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 This paper proposes a method for estimating the spectral reflectance of Neugebauer 

primaries or eight basic colors when the spectral reflectance data of several colors are 

given. The proposed method is based on Neugebauer model, which expresses an arbitrary 

color as a weighted average of Neugebauer primaries, and its sparse version called sparse 

Neugebauer model. We also reproduce the colors from the estimated reflectance spectra, 

and show experimental results of spectral reflectance estimation and color reproduction 

from the estimated spectral data. It is experimentally demonstrated that the sparse 

Neugebauer model outperforms the conventional Neugebauer model in both spectral 

reflectance estimation and color reproduction.  
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1. Introduction 

The reflectance properties of object surfaces are determined by 
the spectral reflectance factors that are normally measured at 
regular intervals in the visible spectrum of radiation by reflectance 
spectrophotometers [1]. The integrals of the products of the 
spectral reflectance, the relative spectral power distribution of an 
illuminant and color matching functions produce the tristimulus 
values. On the other hand, the inverse computation from 
tristimulus values or colorimetric data to the spectral reflectance is 
a difficult problem because the computation of tristimulus values 
from spectral reflectance involves the dimensionality reduction of 
data, i.e., the spectral reflectance estimation is an ill-posed 
problem.  

Recently, Sharma and Wang proposed a neural network-based 
spectrum recovery method, and evaluated the accuracy of the 
spectrum recovery by the spectral mean-squared error [2]. Harifi 
et al. presented a principal component analysis (PCA)-based 
method which employed six principal components [3]. Amiri and 
Amirshahi proposed a step by step progressive method for 
recovery of spectral data from the corresponding colorimetric 
information, where the spatial dimensions are decreased from 6D 
to 3D in a step-by-step manner to decrease the number of samples 
used for color gamut interpolation [4]. Wu et al. presented an 
approach that uses a new sample selection criterion based on color 

feature match to select a series of suitable samples for creating the 
adapted transformation matrix to reconstruct spectral reflectance 
[5]. Inoue et al. proposed two methods for recovering the 
reflectance spectra of colorimetric data by using the non-negative 
constraints in reflectance spectra, where the problem of reflectance 
spectra recovery is formulated as a nonnegative least squares 
problem [6] into which the Neugebauer model [7] is incorporated 
[8]. These methods can be used to estimate the spectral reflectance 
from general colorimetric data including CIE tristimulus values 
and CMYK-printed samples.  

The Neugebauer model can be used to infer the gamut 
boundaries of printed colorants on paper [7] by printers such as 
conventional CMYK printers. If three inks, such as cyan, magenta 
and yellow, are utilized, then the paper may be covered by one ink, 
two inks, three inks, or may be left blank. As a result, eight 
combinations of overlap of inks can occur, and they correspond to 
eight basic colors, such as red, green, blue, black, cyan, magenta, 
yellow and white, which are referred to as the Neugebauer 
primaries [7]. Although the Neugebauer model was originally 
developed for modeling the printed colorants on paper, it can be 
used for general colorimetric data as we will prove in Subsection 
2.1 that the equation of the Neugebauer model holds for any color 
in RGB color space.  

In this paper, we propose sparse Neugebauer model for 

estimating spectral reflectance of Neugebauer primaries or basic 

eight colors when reflectance spectra of several colors are given. 

Experimental results show that the proposed method achieves 
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lower estimation error than the previous method with the 

conventional Neugebauer model. We also reproduce the 

Neugebauer primaries and the colors of given reflectance spectra 

from the estimated reflectance spectra. The effectiveness of the 

sparse Neugebauer model in color reproduction is also 

demonstrated in comparison with the conventional Neugebauer 

model.  

The rest of this paper is organized as follows. Section 2 

summarizes the Neugebauer model, and then proposes the sparse 

Neugebauer model. Section 3 proposes a method for estimating the 

spectral reflectance based on the Neugebauer models, and a 

convergence property of the proposed estimation algorithm is 

proved. Section 4 describes the procedure for reproducing the 

colors from the estimated spectral data. Section 5 shows 

experimental results. Finally, Section 6 concludes this paper. 

2. Neugebauer Models 

In this section, we first summarize the Neugebauer model, and 

then propose sparse Neugebauer model to improve the 

performance of spectral reflectance estimation and color 

reproduction.  

