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Abstract: We propose a robust K-means clustering algorithm for document clustering, where we suppose that a
document-term matrix is given as an input dataset, and the documents in the dataset are clustered on the basis of
the frequency of terms that occur in each document. We introduce a robust loss function to K-means clustering to
obtain its robust version, and also propose a feature transform method for improving the performance of document
clustering. Experimental results show that the proposed method improves the robustness of K-means to outliers
and the performance of document clustering demonstrated on one of the BBC datasets originating from the BBC
News.
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1. Introduction
Document clustering is a process for finding a number of
clusters of similar documents from a large set of textual
documents, and has various applications including infor-
mation retrieval, text mining and automatic document or-
ganization. Numerous document clustering methods have
been extensively studied in these years. Andrews and
Fox overviewed recent developments in document clus-
tering research [1]. Shah and Mahajan reviewed seman-
tic driven document clustering methods [2], and also pro-
vided a detailed overview of various document clustering
algorithms [3]. Balabantaray et al. compared K-means
and K-medoids clustering algorithms for document clus-
tering, and observed that K-means yields better result than
K-medoids [4]. Dzogang et al. extended the spherical K-
means [5] to an ellipsoidal K-means [6]. Mei and Wang
proposed a hyperspherical fuzzy C-means clustering algo-
rithm for online document categorization [7].

The above document clustering methods based on K-
means and its variants including K-medoids do not intro-
duce robust techniques directly. In this paper, we propose
a robust K-means clustering algorithm for document clus-
tering. In robust statistics, various approaches have been
studied to achieve robustness [8]. A reasonable approach to
get robustness is to design a robust potential function [9] or
loss function [10]. We propose a robust loss function, and
apply it to K-means clustering. The proposed loss func-
tion has an intermediate form between the l1 and l2-norms.
Hamza and Brady used a robust cost function similar to the
proposed loss function for robust nonnegative matrix fac-
torization for reflectance spectra reconstruction [11]. Their
cost function is a special case of the proposed loss function,
which is also similar to the Charbonnier loss function [12].
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Recently, Barron generalized popular loss functions includ-
ing the Charbonnier loss function to a two-parameter loss
function [10].

We also propose a method for feature transform from
a document-term matrix into feature vectors of documents
based on the Hellinger distance [13], which is a distance be-
tween two probability distributions. Bui et al. [14] also used
the Hellinger distance for multi-criteria document cluster-
ing with the latent Dirichlet allocation (LDA) proposed by
Blei et al. [15]. Our proposed feature transform method
is suitable for K-means clustering algorithms. Experimen-
tal results show that the proposed robust K-means cluster-
ing algorithm can alleviate the influence of outliers being in
data, and improve the performance of document clustering.

The rest of this paper is organized as follows: Sec-
tion 2 briefly summarizes conventional K-means clustering.
Section 3 proposes a robust K-means clustering algorithm
based on a robust loss function. Section 4 describes a fea-
ture transform method for document clustering based on a
document-term matrix. Section 5 shows experimental re-
sults of clustering of artificial and real datasets. Finally,
Section 6 concludes this paper.

2. K-Means Clustering
Let xi ∈ Rd be a d-dimensional real vector for i =
1, 2, . . . , n. Then K-means clustering aims to partition them
into K clusters, and is formulated as the following optimiza-
tion problem:

min
{µk}, {Ck}

K∑
k=1

∑
x∈Ck

∥x − µk∥2 , (1)

where Ck denotes the set of vectors in the kth cluster, µk ∈
Rd denotes the centroid in Ck for k = 1, 2, . . . ,K, and ∥ · ∥
denotes the Euclidean norm. For a fixed set of µk, assigning
each xi to the nearest centroid µk, we can minimize the ob-
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jective function E({µk}, {Ck}) =
∑K

k=1
∑

x∈Ck
∥x − µk∥2, that

is, the ith vector xi is assigned to the kith cluster Cki for

ki = arg min
k
∥xi − µk∥2 . (2)

After the assignment of all the vectors, we have K clusters
{Ck} temporarily. Then, for the obtained {Ck}, we optimize
each µk by solving ∂E/∂µk = 0 for µk as follows:

µk =

∑
x∈Ck

x∑
x∈Ck

1
. (3)

The above procedure for updating {Ck} and {µk} is repeated
until the convergence. The K-means clustering algorithm is
summarized as follows:
[K-means clustering algorithm]

0. Assume that a set of vectors {xi}ni=1 and a number of
clusters K are given.

1. Initialize the centroid µk in cluster Ck for k =

1, 2, . . . ,K.

