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Abstract

Often, AIC and BIC are applied to statistical decision problems where methods
of testing statistical hypothesis have been unrivaled. We define decision rules based
on statistical test, on AIC and on BIC and compare their positive predictive values,
and negative predictive values as well, in this paper in the framework of one-sample
problem, assuming underlying normal distribution.
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1. Introduction

The AIC (Akaike Information Criterion) was proposed by H. Akaike in 1973 as a
tool for selecting an optimal model among candidates, implemented in many statistical
soft wares and widely applied for model selection in scientific problems. The AIC is
based on the Kullback-Leibler information. On the other hand, the BIC, the Bayesian
information criterion, was introduced by Schwarz (1978) as a competitor to the AIC.

Often, AIC and BIC are applied to statistical decision problems where methods
of testing statistical hypothesis have played a major role. For examples, Nagano et.al.
(2012) conducted an exploratory clinical trial for comparing two types of nutrients. The
sample size of each group in their trial was only ten and it was speculated that no
significant result was produced with such small sample sizes unless increased the level of
statistical tests from 5% to some value. However, it was not easy to decide what value
of the level they should employ. They circumvented the problem by using the AIC,
instead of statistical test, that takes the balance between the Type I error and Type
II error probabilities. Also, Yanagawa et.al. (1997) advocated the use of AIC, instead
of statistical hypothesis tests, in problems of determining whether chemical compound
was toxic substance or not in a rodent bioassay where number of animals was limited.
Emphasizing the importance of controlling the Type II error probability, rather than
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Type I error probability, they suggested the use of the AIC since it provided smaller
Type II error than statistical tests.

As far as we know no formal comparison has been made between statistical tests
and AIC. We also take into account the BIC in the comparison. We define in this paper
the positive predictive value (PPV) and negative predictive value (NPV), and compare
the PPV’s, and also NPV’s, of decision rules that are based on statistical test, the
AIC and the BIC in the simplest framework, namely, in one sample statistical testing
problems, assuming normality.

In Section 2, we formulate the framework of the present paper, by defining PPV
and NPV; and also defining those decision rules based on statistical test, AIC and BIC.
In Section 3, we give Type I error and Type II error probabilities of these decision rules.
In Section 4, the PPV of these decision rules are compared. Finally in Section 5 NPV’s
of those decision rules are compared.

2. Formulation of the problem

Let X1, X2, . . . , Xn be independently and identically distributed random variables
according to a normal distribution with mean µ and known variance σ2. We assume
without loss of generality σ2 = 1. We consider in this paper the decision rules for
deciding whether H0 : µ = 0 or H1 : µ ̸= 0. We introduce a prior probability P (µ = 0)
for µ = 0. Suppose that T+ (T−) expresses the decision for selecting H1 (H0) based
on a decision rule. Then the positive predictive value (PPV) and negative predictive
value(NPV) are defined as follows.

PPV = P (µ ̸= 0 | T+), NPV = P (µ = 0 | T−).

Now, we define the decision rules based on statistical test, AIC and BIC.
Decision rule based on statistical test{√

n|x̄| ≥ zα/2 ⇒ accept H1,√
n|x̄| < zα/2 ⇒ accept H0.

where, zα/2 is the upper α/2×100% point of the standard normal distribution. Although
in a rouitine testing statistical hypothesis, the decision of not accept H1 is made if√
n|x̄| < zα/2, H0 is accepted in this case in this decision.

Decision rule based on AIC
Denote by AIC0 and AIC1 the AIC computed under H0 and H1, respectively.

Then the decision rule based on AIC is given by{
AIC0 ≥ AIC1 ⇒ accept H1,

AIC0 < AIC1 ⇒ accept H0,

It follows from the definition of AIC the decision rule is equivallently represented by{√
n|x̄| ≥

√
2 ⇒ accept H1,√

n|x̄| <
√
2 ⇒ accept H0.
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Decision rule based on BIC
Similarly, the decision rule based on BIC is represented by{√

n|x̄| ≥
√
log n ⇒ accept H1,√

n|x̄| <
√
log n ⇒ accept H0.

3. The probabilities of the first and second kinds of errors.

All decision rules given above may be unified by{√
n|x̄| ≥ c ⇒ accept H1,√
n|x̄| < c ⇒ accept H0.

We call this the unified decision rule.
The Type I error probability and Type II error probability at µ = µ1 ( ̸= 0) of the

unified decision rule are given by

αc = P (
√
n|X̄| ≥ c|µ = 0), βc = P (

√
n|X̄| < c|µ = µ1).

We immediately have

αc = 2 (1− Φ(c)) , βc = Φ(c+
√
nµ1)− Φ(−c+

√
nµ1), (1)

where Φ is the cumulative distribution function of a standard normal distribution.
Substituting c = zα/2,

√
2, or

√
log n, we have the following lemma.

Lemma 1. Type I error probability and II error probability at µ = µ1 (̸= 0) of
the three decision rules are given as follows, where An =

√
nµ1.

(1) The decision rule that based on statistical test:

αT = α, βT = Φ
(
zα/2 +An

)
− Φ

(
−zα/2 +An

)
.

(2) The decision rule that based on AIC:

αA = 2Φ(−
√
2), βA = Φ

(√
2 +An

)
− Φ

(
−
√
2 +An

)
.

(3) The decision rule that based on BIC:

αB = 2Φ
(
−
√
log n

)
, βB = Φ

(√
log n+An

)
− Φ

(
−
√
log n+An

)
.