2.1. Neugebauer Model 

Let 𝒗 = [𝑟, 𝑔, 𝑏] be a color vector in RGB color space (bold 
italic lowercase letters denote vectors), where 𝑟, 𝑔 and 𝑏  denote 
the red, green and blue components of the color, and satisfy 0 ≤
𝑟 ≤ 1, 0 ≤ 𝑔 ≤ 1  and 0 ≤ 𝑏 ≤ 1 , respectively. Then 𝒗  have 
another expression as follows:   

𝒗 = 𝑎1𝒓 + 𝑎2𝒈 + 𝑎3𝒃 + 𝑎4𝒌 + 𝑎5𝒄 + 𝑎6𝒎 + 𝑎7𝒚 + 𝑎8𝒘,

where 𝒓 = [1,0,0], 𝒈 = [0,1,0], 𝒃 = [0,0,1], 𝒌 = [0,0,0], 𝒄 =
𝒘 − 𝒓, 𝒎 = 𝒘 − 𝒈, 𝒚 = 𝒘 − 𝒃  and 𝒘 = [1,1,1]  denote the 
Neugebauer primaries [7]: red, green, blue, black, cyan, magenta, 
yellow and white, respectively. The coefficients in (1) are given by 

 𝑎1 = 𝑟(1 − 𝑔)(1 − 𝑏),   𝑎5 = (1 − 𝑟)𝑔𝑏, 

 𝑎2 = (1 − 𝑟)𝑔(1 − 𝑏),   𝑎6 = 𝑟(1 − 𝑔)𝑏, 

 𝑎3 = (1 − 𝑟)(1 − 𝑔)𝑏,   𝑎7 = 𝑟𝑔(1 − 𝑏), 

 𝑎4 = (1 − 𝑟)(1 − 𝑔)(1 − 𝑏),   𝑎8 = 𝑟𝑔𝑏, 

which are called the Demichel equations, and (1) is called the 

Neugebauer equation [7]. The coefficients in (2) are nonnegative 

and satisfy ∑ 𝑎𝑘
𝐾
𝑘=1 = 1 where 𝐾 = 8. The equality in (1) with the 

coefficients in (2) can be confirmed for each element as follows: 

for example, the first element in (1) satisfies 

  𝑟(1 − 𝑔)(1 − 𝑏) + 𝑟(1 − 𝑔)𝑏 + 𝑟𝑔(1 − 𝑏) + 𝑟𝑔𝑏 

 = 𝑟[(1 − 𝑔)(1 − 𝑏) + (1 − 𝑔)𝑏 + 𝑔(1 − 𝑏) + 𝑔𝑏] 

 = 𝑟[(1 − 𝑔){(1 − 𝑏) + 𝑏} + 𝑔{(1 − 𝑏) + 𝑏}] 

 = 𝑟[(1 − 𝑔) + 𝑔][(1 − 𝑏) + 𝑏] = 𝑟. 

The similar equations hold for the second and third elements in (1).  

 We simply call (1) with (2) the Neugebauer model, which is 
valid for both tristimulus values and spectral reflectance, and use 
it for spectral reflectance estimation.  

2.2. Sparse Neugebauer Model 

 Let 𝑆 = {𝒓, 𝒈, 𝒃, 𝒌, 𝒄, 𝒎, 𝒚, 𝒘}  be a set of the Neugebauer 
primaries. Then the Neugebauer equation in (1) states that an 
arbitrary color vector 𝒗 can be expressed as a weighted average of 
the eight color vectors in 𝑆. We can also express a color vector in 
RGB color space as a linear combination of four colors which are 
in general position in RGB color space because four points being 
in general position in a three-dimensional color span a three-
dimensional linear space, and form a tetrahedron. If a color is just 
on a plane spanned by three vertices of RGB color cube or a line 
connecting two vertices of RGB color cube, then the color is 
expressed as the linear combinations of three or two vertices, 
respectively. We describe the most general four-color case as 
follows (in the other degenerated cases, the description can be 

simplified): Let 𝑆̃ = {𝒔1, 𝒔2, 𝒔3, 𝒔4} be a subset of 𝑆 the elements 
of which are in general position. Then, for a color vector 𝒗, we 
have 

 𝒗 − 𝒔1 = 𝛼2(𝒔2 − 𝒔1) + 𝛼3(𝒔3 − 𝒔1) + 𝛼4(𝒔4 − 𝒔1) 

 = [𝛼2, 𝛼3, 𝛼4] [

𝒔2 − 𝒔1

𝒔3 − 𝒔1

𝒔4 − 𝒔1

], 

from which the coefficients 𝛼2, 𝛼3, 𝛼4 are given by 

 [𝛼2, 𝛼3, 𝛼4] = (𝒗 − 𝒔1) [

𝒔2 − 𝒔1

𝒔3 − 𝒔1

𝒔4 − 𝒔1

]

−1

, 

where 𝒔1 is selected as a basic point. As a result, we have  

 𝒗 = 𝛼1𝒔1 + 𝛼2𝒔2 + 𝛼3𝒔3 + 𝛼4𝒔4, 

where 𝛼1 = 1 − 𝛼2 − 𝛼3 − 𝛼4 , and the four coefficients are 

nonnegative if 𝒗 is in the tetrahedron with the four vertices in 𝑆̃. 
We call (3) the sparse Neugebauer model since four coefficients 
among eight ones in (1) are zero in (3).  

