b) ≤ 10.24 for Eq. (4.13), where the origin is placed at the center of the probe
particle. I have confirmed that the calculated results remain almost unchanged
when a half values of the intervals are adopted. The convergence of the iterative
calculation is determined by checking that |∇ · j(r, t)| < 10−4Dρ0/b

2 at all data
points.

4.3 Results

4.3.1 Dependence of force on volume fraction

Calculating F and Fid from Eqs. (4.16) and (4.17), I examine the dependence of
F and Fid on ϕ. In the calculation of Eq. (4.16), ρ(r,∞) is scaled by ϕ, which is
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Figure 4.2: Volume fraction ϕ-dependence of calculated forces acting on probe particle F
and Fid for reduced velocity Ũ = 0.1 and various probe/colloidal-particle size ratios a/b.
The reduced force F̃ exerted by interacting colloidal particles (symbols) is defined by
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

F~
  
an

d
  
F~

id

Volume fraction  φ

U
~

 = 10

Noninteracting

a / b = 1 / 3

a / b = 1 / 2

a / b = 1

a / b = 2

a / b = 3
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expressed as

ρ̃(r,∞) ≡ ρ(r,∞)

ρ0
=

4πb3ρ(r,∞)

3ϕ
, (4.22)

where Eq. (4.19) is employed. In this calculation, the surface S is scaled by (a+b)2

so that Eq. (4.16) is expressed as

F = −3(a+ b)2kBT

4πb3

∮
|r̃|=1

ρ̃(r̃,∞)dS̃, (4.23)

where r̃ ≡ r/(a+ b) and S̃ is the spherical surface satisfying |r̃| = 1. In the calcu-
lation of Eq. (4.17), ρid(r,∞) and S are scaled in the same manner as Eqs. (4.22)
and (4.23), respectively. From Eqs. (4.22) and (4.23), I define the reduced force
by

F̃ ≡ b3

(a+ b)2kBT
|F|, (4.24)

while I define the reduced force exerted by the noninteracting colloidal particles
F̃id by the same coefficient as Eq. (4.24).

I plot the dependence of the reduced forces F̃ and F̃id on ϕ (Figs. 4.2 and
4.3). I calculate F̃ and F̃id for two reduced velocity values, Ũ = 0.1 (Fig. 4.2) and
10 (Fig. 4.3). Figures 4.2 and 4.3 show that F̃ and F̃id increase with ϕ. Here,
F̃id is proportional to ϕ because ρid(r,∞) is determined from a linear equation
of the density field [Eq. (4.13)]. F̃ agrees with F̃id at small values of ϕ for all
probe/colloidal particles size ratios.

When Ũ = 0.1 (Fig. 4.2), the values of F̃ (symbols) are smaller than those
of F̃id (a solid line) at all ϕ. The absolute value of the difference in the forces
|F̃ − F̃id| is small at small ϕ, but grows with ϕ for ϕ < 0.3. However, as the
volume fraction increases from ϕ = 0.3, |F̃ − F̃id| becomes small once more. This
behavior of |F̃ − F̃id| is discussed in Sect. 4.4. |F̃ − F̃id| increases as the size of the
colloidal particles becomes small. Note that |F̃ − F̃id| arises from the effect of the
hard-sphere interactions between the colloidal particles.

In contrast to the case of Ũ = 0.1, the results for Ũ = 10 show that the effect
of the interactions enhances the force values (Fig. 4.3). The values of F̃ are larger
than those of F̃id at large ϕ. Although |F̃ − F̃id| is small at small ϕ (ϕ < 0.2), it
increases with ϕ (ϕ > 0.3). The values of F̃ are almost the same for all a/b values.
In other words, the dependence of F̃ on the size of the colloidal particles is weaker
than that for Ũ = 0.1 (Fig. 4.2).

4.3.2 Velocity dependence of friction coefficient

Next, to examine the dependence of F̃ and F̃id on Ũ , I define the friction coefficients
K and Kid by

K ≡ |F|
|U|

and Kid ≡ |Fid|
|U|

. (4.25)
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(a) Noninteracting ρid(r,∞)/ρ0 (b) ϕ = 0.1 ρ(r,∞)/ρ0

Figure 4.6: Calculated density fields at steady states for Ũ = 0.1 in symmetric plane
of probe particle. (a) ρid(r,∞) is obtained by solving Eq. (4.13) for the noninteracting
colloidal particles. (b) ρ(r,∞) is obtained by solving Eq. (4.12) for the interacting
colloidal particles, with ϕ = 0.1, where the size of the probe particle is the same as that
of the colloidal particles. ρid(r,∞) and ρ(r,∞) are scaled by the homogeneous density
ρ0, and darker areas represent higher density areas. The colloidal particles cannot enter
the white areas, because of the excluded volume of the probe particle. The direction
of U is rightward. At points A and B, the values of ρid(r,∞)/ρ0 are 1.05 and 0.95,
respectively. At points C and D, ρ(r,∞)/ρ0 are 1.38 and 1.29, respectively.

Note that K and Kid are defined not only in the linear region, where F̃ and F̃id

are proportional to Ũ , but also in the nonlinear region for high Ũ . I plot the
calculated friction coefficients K and Kid for ϕ = 0.1 (Fig. 4.4) and 0.4 (Fig. 4.5)
in the 0.1 ≤ Ũ ≤ 100 range. Here, K and Kid are scaled by K0 that is Kid in the
limit Ũ → 0. Since Kid/K0 corresponds to the normalized viscosity increment (see
Sect. 2.1), its values are quoted from Squires and Brady [7].

When ϕ = 0.1 (Fig. 4.4), the values of K (symbols) are smaller than or equal to
those of Kid (a solid curve) for all values of Ũ . For small Ũ , K is smaller than Kid.
The absolute value of the difference in the friction coefficients |K −Kid| decreases
as Ũ becomes large and almost disappears for Ũ ≥ 5. Note that this difference is
caused by the effect of the hard-sphere interactions between the colloidal particles.
The effect of the interactions for small Ũ is also shown in Fig. 4.2.

In the case of ϕ = 0.4 (Fig. 4.5), the relation K < Kid is obtained for small
Ũ , similarly to the results of ϕ = 0.1. However, K > Kid is obtained for large Ũ
(Fig. 4.5). In the 5 < Ũ < 50 range, in particular, K > Kid is obtained for all
a/b. The relation K > Kid is also shown in Fig. 4.2, for large ϕ and large Ũ . At
Ũ = 100, K ≈ Kid is obtained for all a/b. Additionally, Fig. 4.5 shows stronger
dependence on a/b than that in Fig. 4.4.

4.3.3 Density fields around probe particle

To see the appearance of the density field, I plot ρ(r,∞) and ρid(r,∞) for Ũ = 0.1
(Fig. 4.6) and 10 (Fig. 4.7). These figures show that the density fields depend on Ũ
and ϕ. In the figures, darker areas represent higher density areas. The white areas
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(a) Noninteracting ρid(r,∞)/ρ0 (b) ϕ = 0.1 ρ(r,∞)/ρ0

(c) ϕ = 0.4 ρ(r,∞)/ρ0

Figure 4.7: Identical to Fig. 4.6, but for Ũ = 10. (a) ρid(r,∞). (b) ρ(r,∞) for ϕ = 0.1.
(c) ρ(r,∞) for ϕ = 0.4. At points A and B, ρid(r,∞)/ρ0 are 6.44 and 0.02, respectively.
At the other points, ρ(r,∞)/ρ0 are 6.53 (C), 0.04 (D), 9.15 (E), and 1.45 (F).

33



in the figures are the region which the colloidal particles cannot enter because of
the excluded volume of the probe particle. The values of the density fields are
higher on the upstream side of the probe particle (the left side of the white area)
than that on the downstream side.

When Ũ = 0.1 (Fig. 4.6), the plots show that the colloidal particles gather
around the probe particle because of the hard-sphere interactions between the col-
loidal particles. For the noninteracting colloidal particles [Fig. 4.6(a)], ρid(r,∞) >
ρ0 on the upstream side of the probe particle, while ρid(r,∞) < ρ0 on the down-
stream side. In contrast, ρ(r,∞) for the interacting colloidal particles satisfies
ρ(r,∞) > ρ0 on the downstream side as well as on the upstream side. The values
of ρ(r,∞) near the probe particle are larger than those of ρid(r,∞). The difference
in the density fields ρ(r,∞)−ρid(r,∞) is larger on the downstream side than that
on the upstream side; in Fig. 4.6, the difference between the points A and C is
0.33 and that between the points B and D is 0.34.

In contrast to the case of Ũ = 0.1, the results of Ũ = 10 (Fig. 4.7) show that
the effect of the interactions is modified by the rapid flux. When ϕ = 0.1, the
appearance of ρ(r,∞) is similar to that of ρid(r,∞) [see Figs. 4.7(a) and (b)].
However, for a large volume fraction (ϕ = 0.4), the values of ρ(r,∞) near the
probe particle are larger than those of ρid(r,∞) [see Figs. 4.7(a) and (c)]. The
density difference ρ(r,∞)− ρid(r,∞) is larger on the upstream side than that on
the downstream side; in Figs. 4.7(a) and (c), the difference between the points A
and E is 2.71 and that between the points B and F is 1.43.

4.3.4 Density difference between upstream and downstream
sides

To study the correlation between the density fields and the forces, I plot the
density difference ∆ρ−∆ρid and the force difference F̃ − F̃id against ϕ (Fig. 4.8).
Here, ∆ρ = ρ(rA,∞) − ρ(rB,∞) and ∆ρid = ρid(rA,∞) − ρid(rB,∞), where rA
and rB are the measurement points on the upstream side and downstream side of
the probe particle, respectively [Fig. 4.8(c)]. The ϕ-dependence of ∆ρ − ∆ρid is
correlated with the nonmonotonic ϕ-dependence of F̃ − F̃id except for the results
of a/b = 3 [see Figs. 4.8(a) and (b)]. Note that F̃ − F̃id for a/b = 3 does not have
the minimum value. Except for a/b = 3, both ∆ρ − ∆ρid and F̃ − F̃id decrease
and increase for small and large values of ϕ, respectively. The increase begins at
ϕ = 0.25–0.3, which depends on the size ratio a/b.

The correlation between ∆ρ − ∆ρid and F̃ − F̃id is explained by Eqs. (4.16)
and (4.17). These equations show that the forces are caused by the anisotropy
of the density field around the probe particle. The anisotropy is represented by
the density difference between the upstream and downstream sides of the probe
particle. Thus, ∆ρ and ∆ρid are correlated with F̃ and F̃id, respectively, so that
∆ρ−∆ρid is correlated with F̃ − F̃id.
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4.4 Discussion

To consider the ϕ-dependence of the density difference ∆ρ, I discuss the effects
of the interactions between the colloidal particles on the density field. When
a colloidal particle approaches the fixed probe particle, it is pushed toward the
probe particle by the other colloidal particles through the hard-sphere interaction.
This leads to the increment in the average number density of the colloidal particles
in the vicinity of the probe particle, which is called the depletion effect [44]. The
depletion effect is shown in Fig. 4.6(b). As ϕ increases, the depletion effect becomes
significant because of the increment in the collision between the colloidal particles.

The important factors of determining ρ(r,∞) are the depletion effect and the
advection. The depletion effect causes the increment in ρ(r,∞) in the vicinity
of the probe particle, while the advection causes the increment in ρ(r,∞) on the
upstream side and the decrement on the downstream side. In contrast to the
case of the interacting colloidal particles, ρid(r,∞) for the noninteracting colloidal
particles is not under the influence of the depletion effect, because a noninteracting
colloidal particle is not pushed by the other colloidal particles. Therefore, the
important factor of determining ρid(r,∞) is only the advection. The relation
between ∆ρ and ∆ρid is determined from the competition between the depletion
effect and advection.

