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Issue and Challenge
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Challenge:

 Improvement of the convergence

 We must reduce the phase difference between fine and 

coarse solvers （≒ phase error）. 

 Issue of the parareal method for hyperbolic PDEs:

Hyperbolic PDEs: Waves 
There is Phase Difference between fine and coarse solver’s result  
Oscillations  damages the convergence of the parareal method 

*M. Gander and M. Petcu, 

Analysis of a Krylov 

subspace enhanced parareal 

algorithm for linear problems, 

ESAIM Proc, 25, (2008), 

114-129.

(We just focus on the convergence.)
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How do we perform 
reducing phase error?
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Expected methods to reduce phase error in 

coarse solver with low cost

We focus on mainly CIP scheme in this presentation.

To reduce the cost

Coarsening Coarsening time step width

δT >> δtSpace Time integrator

Using fine 

δt as  δT

coarse 

solver time 

step width

Using coarse 

space modes 

High accurate 

convergence is 

not available by 

lack of high 

order space 

modes.  

Using low cost 

time integrator 

Available for only 

the case that fine 

solver cost is 

very high.

Using a high 

accuracy 

phase 

calculation 

method

Using high order time 

integrator Not enough 

CIP scheme

+ STRS scheme
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For advection term 

calculation

Ex: CAAP method
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Method overview



There is a limit in the us
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Methods overview of advection term calculation

Main issue : Gap of phase 

accuracy between fine 

and coarse solver

Conventional 

main method (1) CIP scheme: advecting the phase  

information by the gradient of value Φ.

(3)Hybrid

STRS-CIP
Stabilization: 

numerical damping 

Accuracy:

Space and time 

higher order terms

(2) STRS scheme:  achieving the stabilization 

and error elimination using “space and time 

reversal symmetry “ .

Methods that are tried in this study

not yet success

There is a limit in the use.

not enough



・proposed by T. Yabe eta(1987)*

・performs numerical advection process by the semi-Lagrange 

method using the cubic interpolation function of both variable 

and its gradient. 
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What is CIP(constrained Interpolation Profile ) scheme? 

＊ H. Takewaki and T. Yabe, The cubic-interpolated pseudo particle (CIP) method: 

Application to nonlinear and multi-dimensional hyperbolic equations, J. Comput. 

Phys., 70 (1987), 353372.

The CIP scheme gives the accurate phase.

We focus on the CIP in this study. 

Why ?
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The method using a space differential of the equation gives 

generally highly precise solutions  even on coarse grids.

 CIP3rd scheme:

 Mixed form of FEM

(Structure analysis)

Space 

differential of 

the equation(a) Equation of strain and  

displacement relation

(b) Equation of moment 

conservation 

(a)

(b)

:Handle these equations as PDE

 FIC scheme

（Finite Increment Calculus）

(a)

(b)

For advection equation, 

point is the use of phase information (=gradient) .
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Ex. of  FIC results

(a) 1D convection-diffusion-production

problem
(b)1D Helmholtz problem

FIC gives the very accurate solution on the  very coarse grids.
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In this time, we use the conventional methods 
for advection : (Upwind) differencing scheme

Let’s set a reference to the high 
accurate phase calculation  method.
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Conventional Discretization method of advection term 

PPM   : Piecewise-Parabolic Method 

ENO   : Essentially Non-oscillatory

WENO: weighted ENO

Non linear type
Linear type( CFL-free form used 

by  the Semi-Lagrangian scheme)
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ｔ
x

xid

Velocity :C=const.

id-1

n-1

n

Considering the equation on the grid i

to  future

Space-Time Plane

i

Semi-Lagrangian scheme

Backtrace (shift operator )
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We choose the TVD scheme  as conventional method  
and set  Parareal_CN-TVD as reference. 

T
im

e
 l
o

o
p

Numerical flux construction

Time integrator: Forward Euler

SOR is used to solve AX=b

Fine solver

T
im

e
 l
o

o
p

Numerical flux construction

Time integrator: Crank Nicolson

Coarse solver

Code of the coarse solver is same as one of the fine solver.

This part is different only. 

・δt: time step width of  fine solver： set by the CFL condition: Δx/v >  δt 

・δT: time step width of coarse solver： δT >> δt

δt

δT
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Impact of CIP Method on 
the parareal convegence.
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CIP method 

Up stream calculation  and time integration is performed by 

back-trace and shift operation (CFL free formula is used here.)

