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Issue and Challenge



M [ssue of the parareal method for hyperbolic PDEs:

Fine solver
F(T,, T, 1, U~ /\/\/ *M. Gander and M. Petcu,

Coarse solver | f Phase difference Analysis of a Krylov
G(Tn, Tt Uny) = G0 T, Uny ™) | subspace enhanced parareal
/\/\/ algorithm for linear problems,
o -0 — ® ESAIM Proc, 25, (2008),
Time slice Oscma,tl'?ns 7\ K 114-129.
(Timesubdomain) -~ , - ¢ \ 7
NSy

Hyperbolic PDEs: Waves -
There is Phase Difference between fine and coarse solver’ s result =>
Oscillations = damages the convergence of the parareal method

HChallenge:

® Improvement of the convergence
- We must reduce the phase difference between fine and
coarse solvers (= phase error).

(We just focus on the convergence.) 5



How do we perform
reducing phase error?




Expected methods to reduce phase error In
coarse solver with low cost

To reduce the cost

Coarsening

Space

Time integrator

Coarsenj ' ep width
C dT>dt )

To increase the phase accuracy

Using fine
ot as OT
coarse
solver time
step width

Using coarse
space modes =2
High accurate
convergence is
not available by
lack of high
order space
modes.

sing a hi
accuracy
phase

Using low cost
time integrator -
Available for only
the case that fine
solver cost is
very high.

For advection term

calculation

Ex: CAAP method

Using high
integrator->»

order time

Not enough

calculation

CIP scheme
+ STRS scheme

We focus on mainly CIP scheme In this presentation.




Method overview




Methods overview of advection term calculation

Conventional Methods that are tried in this study

main method (1) CIP scheme: advecting the phase
information by the gradient of value .

Ot + Oz =0
A ((0,g+cO.qg=0 Main issue : Gap of phase
0P + cOyp =0 [ t9 B 5%5 accuracy between fine
= Y ~. /and coarse solver
x not ehsygh

Stabilization: (3)Hybrid _\ _ N

numerical damping STRS-CIP /  ~7°\7---

Accuracy: A

Space and time ; not yet success PRas

1 ”

higher order terms et
Oy + Oy =0 F There is a limit in the use.

(2) STRS scheme: achieving the stabilization
and error elimination using “space and time
reversal symmetry .



We focus on the CIP In this study.
Wh at iS ClP(constrained Interpolation Profile)SChem 6?

*proposed by T. Yabe eta(1987)*

* H. Takewaki and T. Yabe, The cubic-interpolated pseudo particle (CIP) method:
Application to nonlinear and multi-dimensional hyperbolic equations, J. Compuit.
Phys., 70 (1987), 353372.

*performs numerical advection process by the semi-Lagrange
method using the cubic interpolation function of both variable
and its gradient.

The CIP scheme gives the accurate phase.

Why ?
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The method using a space differential of the equation gives
generally highly precise solutions even on coarse grids.

® CIP3rdscheme: (@) 0it¢+cO.¢ =0
(b) <0;g + cdrg =0

g = 0.9 Space
® Mixed form of FEM :Handle these equations as PDE differential of
(Structure analysis)  (a) Equation of strain and the equation

displacement relation
(b)-Equation of moment

conservation
— _(D_i( 4 Q
® FIC scheme (@) s =P T G ) -
(Finite Increment Calculus) (b) . __hdfq 0
dx

For advection equation,
point is the use of phase information (=gradient) .



Ex. of FIC results

(a) 1D convection-diffusion-production (b)1D Helmholtz problem
problem
4
x10
Y SUAON LA /\
7 <
0 — O a / S
< 0 / \
T[T, /
-4 —
VTN
Exa -8 -
o—oFICC—tFEM i U U J u U
-6 I [ I I I I I
| | | | | 0 b 4 6 8

I
0 2 4 6 3

Exact o=———0 FIC-FEM

FIC gives the very accurate solution on the very coarse grids.
12



Let s set a reference 1o the high
accurate phase calculation method.