We adapt the minimal brightness variation criterion (MBVQ) 
proposed by Shaked et al. [9] for selecting four Neugebauer 
primaries 𝒔1, 𝒔2, 𝒔3, 𝒔4, which are called the minimal brightness 
variation quadruple (MBVQ) [9], and given by 
{𝒓, 𝒈, 𝒃, 𝒌}, {𝒘, 𝒄, 𝒎, 𝒚}, {𝒎, 𝒚, 𝒈, 𝒄}, {𝒓, 𝒈, 𝒎, 𝒚}, {𝒓, 𝒈, 𝒃, 𝒎}  or 
{𝒄, 𝒎, 𝒈, 𝒃}.  

3. Spectral Reflectance Estimation 

Assume that the reflectance spectra of 𝑚  colors 𝒗𝑖 =
[𝑟𝑖 , 𝑔𝑖 , 𝑏𝑖]  for 𝑖 = 1, … , 𝑚  are given and stored in 𝑄 = [𝑞𝑖𝑗] , 

where 𝑞𝑖𝑗  denotes the reflectance of the 𝑗th wavelength 𝜆𝑗 for 𝑗 =
1, … , 𝑛 in the 𝑖th color 𝒗𝑖. Then, by the above nonsparse or sparse 
Neugebauer model, we have 

 𝑄 ≈ 𝐴𝑃, 

where 𝐴 = [𝑎𝑖𝑘]  denotes an 𝑚 × 𝐾  coefficient matrix whose 
elements are given by 

http://www.astesj.com/
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 𝑎𝑖,1 = 𝑟𝑖(1 − 𝑔𝑖)(1 − 𝑏𝑖),   𝑎𝑖,5 = (1 − 𝑟𝑖)𝑔𝑖𝑏𝑖 , 

 𝑎𝑖,2 = (1 − 𝑟𝑖)𝑔𝑖(1 − 𝑏𝑖),   𝑎𝑖,6 = 𝑟𝑖(1 − 𝑔𝑖)𝑏𝑖 , 

 𝑎𝑖,3 = (1 − 𝑟𝑖)(1 − 𝑔𝑖)𝑏𝑖 ,   𝑎𝑖,7 = 𝑟𝑖𝑔𝑖(1 − 𝑏𝑖), 

 𝑎𝑖,4 = (1 − 𝑟𝑖)(1 − 𝑔𝑖)(1 − 𝑏𝑖),   𝑎𝑖,8 = 𝑟𝑖𝑔𝑖𝑏𝑖 , 

when the Neugebauer model is used, and these are the Demichel 

equations [7] for the 𝑖th color 𝒗𝑖, and the number of columns in 𝐴 

is the number of the Neugebauer primaries, i.e., 𝐾 = 8. For the 

sparse Neugebauer model, four coefficients out of the eight ones 

in (4) become zero. 𝑃 = [𝑝𝑘𝑗]  denotes a 𝐾 × 𝑛  matrix whose 

(𝑘, 𝑗)  element 𝑝𝑘𝑗  is the reflectance of the 𝑘 th Neugebauer 

primary at the 𝑗th wavelength 𝜆𝑗. Then we formulate the problem 

for estimating the spectral reflectance of the Neugebauer primaries 

as follows:  

 min
𝑃

‖𝑄 − 𝐴𝑃‖𝐹
2 , 

 subj. to   𝑝𝑘𝑗 ≥ 0, 

where ‖∙‖𝐹 denotes the Frobenius norm, and the constraint (6) is 

for 𝑘 = 1, … , 𝐾  and 𝑗 = 1, … , 𝑛 . Let 𝐸(𝑃)  be the objective 

function in (5), then we have 

 𝐸(𝑃) = ∑ ∑ (𝑞𝑖𝑗 − ∑ 𝑎𝑖𝑘𝑝𝑘𝑗
𝐾
𝑘=1 )

2𝑛
𝑗=1

𝑚
𝑖=1  

 = ∑ ∑ [𝑞𝑖𝑗
2 − 2𝑞𝑖𝑗 ∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾
𝑘=1 + (∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾
𝑘=1 )

2
]𝑛

𝑗=1
𝑚
𝑖=1 . 

