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APPLICATIONS

By

Hajime Yamato∗, Toshifumi Nomachi† and Koichiro Toda‡

Abstract

The Ewens sampling formula is well-known as a distribution of a random par-
tition of a positive integer n or a set of integers {1, 2, · · · , n}. The number Kn

of distinct components of the formula has the asymptotic normality. For its well-
known form and the related form, Yamato(2013) gives their Edgeworth expansions.
But, their appropriateness depend on the parameter. Using the functions of R, we
consider its normal approximation suitable for any value of the parameter. As the
application, we show the method to search the the maximum likelihood estima-
tor of the parameter graphically, and gives its approximate distribution. We also
consider the approximate distribution of Kn in case where the parameter of the
formula is the random variable. These results are shown with the graphs.

Key Words and Phrases: Ewens sampling formula, maximum likelihood estimator, mixing

distribution, normal approximation, random partition.

1. Introduction

Ewens (1972) discovered a distribution of a random partition of a positive integer
n or a set of integers {1, 2, · · · , n}, partially intuitively and the distribution is well-
known as the Ewens sampling formula. It was derived exactly by Antoniak (1974), using
Ferguson’s Dirichlet process (Ferguson (1974)). The formula appears in many statistical
context. For example, Bayesian statistics, pattern of communication and genetics. There
are many works on the Ewens sampling formula and the related formula, which includes
Pitman’s sampling formula (Pitman (1992)). See, for example, Johnson et al. (1997),
Arratia et al. (2003) and Pitman (2006).

On the other hand, in case where the parameter of the Ewens sampling formula is
the random variable having the distribution G, the distribution of a random partition of
the positive integer is given by mixing the Ewens sampling formula with G (see, Gnedin
and Pitman (2006)). It was also derived by the mixture of Dirichlet process (see, for the
mixture of Dirichlet process, Antoniak (1974)).

In this paper, at first, we consider the Ewens sampling formula and let Kn be
the number of distinct components of the sampling formula with the parameter θ > 0.
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Let {ξj , j = 1, 2, · · · } be a sequence of independent random variables whose probability
functions are given by P (ξj = 0) = (j − 1)/(θ + j − 1) and P (ξj = 1) = θ/(θ + j − 1)
(j = 1, 2, · · · ). Then Kn can be written as

Kn = ξ1 + ξ2 + · · ·+ ξn (n = 1, 2, · · · ). (1)

The distribution of Kn is given by

P (Kn = k) =
[ n
k

] θk
θ[n]

(k = 1, 2, . . . , n), (2)

where θ[n] = θ(θ + 1) · · · (θ + n− 1) and
[ n
k

]
is a signless Stirling number of the first

kind or a Stirling number of the third kind. The mean and variance of Kn are

E(Kn) = θ
n∑

i=1

1

θ + i− 1
, V (Kn) = θ

n∑
j=1

1

θ + j − 1
− θ2

n∑
j=1

1

(θ + j − 1)2
. (3)

Kn has asymptotically the normal distribution N(θ log n, θ logn). (See, for example,
Johnson et al (1997; Chapter 41) and Arratia et al. (2003; Section 5.2)). Yamato (2013)
gives the following Edgeworth expansions of Kn, which hold uniformly in x ∈ R.

P

(
Kn − θ log n√

θ log n
≤ x

)
= Φ(x)− 1

6
√
θ log n

ϕ(x)
(
x2 − 1− 6θψ(θ)

)
+O

(
1

log n

)
, (4)

and

P

(
Kn − θ(log n− ψ(θ))√

θ(log n− ψ(θ))
≤ x

)
= Φ(x)− 1

6
√
θ log n

ϕ(x)(x2 − 1) +O

(
1

log n

)
, (5)

where ψ is the digamma function defined by ψ(θ) = Γ′(θ)/Γ(θ), and Φ and ϕ are the
distribution function and the density function of N(0, 1), respectively.