In this time, we use the conventional methods
for advection : (Upwind) differencing scheme

13



Conventional Discretization method of advection term

Linear type( CFL-free form used
by the Semi-Lagrangian scheme)

Upwind: 1st order
o =i+ %(F (bid—s(e) — Pia)
Lax-Wndroff: 2nd order
o =7 + %cf- {(er+ 105y — 2007 + (e — DTN }
QUICK: 2nd order
of = 9?71 + éCf‘ {*szzd:lzs(c) + 759115-1@) - 3"")?51 - w?d;ls(p)}
QUICKEST: 3rd order
o = of ! + éCF {*(Cf‘ — D) e — 3(CE — Cr = 200
~3(—CE 2 + 1)l (B 30 + 20805 )
Upwind: 3rd order
o — gr 1 4 %g (=0 ey + 6007y — 30 — 2077}
Kawamura and Kuwahara: 3rd order

-1

1 yn—1 ; ;
- 9@"?,1 + 2(.*9-1r£+5(c) - (Vz_lrprgs(c)

| 1
yn _ an—1 n—1 n—
of =i + (_)'CF {_24"21723(@ + 10050
Central : 4th order

1 in—1 in—1 yn—1 yn—1
+ ECF {7w?d723(c) + Sw?dfs(c) - 84"?¢+s(c) + qQ?d«k»?s(c)}

o gn—1
Py =

j

Non linear type

TVD 3rd oeder
at@i = —Aif
. -(1
fiv172 = .ff+)1/2
1 ) _ ‘
T { A= RO ) AS g+ (L4 RUOT ) Ao |
1

~ 1Cir12 {(1 — k)W (re 5 0) Adiyays + (1 + }f)‘I’("'{tlm)AGﬂ‘iﬂ/z}

oy _Lpoooo
fivie = B {{'i+1/2@1 + "z‘+1/2‘9?*1}

CL—I/Z = (c+ e|)ix1/2,

("';+'J./2 = ((_‘, — ‘(«'|)i——1/2

PPM : Piecewise-Parabolic Method
ENO : Essentially Non-oscillatory
WENO: weighted ENO

at‘;b + Caﬂ:‘;b =0

14



Semi-Lagrangian scheme

Considering the equation on the grid i

Space-Time Plane
P - t 1

Velocity :C=const.

E?taﬁ + (383;(,?{) =0

to future Backtrace (shift operator )
n-1 ‘
—O0—0—Lo—0—0—0 >
d-1  id | X

15



We choose the TVD scheme as conventional method
and set Parareal CN-TVD as reference.

Code of the coarse solver iIs same as one of the fine solver.
This part is different only.

—>

(

Numerical\flux-construction

Fine solver -

Time loop

Time Integrator: Forward Euler | gt

< =

Q.
3 | [ Numerical flux construction
Coarse solver -
\. £ || Time integrator: Crank Nicolson | 5T
. Y
SOR Is used to solve AX=Db
-Ot: time step width of fine solver: set by the CFL condition: Ax/v > 0t

-OT: time step width of coarse solver: OT >> ot 16



Impact of CIP Method on
the parareal convegence.




CIP method

Up stream calculation and time integration is performed by
back-trace and shift operation (CFL free formulais used here.)
* Considering the equation on the grid i

Back-trace: Shit operation

Space time plane

n tt

Velocity :C=const. Velocity :C=const.

id-1 ('id i id )id-1 X

id = grid that is near i grid of cell (id, id-1)

s XaP\ . ﬂ
id =i INT(AX)—l INT(AK)

Back-trace points finding et
Ep =1 —xiq=1; — 0t — 139 = —cot — (1r; — x5q) = —cot — Ax(i —id) = —cdt + AzINT (—)
Upstream finding Ax
Dy = —s(c)Azx, s(c) = SIGN(1.0,c¢)

1Q



Detail of Formula

CIP 3rd method CIP 5th method (We developed it as
more accurate CIP at this time.)

0o+ cOrp =0 Orp + cOpp = 0
0,g + cOy,g =0 Org + c0pg =0, O¢x +cOx =0 (gradient,

® Space discretization: by the cubic interpolation function
o(x) = Fig(x) = ajq(x — :r:q-_d)‘? + big(xr — :r:id)Q + gid(®x — xiq) + bid
g(x) = 0, Fiq(x) = 3aq(x — xiq)% + 2big(x — 23q9) + gia(z — 3q)

o(x) = Fia(x) = aia(x — ia)” + bia(x — 2ia)* + cia(@ — 2a)® + xia/2(x — 214)* + gia(x — Tia) + bia
g(z) = 0, Fiq(x) = bajg(z — 2i9)* + dbig(x — 259)% + 3cia(z — 24)% + xid(x — Tiq) + Gia
x(x) = 692 Fig(x) = 20aq(x — .’L’id)3 + 12bq(x — ;r:é_d)Q + 6cia(r — 4q) + Xid

1, ‘ ) 2
1 ‘ ‘ id = == {6(Gid—s(c) — Dia) — 3(Gia—s(c) + 9id) DF + 1/2(Xid—s(c) — Xid) PP }
Qig = ﬁ {_Q(Q)id—s(c) — @id) + (Gid—s(c) + .q-z‘a!)DF} Dy