Since ∑ ∑ 𝑞𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1  is a constant independent of 𝑝𝑘𝑗 , the 

minimization of 𝐸(𝑃) is equivalent to the maximization of 

 𝐹(𝑃) = ∑ ∑ [𝑞𝑖𝑗 ∑ 𝑎𝑖𝑘𝑝𝑘𝑗
𝐾
𝑘=1 −

1

2
(∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾
𝑘=1 )

2
]𝑛

𝑗=1
𝑚
𝑖=1 .

Applying Jensen’s inequality [10] to the second term of the right 
side in (7), we have 

 (∑ 𝑎𝑖𝑘𝑝𝑘𝑗
𝐾
𝑘=1 )

2
= (∑ 𝑢𝑖𝑗𝑘

𝑎𝑖𝑘𝑝𝑘𝑗

𝑢𝑖𝑗𝑘

𝐾
𝑘=1 )

2

 

 ≤ ∑ 𝑢𝑖𝑗𝑘 (
𝑎𝑖𝑘𝑝𝑘𝑗

𝑢𝑖𝑗𝑘
)

2

=𝐾
𝑘=1 ∑

(𝑎𝑖𝑘𝑝𝑘𝑗)
2

𝑢𝑖𝑗𝑘

𝐾
𝑘=1 , 

where 𝑢𝑖𝑗𝑘  are positive constants satisfying ∑ 𝑢𝑖𝑗𝑘
𝐾
𝑘=1 = 1 . 

Substituting the rightmost term in (8) into (7), we have a lower 
bound of 𝐹(𝑃) as 

 𝐹𝐿𝐵(𝑃, 𝑈) = ∑ ∑ [𝑞𝑖𝑗 ∑ 𝑎𝑖𝑘𝑝𝑘𝑗
𝐾
𝑘=1 −

1

2
∑

(𝑎𝑖𝑘𝑝𝑘𝑗)
2

𝑢𝑖𝑗𝑘

𝐾
𝑘=1 ]𝑛

𝑗=1
𝑚
𝑖=1 ,

where 𝑈 = [𝑢𝑖𝑗𝑘] denotes a three-dimensional array having 𝑢𝑖𝑗𝑘 

as its (𝑖, 𝑗, 𝑘) element.  

 Replacing 𝐹  with 𝐹𝐿𝐵 , we formulate the problem of spectral 
reflectance estimation as follows: 

 max
𝑃,𝑈

𝐹𝐿𝐵(𝑃, 𝑈) 

 subj. to   ∑ 𝑢𝑖𝑗𝑘
𝐾
𝑘=1 = 1,   𝑢𝑖𝑗𝑘 > 0,   𝑝𝑘𝑗 ≥ 0. 

Let 𝐿 = 𝐹𝐿𝐵 − ∑ ∑ 𝜇𝑖𝑗(∑ 𝑢𝑖𝑗𝑘
𝐾
𝑘=1 − 1)𝑛

𝑗=1
𝑚
𝑖=1  be the Lagrange 

function for the constrained maximization problem (10) with (11), 

where 𝜇𝑖𝑗  for 𝑖 = 1, … , 𝑚  and 𝑗 = 1, … , 𝑛  are the Lagrange 

multipliers. Then we have the following condition for optimality: 


𝜕𝐿

𝜕𝑢𝑖𝑗𝑘
=

1

2

(𝑎𝑖𝑘𝑝𝑘𝑗)
2

𝑢𝑖𝑗𝑘
2 − 𝜇𝑖𝑗 = 0, 

from which we have 

 𝑢𝑖𝑗𝑘 =
𝑎𝑖𝑘𝑝𝑘𝑗

√2𝜇𝑖𝑗
, 

which is substituted into 


𝜕𝐿

𝜕𝜇𝑖𝑗
= ∑ 𝑢𝑖𝑗𝑘

𝐾
𝑘=1 − 1 = 0 

to obtain 

 √2𝜇𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑝𝑘𝑗
𝐾
𝑘=1 . 

Substitution of (13) into (12) gives  

 𝑢𝑖𝑗𝑘 =
𝑎𝑖𝑘𝑝𝑘𝑗

∑ 𝑎𝑖𝑙𝑝𝑙𝑗
𝐾
𝑙=1

. 