The relation ∆ρ −∆ρid < 0 shown in Fig. 4.8(b) is obtained when the deple-
tion effect dominates over the advection. Here, I consider the virtual temporal
development: starting from ρid(r,∞), the density field of the interacting colloidal
particles grows to ρ(r,∞). First, the number density of the colloidal particles is
higher on the upstream side than on the downstream side due to the advection.
Then, the number density in the vicinity of the probe particle increases due to the
depletion effect; the increment in the number density is greater on the downstream
side than on the upstream side [see Figs. 4.6(a) and (b)]. This leads to the relation
∆ρ − ∆ρid < 0. I consider that the great increment on the downstream side is
caused by the low density due to the advection, because a colloidal particle ap-
proaches the probe particle easily on the low density side without the disturbance
due to the other colloidal particles.

In Fig. 4.8(b), although ∆ρ−∆ρid becomes small as ϕ increases to ϕ = 0.25–0.3,
it becomes large once more as ϕ increases further. To discuss this nonmonotonic
ϕ-dependence of ∆ρ − ∆ρid, I consider another virtual temporal development:
starting from ρ(r,∞) at ϕ = 0.25–0.3, the density field of the interacting colloidal
particles grows to ρ(r,∞) for ϕ > 0.3. First, the number density of the colloidal
particles is higher on the upstream side than on the downstream side due to the
advection, but it is also sufficiently high on both sides due to the depletion effect
at ϕ = 0.25–0.3. Then, the number density in the vicinity of the probe particle in-
creases further due to the depletion effect for ϕ > 0.3; the increment in the number
density is less on the downstream side than on the upstream side. This leads to
the increment of ∆ρ−∆ρid as ϕ increases from ϕ = 0.25–0.3. I consider that the
little increment on the downstream side is caused by the advection and the high
density due to the depletion effect; a colloidal particle on this side approaches the
probe particle under the disturbance due to the advection and the other colloidal
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particles. In contrast to the downstream side, the advection assists a colloidal
particle on the upstream side to approach the probe particle.

The relation F̃ > F̃id shown in Fig. 4.3 is obtained when the advection domi-
nates over the depletion effect. Here, I consider the virtual temporal development:
starting from ρid(r,∞), the density field of the interacting colloidal particles grows
to ρ(r,∞). First, the number density of the colloidal particles is much higher on
the upstream side than on the downstream side due to the advection of the large
Ũ . Then, the number density in the vicinity of the probe particle increases due to
the depletion effect; the increment in the number density is less on the downstream
side than on the upstream side [see Figs. 4.7(a), (b), and (c)]. This enhances the
anisotropy of ρ(r,∞) around the probe particle so that the relation F̃ > F̃id is
obtained. I consider that the little increment on the downstream side is caused
by the advection of the large Ũ , because a colloidal particle on the downstream
side approaches the probe particle under the significant disturbance due to the
advection.

The a/b-dependence of the friction coefficient K shown in Fig. 4.5 is stronger
than that shown in Fig. 4.4. This means that ϕ has a great influence on the a/b-
dependence ofK. I consider that this great influence is caused by the enhancement
of the interaction between the colloidal particles due to the increment in ϕ. The
interaction between the colloidal particles is enhanced by the large ϕ because the
interparticle distances become short as ϕ increases. Since the origin of the a/b-
dependence is the interaction between the colloidal particles, the increment in ϕ
leads to the strong a/b-dependence of K.

4.5 Summary

Having calculated the force exerted by colloidal particles on the probe particle
via numerical calculations using the TDDFT, I have examined the effects of in-
teractions between colloidal particles. For small values of the flux velocity, the
force decreases due to the effect of hard-sphere interactions between the colloidal
particles. In contrast, for large values of the velocity and the volume fraction, the
force increases due to the effect of the interactions. Because of the effect of the
interactions, the density field of the colloidal particles increases in the vicinity of
the probe particle, which is called the depletion effect. The effects of the interac-
tions are determined from the competition between the depletion effect and the
advection.

In this study using the TDDFT, I have assumed that the solvent velocity
is constant in the whole system. Since the flux of the solvent is disturbed by the
probe and colloidal particles, the solvent velocity field is actually nonuniform in the
vicinity of the probe particle. In the next step, I examine modification of the results
obtained in the present chapter by the nonuniform solvent velocity. In Chap. 5,
I explain the method of combining the DFT with the two-fluid model and derive
the equations of motion for the colloidal particles and for the solvent. In Chap. 6,
I apply this method to a system of a soft-core probe particle and examine the
modification of the effects of the interactions by the nonuniform solvent velocity.
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Chapter 5

Combination of density functional
theory with two-fluid model

5.1 Introduction

In Chap. 4, I have examined effects of interactions between colloidal particles by
calculating the force exerted by the colloidal particles on the probe particle. The
solvent velocity has been assumed to be constant in the whole system, while the
solvent velocity should be nonuniform because of the disturbance by the probe
and colloidal particles. In this chapter, to examine the modification of the effects
of the interactions by the nonuniform solvent velocity, I apply the two-fluid model
to the system of active microrheology in a colloidal suspension. The application
of the two-fluid model gives equations of motion for colloidal particles and for a
solvent (see Chap. 3). By solving the equations of the two-fluid model numerically,
I obtain the volume fraction field of colloidal particles and the solvent velocity field
simultaneously.

Furthermore, to calculate effects of interactions between colloidal particles, I
combine the density functional theory (DFT) with the two-fluid model. By apply-
ing the DFT to a many-particle system, I obtain the free-energy functional which
includes the term of interactions between particles. In this chapter, combining
the DFT with the two-fluid model, I derive the equations of motion for colloidal
particles and for the solvent including the term of interactions between colloidal
particles. Additionally, I expand the equations in the volume fraction of the col-
loidal particles. When the volume fraction is small, the neglect of high-order terms
reduces the cost of the numerical calculations.

5.2 Application of density functional theory to

two-fluid model

In the same way as Chap. 4, I consider a probe particle fixed at the origin in
a colloidal suspension that flows at a constant velocity U far from the probe
particle (Fig. 5.1). The colloidal particles are hard spheres with the volume v,
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Figure 5.1: Model system for active microrheology in colloidal suspension. A probe
particle is fixed spatially in a colloidal suspension. The colloidal suspension flows at a
constant velocity U far from the probe particle. The colloidal particles are hard spheres
with the volume v. The interaction between the probe and colloidal particles is given
by a potential V (r).

which interact with each other. The interaction between the probe and colloidal
particles is given by a potential V (r). In this system, the flux of the solvent is
disturbed by the probe and by the colloidal particles around the probe particle;
thus, the solvent velocity field is nonuniform in the vicinity of the probe particle.

For simplicity, I assume that the solvent velocity is disturbed only by the
colloidal particles around the probe particle. Here, I consider effects of the colloidal
particles on the solvent velocity field but neglect effects of the probe particle on
it. Note that both of these effects on the solvent velocity field have been neglected
in Chap. 4. Although the neglect of the effect of the probe particle may seem to
be a poor approximation, I consider that there are cases where the effect of the
colloidal particles is the object of study. The discussion about this assumption is
described in Sect. 5.4.

5.2.1 Equations of two-fluid model

To consider the nonuniform solvent velocity disturbed by colloidal particles, I em-
ploy the two-fluid model (see Chap. 3). Regarding the colloidal particles and the
solvent as two types of fluids, I apply the two-fluid model to the colloidal suspen-
sion. For the two-fluid model, at steady states, the incompressibility condition
[Eq. (3.2)] is given by

0 = ∇ · [ϕ(r)vc(r) + (1− ϕ(r))vs(r)], (5.1)

where ϕ(r) is the volume-fraction field of the colloidal particles and vc(r) and
vs(r) are the velocity fields of the colloidal particles and the solvent, respectively.
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I assume that the volume-fraction field of the solvent is given by 1−ϕ(r). At steady
states, the volume-fraction field satisfies the continuity equation [Eq. (3.1)],

0 = ∇ · (ϕ(r)vc(r)). (5.2)

From the two-fluid model, at steady states, the equation of motion for the
colloidal particles [Eq. (3.11)] is given by

0 = Γ(ϕ(r))(vc(r)− vs(r)) + ϕ(r)∇δF [ϕ(r)]

δϕ(r)
+ ϕ(r)∇p(r). (5.3)

Here, Γ(ϕ(r)) is the friction coefficient between the colloidal particles and the
solvent, F [ϕ(r)] is the free-energy functional of the colloidal suspension, and p(r)
is the pressure field of the colloidal suspension. Note that the term of F [ϕ(r)]
is expressed by the functional derivative. The definitions of the variables are the
same as those in Sec. 3, where the derivation of Eq. (5.3) has been explained in
detail. In Eq. (5.3), the effect of the interaction potential V (r) is included in the
second term on the right-hand side. Additionally, the effect of the interaction
between colloidal particles is also included in this term.

The equation of morion for the solvent [Eq. (3.12)] at steady states is given by

0 = Γ(ϕ(r))(vs(r)− vc(r)) + (1− ϕ(r))∇p(r)
− µ∇2vs(r)− (λ+ µ)∇(∇ · vs(r)), (5.4)

where µ and λ are the shear viscosity and volume viscosity of the solvent, re-
spectively. In Eq. (5.4), the terms of −µ∇2vs and −(λ + µ)∇(∇ · vs) represent
the shear-viscosity and volume-viscosity terms, respectively. From the sum of
Eqs. (5.3) and (5.4), the equation of the pressure field is given by

∇p(r) = µ∇2vs(r) + (λ+ µ)∇(∇ · vs(r))− ϕ(r)∇δF [ϕ(r)]

δϕ(r)
. (5.5)

I impose the boundary condition that vs(r) equals the constant flux velocity U
far from the probe particle, which is expressed by

vs(r) = U, as |r| → ∞. (5.6)

5.2.2 Friction coefficient between colloidal particles and
solvent

The friction coefficient Γ(ϕ(r)) is defined by the energy dissipation Wf due to
relative motion between the colloidal particles and the solvent,

Wf =

∫
Γ(ϕ(r))(vc(r)− vs(r))

2dr. (5.7)

To obtain Wf , I consider the friction force f(r) exerted by the solvent on the
colloidal particles at a position r. From the Stokes–Einstein relation, f(r) is given
by

f(r) = −kBT
D

(vc(r)− vs(r)), (5.8)
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where D is the diffusion coefficient of the colloidal particles. I assume that all
colloidal particles at a position r are subject to the friction force f(r) given by
Eq. (5.8).

The energy dissipation Wf is obtained from the integration of the energy dis-
sipation per colloidal particle wf (r) at a position r. Being subject to the friction
force f(r), a colloidal particle is moved through the vector vc(r) − vs(r) per unit
time. Therefore, the one-particle energy dissipation wf (r) is given by

wf (r) =
kBT

D
(vc(r)− vs(r))

2. (5.9)

At a position r, the local number of the colloidal particles per unit volume is
given by ϕ(r)/v, where v is the volume of a colloidal particle. The whole energy
dissipation Wf is given by

Wf =
1

v

∫
wf (r)ϕ(r)dr =

kBT

Dv

∫
ϕ(r)(vc(r)− vs(r))

2dr. (5.10)

Equations (5.7) and (5.10) give the friction coefficient Γ(ϕ(r)),

Γ(ϕ(r)) =
kBT

Dv
ϕ(r). (5.11)

From Eqs. (5.2) and (5.11), the divergence of Eq. (5.3) is given by

0 = ∇ ·
(
−kBT
Dv

ϕ(r)vs(r) + ϕ(r)∇δF [ϕ(r)]

δϕ(r)
+ ϕ(r)∇p(r)

)
. (5.12)

5.2.3 Application of density functional theory

To consider effects of the hard-sphere interactions between the colloidal particles,
I employ the free-energy functional derived from the density functional theory
(DFT). I substitute the free-energy functional of the DFT for F [ϕ(r)] in the equa-
tion of the two-fluid model [Eq. (5.12)]. Although the DFT gives the free energy
of the colloidal particles, it does not give the free energy of the solvent. I neglect
the free energy related to the solvent and consider the free energy of the colloidal
particles only.