1 ) ) p
1 bia = DT {=15(hia—se) — Did) + T(Gid—s(e) + 8/79ia) D — (Xid—s(c) — 3/2Xia) DT }
big = D {3(ia—se) — Gia)1(Gia—s(e) + 29ia)Dr } 1‘“
F Cid = By {10(hia—s(c) — Pia) — 4(gid—ste) — 3/29:0) Dr + 1/2(Xia—s(c) — 3Xia) D3}
3

® Up-date(time integration) :: by Semi-Lagrange scheme
¢"(x;) = Fiy ' (w; — cdt) ¢" (2:) = Fy (i — cdt)
_gn(fﬁ-i) _ axplr; 1(.’1;»,5_ . COt) g (xi) = O F!y 1(12 — cdt)
x"x;) = 5§F:é L(x; — edt)
O™ (w;) = ajy "Ep + bl Ep + Ci T Ep + Xia /265 + f}adff + Pid
g" (xi) = 5a?d l.i' + 4}’?4_1§1~' + 50?& l.y + Xid€F + 9.1-03
X" (2:) = 20a7 7168 + 1207712 + 667 R + Yia

¢"(x;) = ‘Jf?d._lff + b ! f« + 90 52 + ¢id
g"(x;) = 3”*?1:!_1& + Qbid ff‘ + -‘h’d 1

19



Code of CIP-5th method

do j=1,Ny; do i=1, Nx
cx =0.5d0*(v1(i-1, j, D+v1(, j, 1))
ida =i—int (cx*dt/dx)

55(3t ()f tf]ea Xgi =—cx*dt+dx*real (i—ida)
. ais =sign (1.0, cx)
advection idam=ida-int (ais)
fv = vl (ida, j, 3)
F)EiffifT]E?tEErES gfi =gf (ida, j,1) ! dfai/dx
ggfl ggf(lda LN ddfal/dx/dx
==yl \|ua||| J 3/ \:‘.(.da J u;

Calculation of aidi=—dxb*ais*( 6.0% dfi &

& + 3. 0% ( gf C(idam, j, 1)+ gfi)*dx*ais &
. & + 0. 5% ( ggf (idam, j, 1)- ggfi)*ddx )
the coefficient bidi= dxd%  (-15.0% dfi &
I & - (7. 0xgf (idam, j, 1)+8.0% gfi)*dx*ais &
()f fSF)llf]EE & - ( gef (idam, j, 1)—1. 5xggfi) *ddx )
fljr](:ti()r] cidl=—dx3*ais*( 10.0% dfi &
& + 4. 0% ( gf (idam, j, 1)+1.5% gfi)*dx*ais &
& 075 get(iaam, j,1)=3.70*ge 1) *ddX J
Update of v2 (i J,3)= &
] &(((( aidl*xgi+ bidl)*xgi+  cidl)*xgi+0. 5xggfi)*xgi+gfi)*xgi+fv
variables gfn (i, J,1)= &
& ((( 5.0xaidl*xgi+ 4.0xbid1)*xgi+3. 0xcidl) *xgi+ gefi)*xgi+gfi
gefn(i, j, 1)=&

& ((20.0%aidl*xgi+12. 0xbid1)*xgi+6. Oxcidl) *xgi+ gefi
end do; end do

CIP-5th method is very simple and we can easily develop CIP-
5th code based on CIP-3rd method code.



Check performance of the CIP—-5th method by comparing
the CIP—3rd and CIP-5th methods

Case-1: Advection of step shape

(a)test parameters (b) Results of ® distribution (t=0.5)
: . 1.2 : . . . . . . .
® Physical condltl_on ~< L ICIPSIthCFLE).S _
® 1D convection of step shape =~ —o0— CIP5thCFL0.25
® Speed: c=1 e 1 —O0— CIP5thCFL0.125]
® Space length : L=2 [ g:Eg{ggEtg'é%'
® Time length : T=0.5. 2.0 08 ]
® Numerical analysis condition [
® Num. of meshes: 200 0.6
- dx=0.01 I
® \Width of time step 0.4
—> dt=0.005,0.0025,0.00125 i
- CFL=0.5, 0.25, 0.125 0.2
® Initial condition -
- x=0--0.5:9=1.0, x > 0.5: ©=0.0 0
1.0 [
_02 | L | L | L | L | L | L | L | L
CD(X) 0.92 0.94 0.96 098 1 1.02 1.04 1.06
X X
>
0.5 L=2.0