Back-trace points finding 

Back-trace： Shit operation

＊Considering the equation on the grid i

id = grid that is near i grid of cell (id, id-1) 

Upstream finding
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 Space discretization： by the cubic interpolation function 

CIP 3rd method 

 Up-date(time integration) :  by Semi-Lagrange scheme

CIP 5th method (We developed it as 

more accurate CIP at this time.)

Detail of Formula

(gradient)

(gradient,

curvature)
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do j=1,Ny; do i=1,Nx
cx  =0.5d0*(v1(i-1,j,1)+v1(i,j,1))
ida =i-int(cx*dt/dx)
xgi =-cx*dt+dx*real(i-ida)
ais =sign(1.0,cx)
idam=ida-int(ais)
fv  =              v1(ida,j,3)
gfi =gf (ida,j,1) !  dfai/dx
ggfi=ggf(ida,j,1) ! ddfai/dx/dx
dfi =v1 (idam,j,3)-v1(ida,j,3)
aid1=-dx5*ais*(  6.0* dfi &

&               + 3.0*(    gf (idam,j,1)+     gfi)*dx*ais  &
&               + 0.5*(    ggf(idam,j,1)- ggfi)*ddx    )
bid1= dx4*    (-15.0* dfi &

&               - (7.0*gf (idam,j,1)+8.0* gfi)*dx*ais  &
&               - (    ggf(idam,j,1)-1.5*ggfi)*ddx    )
cid1=-dx3*ais*( 10.0* dfi &

&               + 4.0*(    gf (idam,j,1)+1.5* gfi)*dx*ais  &
&               + 0.5*(    ggf(idam,j,1)-3.0*ggfi)*ddx    )
v2  (i,j,3)= &

&((((     aid1*xgi+     bid1)*xgi+    cid1)*xgi+0.5*ggfi)*xgi+gfi)*xgi+fv
gfn (i,j,1)= &

& ((( 5.0*aid1*xgi+ 4.0*bid1)*xgi+3.0*cid1)*xgi+    ggfi)*xgi+gfi
ggfn(i,j,1)= &

&  ((20.0*aid1*xgi+12.0*bid1)*xgi+6.0*cid1)*xgi+    ggfi

end do; end do

Set of the 

advection 

parameters

Calculation of 

the coefficient 

of spline 

function

Update of 

variables

Code of CIP-5th method

CIP-5th method  is very simple and  we can easily develop CIP-

5th code based on CIP-3rd method code. 
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（a）test parameters

 Physical condition 

 1D convection of step shape

 Speed: c=1

 Space length : L=2

 Time length : T=0.5、2.0

 Numerical analysis condition

 Num. of meshes: 200

 dx=0.01

 Width of time step

 dt=0.005,0.0025,0.00125

 CFL=0.5, 0.25, 0.125

 Initial condition

 x=0--0.5:Φ=1.0, x > 0.5: Φ=0.0

Case-1: Advection of step shape

x

Φ
(x

)

（b）Results of Φ distribution（t=0.5）

Check performance of the CIP-5th method by comparing 
the CIP-3rd and CIP-5th methods  

Φ(x)
x

0.5 L=2.0

1.0

 CIP5thCFL0.5
 CIP5thCFL0.25
 CIP5thCFL0.125
 CIP3rdCFL0.125
 CIP3rdCFL0.5

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06
-0.2

0

0.2

0.4

0.6

0.8

1

1.2



 CIP5th.CFL0.5
 CIP5th.CFL0.125
 CIP3rd.CFL0.5
 COP3rd.CFL0.125

2.6 2.65 2.7 2.75 2.8 2.85 2.9
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0.2

0.4

0.6

0.8

1
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CIP5th.T=2.cfd0.5.step.txt

CIP5th.T=2.cfd0.125.step.txt

CIP3rd.T=2.0.5.step.txt

CIP3rd.T=2.125.step.txt

2.746 2.748 2.75 2.752 2.754
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

x

Φ
(x

)

x

CIP-5th method     Width of step is thinner.  

 Phase accuracy is better. 

（c’） Zoomed  part

CIP5th.CFL0.125

CIP3rd:

CFL0.125

Analytical 

ZOOM

（c） Results of Φ distribution（t=2.0）



 Analytical

 CIP3rd

 CIP5th

1.8 1.85 1.9 1.95 2
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 Analytical

 CIP3rd

 CIP5th

1.8 1.85 1.9 1.95 2
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x

（b）Φ distribution （after 12, 60cycles）（a）test parameters

 Physical condition 

 1D convection of sin wave

 Speed c=1

 Space length : L=2

 Time length : T=0.6、3.0

 Numerical analysis condition

 Num. of meshse: 100

 dx=0.02

 Width of time step

 dt=0.015CFL=0.75

 one wave/5grids

 Initial condition

 Sin wave 

x

Φ
(x

) after 12cycles after 60cycles

CIP-5th   Damping of amplitude is very smaller .  