The free-energy functional of the DFT is given by [18,21,39]

βF [ϕ(r)] = βFideal[ϕ(r)]−
c1
v

∫
∆ϕ(r)dr

− 1

2v2

∫
c2(r1 − r2)∆ϕ(r1)∆ϕ(r2)dr1dr2 + const, (5.13)

where

∆ϕ(r) = ϕ(r)− ϕ0. (5.14)

Here, c1 and c2(r) are one- and two-particle direct correlation functions, respec-
tively, and ϕ0 is the homogeneous volume fraction far from the probe particle. In
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Eq. (5.13), Fideal[ϕ(r)] is the free-energy functional for ideal gas, which is given
by [40]

βFideal[ϕ(r)] =
1

v

∫
ϕ(r)

(
lnϕ(r) + βV (r) + ln

Λ3

v
− 1

)
dr, (5.15)

where V (r) is the interaction between the probe and colloidal particles and Λ is
the thermal de Broglie wave length. Note that Eqs. (5.13) and (5.15) are obtained
from the replacement of ρ(r, t) in Eqs. (4.8) and (4.6) with ϕ(r)/v.

Using the free-energy functional given by Eq. (5.13), I obtain the equations of
the two-fluid model including the term of the interactions between the colloidal
particles. From Eqs. (5.12) and (5.13), the divergence of the equation for the
colloidal particles is given by

0 = ∇ ·
(
∇ϕ(r) + βϕ(r)∇V (r)− 1

v
ϕ(r)∇

∫
c2(r− r′)∆ϕ(r′)dr′

− 1

D
ϕ(r)vs(r) + βvϕ(r)∇p(r)

)
. (5.16)

In the same way as Eq. (5.16), the equation of the pressure field [Eq. (5.5)] is given
by

∇p(r) = µ∇2vs(r) + (λ+ µ)∇(∇ · vs(r))−
kBT

v
∇ϕ(r)

− 1

v
ϕ(r)∇V (r) +

kBT

v2
ϕ(r)∇

∫
c2(r− r′)∆ϕ(r′)dr′. (5.17)

By solving Eqs. (5.16), (5.17), and (5.1) simultaneously, ϕ(r), vs(r), and p(r) are
obtained.

5.2.4 Approximate incompressibility condition

For simplicity, instead of the incompressibility condition given by Eq. (5.1), I
employ the approximate incompressibility condition [Eq. (3.13)],

0 = ∇ · vs(r). (5.18)

The approximate incompressibility condition [Eq. (5.18)] is accurate in the dilute
limit. When the incompressibility condition is given by Eq. (5.18), the colloidal
particles are not subject to the solvent pressure. The equation of motion for the
colloidal particles [Eq. (3.16)] is given by

0 = Γ(ϕ(r))(vc(r)− vs(r)) +
δF [ϕ(r)]

δϕ(r)
, (5.19)

and the equation for the solvent [Eq. (3.17)] is given by

0 = Γ(ϕ(r))(vs(r)− vc(r)) +∇p(r)− µ∇2vs(r). (5.20)
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The derivation of Eqs. (5.19) and (5.20) is described in Sect. 3.2.6.
For the approximate incompressibility condition [Eq. (5.18)], from Eqs. (5.2),

(5.11), and (5.13), the divergence of Eq. (5.19) is given by

0 = ∇ ·
(
∇ϕ(r) + βϕ(r)∇V (r)− 1

D
ϕ(r)vs(r)

− 1

v
ϕ(r)∇

∫
c2(r− r′)∆ϕ(r′)dr′

)
. (5.21)

From the sum of Eqs. (5.19) and (5.20), the equation of the pressure field is given
by

∇p(r) = µ∇2vs(r)−
kBT

v
∇ϕ(r)− 1

v
ϕ(r)∇V (r)

+
kBT

v2
ϕ(r)∇

∫
c2(r− r′)∆ϕ(r′)dr′. (5.22)

These equations are simpler than Eqs. (5.16) and (5.17). The approximate incom-
pressibility condition [Eq. (5.18)] reduces the calculation cost of obtaining ϕ(r),
vs(r), and p(r).

5.2.5 Noninteracting colloidal particles

To examine effects of the interactions between the colloidal particles, I also calcu-
late the volume-fraction field of noninteracting colloidal particles ϕid(r) at steady
states. Note that the noninteracting colloidal particles do not interact with each
other, but a noninteracting colloidal particle interacts with the probe particle and
the solvent. In the case of the noninteracting colloidal particles, the term of c2(r)
is removed from the free-energy functional [Eq. (5.13)]. For the incompressibility
condition given by Eq. (5.1), the equations to be solved are given by

0 = ∇ ·
[
∇ϕid(r) + βϕid(r)∇V (r)

− 1

D
ϕid(r)vid(r) + βvϕid(r)∇p(r)

]
, (5.23)

∇pid(r) = µ∇2vid(r) + (λ+ µ)∇(∇ · vid(r))

− kBT

v
∇ϕid(r)−

1

v
ϕid(r)∇V (r), (5.24)

where vid(r) and pid(r) are the solvent velocity field and the pressure field of the col-
loidal suspension for the case of the noninteracting colloidal particles, respectively.
In the same way, for the approximate incompressibility condition [Eq. (5.22)], the
equations to be solved are given by

0 = ∇ ·
[
∇ϕid(r) + βϕid(r)∇V (r)− 1

D
ϕid(r)vid(r)

]
, (5.25)
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∇pid(r) = µ∇2vid(r)−
kBT

v
∇ϕid(r)−

1

v
ϕid(r)∇V (r). (5.26)

I determine the effects of the interactions from the difference between ϕid(r) and
ϕ(r) of the interacting colloidal particles.

5.3 Expansion in volume fraction

To solve the equations represented in the preceding section, I expand ϕ(r), vs(r),
and p(r) in the homogeneous volume fraction ϕ0,

ϕ(r) = 0 + ϕ(1)(r)ϕ0 + ϕ(2)(r)ϕ2
0 + · · · , (5.27)

vs(r) = v(0)
s (r) + v(1)

s (r)ϕ0 + v(2)
s (r)ϕ2

0 + · · · , (5.28)

p(r) = p(0)(r) + p(1)(r)ϕ0 + p(2)(r)ϕ2
0 + · · · . (5.29)

Here, ϕ(n)(r), v
(n)
s (r), and p(n)(r) are the n-th-order coefficients of ϕ(r), vs(r),

and p(r), respectively, and the zeroth-order term of ϕ(r) is obviously zero. From
Eqs. (5.27), (5.28), and (5.29), the equations of the two fluid model are described
as the series in ϕ0. Then, I neglect the third- and higher-order terms of ϕ0 in the
equations. This approximation is accurate only when the homogeneous volume
fraction ϕ0 is sufficiently small.

5.3.1 Equations for the zeroth order

Expressing the equations of the two-fluid model [Eqs. (5.1), (5.16), and (5.17)] as
the series in ϕ0, I extract the equations of the zeroth-order terms from them. From
the incompressibility condition [Eq. (5.1)], the zeroth-order term is extracted,

0 = ∇ · v(0)
s (r). (5.30)

Similarly, the zeroth-order term of Eq. (5.17) is given by

∇p(0)(r) = µ∇2v(0)
s (r) + (λ+ µ)∇(∇ · v(0)

s (r))

= µ∇2v(0)
s (r), (5.31)

where Eq. (5.30) is used. From Eq. (5.31) and the boundary condition for vs(r)

[Eq. (5.6)], v
(0)
s (r) and p(r) are given by

v(0)
s (r) = U and p(0)(r) = const. (5.32)

Note that the zeroth-order term of Eq. (5.16) equals zero.
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5.3.2 Equations for the first order

In the same way, I extract the first-order terms of ϕ0 from the equations of the
two-fluid model [Eqs. (5.1), (5.16), and (5.17)]. The first-order term of Eq. (5.16)
is given by

0 = ∇ ·
(
∇ϕ(1)(r) + βϕ(1)(r)∇V (r)− 1

D
ϕ(1)(r)U

)
, (5.33)

where Eq. (5.32) is used. Since Eq. (5.33) does not include v
(1)
s (r) and p(1)(r),

ϕ(1)(r) is obtained by solving this equation. From the incompressibility condition
[Eq. (5.1)] and the equation of the pressure field [Eq. (5.17)], the first-order terms
of these equations are given by

0 = ∇ · (v(1)
s (r)− ϕ(1)(r)U), (5.34)

∇p(1)(r) = µ∇2v(1)
s (r) + (λ+ µ)∇(∇ · v(1)

s (r))

− kBT

v
∇ϕ(1)(r)− 1

v
ϕ(1)(r)∇V (r). (5.35)

By use of ϕ(1)(r) obtained from Eq. (5.33), v
(1)
s (r) and p(1)(r) are obtained by

solving Eqs. (5.34) and (5.35).

5.3.3 Equations for the second order

Furthermore, I extract the second-order terms of ϕ0 from the equations of the two-
fluid model [Eqs. (5.1), (5.16), and (5.17)]. The second-order term of Eq. (5.16) is
given by

0 = ∇ ·
{
∇ϕ(2)(r) + βϕ(2)(r)∇V (r)− 1

D
(ϕ(2)(r)U+ ϕ(1)(r)v(1)

s (r))

+ βvϕ(1)(r)∇p(1)(r)− 1

v
ϕ(1)(r)∇

∫
c2(r− r′)∆ϕ(1)(r′)dr′

}
. (5.36)

By use of ϕ(1)(r), v
(1)
s (r), and p(1)(r) obtained from Eqs. (5.33), (5.34), and (5.35),

ϕ(2)(r) is obtained by solving Eq. (5.36). From the incompressibility condition
[Eq. (5.1)] and the equation of the pressure field [Eq. (5.17)], the second-order
terms of these equations are given by

0 = ∇ · (v(2)
s (r)− ϕ(1)(r)v(1)

s (r)− ϕ(2)(r)U), (5.37)

∇p(2)(r) = µ∇2v(2)
s (r) + (λ+ µ)∇(∇ · v(2)

s (r))− kBT

v
∇ϕ(2)(r)

− 1

v
ϕ(2)(r)∇V (r)− kBT

v2
ϕ(1)(r)∇

∫
c2(r− r′)∆ϕ(1)(r′)dr′. (5.38)

Note that ϕ(2)(r), v
(2)
s (r), and p(2)(r) are under effects of the interactions between

the colloidal particles because Eqs. (5.36) and (5.38) include the term of c2(r).
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5.3.4 Equations for approximate incompressibility condi-
tion

For the approximate incompressibility condition [Eq. (5.18)], I also express the
equations of the two-fluid model [Eq. (5.18), (5.21), and (5.22)] as the series in ϕ0.
From the equations expressed as the series in ϕ0, I extract the equations of the
zeroth-, first-, and second-order terms of ϕ0. The zeroth-order terms are the same
as those for the incompressibility condition given by Eq. (5.1); Eqs. (5.30) and
(5.31) are obtained from Eqs. (5.18) and (5.22), respectively, and the zeroth-order
term of Eq. (5.21) equals zero.