On the other hand, in case where the parameter θ of the Ewens sampling formula
is the random variable having the distribution G, Yamato (2012) shows that Kn/ log n
converges to G in distribution as n→ ∞. Yamato and Kondo (2014) gives its Edgeworth
expansions. Under the suitable conditions for the density function g of G, for example,
it is given by

P

(
Kn

log n
≤ x

)
= G(x)+

1

2 log n

{(
2xψ(x+1)−1

)
g(x)+xg′(x)

}
+O

(
1

(log n)2/5

)
. (6)

In the section 2.1, as the approximate distribution of Kn of the Ewens sampling
formula, we illustrate the distributions based on (4), (5) and the related distribution,
graphically. The pictures show that these distributions are not over all good approxi-
mation to the distribution of Kn. The local limit evaluation of Kn which is given by
Arratia et al. (2003;p.101,(5.20)) is also not over all good approximation. Thus we quit
searching the simple form of the approximate distribution of Kn. In the section 2.2, we
use the normal approximation of Kn with the mean and variance given by (3) as they
stand. Because the mean and variance given by (3) can be calculated by R, we can
easily draw the exact normal approximation of Kn which is over all good approximation
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to the distribution of Kn. Since the mean of Kn can be drawn by R, in the section 2.3,
we show that we can easily obtain the maximum likelihood estimate (MLE) of θ by the
graph. The approximate distribution of MLE is also given.

In the section 3.1, we consider the case where the parameter θ of the Ewens sampling
formula is the random variable. As the approximate distribution of Kn, we illustrate the
distributions based on (6), which is not over all good approximation to the distribution
of Kn. We show that the mixing distribution is over all good approximation to the
distribution of Kn. The parameter of the mixing distribution is estimated graphically,
which is shown in the section 3.2.

2. The approximate distributions of Kn

2.1. On the approximate distributions based on the asymptotic properties

At first, we consider the approximate distributions of Kn based on the relation (4)
and illustrate

P (Kn ≤ x) ≑ Φ(t)− 1

6
√
θ log n

ϕ(t)
(
t2 − 1− 6θψ(θ)

)
, t =

x− θ log n√
θ logn

(7)

for n = 50 and θ = 1, 2, 5. The distribution function of Kn is simulated with R using (1),
and drawn by the step function. The normal distribution function of N(θ log n, θ log n)
and the Edgeworth expansion (7) are drawn by the dashed curve and the dotted one,
respectively. The approximate distributions of Kn based on (4) are good for the small
θ such as θ < 2, as shown by Figures 1,2. As the Figure 3 shows, the approximate
distributions of Kn based on (4) are not appropriate for the large such as θ ≥ 5.
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Fig. 1: n = 50, θ = 1
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Fig. 2: n = 50, θ = 2
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Fig. 3: n = 50, θ = 5

Next, we consider the approximate distributions of Kn based on the relation (5)
and illustrate

P (Kn ≤ x) ≑ Φ(t)− 1

6
√
θ log n

ϕ(t)(t2 − 1), t =
x− θ(log n− ψ(θ))√

θ(log n− ψ(θ))
(8)

for n = 50 and θ = 2, 5, 15. The distribution function of Kn is simulated with R using
(1), and drawn by the step function. The normal distribution function of N(θ(log n −
ψ(θ)), θ(log n−ψ(θ))) and the Edgeworth expansion (8) are drawn by the dashed curve
and the dotted one, respectively. The approximate distributions of Kn based on (5) are
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good for the small θ such as θ < 5, as shown by Figures 4,5. As the Figure 6 shows,
the approximate distributions of Kn based on (5) are not appropriate for the large such
as θ ≥ 15. In this case, Figures 4,5,6 shows that the effect of the Edgeworth expansion
which is the right-hand side of (8) is very little.
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Fig. 4: n = 50, θ = 2
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Fig. 5: n = 50, θ = 5
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Fig. 6: n = 50, θ = 15

These illustrations are based on the approximate distributions of Kn, given by
N(θ log n, θ log n) and N(θ(log n − ψ(θ)), θ(log n − ψ(θ))). Alternatively, we consider
their properties from the point of view of approximating the means E(Kn) and the
variances V (Kn). For the mean, by the relation (2.5) of Yamato (2013) we have

| E(Kn)− θ(log n− ψ(θ)) |= O
( 1

n

)
. (9)

For the variance, in addition, we use the the relation
∫∞
n

(θ + x)−2dx = 1/(θ + n) <∑∞
j=n(θ + j)−2 <

∫∞
n

(θ + x − 1)−2dx = 1/(θ + n − 1) and
∑n

j=1(θ + j − 1)−2 =

ψ
′
(θ)−

∑∞
j=n(θ + j)−2. Then, we have

| V (Kn)− θ[logn− ψ(θ)− θψ
′
(θ)] |= O

( 1

n

)
(10)

where ψ
′
is the trigamma function.

For the mean associated with n = 50, 100, 500, the exact mean E(Kn) is drawn
by the solid curve, θ logn by dashed curve, and θ(log n− ψ(θ)) by dotted curve, as the
function of θ. Figures 7,8,9 of the next page correspond to the cases of n = 50, 100, 500.
θ log n is good approximation of the mean E(Kn) only for the θ close to zero. θ(log n−
ψ(θ)) is good approximation of the mean E(Kn) even for the θ not close to zero.