 Next, we solve the following optimality condition for 𝑝𝑘𝑗: 


𝜕𝐿

𝜕𝑝𝑘𝑗
=

𝜕𝐹𝐿𝐵

𝜕𝑝𝑘𝑗
= ∑ (𝑎𝑖𝑘𝑞𝑖𝑗 −

𝑎𝑖𝑘
2 𝑝𝑘𝑗

𝑢𝑖𝑗𝑘
)𝑚

𝑖=1 = 0, 

and have 

 𝑝𝑘𝑗 =
∑ 𝑎𝑖𝑘𝑞𝑖𝑗

𝑚
𝑖=1

∑
𝑎𝑖𝑘

2

𝑢𝑖𝑗𝑘

𝑚
𝑖=1

, 

into which we substitute (14) to have 

 𝑝𝑘𝑗 =
∑ 𝑎𝑖𝑘𝑞𝑖𝑗

𝑚
𝑖=1

∑ 𝑎𝑖𝑘
2

∑ 𝑎𝑖𝑙𝑝𝑙𝑗
𝐾
𝑙=1
𝑎𝑖𝑘𝑝𝑘𝑗

𝑚
𝑖=1

= 𝑝𝑘𝑗

∑ 𝑎𝑖𝑘𝑞𝑖𝑗
𝑚
𝑖=1

∑ ∑ 𝑎𝑖𝑘𝑎𝑖𝑙𝑝𝑙𝑗
𝐾
𝑙=1

𝑚
𝑖=1

, 

from which we have an iterative formula for 𝑝𝑘𝑗  as follows: 

 𝑝𝑘𝑗
(𝑡+1)

= 𝑝𝑘𝑗
(𝑡) ∑ 𝑎𝑖𝑘𝑞𝑖𝑗

𝑚
𝑖=1

∑ ∑ 𝑎𝑖𝑘𝑎𝑖𝑙𝑝𝑙𝑘
(𝑡)𝐾

𝑙=1
𝑚
𝑖=1

, 

where 𝑡 denotes the number of iterations for 𝑡 = 0,1, … , 𝑇 with the 

maximum iteration number 𝑇 . The above formula (15) can be 

written in a matrix form as 

 𝑃(𝑡+1) = 𝑃(𝑡) ⊙ (𝐴𝑇𝑄) ⊘ (𝐴𝑇𝐴𝑃(𝑡)), 
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where ⊙  and ⊘  denote the element-wise multiplication and 

division, respectively, because 𝑝𝑘𝑗
(𝑡)

,  ∑ 𝑎𝑖𝑘𝑞𝑖𝑗
𝑚
𝑖=1  and 

∑ ∑ 𝑎𝑖𝑘𝑎𝑖𝑙𝑝𝑙𝑘
(𝑡)𝐾

𝑙=1
𝑚
𝑖=1  in (15) are the (𝑘, 𝑗)  elements of matrices 

𝑃(𝑡), 𝐴𝑇𝑄 and 𝐴𝑇𝐴𝑃(𝑡) in (16), respectively.  

Proposition 1 The sequence {𝐸(𝑃(𝑡))}
𝑡=0,1,…

 converges. 

Proof. Let  

 𝑢𝑖𝑗𝑘
(𝑡+1)

=
𝑎𝑖𝑘𝑝𝑘𝑗

(𝑡)

∑ 𝑎𝑖𝑙𝑝𝑙𝑗
(𝑡)𝐾

𝑙=1

 

be an instance of 𝑢𝑖𝑗𝑘  substituted 𝑝𝑘𝑗
(𝑡)

 for 𝑝𝑘𝑗  in (14). Then (15) 

can be written as 

 𝑝𝑘𝑗
(𝑡+1)

=
∑ 𝑎𝑖𝑘𝑞𝑖𝑗

𝑚
𝑖=1

∑
𝑎𝑖𝑘

2

𝑢
𝑖𝑗𝑘
(𝑡+1)

𝑚
𝑖=1

. 

Since (17) is the solution to ∂𝐿/𝜕𝑢𝑖𝑗𝑘 = 0 and ∂𝐿/𝜕𝜇𝑖𝑗 = 0 with 

𝑃 = 𝑃(𝑡) , we find that 𝐹𝐿𝐵(𝑃(𝑡), 𝑈(𝑡+1)) ≥ 𝐹𝐿𝐵(𝑃(𝑡), 𝑈(𝑡)) . 

Similarly, since (18) is the solution to ∂𝐿/𝜕𝑝𝑘𝑗 = 0  with 𝑈 =

𝑈(𝑡+1), we find that 𝐹𝐿𝐵(𝑃(𝑡+1), 𝑈(𝑡+1)) ≥ 𝐹𝐿𝐵(𝑃(𝑡), 𝑈(𝑡+1)), i.e., 

 𝐹𝐿𝐵(𝑃(𝑡+1), 𝑈(𝑡+1)) ≥ 𝐹𝐿𝐵(𝑃(𝑡), 𝑈(𝑡)). 