I extract the first-order terms of ϕ0 from the equations of the two-fluid model
[Eq. (5.18), (5.21), and (5.22)]. The first-order term of Eq. (5.21) corresponds to
Eq. (5.33). Therefore, even for the approximate incompressibility condition, ϕ(1)(r)
is obtained as the solution to Eq. (5.33). From the approximate incompressibility
condition [Eq. (5.18)] and the equation of the pressure field [Eq. (5.22)], the first-
order terms of these equations are given by

0 = ∇ · v(1)
s (r), (5.39)

∇p(1)(r) = µ∇2v(1)
s (r)− kBT

v
∇ϕ(1)(r)− 1

v
ϕ(1)(r)∇V (r). (5.40)

By use of ϕ(1)(r) obtained from Eq. (5.33), v
(1)
s (r) and p(1)(r) are obtained by

solving Eqs. (5.39) and (5.40).
I extract the second-order terms of ϕ0 from the equations of the two-fluid model

[Eq. (5.18), (5.21), and (5.22)]. The second term of Eq. (5.21) is given by

0 = ∇ ·
{
∇ϕ(2)(r) + βϕ(2)(r)∇V (r)− 1

D
ϕ(2)(r)U

− 1

D
ϕ(1)(r)v(1)

s (r)− 1

v
ϕ(1)(r)∇

∫
c2(r− r′)∆ϕ(1)(r′)dr′

}
. (5.41)

In contrast to Eq. (5.36), p(1)(r) is not necessary to obtain ϕ(2)(r) from Eq. (5.41).
From the approximate incompressibility condition [Eq. (5.18)] and the equation of
the pressure field [Eq. (5.22)], the second-order terms of these equations are given
by

0 = ∇ · v(2)
s (r), (5.42)

∇p(2)(r) = µ∇2v(2)
s (r)− kBT

v
∇ϕ(2)(r)− 1

v
ϕ(2)(r)∇V (r)

− kBT

v2
ϕ(1)(r)∇

∫
c2(r− r′)∆ϕ(1)(r′)dr′. (5.43)

ϕ(2)(r), v
(2)
s (r), and p(2)(r) are under the effects of the interactions between the

colloidal particles.
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5.3.5 Equations for noninteracting colloidal particles

In the same way, for the case of the noninteracting colloidal particles, I expand
ϕid(r), vid(r), and pid(r) in the homogeneous volume fraction ϕ0,

ϕid(r) = 0 + ϕ
(1)
id (r)ϕ0 + ϕ

(2)
id (r)ϕ2

0 + · · · , (5.44)

vid(r) = v
(0)
id (r) + v

(1)
id (r)ϕ0 + v

(2)
id (r)ϕ2

0 + · · · , (5.45)

pid(r) = p
(0)
id (r) + p

(1)
id (r)ϕ0 + p

(2)
id (r)ϕ2

0 + · · · . (5.46)

The equations to the second-order of ϕ0 are obtained by removing the term of c2(r)
from the equations for the interacting colloidal particles. The equations for the
zeroth and first order are the same as those for the interacting colloidal particles
because these equations do not include the term of c2(r). Therefore, v

(0)
id (r) and

p
(0)
id (r) are obtained in the same way as Eq. (5.32),

v
(0)
id (r) = U and p

(0)
id (r) = const. (5.47)

In addition, the equations for the second order are given in the following:

• the divergence of the equation for the colloidal particles when the incom-
pressibility condition is given by Eq. (5.1)

0 = ∇ ·
(
∇ϕ(2)

id (r) + βϕ
(2)
id (r)∇V (r)− 1

D
ϕ
(2)
id (r)U

− 1

D
ϕ
(1)
id (r)v

(1)
id (r) + βvϕ

(1)
id (r)∇p(1)id (r)

)
; (5.48)

• the equation of the pressure field for the incompressibility condition given
by Eq. (5.1)

∇p(2)id (r) = µ∇2v
(2)
id (r) + (λ+ µ)∇(∇ · v(2)

id (r))

− kBT

v
∇ϕ(2)

id (r)− 1

v
ϕ
(2)
id (r)∇V (r); (5.49)

• the divergence of the equation for the colloidal particles when the incom-
pressibility condition is approximated [Eq. (5.18)]

0 = ∇ ·
{
∇ϕ(2)

id (r) + βϕ
(2)
id (r)∇V (r)

− 1

D
(ϕ

(2)
id (r)U+ ϕ

(1)
id (r)v

(1)
id (r))

}
; (5.50)

• the equation of the pressure field for the approximate incompressibility con-
dition [Eq. (5.18)]

∇p(2)id (r) = µ∇2v
(2)
id (r)− kBT

v
∇ϕ(2)

id (r)− 1

v
ϕ
(2)
id (r)∇V (r). (5.51)

47



5.4 Discussion

For simplicity, I have considered the effect of the colloidal particles on vs(r) but
have neglected the effect of the probe particle on it. If the effect of the probe
particle is considered, since the zeroth-order term of vs(r) corresponds to the
solvent velocity field at ϕ0 = 0, it is obviously given by the Stokes flow around the
probe particle. The colloidal particles have an effect on the the first- and higher-
order terms of vs(r). Therefore, even in the case that the effect of the probe
particle is considered, the effect of the colloidal particles is studied by obtaining
the first- or higher-order terms of vs(r). However, in order to obtain the effect
of the colloidal particles accurately, it should be examined in consideration of the
effect of the probe particle.

I consider that there are two method of calculating the effect of the probe
particle on vs(r). One is the boundary condition for calculating vs(r) and p(r),
which gives values of them on the surface of the probe particle. Here, the boundary
condition is imposed on the equations of vs(r) and p(r) derived in the preceding
sections. The other method is the calculation of the friction between the solvent
and the probe particle in the same way as that between the solvent and the colloidal
particles. In this method, the term of the friction against the probe particle is
added to the equation of motion for the solvent.
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Chapter 6

Application to system of soft-core
probe particle

Solving the equations derived in Chap. 5 numerically, I obtain the volume fraction
field of colloidal particles and the solvent velocity field. By using the obtained
volume fraction field, I calculate the force exerted by the colloidal particles on the
probe particle and determine effects of interactions between the colloidal particles
on the force. In this chapter, the nonuniform solvent velocity field is considered in
the numerical calculations using the two-fluid model in contrast to Chap. 4. Here,
I examine the modification of the effects of the interactions by the nonuniform
solvent velocity field.

6.1 Model and Method

A probe particle is fixed at the origin in a colloidal suspension that flows at a
constant velocity U far from the probe particle (Fig. 6.1). The probe particle is
subject to the force F exerted by the colloidal particles. Similarly to the system
considered in Chap. 4, the interaction between the colloidal particles is given by the
hard sphere with the diameter 2b. However, in contrast to Chap. 4, I consider that
the interaction between the probe and colloidal particles is given by the soft-core
potential V (r) for simplicity of numerical calculations,

V (r) = ϵ

(
|r|
σ

)−12

, (6.1)

where ϵ and σ are fitting parameters for energy and length, respectively, and the
origin of the vector r is placed at the center of the probe particle. The discussion
about the soft-core probe particle is described in Sect. 6.3. I assume that the
solvent velocity is disturbed only by the colloidal particles in the same way as
Chap. 5.

6.1.1 Equations of two-fluid model

Regarding the colloidal particles and solvent as two types of fluids, I employ the
two-fluid model combined with the density functional theory (see Sect. 5.2.1).
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Figure 6.1: Model system for active microrheology in colloidal suspension. A probe
particle is fixed spatially in a colloidal suspension. The colloidal suspension flows at a
constant velocity U far from the probe particle. The probe particle is subject to the
force F exerted by the colloidal particles. The colloidal particles are hard spheres with
the radius b. The interaction between the probe particle and colloidal particles is given
by Eq. (6.1).

When the incompressibility condition is given by Eq. (5.1), Eqs. (5.1),(5.16), and
(5.17) give the volume-fraction field of the colloidal particles ϕ(r), the solvent
velocity field vs(r), and the pressure field of the colloidal suspension p(r). I obtain
ϕ(r), vs(r), p(r) numerically and calculate the force F from the obtained ϕ(r). I
also calculate ϕ(r), vs(r), and p(r) for the approximate incompressibility condition
given by Eq. (5.18). Here, ϕ(r), vs(r), and p(r) are obtained from Eqs. (5.18),
(5.21), and (5.22).

To examine effects of interactions between the colloidal particles, I also cal-
culate ϕid(r), vid(r), and pid(r) for the noninteracting colloidal particles. The
noninteracting colloidal particles do not interact with each other, but a nonin-
teracting colloidal particle interacts with the probe particle and solvent. In the
same way as Chap. 4, I determine the effects of the interactions from the differ-
ence between the obtained F for the interacting colloidal particles and that for the
noninteracting colloidal particles. When the incompressibility condition is given
by Eq. (5.1), ϕid(r), vid(r), and pid(r) are obtained from Eqs. (5.1), (5.23), and
(5.24). For the approximate incompressibility condition [Eq. (5.18)], ϕid(r), vid(r),
and pid(r) are obtained from Eqs. (5.18), (5.25), and (5.26).
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6.1.2 Force exerted by colloidal particles on probe particle

For the soft-core probe particle, by using the volume-fraction fields ϕ(r) and ϕid(r),
the forces exerted by the colloidal particles are obtained from

F =
1

v

∫
ϕ(r)∇V (r)dr, (6.2)

Fid =
1

v

∫
ϕid(r)∇V (r)dr. (6.3)

Here, Fid is the force exerted by the noninteracting colloidal particles and v is
the volume of a colloidal particle. Equations (6.2) and (6.3) show that the forces
are generated by the anisotropies of the volume-fraction fields around the probe
particle. As the anisotropy of ϕ(r) differs from that of ϕid(r), the value of F differs
from that of Fid. From the difference between F and Fid, I determine the effects
of the interactions between the colloidal particles.

6.1.3 Assumption of small volume fraction

In the same way as Sect. 5.3, I expand ϕ(r), vs(r), and p(r) in the homogeneous
volume fraction ϕ0 [see Eqs. (5.27), (5.28), and (5.29)]. For the case of the non-
interacting colloidal particles, ϕid, vs(r), and pid(r) are also expanded in ϕ0. To
examine effects of the interactions for small volume fractions, I neglect the third-
and higher-order terms of ϕ0 in the equations. I calculate the forces F and Fid by
using the first- and second-order terms in the volume-fraction fields,

F =
ϕ0

v

∫
(ϕ(1)(r) + ϕ0ϕ

(2)(r))∇V (r)dr, (6.4)

Fid =
ϕ0

v

∫
(ϕ

(1)
id (r) + ϕ0ϕ

(2)
id (r))∇V (r)dr. (6.5)

To calculate the forces, I obtain the first- and second-order terms in the volume-
fraction fields by solving the equations derived in Sect. 5.3 numerically.

6.1.4 Numerical calculation

When the incompressibility condition is given by Eq. (5.1), ϕ(1)(r) and ϕ(2)(r) are
obtained from Eqs. (5.33), (5.34), (5.35), and (5.36). First, I obtain ϕ(1)(r) numeri-

cally by solving Eq. (5.33). Next, by use of the obtained ϕ(1)(r), v
(1)
s (r) and p(1)(r)

are calculated from Eqs. (5.34) and (5.35). Finally, using the obtained ϕ(1)(r),

v
(1)
s (r), and p(1)(r), I calculate ϕ(2)(r) by solving Eq. (5.36). In the same way, for

the approximate incompressibility condition [Eq. (5.18)], ϕ(1)(r) and ϕ(2)(r) are
obtained from Eqs. (5.33), (5.39), (5.40), and (5.41). For the case of the noninter-

acting colloidal particles, I also obtain ϕ
(1)
id (r) and ϕ

(2)
id (r) numerically in the same

way as the interacting colloidal particles.
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To obtain v
(1)
s (r) for the incompressibility condition given by Eq. (5.1), I con-

sider the rotation of Eq. (5.35),

0 = µ∇×∇2v(1)
s (r)− 1

v
∇× (ϕ(1)(r)∇V (r))

= µ∇2ω(r)− 1

v
∇× (ϕ(1)(r)∇V (r)), (6.6)

ω(r) ≡ ∇× v(1)
s (r), (6.7)

where ω(r) is the solvent vorticity field. I obtain ω(r) numerically by solving

Eq. (6.6) via the Gauss–Seidel method [41, 45]. Then, v
(1)
s (r) is determined from

the obtained ω(r) and the incompressibility condition in the first order [Eq. (5.34)].
p(1)(r) is determined from the numerical integration of Eq. (5.35). For the ap-
proximate incompressibility condition [Eq. (5.18)] or the noninteracting colloidal

particles, v
(1)
s (r) and p(1)(r) or v

(1)
id (r) and p

(1)
id (r) are obtained in the same way.