For the variance associated with n = 50, 100, 500, the exact variance V (Kn) is
drawn by the solid curve, θ log n by dashed curve, θ(log n − ψ(θ)) by dotted curve,
and θ[log n − ψ(θ) − θψ

′
(θ)] by dot-dashed curve, as the function of θ. θ log n is good

approximation of the variance V (Kn) only for the θ close to zero. θ(log n − ψ(θ)) and
θ[logn − ψ(θ) − θψ

′
(θ)] are better approximations than θ log n, but the latter gives

smaller value than the exact value. These are shown by Figures 10,11,12 of the next
page, which correspond to the cases of n = 50, 100, 500, respectively.

Next, we consider the approximate distributions of Kn based on the approximate
mean by (9) and the approximate variance by (10). That is,

Kn∼̇N
(
θ(log n− ψ(θ)), θ[log n− ψ(θ)− θψ

′
(θ)]

)
. (11)
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Fig. 8: Mean for n = 100
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Fig. 9: Mean for n = 500
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Fig. 10: Var for n = 50
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Fig. 11: Var for n = 100
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Fig. 12: Var for n = 500

For n = 50 and θ = 0.5, 2, 10, the simulated distribution function of Kn is drawn by the
step function. The normal distribution function (11) is drawn by the dotted curve. This
approximate distribution is good for the small θ such as θ < 2, as shown by Figures
13,14. As Figure 15 shows, the approximate distribution (11) are not appropriate for
the large such as θ ≥ 10 and influenced by the under-estimate of the exact V (Kn).
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Fig. 13: n = 50, θ = 0.5
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Fig. 14: n = 50, θ = 2
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Fig. 15: n = 50, θ = 10

At last, we consider the following local limit evaluation of Kn which is given by



74 H. Yamato, T. Nomachi and K. Toda

Arratia et al. (2003;p.101,(5.20)). If k/ log n→ βθ and β ∈ [0,∞), it holds that

P (Kn = k) ∼ (θ log n)k−1e−θ logn

(k − 1)!

Γ(θ + 1)

Γ(βθ + 1)
.

In spite of the limiting operation such that k/ logn → βθ, we approximate the prob-
ability P (Kn = k) by taking k/ log n = βθ and draw it with the dotted curve. The
probability function of Kn is simulated with R, and drawn by the bar graph. The
left-tail probability is the good approximation to the exact probability. But, except
the left-tail, the probability is not good approximation because of the property of the
limiting operation. For n = 50, these are shown by Figures 16, 17 (θ = 3) and 18, 19
(θ = 4).
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Fig. 18: n = 50, θ = 4
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Fig. 19: n = 50, θ = 4

In this section, we consider the approximate distributions of Kn by approximating
the exact mean µn(θ) and variance σ2

n(θ), except the last local limit evaluation. All these
approximate distributions do not give overall good approximation as shown. In the next
section, we shall consider the approximate distribution of Kn which gives overall good
approximation.

2.2. Approximate distribution of Kn using R

The digamma function ψ and trigamma function ψ
′
satisfy

ψ(x+ n)− ψ(x) =

n∑
j=1

1

x+ j − 1
, ψ

′
(x+ n)− ψ

′
(x) = −

n∑
j=1

1

(x+ j − 1)2
,
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respectively. Therefore, from (3) we have

µn(θ) = E(Kn) = θ[ψ(θ + n)− ψ(θ)], (12)

σ2
n(θ) = V (Kn) = θ[ψ(θ + n)− ψ(θ)] + θ2[ψ

′
(θ + n)− ψ

′
(θ)]. (13)

As stated in the last section, the approximate distributions of the section 2.1 do
not give overall good approximation to the distribution of Kn. Since the digamma and
trigamma functions are included in the free software R, as the approximate distribution
of Kn we shall take N(µn(θ), σ

2
n(θ)) with µn(θ) and σ2

n(θ) given by (12) and (13),
respectively. This approximate distribution can be calculated and drawn by R.

For n = 25 and θ = 0.5, 1, 2, 5, 10, 15, Figures 20, 21, 22, 23, 24, 25 give the
distribution functions of Kn drawn by the step function, which are simulated with R.
The normal distribution functions of N(µn(θ), σ

2
n(θ)) are drawn by the dashed curves.
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Fig. 20: n = 25, θ = 0.5
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Fig. 21: n = 25, θ = 1
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Fig. 22: n = 25, θ = 2
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Fig. 23: n = 25, θ = 5
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Fig. 24: n = 25, θ = 10
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Fig. 25: n = 25, θ = 15

For n = 25 and θ = 2, 5, 15, Figures 26, 27, 28 of the next page give the simulated
probability functions of Kn are drawn by the bar graph. The normal density functions
of N(µn(θ), σ

2
n(θ)) are drawn by the dashed curves.