2. Assign each xi to the nearest cluster determined by (2).

3. Update each µk by (3).

4. If every µk is unchanged by the above update, then halt
the procedure. Otherwise, go to the step 2.

3. Robust K-Means Clustering
The above K-means clustering is based on the squared Eu-
clidean distance between a given vector xi and a centroid
µk. The squared Euclidean distance can be expressed as
follows:

∥xi − µk∥2 = ρ (∥xi − µk∥) (4)

for ρ(x) = x2. The function like ρ(x) is referred to as the
loss function [10]. In this section, we propose an alternative
form of ρ(x) as follows:

ρR(x) =
√

b2 + x2 − b (5)

for a positive constant b. When b = 0, the function ρR(x)
coincides with the absolute value function |x|, which is more
robust to outliers than x2. Although |x| is not differentiable
at x = 0, ρR(x) with b > 0 is differentiable everywhere as

dρR

dx
=

x
√

b2 + x2
. (6)

We have the following properties of ρR(x):

Property 1. ρR(x) ≥ 0, and ρR(0) = 0.

Property 2. |dρR/dx| ≤ 1.

Property 3. if b ≥ 1/2, then x2 ≥ ρR(x).

Property 4. d2ρR/dx2 ≥ 0, i.e., ρR(x) is a convex function.

Based on the above loss function, we formulate a robust
K-means clustering as follows:

min
{µk}, {Ck}

K∑
k=1

∑
x∈Ck

ρR (∥x − µk∥) . (7)

Let ER({µk}, {Ck}) be the objective function in (7). Then we
have the necessary condition for optimality as follows:

∂ER

∂µk
=
∑
x∈Ck

x − µk√
b2 + ∥x − µk∥2

= 0, (8)

where 0 is a d-dimensional zero vector having all compo-
nents equal to zero. From (8) we have

µk =

∑
x∈Ck

x√
b2 + ∥x − µk∥2∑

x∈Ck

1√
b2 + ∥x − µk∥2

, (9)

which is used for updating µk instead of (3) in the proposed
robust K-means clustering algorithm.

4. Feature Transform for Document Clustering
Assume that a document-term matrix is given as a dataset
for document clustering. Let A = [ai j] for i = 1, 2, . . . , n
and j = 1, 2, . . . , d be a document-term matrix, where ai j is
the (i, j) element of A, and denotes the frequency of the jth
term that occurs in the ith document. Then we compute the
probability of occurrence of each term in each document by
pi j = ai j/

∑d
j′=1 ai j′ which satisfies

∑d
j=1 pi j = 1, and stack

them in a vector as pi = [pi,1, pi,2 . . . , pi,d] for i = 1, 2, . . . , n.
Then the Hellinger distance between pi and pi′ is defined
by [13]

DH(pi, pi′ ) =
1
√

2

√√√ d∑
j=1

(√
pi j −

√
pi′ j

)2
. (10)

The square of Dh(pi, pi′ ) can be written as

D2
H(pi, pi′ ) =

1
2

d∑
j=1

(√
pi j −

√
pi′ j

)2
(11)

=

d∑
j=1

[
1
√

2

(√
pi j −

√
pi′ j

)]2
(12)

=

d∑
j=1

√ pi j

2
−
√

pi′ j

2

2 (13)

= D2
E ( p̃i, p̃i′ ) , (14)

where p̃i = [
√

pi,1/2,
√

Pi,2/2, . . . ,
√

pi,d/2], and D2
E( p̃i, p̃i′ )

denotes the square of the Euclidean distance between p̃i and
p̃i′ . That is, the Hellinger distance between pi and pi′ is
equivalent to the Euclidean distance between p̃i and p̃i′ . As
a result, we obtain a means of (robust) K-means clustering
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Figure 1: Graphs of ρ(x).

based on the Hellinger distance by the feature vector trans-
form given by

p̃ =
√

p
2
, (15)

where the square root of a vector denotes the elementwise
operation.