The details of these numerical calculations are described in Append. D.2.
In order to obtain ϕ(1)(r) and ϕ(2)(r) for the incompressibility condition given

by Eq. (5.1), I solve Eqs. (5.33) and (5.36), respectively, via the iterative calcu-
lation. The spatial derivatives are calculated via the finite difference method in
the axially-symmetric cylindrical coordinate system (r, z). In the same way as
Chap. 4, I calculate the convolution integral in Eq. (5.36) by using the fast Fourier
transform [41] on the z-axis and the discrete Hankel transform on the r-axis. Note
that the convolution integral in Eq. (5.36) does not require iterative updating be-
cause it is determined by ϕ(1)(r) obtained from Eq. (5.33). For the approximate
incompressibility condition [Eq. (5.18)] or the noninteracting colloidal particles,

ϕ(1)(r) and ϕ(2)(r) or ϕ
(1)
id (r) and ϕ

(2)
id (r) are obtained in the same way. The details

of these numerical calculation are described in Append. D.1.
The parameters of the present system are the reduced probe-particle size σ̃,

the reduced velocity Ũ , and the homogeneous volume fraction ϕ0. σ̃ and Ũ are
defined by

σ̃ ≡ βϵ

(
σ

2b

)12

, (6.8)

Ũ ≡ 2b

D
|U|. (6.9)

Ũ is related to the U-terms of the equations in the nondimensional forms and σ̃
is related to the V (r)-terms in the nondimensional equations. In addition, ϕ0 is

related to c2(r) as well as to the boundary condition of ϕ(1)(r) and ϕ
(1)
id (r) far from

the probe particle.
In the numerical calculation, the data points are placed on the z-axis at the

constant interval of b/50. The data points on the r-axis are placed on the zeros of
the order-zero Bessel function of the first kind J0(r) to ensure the orthogonality
of the discrete Hankel transform (see Append. C.1), so that the average value
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Figure 6.2: Ũ -dependence of calculated friction coefficient for volume fraction ϕ0 = 0.01
and various reduced probe-particle size σ̃. The reduced friction coefficient K̃ is defined
by Eq. (6.10) for interacting colloidal particles. The reduced flux velocity Ũ is defined by
Eq. (6.9). Each symbol represents a different value of σ̃, where σ̃ is defined by Eq. (6.8).
In obtaining these results, the incompressibility condition given by Eq. (5.1) is employed.

of the intervals equals that on the z-axis. The numerical calculation ranges are
0 < r/b ≤ 16 and −20.48 ≤ z/b ≤ 20.48, where the origin is placed at the center
of the probe particle. I employ the c2(r) obtained numerically from the Ornstein–
Zernike relation [Eq. (4.20)] and the HNC approximation [Eq. (4.21)].

To obtain v
(1)
s (r) and v

(1)
id (r) numerically, I impose boundary conditions at the

edges of the numerical calculation ranges. On the edges of the z-axis, I impose the
boundary condition that the z-components of v

(1)
s (r) and v

(1)
id (r) equal zero. On

the edge of the r-axis, I impose the boundary condition that the r-components of
v
(1)
s (r) and v

(1)
id (r) equal zero. I have confirmed that the calculated results remain

almost unchanged when I impose another condition that the z-components of
v
(1)
s (r) and v

(1)
id (r) equal zero at the edge of r-axis. In addition, to solve Eq. (6.6),

I impose the boundary condition that ω(r) equals zero at the edges of the numerical
calculation ranges.

53



 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0.1  1  10

 K~

id
 

 U
~

 

 

 

 

 

 

 

 

ϕ0 = 0.01

σ̃ = 0.1
σ̃ = 0.2
σ̃ = 0.5
σ̃ = 1
σ̃ = 2
σ̃ = 5

σ̃ = 10

Figure 6.3: Identical to Fig. 6.2 but for noninteracting colloidal particles.

6.2 Results

6.2.1 Velocity dependence of friction coefficient

To examine the Ũ -dependence of F and Fid, I define the reduced friction coefficients
K̃ and K̃id by

K̃ ≡ βD

ϕ0

|F|
|U|

and K̃id ≡ βD

ϕ0

|Fid|
|U|

. (6.10)

Note that K̃ and K̃id are defined not only in the linear region, where the force
is proportional to Ũ , but also in the nonlinear region for large Ũ . I plot the
calculated K̃ and K̃id for ϕ0 = 0.01 (Figs. 6.2 and 6.3). In Figs. 6.2 and 6.3, K̃
and K̃id decrease with increasing Ũ similarly to Figs. 4.4 and 4.5. In contrast to
the results in Chap. 4, K̃id depends on the reduced probe-particle size σ̃ (Fig. 6.3)
because the reduced flux velocity Ũ is defined by the diameter of a colloidal particle
2b [Eq. (6.9)].

The comparison between Figs. 6.2 and 6.3 shows that the values of K̃ are
smaller than or equal to those of Kid. For small Ũ , K̃ is slightly smaller than K̃id.
The absolute value of the difference between K̃ and K̃id decreases with increasing
Ũ . |K̃ − K̃id| increases with σ̃. Note that the difference between K and Kid is
caused by the effect of the hard-sphere interactions between the colloidal particles.

Next, I plot the Ũ -dependence of K̃ and K̃id for ϕ0 = 0.05 (Figs. 6.4 and 6.5).
The comparison between Figs. 6.4 and 6.5 shows that the values of K̃ are smaller
than or equal to those ofKid, similarly to the results for ϕ0 = 0.01. For small values
of Ũ , the absolute values of the difference between K̃ and K̃id are larger than those
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Figure 6.4: Identical to Fig. 6.2 but for volume fraction ϕ0 = 0.05.
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Figure 6.5: Identical to Fig. 6.4 but for noninteracting colloidal particles.
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Figure 6.6: Ũ -dependence of calculated friction coefficient for approximate incompress-
ibility condition given by Eq. 5.18. These results are obtained for ϕ0 = 0.05. Each
symbol represents the same value of σ̃ as that in Fig. 6.2. The definitions of K̃, K̃id, Ũ ,
and σ̃ are the same as those in Fig. 6.2.

in Figs. 6.2 and 6.3. This means that the effect of the interactions between the
colloidal particles is enhanced due to the increment in ϕ0. In addition, Figs. 6.4
and 6.5 show stronger dependence on σ̃ than Figs. 6.2 and 6.3.

In Figs. 6.4 and 6.5, the values of K̃ and K̃id at Ũ = 10 are significantly larger
than those in Figs. 6.2 and 6.3; particularly, K̃ and K̃id for σ̃ = 5 and 10 increase
for the 5 < Ũ < 10 range. The large values at Ũ = 10 are caused by the strong
flow of the solvent into the probe particle. Since there are few colloidal particles
in the vicinity of the center of the probe particle, the solvent flows into the probe
particle, which leads to the strong flow. This strong flow is an artificial factor
originating from the assumption that the solvent does not interact with the probe
particle. To examine the effects of the interactions in the absence of this artificial
factor, I calculate K̃ and K̃id for the approximate incompressibility condition given
by Eq. (5.18).

6.2.2 Results for approximate incompressibility condition

For the case of the approximate incompressibility condition [Eq. (5.18)], I plot
the Ũ -dependence of K̃ and K̃id for ϕ0 = 0.05 (Figs. 6.6 and 6.7). In contrast to
Figs. 6.4 and 6.5, the values of K̃ and K̃id in Figs. 6.6 and 6.7 decrease for the 5 <
Ũ < 10 range. This means that the results for the approximate incompressibility
condition are not under the effect of the artificial factor, or the strong flow into the
probe particle. In fact, the solvent velocity field obtained from Eq. (5.18) does not
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Figure 6.7: Identical to Fig. 6.6 but for noninteracting colloidal particles.

include the strong flow into the probe particle, which is represented in Sect. 6.2.4.
The comparison between Figs. 6.6 and 6.7 shows that K̃ is smaller than or

equal to K̃id as in the case of the incompressibility condition given by Eq. (5.1)
(see Figs. 6.4 and 6.5). Note that the difference between K̃ and K̃id is caused
by the effect of the interactions between the colloidal particles. In Figs. 6.6 and
6.7, the Ũ -dependence of K̃ − K̃id is qualitatively the same as that in Figs. 6.4
and 6.5 Thus, by using the approximate incompressibility condition [Eq. (5.18)],
the effect of the interactions is examined in the absence of the artificial factor.
In the following sections, to see the appearance of the volume fraction field and
the solvent velocity field, I plot the results for the approximate incompressibility
condition.

6.2.3 Density fields around probe particle

For the case of the approximate incompressibility condition, I plot the calculated
ϕ(1)(r) for Ũ = 0.1 [Fig. 6.8(a)] and 10 [Fig. 6.8(b)]. Note that ϕ(1)(r) is in agree-

ment with ϕ
(1)
id (r) because it is not under the effects of the interactions between

the colloidal particles. In these figures, a darker area represents a larger volume-
fraction area. The center of the probe particle is placed on the center of each
figure and colloidal particles cannot enter the white area because of the soft-core
potential given by Eq. (6.1). For Ũ = 0.1 [Fig. 6.8(a)], under the influence of the
flux, the ϕ(1)(r) value is slightly larger on the upstream side of the probe particle
(the left side of the white area) than that on the downstream side. In contrast,
ϕ(1)(r) for Ũ = 10 is obviously larger on the upstream side than on the downstream
side due to the rapid flux.
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(a) Ũ = 0.1 ϕ(1)(r) (b) Ũ = 10 ϕ(1)(r)

Figure 6.8: Calculated volume-fraction fields in first order of ϕ0 for approximate incom-
pressibility condition in symmetric plane of probe particle. (a) ϕ(1)(r) obtained from
Eq. (5.33) for Ũ = 0.1. (b) ϕ(1)(r) for Ũ = 10. A darker area corresponds to a larger
volume-fraction area. The center of the probe particle is placed on the center of each
figure. The reduced probe-particle size is given by σ̃ = 1, where σ̃ is defined by Eq. (6.8).
The direction of U is rightward.
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Figure 6.9: Calculated volume-fraction fields in second order of ϕ0 for Ũ = 0.1 and ap-

proximate incompressibility condition in symmetric plane of probe particle. (a) ϕ
(2)
id (r)

obtained from Eq. (5.50) for noninteracting colloidal particles. (b) ϕ(2)(r) obtained from
Eq. (5.41) for interacting colloidal particles and ϕ0 = 0.05. A darker area corresponds
to a larger volume-fraction area. The center of the probe particle is placed on the center
of each figure. The reduced probe-particle size is given by σ̃ = 1. The direction of U is

rightward. At points A and B, the values of ϕ
(2)
id (r) are −0.079 and 0.073, respectively,

where the cylindrical coordinates of A and B are given by (r, z) = (∆r,−1.16(βϵ)−12σ)

and (∆r, 1.17(βϵ)−12σ), respectively. At points C and D, ϕ
(2)
id (r) is 2.00 and 2.38, respec-

tively, where the coordinates of C and D are (∆r,−1.14(βϵ)−12σ) and (∆r, 1.16(βϵ)−12σ),
respectively. Here, ϵ and σ are defined by Eq. (6.1) and the origin is placed on the cen-
ter of the probe particle. These points are placed on the data points neighboring the

position r = 0, where the values of ϕ
(2)
id (r) and ϕ(2)(r) are top or bottom.
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(a) Noninteracting ϕ
(2)
id (r) (b) ϕ0 = 0.05 ϕ(2)(r)

Figure 6.10: Identical to Fig. 6.9 but for Ũ = 10. (a) ϕ
(2)
id (r) obtained from Eq. (5.50)

for noninteracting colloidal particles. (b) ϕ(2)(r) obtained from Eq. (5.41) for interacting
colloidal particles and ϕ0 = 0.05.

Next, I plot the calculated ϕ
(2)
id (r) and ϕ(2)(r) for Ũ = 0.1 (Fig. 6.9). In

Fig. 6.9(a), ϕ
(2)
id (r) for the noninteracting colloidal particles is smaller on the up-

stream side than that on the downstream side. This is caused by the solvent ve-
locity field v

(1)
s (r) in the first order of ϕ0 (see Sect. 6.2.4). In contrast, Fig. 6.9(b)

shows that the value of ϕ(2)(r) is larger in the vicinity of the probe particle than

that of ϕ
(2)
id (r). Note that the difference between Figs. 6.9(a) and (b) is caused by

the effect of the interactions between the colloidal particles.
I also plot ϕ

(2)
id (r) and ϕ(2)(r) for Ũ = 10 (Fig. 6.10). These figures show that

the effect of the interactions is modified by the rapid flux. In Fig. 6.10, ϕ
(2)
id (r)

and ϕ(2)(r) are smaller on the upstream side than on the downstream side. The

difference between ϕ
(2)
id (r) and ϕ(2)(r) is smaller than that in Fig. 6.9.