These show that the normal distribution N(µn(θ), σ
2
n(θ)) can be drawn by R and

give overall good approximation to the distribution of Kn even for a small n such as 25.

2.3. Maximum likelihood estimator of θ

Differentiating the right-hand side of (2) by θ and putting it to zero, we obtain
the likelihood equation k =

∑n
j=1 θ/(θ + j − 1) which gives the maximum likelihood
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Fig. 26: n = 25, θ = 2
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Fig. 27: n = 25, θ = 5
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Fig. 28: n = 25, θ = 15

estimator (MLE) of θ. The solutions of the equation are solved implicitly (see, for
example, Ewens (1972; p.98) and Johnson et al. (1997; p.236)). We shall propose the
method of obtaining the MLE of θ graphically.

Note that the likelihood equation is written as follows.

k = µn(θ), µn(θ) = θ[ψ(θ + n)− ψ(θ)]. (14)

Since dµn(θ)/dθ =
∑n

j=1(j − 1)/(θ + j − 1)2 > 0, the function µn(θ) of θ is monotone
increasing. Thus, from the graph of µn(θ), we can read the MLE of θ for any given k.
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Fig. 31: n = 75
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Fig. 32: n = 25, k = 10
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Fig. 33: n = 50, k = 15
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Fig. 34: n = 75, k = 15

Figures 29 and 32 are the curve of µn(θ) in case of n = 25. For k = 10, we can
read 5.7 as the MLE of θ. Figures 30 and 33 are the curve of µn(θ) in case of n = 50.
For k = 15, we can read 6.9 as the MLE of θ. Figures 31 and 34 are the curve of µn(θ)
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in case of n = 75. For k = 15, we can read 5.4 as the MLE of θ.

Because of the monotone increasingness of µn(θ), the value of Kn corresponds

uniquely to the value of MLE θ̂n of θ. Therefore, for any value x of θ̂n, the exact
probability P (θ̂n = x) of θ̂n can be obtained from the probability function of Kn by the

relation P (θ̂n = x) = P
(
µn(θ̂n

)
= µn(x)) = P (Kn = µn(x)). On the other hand, from

the approximate distribution N(µn(θ), σ
2
n(θ)) of Kn, the approximate probability of θ̂n

can be obtained. For any value x of θ̂n, it is given by

P (θ̂n = x) = P (Kn = µn(x)) ≑
1

σn(θ)
ϕ

(
µn(x)− µn(θ)

σn(θ)

)
. (15)

For n = 50 and θ = 1, 5, 10, the simulated probability functions of MLE θ̂n are drawn
by the bar in Figures 35,36,37 (compare with Tavaré (2004, Fig.3.2, p.42)). The dotted

lines draw the approximate probabilities (15) of θ̂n, which are good approximation.
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Fig. 35: n = 50, θ = 1
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Fig. 36: n = 50, θ = 5
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Fig. 37: n = 50, θ = 10

The asymptotic distribution of MLE θ̂n is given by N(θ, θ/ log n) (see, for example,
Carlton (1999; p.80) and Tavaré (2004; p.41)). For n = 50 and θ = 5, 10, Figures
38,39 show the density function of N(θ, θ/ log n) drawn by the curves and the simulated

probability functions of MLE θ̂n by the bar. These figures show that the asymptotic
distribution N(θ, θ/ log n) of MLE θ̂n concentrates around the true value of θ compared
with the true distribution, for the small sample size. Thus, for the small sample size,
N(θ, θ/ logn) is not the good approximation to the distribution of MLE.
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Fig. 38: n = 50, θ = 5
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Fig. 39: n = 50, θ = 10
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3. The case where θ is a random variable

In this section, we suppose that θ(> 0) is the random variable and has the Gamma
distribution Ga(c) whose density is given by gc(x) = xc−1e−x/Γ(c) (c > 0).

3.1. Approximate distribution of Kn

We consider the case of c > 1 for the parameter of the Gamma distribution Ga(c).
Then from (6), we have the following, where Gc is the distribution function of Ga(c).