5. Experimental Results
In this section, we first show the experimental results on
artificial two-dimensional data, and then show the results
on a real document-term dataset.

5.1 Artificial Two-Dimensional Data Fig. 1 shows
the graphs of ρ(x) = x2 and ρR(x) in (5), where the hori-
zontal and vertical axes denote x and ρ(x) or ρR(x), respec-
tively. The blue line denotes ρ(x) = x2 which is not robust
to outliers because the value of ρ(x) increases rapidly with
the increase in |x|, which means that the data being far apart
from a point of attention have a big impact on results. On
the other hand, the red lines denote ρR(x) in (5) for b = 1, 5
and 10 with solid, broken and dashed dotted lines, respec-
tively. These red lines have gentler slopes than the blue
line; the slopes do not exceed 45◦ as described in Property
2. Additionally, ρR(x) is under ρ(x) if b ≥ 1/2 by Property
3.

Fig. 2 shows an artificial two-dimensional (2-D) dataset
which consists of three main clusters on the left side and
three outlying points on the right side. Fig. 3 shows a
zoomed part in Fig. 2 including the three clusters, where
three centroids given by conventional K-means clustering
algorithm with K = 3 are denoted by red circles, one of
which at the upper right deviates toward the outliers on the
right side. Fig. 4 shows the same region as Fig. 3 and three
centroids given by the proposed robust K-means clustering
algorithm with b = 1/2, where the deviation of the up-
per right centroid toward the outliers is alleviated compared
with Fig. 3. The condition for halting the algorithm is that

max
k

{
max
(∣∣∣µ(t+1)

k − µ(t)
k

∣∣∣)} ≤ ϵ, (16)

where the superscript t on µk denotes the number of itera-
tions of the updating procedure, i.e., t = 0, 1, 2, . . ., and ϵ is

Figure 2: Two-dimensional data.

Figure 3: Centroids given by conventional K-means.

Figure 4: Centroids given by robust K-means.

a positive constant which is set to ϵ = 10−6 in this example.
All centroids µk for k = 1, 2, . . . ,K are randomly initialized
and used commonly in both the conventional and proposed
algorithms.

Table 1 shows the numerical data of the coordinates of
the centroids and the numbers of iterations for compared al-
gorithms. The first and second rows in the table show the
(x, y) coordinates of the centroid of the upper right cluster
in Fig. 3 or 4, from the left to right columns, for outlier-free
result (denoted by ‘No outliers’), conventional K-means
(Conv.), and the proposed robust K-means for b = 1, 1/2
and 1/10, respectively. The x-coordinate for the conven-
tional K-means is quite different from that for the outlier-
free result. On the other hand, the proposed method for ev-
ery value of b achieved nearer x-coordinates to ‘No outliers’
than the conventional K-means. Better y-coordinates are
given when b = 1/2 and 1/10 in the proposed method. The

IIAE Journal, Vol.6, No.2, 2018
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Table 1: Coordinates of the Centroid of a Cluster in Fig. 2 and the Numbers of Iterations.

No outliers Conv. b = 1 b = 1/2 b = 1/10

x 197.3723 259.7324 206.7222 206.7222 206.7222
y 221.5227 216.0813 222.9668 222.9667 222.9667

Iter. - 2 10 10 11

Table 2: Matching matrix by K-means.
athletics cricket football rugby tennis total

athletics 94 0 6 0 1 101
cricket 0 12 112 0 0 124
football 3 0 253 2 7 265
rugby 0 2 73 72 0 147
tennis 2 0 68 0 30 100

third row in the table shows the number of iterations (Iter.),
where the conventional K-means had the smallest number
of 2. In the proposed method, b = 1 and 1/2 had smaller
iteration number of 10 than 11 for b = 1/10. These results
suggest that b = 1/2 is a good choice of the value of b in
the proposed method because it gives better (x, y) coordi-
nates with a smaller number of iterations than other settings
of b.

5.2 Real Document-Term Data Next, we show the
results on the BBC Datasets [16], from which we selected
the BBCSport dataset which is a collection of 737 docu-
ments from the BBC Sport website corresponding to sports
news articles in five topical areas with 4613 terms, i.e., the
size of the document-term matrix A is n × d = 737 × 4613,

and the five topics are athletics, cricket, football, rugby and
tennis. We evaluate the performance of clustering algo-
rithms with matching matrices (or confusion matrices) [17].