6.2.4 Velocity fields of solvent

In the case of the approximate incompressibility condition [Eq. (5.18)], I plot the

calculated v
(1)
s (r) for Ũ = 0.1 (Fig. 6.11) and Ũ = 10 (Fig. 6.12). In these figures,

the magnitude and direction of v
(1)
s (r) are represented by colored arrows, where

red and blue arrows correspond to large and small values of |v(1)
s (r)|, respectively.

The dashed circle satisfies |r| = (βϵ)−12σ and represents the probe-particle size

roughly. These figures show that v
(1)
s (r) is directed to the opposite direction of U

in the vicinity of the probe particle.
In Figs. 6.11 and 6.12, v

(1)
s (r) forms the flux opposite to the direction of U in

the vicinity of the probe particle. On the upstream side (the left side of the dashed

circle), v
(1)
s (r) gets away from the probe particle along the r-axis of the cylindrical

coordinates. In contrast to the upstream side, v
(1)
s (r) on the downstream side

gets close to the probe particle along the r-axis. Therefore, the total solvent
velocity field vs(r) ≈ U + ϕ0v

(1)
s (r) includes the flow around the probe particle.

The comparison between Figs. 6.11 and 6.12 shows that v
(1)
s (r) for Ũ = 0.1 is
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2b|v(1)
s (r)|/D

Figure 6.11: Calculated solvent velocity field in first order of ϕ0 for approximate incom-
pressibility condition and Ũ = 0.1 in symmetric plane of probe particle. The length and

direction of the arrows represent the magnitude and direction of v
(1)
s (r), respectively,

where longer arrows correspond to higher velocity. Additionally, the color of the arrows

represents absolute values of v
(1)
s (r), where red and blue arrows correspond to large and

small values of |v(1)
s (r)|, respectively. Here, |v(1)

s (r)| is nondimensionalized in the same
way as Eq. (6.9). The reduced probe-particle size is given by σ̃ = 1. The dashed circle
satisfies |r| = (βϵ)−12σ and represents the probe-particle size roughly. The direction of
U is rightward.
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2b|v(1)
s (r)|/D

Figure 6.12: Identical to Fig. 6.11 but for Ũ = 10.

qualitatively similar to that for Ũ = 10. However, the absolute value |v(1)
s (r)| for

Ũ = 10 are obviously larger than that for Ũ = 0.1.

6.3 Discussion

Figure 6.9 shows that the colloidal particles gather around the probe particle
because of the interactions between the colloidal particles in the same manner as
the results in Chap. 4. In Fig. 6.9, ϕ(2)(rC) − ϕ(2)(rD) is smaller than ϕ

(2)
id (rA) −

ϕ
(2)
id (rB), where rA, rB, rC , and rD are the measurement points plotted in the figure.

In contrast to ϕ(2)(r) and ϕ
(2)
id (r), ϕ(1)(r) is larger on the upstream side than on the

downstream side (see Fig. 6.8). Therefore, the total volume-fraction field ϕ(r) ≈
ϕ0ϕ

(1)(r) + ϕ2
0ϕ

(2)(r) is more isotropic than that for the noninteracting colloidal

particles because ϕ(1)(r) = ϕ
(1)
id (r). Since the forces F and Fid are generated by

the anisotropy of the volume-fraction field [see Eqs. (6.2) and (6.3)], the reduced
friction coefficient K̃ is smaller than K̃id for Ũ = 0.1. Thus, the force exerted
by colloidal particles decreases due to the effect of the hard-sphere interactions
between the colloidal particles in the same manner as the results in Chap. 4.

In Figs. 6.9(a) and 6.10(a), ϕ
(2)
id (r) < 0 on the upstream side and ϕ

(2)
id (r) > 0

on the downstream side. These results are explained by the solvent velocity field
v
(1)
s (r) in the first order of ϕ0 [Figs. 6.11 and 6.12]. The total velocity field vs(r) ≈

U+ ϕ0v
(1)
s (r) includes the flow around the probe particle. The colloidal particles

are transported from the upstream side to the downstream side by the flow around
the probe particle, which leads to ϕ

(2)
id (r) < 0 on the upstream side and ϕ

(2)
id (r) > 0
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on the downstream side. For Ũ = 0.1, however, the effect of v
(1)
s (r) is weaker than

the effect of the interactions between the colloidal particles, so that ϕ(2)(r) > 0
is satisfied even on the upstream side [see Fig. 6.9(b)]. In contrast, the effect of

v
(1)
s (r) is enhanced by large Ũ so that the effect of the interactions is almost not

reflected in Fig. 6.10(b).

From Figs. 6.11 and 6.12, the total solvent velocity field vs(r) ≈ U+ ϕ0v
(1)
s (r)

includes the flow around the probe particle. Since the solvent velocity is assumed
to be disturbed only by the colloidal particles, v

(1)
s (r) is determined from ϕ(1)(r).

Under the influence of the uniform flux, ϕ(1)(r) is simply larger on the upstream
side of the probe particle than on the down stream side (see Fig. 6.8). To avoid the
overlap of the solvent and a large number of the colloidal particles on the upstream
side, v

(1)
s (r) forms the flux opposite to the direction of U in the vicinity of the

probe particle (see Figs. 6.11 and 6.12). The solvent flows around the colloidal

particles on the upstream side, so that v
(1)
s (r) on the upstream side gets away

from the probe particle and that on the downstream side gets close to the probe
particle.

In the present study, I have neglected the effect of the probe particle on the
solvent velocity. However, for the accurate examination of the effects of the inter-
actions between the colloidal particles, it is necessary to consider the effect of the
probe particle on the solvent velocity. As described in Sect. 5.4, I consider that
there are two methods of considering this effect: the boundary condition which
gives values of v

(1)
s (r) and p(1)(r) on the surface of the probe particle and the

calculation of the friction between the solvent and the probe particle. To employ
these methods, it is necessary to give the interaction between the solvent and the
probe particle.

In a case where the interaction between the solvent and the probe particle is
given by a repulsive potential such as a hard-sphere potential, I speculate that the
interaction enhances the flow around the probe particle. In this case, the solvent
velocity field in the zeroth order of ϕ0 is given by the Stokes flow around the probe
particle, which has an effect on the volume-fraction field. Here, the probe particle
is subject to the force exerted by the solvent, which is obtained from the solvent
velocity field. The force exerted by the solvent is modified by the interactions
between the colloidal particles, which should be observed only in the second- and
higher-order terms of ϕ0 because these interactions have an effect on the solvent
velocity field in the second and higher order of ϕ0.

In the present study, I have considered the soft-core probe particle, in contrast
to the hard-sphere probe particle considered in Chap. 4. The soft-core probe
particle simplifies the numerical calculations. In the case of the soft-core probe
particle, the volume-fraction field of the colloidal particles is a spatially continuous
function even in the vicinity of the probe particle. Since the solvent velocity field
is assumed to be under only the effect of the colloidal particles, it is also a spatially
continuous function in the whole system. If the probe particle is a hard-sphere,
the volume fraction field is discontinuous across the surface of the probe particle
so that the solvent velocity field is also a discontinuous function, which causes
the force dependent on the gradient of the solvent velocity. By employing the
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TDDFT, I have confirmed that the results in Chap. 4 are qualitatively unchanged
when the soft-core probe particle is adopted. Thus, I speculate that the effects of
the interactions obtained in this chapter are qualitatively the same as those on the
hard-sphere probe particle.

6.4 Summary

Having solved the equations of the two-fluid model numerically, I have obtained the
force exerted by the colloidal particles on the probe particle and the nonuniform
solvent velocity field disturbed only by the colloidal particles. By combining the
DFT with the two-fluid model, I have examined the modification of the effect of
the interactions between the colloidal particles by the nonuniform solvent velocity
field. As a result, for small values of the volume fraction, the force exerted by
the colloidal particles decreases due to the effect of the hard-sphere interactions
between the colloidal particles. This effect of the interactions is similar to that
obtained by the numerical calculations using the TDDFT (see Chap. 4). This
indicates that for the small volume fractions, the effect of the interactions on the
force is almost unmodified by the nonuniform solvent velocity filed.
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Chapter 7

Conclusion

In this thesis, I have examined effects of interactions between colloidal particles on
the force exerted by the colloidal particles on a probe particle in a system of active
microrheology. I have considered a spatially fixed probe particle and a flowing
colloidal suspension comprised of hard-sphere colloidal particles and a solvent. To
calculate the force exerted by the the colloidal particles on the probe particle,
I have employed two theoretical methods: the time-dependent density functional
theory (TDDFT) and the combination of the density functional theory (DFT) with
the two-fluid model. By obtaining the force numerically via the two methods, I
have examined the effects of the interactions between the colloidal particles on the
force.

First, by calculating the force via numerical calculations using the TDDFT,
I have examined the effects of the hard-sphere interactions between the colloidal
particles. As a result, for small values of the flux velocity, the force decreases due
to the effect of the interactions. In contrast, for large values of the flux velocity
and the volume fraction, the force increases due to the effect of the interactions.
These effects are caused by the increment in the number of the colloidal particles
in the vicinity of the probe particle . In the numerical calculations, I have assumed
that the probe particle is a hard sphere and the solvent velocity is constant in the
whole system without the disturbance due to the probe and colloidal particles.

Next, by solving the equations of the two-fluid model numerically, I have ob-
tained the nonuniform solvent velocity field disturbed by the colloidal particles.
Having calculated the force exerted by the colloidal particles on the probe particle,
I have examined the modification of the effect of the interactions on the force by
the nonuniform solvent velocity field. To examine the modification of the effect of
the interactions for small volume fractions, I have employed the approximation ac-
curate to the second order of the homogeneous volume fraction far from the probe
particle. As a result, for small volume fraction, the force decreases due to the ef-
fect of the hard-sphere interactions between the colloidal particles. The obtained
solvent velocity fields include the flow around the probe particle. In the numerical
calculations, for simplicity, I have assumed that the probe particle is a soft-core
particle and the solvent velocity is disturbed only by the colloidal particles.

By comparing the results obtained from the two theoretical methods, I have
examined the modification of the effect of the interactions by the nonuniform
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solvent velocity field. The solvent velocity field has been assumed to be uniform in
the whole system in the study using the TDDFT, while it has been assumed to be
disturbed by the colloidal particles in the study using the DFT and the two-fluid
model. For small volume fractions, both of two types of the results show that the
force decreases due to the hard-sphere interactions between the colloidal particles.
This indicates that for small volume fractions, the effect of the interactions on the
force is almost unmodified by the nonuniform solvent velocity field disturbed by
the colloidal particles.
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Appendix A

Force exerted by colloidal
particles on probe particle
through hard-sphere interaction

Here, I derive the equation of the force exerted by colloidal particles on a probe
particle through the hard-sphere interaction [Eqs. (2.5), (4.16), and (4.17)]. I
consider a probe particle fixed at the origin and a colloidal suspension flowing at
a constant velocity U (Fig. 4.1). In this system, interaction between the probe
and colloidal particles is given by the hard-sphere potential [Eqs. (2.1) and (4.11)].
This system does not correspond to the system studied by Squires and Brady
(Fig. 2.1) [7], where a probe particle is pulled at a constant velocity through a
stationary colloidal suspension. However, when the density field of the colloidal
particles is given, the force is determined from the same equation in both systems
(Figs. 2.1 and 4.1).