 Next, substituting (14) into (9), we have 

 

𝐹𝐿𝐵(𝑃, 𝑈) = ∑ ∑ [𝑞𝑖𝑗 ∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾

𝑘=1

−
1

2
∑

(𝑎𝑖𝑘𝑝𝑘𝑗)
2

𝑎𝑖𝑘𝑝𝑘𝑗

𝐾

𝑘=1

∑ 𝑎𝑖𝑙𝑝𝑙𝑗

𝐾

𝑙=1

]

𝑛

𝑗=1

𝑚

𝑖=1





= ∑ ∑ [𝑞𝑖𝑗 ∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾

𝑘=1

−
1

2
(∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾

𝑘=1

)

2

]

𝑛

𝑗=1

𝑚

𝑖=1

= 𝐹(𝑃),

from which and (19) we have 

 𝐹(𝑃(𝑡+1)) ≥ 𝐹(𝑃(𝑡)). 

Considering the relationship between 𝐸(𝑃)  and 𝐹(𝑃)  given by 

𝐸(𝑃) = ∑ ∑ 𝑞𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 − 2𝐹(𝑃), we have the following inequality 

from (20): 

 𝐸(𝑃(𝑡+1)) ≤ 𝐸(𝑃(𝑡)), 

that is, the sequence {𝐸(𝑃(𝑡))}
𝑡=0,1,…

 is monotonically 

nonincreasing, and is also bounded below by 0, i.e., 𝐸(𝑃) ≥ 0 by 

definition. Consequently, the sequence {𝐸(𝑃(𝑡))}
𝑡=0,1,…

 converges 

to a number greater than or equal to 0.     ∎ 

4. Color Reproduction 

 Let 𝑥̅(𝜆),  𝑦̅(𝜆) and 𝑧̅(𝜆) be the color matching functions for 

the 1931 2°  CIE standard colorimetric observer [], where 𝜆 

denotes a wavelength, and let 𝑠̅(𝜆) be the relative spectral power 

distribution of an illuminant. Then the CIE XYZ tristimulus values 

of a spectral reflectance 𝑝̅(𝜆) are given by 

 𝑋̅ = 𝑘̅ ∫ 𝑠̅(𝜆)𝑝̅(𝜆)𝑥̅(𝜆)𝑑𝜆, 

 𝑌̅ = 𝑘̅ ∫ 𝑠̅(𝜆)𝑝̅(𝜆)𝑦̅(𝜆)𝑑𝜆, 

 𝑍̅ = 𝑘̅ ∫ 𝑠̅(𝜆)𝑝̅(𝜆)𝑧̅(𝜆)𝑑𝜆, 

where 𝑘̅ is a normalizing factor given by 𝑘̅ = ∫ 𝑠̅(𝜆)𝑦̅(𝜆)𝑑𝜆. We 

use the trapezoidal rule for computing the above integrals. The 

transformation from the CIE XYZ tristimulus values into the 

standard RGB (sRGB) is as follows. First, we compute the linear 

transformation  

 [
𝑅
𝐺
𝐵

] = [
3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

] [
𝑋̅
𝑌̅
𝑍̅

], 

where note that similar but slightly different transformation 

matrices are also proposed and used in practice.  

 Next, a nonlinear luminance encoding, which is also known as 

gamma encoding, is calculated to obtain sRGB values as follows: 

 𝑅sRGB = {1.055𝑅
1

2.4 − 0.055, if   𝑅 > 0.0031308,
12.92𝑅, if   𝑅 ≤ 0.0031308;

 

 𝐺sRGB = {1.055𝐺
1

2.4 − 0.055, if   𝐺 > 0.0031308,
12.92𝐺, if   𝐺 ≤ 0.0031308;

 

 𝐵sRGB = {1.055𝐵
1

2.4 − 0.055, if   𝐵 > 0.0031308,
12.92𝐵, if   𝐵 ≤ 0.0031308.

 

Consequently, we obtain the sRGB values (𝑅sRGB, 𝐺sRGB, 𝐵sRGB) 

transformed from the CIE XYZ tristimulus values (𝑋̅, 𝑌̅, 𝑍̅). 

5. Experimental Results 

 In this section, we show experimental results of spectral 

reflectance estimation and color reproduction. Figure 1 shows the 

Macbeth ColorChecker (MCC), of which the manufacturer’s 

sRGB D65 color values are also given on the Internet 

(ColorChecker, Wikipedia. URL: https://en.wikipedia.org/wiki/ 

ColorChecker). Although the 24 squares of painted samples in 

MCC are not materials but colorants, the proposed method can 

handle both of them equally because the Neugebauer model is 

valid for general colorimetric data as shown in Subsection 2.1.  
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Figure 1 Macbeth ColorChecker. 

The spectral reflectance data of the 24 colors in MCC are shown 
in Figure 2, where the line colors correspond to the MCC colors. 
These data are provided by the Munsell Color Science Laboratory 
(URL: http://www.cis.rit.edu/research/mcsl2/online/cie.php). 