Table 2 shows a matching matrix given by conventional
K-means, where the row vectors of the document-term ma-
trix are directly used for the feature vectors of documents.
The initial centroids are selected from the documents as
µ1 = a15, µ2 = a168, µ3 = a325, µ4 = a513 and µ5 = a713,
where ai denotes the ith row vector of A, and commonly
used in the following experiments. The top row of ath-
letics shows that the actual documents on athletics are di-
vided into three clusters, athletics, football and tennis. The
rightmost column in the table shows the total number of
documents in each category. In the matching matrix, if the

Table 3: Matching matrix by robust K-means (b = 1/2).
athletics cricket football rugby tennis total

athletics 98 0 3 0 0 101
cricket 0 73 51 0 0 124
football 0 0 251 8 6 265
rugby 0 0 64 83 0 147
tennis 2 0 60 0 38 100

Table 4: Matching matrix by K-means with feature transform.
athletics cricket football rugby tennis total

athletics 101 0 0 0 0 101
cricket 2 119 2 1 0 124
football 2 0 204 3 56 265
rugby 0 1 12 131 3 147
tennis 4 0 6 0 90 100

Table 5: Matching matrix by robust K-means (b = 1/2) with feature transform.
athletics cricket football rugby tennis total

athletics 101 0 0 0 0 101
cricket 2 119 2 1 0 124
football 2 0 204 3 56 265
rugby 0 0 12 133 2 147
tennis 4 0 6 0 90 100
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Table 6: Averaged table of confusion by K-means.
True Positive False Negative

92.2 55.2
False Positive True Negative

55.2 534.4

Table 7: Averaged table of confusion by robust K-means
(b = 1/2).

True Positive False Negative
108.6 38.8

False Positive True Negative
38.8 550.8

Table 8: Averaged table of confusion by K-means with fea-
ture transform.

True Positive False Negative
129 18.4

False Positive True Negative
18.4 571.2

Table 9: Averaged table of confusion by robust K-means
(b = 1/2) with feature transform.

True Positive False Negative
129.4 18

False Positive True Negative
18 571.6

diagonal elements are larger and the off-diagonal elements
are closer to zero, then the obtained clusters show a better
match with the true categories of documents.

Table 3 shows the matching matrix given by the proposed
robust K-means with b = 1/2. The diagonal elements in
Table 3 are larger than that in Table 2 except for the central
element corresponding to the football category.

Tables 4 and 5 show the matching matrices given by K-
means and robust K-means with the proposed feature trans-
form described in Section 4, respectively. In both methods,
the performance is improved by the feature transform.

Tables 6 to 9 show the averaged tables of confusion [18]
computed from Tables 2 to 5, respectively. In these tables,
the larger diagonal elements (True Positive (TP) and True
Negative (TN)) and the smaller off-diagonal elements (False
Negative (FN) and False Positive (FP)) are, the better the
performance is.

Finally, Table 10 summarizes the F-measures for com-
pared methods, where an F-measure is the harmonic mean
of precision and recall given by

Precision =
TP

TP + FP
, (17)

Recall =
TP

TP + FN
. (18)

That is, the F-measure is given by

F =
2 · Precision · Recall
Precision + Recall

. (19)

In Table 10, the proposed robust K-means with feature

Table 10: F-measures.

K-means Robust
K-means

K-means
(Feature
transform)

Robust
K-means
(Feature
transform)

0.626 0.737 0.875 0.878

transform achieves the highest value of the F-measure
among the compared methods.

6. Conclusion
In this paper, we proposed a robust K-means clustering al-
gorithm for document clustering, where a document-term
matrix is given as an input dataset. Initially, each docu-
ment is expressed by the corresponding row vector in the
document-term matrix. To improve the performance of
document clustering, we also proposed a feature transform
method based on the Hellinger distance between two prob-
ability distributions to have better feature vectors than the
row vectors of the document-term matrix. Experimental re-
sults showed that the proposed method improved the robust-
ness to outliers and the performance of document clustering
compared with conventional K-means.

Future work will include the development of the fuzzy
versions of the proposed robust K-means for improved doc-
ument clustering.
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