A.1 Derivation of equation of force

The probe particle is subject to the force F exerted by the colloidal particles. Since
the probe particle interacts with the colloidal particles through the hard-sphere
potential [Eqs. (2.1) and (4.11)], the force F is generated from the collision between
the probe and colloidal particles. Therefore, the force F is exerted by the colloidal
particles located on the spherical surface satisfying |r| = a+ b, where a and b are
the radii of the probe and colloidal particles, respectively, and the origin of the
vector r is located at the center of the probe particle. Here, I consider the force
dF(r′) exerted by the colloidal particles located on a micro-area element dS at the
position r′ satisfying |r′| = a+ b (see Fig. A.1).

The force dF(r′) is given by

dF(r′) = F1dN(r′), (A.1)

where F1 is the force generated from the collision of one colloidal particle with the
probe particle and dN(r′) is the number of the colliding colloidal particles through
the micro area dS per unit time. Since all particles are hard spheres, the collision
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|r| = a+ b

n

dS

dF(r′)

O

Figure A.1: Force dF(r′) exerted by colloidal particles located on micro area dS at
position r′. dS is a micro-area element of the spherical surface satisfying |r| = a + b,
where a and b are the radii of the probe and colloidal particles, respectively, and the
origin of the vector r is located at the center of the probe particle. n is the normal vector
of the micro area dS.

between the probe and colloidal particles is perfectly elastic. From the change of
the momentum of the colliding colloidal particle, F1 is given by

F1 = −2mvnn, (A.2)

where m is mass of a colloidal particle, n is the normal vector of the micro area dS,
and vn is the component of the velocity of the colliding colloidal particles parallel
to n. Note that the direction of vn is opposite to n so that the colliding colloidal
particles satisfy vn > 0 and the particles satisfying vn < 0 get away from the probe
particle. When the density field of the colloidal particles is given by ρ(r), dN(r′)
is given by

dN(r′) = vnρ(r
′)dS, (A.3)

where it is assumed that all particles at the position r′ move at the same velocity.
From Eqs. (A.1), (A.2), and (A.3), the force dF(r′) is given by

dF(r′) = −2mv2nρ(r
′)ndS. (A.4)

To obtain the equation of the force F, I determine vn from the Maxwell–
Boltzmann distribution. Here, I assume that the velocity distribution of the col-
loidal particles is given by the Maxwell–Boltzmann distribution on the spherical
surface satisfying |r| = a + b. Under this assumption, the mean square of vn is
given by

⟨v2n⟩ =
1

Z1

∫ ∞

0

v2n exp

[
− m

2kBT
v2n

]
dvn, (A.5)
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where Z1 is the partition function of the one-dimensional Maxwell–Boltzmann
distribution defined by

Z1 ≡
∫ ∞

−∞
exp

[
− m

2kBT
v2n

]
dvn =

(
2πkBT

m

)1/2

. (A.6)

Note that the integration range in Eq. (A.5) is 0 ≤ vn ≤ ∞ because the colloidal
particles satisfying vn < 0 do not collide with the probe particle. From Eqs. (A.5)
and (A.6), the mean square of vn is given by

⟨v2n⟩ =
1

2Z1

∫ ∞

−∞
v2n exp

[
− m

2kBT
v2n

]
dvn

= −kBT
∂

∂m
lnZ1

=
kBT

2m
. (A.7)

By use of Eqs. (A.4) and (A.7), the force F is obtained from the surface integral
of dF(r′),

F = −kBT
∮
|r|′=a+b

ρ(r′)ndS, (A.8)

which corresponds to Eqs. (2.5), (4.16), and (4.17).

A.2 Validity of Maxwell–Boltzmann distribution

To obtain the equation of the force F [Eq. (A.8)], I have assumed that the velocity
distribution of the colloidal particles is given by the Maxwell–Boltzmann distribu-
tion. This assumption is valid for the velocity distribution at equilibrium states,
while that at nonequilibrium steady states should be different from the Maxwell–
Boltzmann distribution because of the flux velocity U. Particularly, when the flux
velocity U is large, the velocity distribution of the colloidal particles should be
different from the Maxwell–Boltzmann distribution significantly. In this section,
I estimate the validity of the assumption of the Maxwell–Boltzmann distribution.
For the estimation, I compare the root-mean-square velocity given by the Maxwell–
Boltzmann distribution with the flux velocity in the experimental study by Wilson
et al. [4] (see Sect. 2.2).

Referring to the experimental study [4], I estimate the root-mean-square veloc-
ity of the colloidal particles given by the Maxwell–Boltzmann distribution. Here, I
calculate the root-mean-square of one component of the velocity because the flux
velocity has an influence only on the component of the velocity parallel to it. From
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the Maxwell–Boltzmann distribution, the mean-square velocity is given by

⟨v2z⟩ =
1

Z1

∫ ∞

−∞
v2z exp

[
− m

2kBT
v2z

]
dvz

= −2kBT
∂

∂m
lnZ1

=
kBT

m
, (A.9)

where vz is the component of the velocity parallel to the flux. To estimate the root-
mean-square of vz in the experimental study [4], I employ the radius of a colloidal
particle b ≈ 900 nm and the temperature T ≈ 300 K (see Sect. 2.2). Additionally,
employing the mass density of the PMMA colloidal particles ρm = 1.18 g/cm3 at
room temperature, I estimate the mass of a colloidal particle,

m =
4

3
πb3ρm ≈ 3.60× 10−12 kg. (A.10)

From Eqs. (A.9) and (A.10), I obtain the root-mean-square of vz given by the
Maxwell–Boltzmann distribution,

√
⟨v2z⟩ =

(
kBT

m

)1/2

≈ 3.39× 10−5 m/s. (A.11)

In the same way, I also estimate the absolute value of the flux velocity |U| in
the experimental study [4]. In this experimental study, |U| is nondimensionalized
by Eq. (2.34). From Eq. (2.34) and the Stokes–Einstein relation, |U| is given by

|U| = kBT

12πη0a2
Pe, (A.12)

where η0 is the viscosity of the solvent and Pe is the Péclet number defined by
Eq. (2.34). Referring to the experimental study [4], I employ the solvent viscosity
η0 = 2.56 mPa · s and the radius of the probe particle a ≈ 1 µm (see Sect. 2.2).
Eventually, |U| is given by

|U| ≈ Pe× 4.29× 10−8 m/s. (A.13)

By using Eqs. (A.11) and (A.13), I estimate the validity of the assumption
that the velocity distribution of the colloidal particles is given by the Maxwell–
Boltzmann distribution. Since the calculation range of the flux velocity is 0.1 ≤
Pe ≤ 100 in the numerical calculation of Chap. 4, I estimate the validity for
Pe = 0.1 and 100. From Eq. (A.13), |U| ≈ 4.29 × 10−9 m/s for Pe = 0.1, which
is much smaller than the value of Eq. (A.11). This means that for Pe = 0.1,
the velocity distribution of the colloidal particles is considered to be close to the
Maxwell–Boltzmann distribution. In contrast, |U| ≈ 4.29×10−6 m/s for Pe = 100,
which is about 13% of the value of Eq. (A.11). This means that for Pe = 100,
the root-mean-square of vz under the flux may be different from that given by the
Maxwell–Boltzmann distribution by about 13%.
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Appendix B

Free energy derived from density
functional theory

Here, I derive the equation of the free energy of many-particle systems from the
density functional theory (DFT). The DFT gives the free energy defined as the
functional of the density field of particles. In my study, the derived equation of
the free-energy functional is applied to the equation of the time-dependent density
functional theory (Sect. 4.2.2) and to the equations of motion of the two-fluid
model (Sect. 5.2).

B.1 Density field at nonequilibrium states

In many-particle systems at nonequilibrium states, the density field ρ(r) represents
the number density of particles at a position r. I assume that the density field ρ(r)
is independent of time t. At an equilibrium state, the density field corresponds to
the equilibrium one ρeq(r), which is defined by

ρeq(r) =

⟨ N∑
i=1

δ(r− ri)

⟩
. (B.1)

Here, N is the number of particles in the system, ri is the position of the i-th
particle, and ⟨· · · ⟩ represents the average in the grand canonical ensemble.

In the framework of the DFT, the density field ρ(r) is treated as an extensive
variable. By using the intensive variable ψ(r) paired with ρ(r), the thermodynamic
potential Ω̂[ψ(r)] is defined by

e−βΩ̂[ψ(r)] =
∞∑
N=1

eNβµ

N !h3N

∫ N∏
i=1

dridpi exp

[
−β

(
HN +

∫
ψ(r)ρ̂(r)dr

)]
, (B.2)

ρ̂(r) =
N∑
i=1

δ(r− ri). (B.3)

71



Here, β = 1/kBT , h is the Planck’s constant, µ is the chemical potential, and HN

is the Hamiltonian of the system comprised of N particles. By using the grand
potential, Ω̂[ψ(r)] is also expressed by

Ω̂[ψ(r)] = Ω− kBT ln

⟨
exp

[
−β

∫
ψ(r)ρ̂(r)dr

]⟩
, (B.4)

where Ω is the grand potential and ⟨· · · ⟩ represents the average in the grand
canonical ensemble. The intensive variable ψ(r) corresponds to the external field,
but note that it is the virtual physical quantity to define Ω̂[ψ(r)] [18].

The density field ρ(r) is defined by the average in the grand canonical ensemble
with the intensive variable ψ(r),

ρ(r) = ⟨ ρ̂(r) ⟩ψ(r) =
⟨ N∑

i=1

δ(r− ri)

⟩
ψ(r)

, (B.5)

where ⟨· · · ⟩ψ(r) represents the average in the grand canonical ensemble with ψ(r).

From Eq. (B.4), ρ(r) is also expressed by the functional derivative of Ω̂[ψ(r)],

ρ(r) =
δΩ̂[ψ(r)]

δψ(r)
. (B.6)

At an equilibrium state, ψ(r) equals zero in the whole system so that Eq. (B.5)
corresponds to Eq. (B.1).

B.2 Free-energy functional

The free-energy functional of ρ(r) is obtained from the Legendre transformation.
Through the Legendre transformation, I transform Ω̂[ψ(r)] into the functional of
ρ(r),

Ω[ρ(r)] = Ω̂[ψ(r)]−
∫
ψ(r)ρ(r)dr. (B.7)

In the same way, to obtain the free-energy functional of ρ(r), I transform Ω[ρ(r)]
into

F [ρ(r)] = Ω[ρ(r)] + µN, (B.8)

where µ is the chemical potential and N is the number of particles in the system.
When the particles interact with each other, F [ρ(r)] is determined from the

difference between F [ρ(r)] and the free-energy functional for ideal gas Fideal[ρ(r)].
Here, I define the difference in the free energy as

Ψ[ρ(r)] = Fideal[ρ(r)]− F [ρ(r)]. (B.9)
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If ρ(r) is close to ρeq(r), Ψ[ρ(r)] is expanded in the difference between ρ(r) and
ρeq(r) [18],

Ψ[ρ(r)] = Ψ[ρeq(r)] + kBTc1

∫
∆ρ(r)dr

+ kBT

∞∑
n=2

1

n!