 Phase accuracy is better. 

Let’s study the impact of CIP-5th 

on the parareal iteration!

Case-2: Advection of sin wave
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CIP function construction

Time integrator: Semi-Lagrange
Fine solver

T
im

e
 l
o
o
p

CIP function construction

Time integrator: Semi-Lagrange

Coarse solver

δt

δT

Parareal_CIP (3rd, 5th)

・δt: time step width of  fine solver： fixed by the CFL condition: Δx/v <  δt 

・δT: time step width of coarse solver： δT >> δt

Flow of Parareal_CIP is same for CIP-3rd and CIP-5th  methods.
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f(x)=0.5(1-tanh((x-xo)/xi)、 xi : width of step

 xo=1.0,

 xi =SQRT(2D/k)=SQRT(2/k): 0.035(k=1600),0.07(k=400) 

Numerical test: Parameters 

Test problem
 (b) advection of step like wave

 C = 1.0 and Space [0,3]×Time: [0, 2.0]

Space and time 
descritaization

 dx=0.01, 200meshes (10grids/wave) →L=dx×200=2
 δt =0.001(CFL=0.1)
 Boundary condition：continuous

PinT condition  Number of time slices: 20
 Rfc = 25 (δT= 0.025)

“Step” and “Smooth curves” 

are used as initial condition.

 When smoothness of 

curve increases, the number 

of high wave number waves 

decrease in curves.

Initial condition

 (a) advection of step shape

 Curved
 Step

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

x

Φ
(x

)

See the initial 

condition 

bellow.
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Residual during the parareal iteration： Influence of 

CIP5th and reducing the number of high wave number waves 

Without Relaxation: α=1

＊CIP method and reduce of the number of high wave 

number waves improves the convergence. 

＊CIP 5th has not so much effectiveness than CIP3rd.

 Reason why not yet clear ?

STEP SMOOTH CURVE

CN-TVD
CIP3rd
CIP5th

0 5 10 15 20
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100
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Iteration number Kpar
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Iteration number Kpar

 CN-TVD
 CIP3rd
 CIP5th

0 5 10 15 20

10-15

10-10

10-5
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Relaxation parameter α < 1.0



CN-TVD
CIP3rd
CIP5th
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Residual during the parareal iteration

Influence of parareal iteration realxation

Iteration number Kpar

R
e
s
id

u
a
l 
re

s
^ 

(K
p

a
r)

Relaxation: NO α=1

Relaxation is effective for residual rebound, 

but case by case.

CN-TVD

CIP3rd

CIP5th

0 5 10 15 20

10-15
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100

105

Iteration number Kpar

Relaxation:  α=0.2

 CN-TVD
 CIP3rd
 CIP5th
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Not so much 

effective ?

Residua rebound 
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Φ
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Iteration number Kpar

CIP-5th looks not so much effective than CIP-3rd, really ?
Then, check the profile of variable along iteration・・・

X X X

CIP-5thCIP-3rd

Change of the 

profile Φ along 

Kpar.

CIP-5th  is very 

accurate even for 

Kpar=1. 

Profile show that CIP-5th  is effective even for first sate of the iteration!
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Summary and Future Work
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 Increasing the accuracy of phase calculation by the CIP 

method is effective  for improvement of parereal 

convergence. 

Summary:

High wave number modes cause the difficulty of pararel 

convergence via decreasing accuracy of phase 

calculation.



31

Phase of high wave number modes tends to become 

worse by the numerical damping even if we use the 

CIP method.

Parareal algorithm should be evaluated using step 

convection problem to dig up issues.

 Curved
 Step

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Then, the improvement of the CIP3rd, 5th  is need.



There is a limit in the us
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Main issue : Gap of phase 

accuracy between fine 

and coarse solver

Conventional 

main method (1) CIP scheme: advecting the phase  

information by the gradient of value Φ.

(3)Hybrid

STRS-CIP
Stabilization: 

numerical damping 

Accuracy:

Space and time 

higher order terms

(2) STRS scheme:  achieving the stabilization 

and error elimination using “space and time 

reversal symmetry “ .

Methods that are tried in this study

not yet success

There is a limit in the use.

not enough

Future work
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See you next in Roscoff Marine Station, 

Frace at  May, PinT 2018 meeting.