 

Figure 2 Reflectance spectra of Macbeth ColorChecker colors. 

 In the following experiments, we store the above data in a 
matrix 𝑄 ∈ ℝ𝑚×𝑛 where 𝑚 denotes the number of colors in MCC, 
i.e., 𝑚 = 24, and 𝑛 denotes the number of spectral data in which 
the wavelengths between 380 nm (nanometer) and 780 nm are 
sampled at 5 nm intervals, i.e., 𝑛 = 81.  

 Figure 3 shows the change in the value of the objective function 
𝐸(𝑃)  of the proposed method with the Neugebauer model 
described in Section 2.1, where the vertical and horizontal axes 
denote the objective function value and the number of iterations 𝑡 
with the maximum iteration number 𝑇 = 50, respectively. The 
objective function value monotonically decreases with the increase 
in the number of iterations, that supports the claim in Proposition 
1 experimentally.  

 

Figure 3 Change in objective function value. 

 Figure 4 shows the estimated spectral reflectance of the 

Neugebauer primaries by the sequential coordinate-wise algorithm 

(SCA) [6,8], where the vertical and horizontal axes denote the 

reflectance and wavelength, respectively, and the colors of solid 

lines correspond to the primary colors, and the broken line denotes 

white color. On the other hand, Figure 5 shows the estimated 

spectral reflectance by the proposed method with the Neugebauer 

model, and is similar to Figure 4, although the algorithms are 

different from each other. We measured CPU time for estimating 

the spectral reflectance on an Intel Core-i3-equipped PC using 

Portable Python 2.7.6.1. Then SCA and the proposed method 

required 1.12 and 0.028 seconds, respectively, from which we 

conclude that the proposed method is computationally more 

efficient than SCA.  

 

Figure 4 Estimated spectral reflectance by SCA [6,8]. 

 

Figure 5 Estimated spectral reflectance by the proposed method with Neugebauer 
model.  

 Next, we compare sparse Neugebauer model with nonsparse or 

conventional Neugebauer model in the proposed method. Figure 6 

shows the coefficients in two Neugebauer models for the upper left 

color in MCC in Figure 1, where the vertical and horizontal axes 

denote the value of each coefficient and the Neugebauer primaries, 

respectively. the blue and red bars denote conventional (nonsparse) 

and sparse Neugebauer models, respectively. In the conventional 

model (blue bars), all Neugebauer primaries have positive values. 

On the other hand, in sparse one (red bars), only four colors (R, G, 

B and M) have positive values, and the other coefficients are 

strictly zero.  
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Figure 6 Coefficients in Neugebauer models.  

 Figure 7 shows the estimated spectral reflectance of the 
Neugebauer primaries by the proposed method with the sparse 
Neugebauer model. Each curve in Figure 7 has greater variance 
than that in Figure 5 or 4.  

 

Figure 7 Estimated spectral reflectance by the proposed method with sparse 
Neugebauer model.  

 From Figure 8 to Figure 11, we show the reflectance spectra of 
the colors in MCC from the first to fourth rows, respectively (here 
we divide the 24 MCC colors into 4 figures each of which includes 
the spectral reflectance curves of 6 colors for visibility), where 
solid lines show the original reflectance spectra, and broken lines 
show their estimated ones by the proposed method with the 
Neugebauer model.  

 

Figure 8 The original reflectance spectra of the colors in the first row of MCC 
(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines).  

 

Figure 9 The original reflectance spectra of the colors in the second row of MCC 

(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines). 

 

Figure 10 The original reflectance spectra of the colors in the third row of MCC 

(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines). 

 

Figure 11 The original reflectance spectra of the colors in the fourth row of MCC 

(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines). 

 On the other hand, from Figure 12 to Figure 15, we show the 

estimated reflectance spectra by the proposed method with sparse 

Neugebauer model, as well as Figures 8-11 with the Neugebauer 

model.  
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Figure 12 The original reflectance spectra of the colors in the first row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 

Figure 13 The original reflectance spectra of the colors in the second row of MCC 
(solid lines) and their estimated ones by the proposed method with sparse 

Neugebauer model (broken lines). 