P (Kn ≤ x) ≑ Gc(t) +
1

2 log n

{(
2tψ(t+ 1)− 1

)
gc(t) + tg′c(t)

}
, t =

x

log n
. (16)

On the other hand, the normal distribution N(µn(θ), σ
2
n(θ)) of the section 2.2 is the con-

ditional distribution given θ under the situation of this section. Therefore, by taking the
expectation of this conditional distribution N(µn(θ), σ

2
n(θ)) with respect to the Gamma

distribution Ga(c), we have the mixture distribution as the approximate distribution of
Kn. The followings FKn,c(x) and fKn,c(x) are the mixture distribution function and
density function, respectively;

FKn,c(x) =

∫ ∞

0

Φ

(
x− µn(θ)

σn(θ)

)
dGc(θ) (17)

and

fKn,c(x) =

∫ ∞

0

1

σn(θ)
ϕ

(
x− µn(θ)

σn(θ)

)
dGc(θ). (18)

In the following, we consider the case of n = 50 and c = 2, 4, 10. The distributions
of Kn are simulated by R using (1) and drawn with the step functions. The mixture
distribution functions FKn,c(x) are drawn by the dashed curves. The Edgeworth expan-
sions given by the right-hand side of (16) and the Gamma distribution function Gc are
drawn by the dotted curves and the dot-dashed ones, respectively (Figures 40, 41, 42).
These pictures show that the mixture distribution functions FKn,c(x) give overall good
approximations to the distributions of Kn. Figures 43, 44, 45 of the next page show this
fact by the probability functions of Kn drawn by the bar graph and the mixture density
functions fKn,c(x) by the dashed curves.
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Fig. 40: n = 50, c = 2
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Fig. 41: n = 50, c = 4
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Fig. 42: n = 50, c = 10
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Fig. 43: n = 50, c = 2
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Fig. 44: n = 50, c = 4
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Fig. 45: n = 50, c = 10

3.2. Estimation of the parameter of the mixing distribution

We consider the estimation of the parameter c of the Gamma distribution Ga(c).
Since E(Kn | θ) = µn(θ) under the condition of this section because of (12), we have

E(Kn) = mn(c), mn(c) =

∫ ∞

0

µn(θ)dGc(θ).

Therefore we can find the estimate of c by the method of moments, for given n and the
observation k. It is enough to search c satisfying

k = mn(c).

Since the gamma distribution Gc is stochastically increasing with respect to the param-
eter c and the function µn(θ) (θ > 0) is positive and increasing, the right-hand side
mn(c) is the increasing function of c. Thus, k of the left-hand side gives the unique
solution c. By computing the integral mn(c) at the several points and drawing mn(c)
by the smooth.spline of R, the unique solution c is easily read from the graph as Figures
46 and 47. From Figure 47, we get the estimate 4.95 of c for n = 50 and k = 12.

0 10 20 30 40 50

0
5

1
0

1
5

2
0

2
5

3
0

3
5

n=50; Curve for estimation of c of Ga(c),  (I)

c

k

Fig. 46: n = 50

4.85 4.90 4.95 5.00 5.05

1
1
.8
5

1
1
.9
0

1
1
.9
5

1
2
.0
0

1
2
.0
5

1
2
.1
0

1
2
.1
5

n=50, k=12; Curve for estimation of c of Ga(c),  (II)

c

k

Fig. 47: n = 50, k = 12

4. Remark

Since the statistic Kn of the Ewens sampling formula can be written by the sum
of the independent random variables as (1), it converges to the normal distribution as
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n → ∞. Because of the expressions (3) of the expectation E(Kn) and the variance
V (Kn), the asymptotic normality of Kn is usually described by the normal distribution
N(θ log n, θ log n), as stated in the section 1. Yamato (2012) gives the another expres-
sions of the asymptotic normality, which are N(θ(log n− ψ(θ)), θ(log n− ψ(θ))). These
asymptotic normal distributions and their Edgeworth expansions are not good approxi-
mations to the distribution of Kn for a large θ(> 0). Because, these asymptotic normal
distribution are based on the approximations of E(Kn) and V (Kn), which are not good
approximations for a large θ(> 0) as shown by Fig. 7,8,· · · ,12.

On the other hand, the expectation E(Kn) and the variance V (Kn) are written by
the digamma and trigamma functions as (12) and (13). These functions are included
in the free software R. Therefore, we can compute and draw the normal distribution
N(E(Kn), V (Kn)), uing R. The reason why this normal distribution gives good ap-
proximation to the distribution of Kn for any θ(> 0) may be that the digamma and
trigamma functions of R give good approximations to these functions. This result also
gives the good approximation to the distribution of Kn, in case where the parameter θ
of the Ewens sampling formula is the random variable.
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