21



(c) Results of ® distribution(t=2.0) (¢’) Zoomed part

——o— CIP5th.CFL0.5
—a—— CIP5th.CFL0.125
——— CIP3rd.CFLO0.5
—o— COP3rd.CFL0.125

A~~~ — 1 r 1 r 1 r 1 r 1 r T 1 0.6 I ' I I ' I
Xt - - . -
'\9'/ 1k ] 0.58 |- Analytical .
I ] 0.56 | “ -
0.8} - 0.54 CIP5!th.CFLO.125 ]
i ZOOM i :
o | —
06k i 0.52 _
! ] 0.5 | a
0.4} - i ]
_ i _ 0.48 _
0.2F | 0.46 - -
0.44 | -
Or *J 0.42 -
' ' 0.4

L L ' ' ' N N | L | L | L | L |
2!6 2.|65 2!7 2.|75 2!8 2.;35 2!9 2.746 2.748 2.75 2.752 2.754
X X

CIP-5th method -> Width of step is thinner.
- Phase accuracy is better.



Case-2: Advection of sin wave

(a)test parameters (b) ® distribution (after 12, 60cycles)
—O— Analytical
® Physical condition . after 12cycles —o— CIP3rd after 60cycles

® 1D convection of sin wave 51-_' T T 1 5 I e
® Speedc=1 osl 1 {
® Space length: L=2 Tt
® Time length : T=0.6. 3.0 06 o5k
® Numerical analysis condition 04r ]
® Num. of meshse: 100 021 ]
> dx=0.02 or 1T
® \WVidth of time step 02r ]
> dt=0.015>CFL=0.75  04[ Tosk
> one wave/5grids 061 ]
® |nitial condition 0.8 '
- Sin wave 1 1 1r
18 18 19 185 = 2 18 185 19 1% 7
X X

x —o— CIP5th

—O— Analytical

—o—— CIP3rd
—o—— CIP5th

CIP-5th - Damping of amplitude is very smaller .

- Phase accuracy is better.

Let’s study the impact of CIP-5th
on the parareal iteration!




-Ot: time step width of fine solver:

Fine solver

Coarse solver

Parareal CIP (3rd, 5th)

2 >

% CIP function construction

'E Time integrator: Semi-Lagrange o6t
N

3 CIP function construction

)

E Time integrator: Semi-Lagrange oT

-OT: time step width of coarse solver: OT >> 0ot

fixed by the CFL condition: Ax/v < &t

Flow of Parareal CIP is same for CIP-3rd and CIP-5th methods.

24



Numerical test: Parameters

Test problem

® C =1.0and Space [0,3] X Time: [0, 2.0]

® (a) advection of step shape See the initial
® (b) advection of step like wave } condition

f(x)=0.5(1-tanh((x-x0)/xi). xi : width of step bellow
- x0=1.0, '
- Xi =SQRT(2D/k)=SQRT(2/k): 0.035(k=1600),0.07(k=400)

Space and time
descritaization

® dx=0.01, 200meshes (10grids/wave) —L=dx X 200=2
® ot =0.001(CFL=0.1)
® Boundary condition : continuous

PinT condition

® Number of time slices: 20
® Rfc =25 (6T=0.025)

Initial condition

5T
0.6 -

0.4

0.2

“Step” and “Smooth curves”
are used as Initial condition.
R - When smoothness of

step curve increases, the number
of high wave number waves

| decrease in curves.

. ] . 1 . ] . 1 .
1.5 2 2.5 3 X

25



Residual during the parareal iteration: Influence of
CIP5th and reducing the number of high wave number waves
Without Relaxation: a=1
e SMOOQTH CURVE

STEP_

g 105 105 I ) T T
X
N’
<
m 100 100 M
GJ =
it X ot
S
- -5
10 10'55 (.)b
©
x 1010 10710
—8— CN-TVD —&8— CN-TVD
—O— CIP3rd —O— CIP3rd
—e—— CIP5th —e— CIP5th
10-15 10-15
1 N 1 N 1 N 1 N | 1 N 1 N 1 N 1 N 1
0 5 10 15 20 0 5 10_ 15 20
lteration number Krar Ilteration number Kprar
. Ui — F(TnaTn—l:U:;‘:i)
Relaxation parameter o < 1.0 b a {G(T To U ) — G(Tp, Tor, UE—1)}

% CIP method and reduce of the number of high wave
number waves improves the convergence.
% CIP 5th has not so much effectiveness than CIP3rd.
- Reason why not yet clear ?