 
Figure 14 The original reflectance spectra of the colors in the third row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 
Figure 15 The original reflectance spectra of the colors in the fourth row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 We evaluate the mean squared error between the original and 
estimated reflectance spectra given by 

 MSE𝑖 =
1

𝑛
∑ (𝑞𝑖𝑗 − ∑ 𝑎𝑖𝑘𝑝𝑘𝑗

𝐾
𝑘=1 )

2𝑛
𝑗=1  

for the 𝑖th color in MCC. Figure 16 shows the result where the 
vertical and horizontal axes denote the mean squared error and the 
identification number of MCC colors, respectively, and the blue 
and red bars denote the conventional nonsparse and the sparse 
Neugebauer models, respectively. In 18 colors among all 24 colors, 
the sparse Neugebauer model achieved smaller MSE𝑖  than the 
conventional one. The average of MSE𝑖 for 𝑖 = 1, … , 𝑚 given by 

 MSE =
1

𝑚
∑ MSE𝑖

𝑚
𝑖=1  

are 7.66 × 10−3  for the conventional Neugebauer model and 
6.83 × 10−3 for the sparse one.  

 

Figure 16 Mean squared error of estimated reflectance spectra. 

 Next, we also evaluate the same measure using the leave-one-
out cross-validation [11], where the spectral reflectance of the 𝑖th 
color in MCC is removed from 𝑄  to evaluate MSE𝑖 . Figure 17 
shows the result, where the sparse Neugebauer model (red bars) 
achieved smaller MSE𝑖 in 15 colors among all 24 colors than the 
conventional Neugebauer model (blue bars). The values of MSE 
are 1.37 × 10−2  for the conventional Neugebauer model and 
1.15 × 10−2 for the sparse one.  

 

Figure 17 Mean squared error of estimated reflectance spectra evaluated by the 
leave-one-out cross-validation. 

 Finally, we show the results of color reproduction from the 
estimated reflectance spectra. Figure 18 shows the original 
Neugebauer primaries: red, green, blue, black, cyan, magenta, 
yellow and white.  
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Figure 18 Neugebauer primaries. 

Figure 19 shows the reproduced Neugebauer primaries with the 
conventional Neugebauer model, in which blue is wrongly 
transformed into magenta.  

 

Figure 19 Reproduced Neugebauer primaries from the estimated reflectance 
spectra with Neugebauer model. 

On the other hand, the reproduced Neugebauer primaries with the 
sparse Neugebauer model is shown in Figure 20, where blue is 
correctly reproduced as well as the other colors.  

 

Figure 20 Reproduced Neugebauer primaries from the estimated reflectance 
spectra with sparse Neugebauer model. 

 Figures 21 and 22 show the reproduced MCC colors with the 
conventional and sparse Neugebauer models, respectively. The 
reproduced colors are similar to the original ones in Figure 1. 
Additionally, note that the proposed method can be applied to not 
only the CMYK-printed colors like MCC but also more general 
tristimulus values including material colors.  

 

Figure 21 Reproduced MCC colors with Neugebauer model. 

 

Figure 22 Reproduced MCC colors with sparse Neugebauer model. 

 We evaluate the mean absolute error between the original and 
reproduced MCC colors given by 

 MAE𝑖 =
|𝑟𝑖−𝑟̃𝑖|+|𝑔𝑖−𝑔̃𝑖|+|𝑏𝑖−𝑏̃𝑖|

3
 

for the 𝑖th color in MCC, where 𝑟̃𝑖 , 𝑔̃𝑖 and 𝑏̃𝑖denote the reproduced 
sRGB values from the estimated reflectance spectra. Figure 23 
shows the result, where the sparse Neugebauer model (red bars) 
achieved smaller MAE𝑖 in 20 colors among all 24 colors than the 

conventional Neugebauer model. The average of MAE𝑖  for 𝑖 =
1, … , 𝑚 given by 

 MAE =
1

𝑚
∑ MAE𝑖

𝑚
𝑖=1  

are 17.65 for the conventional Neugebauer model and 13.81 for the 
sparse one.  

 

Figure 23 Mean absolute error of reproduced MCC colors. 

 Consequently, the sparse Neugebauer model improved the 
performance of both spectral reflectance estimation and color 
reproduction from the estimated spectral reflectance compared 
with the conventional Neugebauer model.  

6. Conclusion 

 In this paper, we proposed a method for estimating spectral 
reflectance based on the Neugebauer model and its sparse version. 
The sparse Neugebauer model improved the estimation 
performance compared with the conventional Neugebauer model. 
We also proved the convergence property of the proposed 
algorithm for spectral reflectance estimation. Additionally, we 
reproduced the colors from the estimated spectral reflectance, in 
which the sparse Neugebauer model also improved the 
performance compared with the conventional one.  

 For future work we would like to improve the performance of 
both spectral reflectance estimation and color reproduction by 
robustifying the proposed method, and compare the proposed 
method with other related methods including learning-based 
methods. We are also planning an application of the proposed 
method to the design of spectral reflectance for controlled color 
reproduction under various illuminations.  
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