∫
cn(r1, · · · , rn)∆ρ(r1) · · ·∆ρ(rn)dr1 · · · drn, (B.10)

∆ρ(r) = ρ(r)− ρeq(r). (B.11)

Here, cn(r1, · · · , rn) is the n-particle direct correlation function defined at an equi-
librium state,

cn(r1, · · · , rn) =
βδnΨ[ρ(r)]

δρ(r1) · · · δρ(rn)

∣∣∣∣
ρ(r)=ρeq(r)

, (B.12)

where c1 is a constant. In Eq. (B.10), I neglect the three- and more-particle direct
correlation functions; this approximation corresponds to the hypernetted-chain
(HNC) approximation [40]. From Eq. (B.10) and the HNC approximation, the
equation of F [ρ(r)] is given by

βF [ρ(r)] = βFideal[ρ(r)]− βΨ[ρeq(r)]− c1

∫
∆ρ(r)dr

− 1

2

∫
c2(r1 − r2)∆ρ(r1)∆ρ(r2)dr1dr2. (B.13)

The equation of Fideal[ρ(r)] is obtained from Eq. (B.2) and the Legendre trans-
formation. For ideal gas, the Hamiltonian HN is expressed by

HN =
N∑
i=1

(
p2
i

2m
+ V (ri)

)
, (B.14)

where m is the mass of a particle, pi is the momentum of the i-th particle, and
V (r) is the external field. From Eq. (B.2), the thermodynamic potential is given
by

Ω̂ideal[ψ(r)] = −kBTeβµ
∫

1

Λ3
e−β(V (r)+ψ(r))dr, (B.15)

where Λ is the thermal de Broglie wave length defined by

Λ =

(
h2

2πmkBT

)1/2

. (B.16)

By using Eq. (B.6), ρ(r) for ideal gas is given by

ρ(r) = e−β(V (r)+ψ(r)−µ). (B.17)

In the same way as Eqs. (B.7) and (B.8), Ω̂ideal[ψ(r)] is transformed into Fideal[ρ(r)],
which is expressed by

βFideal[ρ(r)] =

∫
ρ(r)[ lnρ(r) + βV (r) + lnΛ3 − 1 ]dr. (B.18)
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Appendix C

Numerical calculation of
time-dependent density functional
theory

Here, I explain the numerical method of solving Eqs. (4.12) and (4.13) in detail.
In the numerical calculations, I solve these equations numerically in the cylindrical
coordinate system with axial symmetry (r, z). I employ the iterative method to
solve these equations under the condition that the time derivatives on the left-
hand side equal zero. The spatial derivatives are calculated via the finite difference
method. Furthermore, I calculate the convolution integral in Eq. (4.12) by use of
the Fourier–Hankel transform.

C.1 Fourier–Hankel transform

The convolution integral in Eq. (4.12) is calculated via factorization using Fourier
transform (FT). In the cylindrical coordinate system with axial symmetry (r, z),
the FT is calculated through the combination of the one-dimensional FT with the
Hankel transform (HT), such that

∆ρ̃(kr, kz, t) =

∫ ∞

−∞
dz

∫ ∞

0

2πrdr∆ρ(r, z, t)eikzzJ0(krr). (C.1)

Here, ∆ρ̃(kr, kz, t) is the Fourier–Hankel transform of ∆ρ(r, z, t), kr and kz are
the r- and z-components of the wave number vector, respectively, and J0(krr) is
the order-zero Bessel function of the first kind. From Eq. (C.1), the convolution
integral in Eq. (4.12) is given by∫ ∞

−∞
dz

∫ ∞

0

2πrdr

∫
c2(r− r′)∆ρ(r′, t)dr′eikzzJ0(krr)

= c̃2(kr, kz)∆ρ̃(kr, kz, t), (C.2)

where c̃2(kr, kz) is the Fourier–Hankel transform of c2(r).
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The Fourier–Hankel transform is numerically calculated via the fast FT (FFT)
[41] and discrete HT on two-dimensional grids in the cylindrical coordinate sys-
tem (r, z). Here, I place data points on the grid crossings. Note that the data
points along the r-axis must be placed on the zeros of J0(r). This ensures J0(r)-
orthogonality for the functions defined by discrete points, instead of the continuous
functions [42,43]. The orthogonality in the FFT requires regular intervals between
two neighboring data points along the z-axis.

C.2 Finite difference methods

The spatial derivatives in Eqs. (4.12) and (4.13) are obtained via the finite differ-
ence methods in the cylindrical coordinate system with axial symmetry (r, z). I
calculate the derivatives on the right-hand side of these equations via the central
difference method. The derivatives obtained from the central difference method
include the calculation error of O[(∆r)2] and O[(∆z2)], where ∆r and ∆z are inter-
vals between two neighboring data points along the r-axis and z-axis, respectively.
The advective term on the left-hand side is calculated via the backward difference
method, in order to stabilize the finite difference calculation [41, 46]. The deriva-
tives obtained from the backward difference method include the calculation error
of O(∆r) and O(∆z).

C.3 Iterative calculation

I solve Eqs. (4.12) and (4.13) via iterative calculations under the condition that
the time derivatives on the left-hand side equal zero. Here, Eq. (4.12) is iteratively
calculated by use of the difference equation

ρi+1(r) = ρi(r) + h∇ · ji(r), (C.3)

ji(r) = D∇ρi(r)−Uρi(r) +Dβρi(r)∇V (r)

−Dρi(r)∇
∫
c2(r− r′)∆ρs× [i/s](r

′)dr′ (s ≥ 1), (C.4)

∆ρs×[i/s](r) = ρs×[i/s](r)− ρ0, (C.5)

where h is the step value of the iterative calculation. In addition, ρi(r) and ji(r) are
the density and current density fields at step i = 1, 2, · · · , respectively. The Gauss
symbol [X] represents the integer part of a real number X, so that ∆ρs×[i/s](r) is
updated at intervals of s steps. In the case of the noninteracting colloidal particles
[Eq. (4.13)], ji(r) is defined in the same manner. By using Eqs. (C.3) and (C.4), I
calculate the density field at the next step iteratively until the divergence of ji(r)
becomes close to zero.

The update scheme given in Eq. (C.4) reduces the cost of the numerical cal-
culation of ρ(r,∞) because the convolution integral is calculated only once per s
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steps. Excessively large values of s, however, yields ρi(r) divergence. To avoid this
divergence, s must take a suitable value depending on U, V (r), and c2(r). For
example, in the range of s ≤ 100, density fields at steady states have been stably
obtained from numerical calculations for the hard-sphere system.
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Appendix D

Numerical calculation of two-fluid
model

Here, I explain the numerical method for solving the motion equations of the
two-fluid model in detail. In the numerical calculations, I solve the equations
numerically in the cylindrical coordinate system with axial symmetry (r, z). I
employ the iterative method to obtain ϕ(1)(r) and ϕ(2)(r). In addition, I employ

the Gauss-Seidel method [41,45] to obtain v
(1)
s (r) and p(2)(r). The space derivatives

in the equations are calculated via the finite difference method.

D.1 Calculation of volume fraction field

To obtain ϕ(1)(r) for the incompressibility condition given by Eq. (5.1), I solve
Eq. (5.33) numerically via the iterative method. Here, Eq. (5.33) is iteratively
calculated by use of the difference equation

ϕ
(1)
i+1(r) = ϕ

(1)
i (r) + h∇ · j(1)i (r), (D.1)

j
(1)
i (r) = ∇ϕ(1)

i (r) + βϕ
(1)
i (r)∇V (r)− 1

D
ϕ
(1)
i (r)U, (D.2)

where h is the step value of the iterative calculation. In addition, ϕ
(1)
i (r) and j

(1)
i (r)

are the volume fraction and current volume fraction fields at step i = 1, 2, · · · , re-
spectively. By using Eqs. (D.1) and (D.2), I calculate the volume fraction field at

the next step iteratively until the divergence of j
(1)
i (r) becomes close to zero. Even

for the approximate incompressibility condition [Eq. (5.18)] and for noninteract-
ing colloidal particles, the volume fraction fields are obtained from the difference
equations in the same form as Eqs. (D.1) and (D.2).

In the same way, ϕ(2)(r) is obtained via the iterative method. For the incom-
pressibility condition given by Eq. (5.1), I calculate Eq. (5.36) iteratively by using
the difference equation

ϕ
(2)
i+1(r) = ϕ

(2)
i (r) + h∇ · j(2)i (r), (D.3)
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j
(2)
i (r) = ∇ϕ(2)

i (r) + βϕ
(2)
i (r)∇V (r)− 1

D
(ϕ

(2)
i (r)U+ ϕ(1)(r)v(1)

s (r))

+ βvϕ(1)(r)∇p(1)(r)− 1

v
ϕ(1)(r)∇

∫
c2(r− r′)∆ϕ(1)(r′)dr′, (D.4)

where v
(1)
s (r) and p(1)(r) are obtained from Eqs. (5.34) and (5.35). The con-

volution integral in Eq. (D.4) is calculated via the Fourier–Hankel transform
(see Append. C.1). For the case of the approximate incompressibility condition
[Eq. (5.18)], in the same manner as Eqs. (D.3) and (D.4), I solve Eq. (5.41) which
does not include the term of the pressure field p(1)(r). In the case of the non-
interacting colloidal particles, Eqs. (5.48) and (5.50) are the same as Eqs. (5.36)
and (5.41) except for the absence of the term of the convolution integral, so that

ϕ
(2)
id (r) is obtained via the iterative calculation in the same manner.
In the numerical calculations of ϕ(1)(r) and ϕ(2)(r), the spatial derivatives are

obtained via the finite difference methods in the cylindrical coordinate system with
axial symmetry (r, z). I calculate the derivatives of the advective terms related to

U or v
(1)
s (r) by use of the backward difference method, in order to stabilize the

finite difference calculation [41, 46]. The derivatives obtained from the backward
difference method include the calculation error of O(∆r) and O(∆z), where ∆r
and ∆z are intervals between two neighboring data points along r-axis and z-axis,
respectively. In contrast to the advective terms, the other terms are calculated via
the central difference method. The derivatives obtained from the central difference
method include the calculation error of O[(∆r)2] and O[(∆z)2].

D.2 Calculation of solvent velocity field

To calculate v
(1)
s (r) for the incompressibility condition given by Eq. (5.1), I solve

Eq. (6.6) via the Gauss-Seidel method [41,45] and obtain the solvent vorticity field
ω(r) defined by Eq. (6.7). Here, from the incompressibility condition in the first
order of ϕ0 [Eq. (5.34)], the stream function ψ(r) is defined by [47]

v′r(r) =
1

r

∂ψ(r)

∂z
and v′z(r) = −1

r

∂ψ(r)

∂r
, (D.5)

v′(r) ≡ v(1)
s (r)− ϕ(1)(r)U, (D.6)

where v′r(r) and v
′
z(r) are the r- and z-components of v′(r), respectively. From the

definition of ω(r) [Eq. (6.7)], I derive the equation of ψ(r)(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
ψ(r) = r[ω(r)−∇× (ϕ(1)(r)U)]θ, (D.7)

where θ is the angular axis of the cylindrical coordinate system. I obtain ψ(r)
numerically by solving Eq. (D.7) via the Gauss-Seidel method. Here, I calculate

v
(1)
s (r) by using the obtained ψ(r) and Eqs. (D.5) and (D.6).
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Even for the approximate incompressibility condition [Eq. (5.18)], I obtain
ω(r) numerically by solving Eq. (6.6) via the Gauss-Seidel method. Here, from
the approximate incompressibility condition in the first order of ϕ0 [Eq. (5.39)],
the stream function ψ(r) is defined by

v(1)s,r (r) =
1

r

∂ψ(r)

∂z
and v(1)s,z (r) = −1

r

∂ψ(r)

∂r
, (D.8)

where v
(1)
s,r (r) and v

(1)
s,z (r) are the r- and z-components of v

(1)
s (r). From the definition

of ω(r) [Eq. (6.7)], I derive the equation of ψ(r)(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
ψ(r) = rωθ(r), (D.9)

where ωθ(r) is the θ-component of ω(r). I solve Eq. (D.9) numerically via the
Gauss-Seidel method.

In the numerical calculations, I place data points of ω(r) and ψ(r) at the
positions separated from each data point of ϕ(1)(r) by ∆r/2 on the r-axis and by

∆z/2 on the z-axis. Additionally, data points of v
(1)
s,r (r) and v

(1)
s,z (r) are placed at

the positions separated from each data point of ϕ(1)(r) by ∆r/2 on the r-axis and
by ∆z/2 on the z-axis, respectively. The spatial derivatives are calculated via the
central difference method. In order to solve Eq. (6.6) numerically, I impose the
boundary condition that ω(r) equals zero at the edges of the calculation range.
For consistency with the boundary condition of ω(r), the boundary condition

must be imposed on either r-component or z-component of v
(1)
s (r) at the edges

of the calculation range. I impose the boundary condition that the z-components
of v

(1)
s (r) equal the z-component of U at the edges of the z-axis and that the

r-components of v
(1)
s (r) equal zero at the edge of the r-axis.
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