Step

SMOOTH
CURVE

Residual during the parareal iteration
Influence of parareal iteration realxation

Relaxatign: NQ G=,1

I
o
=]

Residual res™ (Kra)

Residual res” (Kra")

=

e
R
o

105

—+&8— CN-TVD
—O— CIP3rd
—e— CIP5th

: —8— CN-TVD
£ —0— CIPard
E —e— CIP5th

Residua rebound

E 1 . I . 1 . L . L3
0 5 10 15 20

Ilteration number Krar

—) Rlelelxxatiqn:l G.=0.'2| :

105F"

10°

10°°

——+&— CN-TVD
—O— CIP3rd
——e—— CIP5th

—+8— CN-TVD
—O— CIP3rd
—e&— CIP5th

10 15

Ml
I
5

—15 20

Iteratlon number Kpar

Effective

Not so much
{ effective ?

Relaxation is effective for residual rebound,
but case by case.



CIP-5th looks not so much effective than CIP-3rd, really ?
Then, check the profile of variable along iteration=-=-

CIP-5th is very
accurate even for

o vl s ol vl ol vl e

Change of the
profile @ along

ol

Residual res”™ (Kpa)

Kpar=1.
Kpar. 3 g
10 . :g
——o— CN-TVD &
—O0— CIP3rd 3
. F —— CIP5th £
107 1 i 1 L 1 L 1 i 1 -E
0 5 10 15 20
Iteration number KPa'
[T T T T | [ T T T T T T T T T T T T T
X 1F CN_TVD =1 1F o CIP'Sth 7]
0.8 408} _ i
0.6} 40.6F L i
oal \Q Joat i Kpar -
I —e— 1
i Kpar _02_ —a— 3
0.2k 4 [ —=— 5 i
—o0— 10 s ——
B —_—a— 20 10
ol _ oF L —o— 20 .
565 37 2 58 283 T T P T, B T
2.65 2.7 2.75 2.8 2.85 .65 2.7 2.75 2.8 285 y
X X

Profile show that CIP-5th is effective even for first sate of the iteration!



Summary and Future Work
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Summary:

® Increasing the accuracy of phase calculation by the CIP
method is effective for improvement of parereal
convergence.

® High wave number modes cause the difficulty of pararel
convergence via decreasing accuracy of phase

STEP SMOOTH CURVE
‘“g\. 105;_! T T T T T T T 105? T T T T . , . |
X ¥ E
@ 100;_ m\ 100;_
© 3 e
5 1 3
= 100 10°F W
) - 200 .
<5 E 4
o E 1
10E W0 5 cnTvD
4 —0— gﬁ’%l?er E —O— CIP3rd
E —e— CIPSth E —e— CIPsth
asE s E
107%° E . . . | . | . | 107"k | ) | . | . | . |
0 3 10 15 20 0 5 10 15 20
lteration number Kpar Iteration number Kpar

30



® Parareal algorithm should be evaluated using step
convection problem to dig up issues.

E¥ACT (R - mh %3 rwx}

0.7 j—EXACT
@ ——UPWIND
0.6 H—e—rLw

1+ -
I

p=a) 27
08I ‘R AT Wmax

> . H——PPM

4 Q 05K nesPLINE

ed ] 3 04
g

Woosk

[N

0.2F

0.6 -

o CIP

0.4 -

0.2 - 0.1

O s T Tis 2 25 5 ‘
: o am=4 Wlin= 2) I~
R&X = 2T

of . A= W‘L‘X

7
1 1 1 1 1 1 1
[e] 0.5 1 1.5 2 2.5 3 W=3 - 1 20X

® Phase of high wave number modes tends to become

worse by the numerical damping even if we use the
CIP method.

Then, the improvement of the CIP3rd, 5th is need.
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~ Futurework

Conventional Methods that are tried in this study
main method (1) CIP scheme: advecting the phase

infarmatinn hyv the aradient of valile ©

(A) Next, We try to combination of STRS scheme and CIP method.
(B) Control of the residual rebound

— Main issue . Gap of phase
Or + c0z¢p = 0 [ Og + €0zg = 0 accuracy between fine
g =029 ~. /and coarse solver

x not eheqqh =
Stabilization: (3)Hybrid _\ _ TS
numerical damping STRS-CIP / —~~~\---
Accuracy: A
Space and time 1 not yet success _>Z
higher order terms . -

By p+ Oy p = 0 - “There is a limit in the use.

(2) STRS scheme: achieving the stabilization
and error elimination using “space and time

reversal symmetry “ "



See you next In Roscoff Marine Station,
Frace at May, PInT 2018 meeting.
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