4. Comparison of positive predictive values.

Consider the positive predictive value defined in Section 2 at µ = µ1(̸= 0). Applying
the Bayes theorem, the positive predictive value may be represented by

PPV =
P (T+|µ = µ1)P (µ = µ1)

P (T+|µ = µ1)P (µ = µ1) + P (T+|µ = 0)P (µ = 0)

=
RP (T+|µ = µ1)

RP (T+|µ = µ1) + P (T+|µ = 0)
,
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where R = P (µ = µ1)/P (µ = 0). Note that for the unified decision rule we have

P
(
T+|µ = µ1

)
= 1− βc, P

(
T+|µ = 0

)
= αc.

Therefore, PPV of the unified decision rule may be represented by

PPVc =
R(1− βc)

R(1− βc) + αc
.

From (1) we have

1− βc = 1− (Φ(c+An)− Φ(−c+An) = Φ(−c−An) + Φ(−c+An)

Thus

PPVc =
R {Φ(−c−An) + Φ(−c+An)}

R {Φ(−c−An) + Φ(−c+An)}+ 2Φ(−c)
,

where An =
√
nµ1.

Substituting c = zα/2,
√
2,or

√
log n, we have the following lemma.

Lemma 2. The PPV of each decision rule is represented as follows.
(1) The decision rule that based on statistical test:

PPVT =
R
{
Φ(−zα/2 −An) + Φ(−zα/2 +An)

}
R
{
Φ(−zα/2 −An) + Φ(−zα/2 +An)

}
+ 2Φ(−zα/2)

.

(2) The decision rule that based on AIC:

PPVA =
R
{
Φ(−

√
2−An) + Φ(−

√
2 +An)

}
R
{
Φ(−

√
2−An) + Φ(−

√
2 +An)

}
+ 2Φ(−

√
2)

(3) The decision rule that based on BIC:

PPVB =
R
{
Φ(−

√
log n−An) + Φ(−

√
log n+An)

}
R
{
Φ(−

√
log n−An) + Φ(−

√
log n+An)

}
+ 2Φ(−

√
log n)

.

Lemma 3. For any constant A,

h(y) =
Φ(−y −A) + Φ(−y +A)

Φ(−y)

is a strongly increasing function of y > 0.

Proof. We have
dh(y)

dy
=

u(y)

Φ(−y)2
,

where

u(y) = −ϕ(y −A)Φ(−y) + ϕ(y)Φ(−y +A)− ϕ(y +A)Φ(−y) + ϕ(y)Φ(−y −A),
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and ϕ is the density function of a standard normal distribution. Since

Φ(−y +A) =

∫ −y+A

−∞
ϕ(x)dx

=

∫ −y

−∞
ϕ(x+A)dx =

∫ −y

−∞
exp(

A2 + 2Ax

2
)ϕ(x)dx,

and similarly

Φ(−y −A) =

∫ −y

−∞
exp(

A2 − 2Ax

2
)ϕ(x)dx,

u(y) may be represented by

u(y) =

∫ −y

−∞
exp(

A2

2
)ϕ(x)ϕ(y)

(
eAx + e−Ax −

(
eAy + e−Ay

))
dx.

Put
v(x) = eAx + e−Ax,

then v(x) > v(y) for any x such that −∞ < x < −y when y > 0. Therefore, the
integrand is positive for −∞ < x < −y, and thus u(y) > 0 for any y > 0, and then
dh(y)/dh > 0. Thus h(y) is a strongly increasing function of y > 0. This completes the
proof of the lemma.

Lemma 4. For any constant R > 0 and An =
√
nµ1, it follows that

g(y) =

R

(
Φ(−y −An) + Φ(−y +An)

)
R

(
Φ(−y −An) + Φ(−y +An)

)
+ 2Φ(−y)

is a strongly increasing function of y > 0.

Proof. By using h(y) defined in Lemma 3 we may represent g(y) at A = An as

g(y) =
Rh(y)

2 +Rh(y)
= 1− 2

2 +Rh(y)
.

Since h(y) is a strongly increasing function of y > 0 for any constant An from Lemma
3, it follows that g(y) is a strongly increasing function of y.

Theorem 1. Consider decision rules based on statistical test, AIC and BIC for
H0: µ = 0 vs. H1: µ ̸= 0 and their PPV’s at µ = µ1. Then it follows the following
relationships for any prior odds R and µ1.

(1) PPVA > PPVT ⇐⇒ α > 0.157,
(2) When n > 1, PPVB > PPVT ⇐⇒ n > exp(Z2

α/2),

(3) When n > 1, PPVB > PPVA ⇐⇒ n ≥ 8,

Proof. We first prove (3). Employing function g(y) defined in Lemma 4, we may
represent

PPVA − PPVB = g(
√
2)− g(

√
log n).
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Since g(y) is a strongly increasing function of y > 0 from Lemma 4, it follows that

PPVA > PPVB ⇐⇒
√
2 >

√
logn.

Thus

n < 8 ⇐⇒ PPVA < PPVB ,

n ≥ 8 ⇐⇒ PPVA > PPVB .

This completes the proof of (3). Since

PPVA − PPVT = g(
√
2)− g(Zα/2),

PPVT − PPVB = g(Zα/2)− g(
√
log n),

we may prove (1) and (2) similarly as the proof of (3).

5. Comparison of negative predictive values.

Applying the Bayes theorem, the negative predictive value defined in Section 2 at
µ = µ1 ( ̸= 0) is represented by

NPV =
P (T−|µ = 0)P (µ = 0)

P (T−|µ = 0)P (µ = 0) + P (T−|µ = µ1)P (µ = µ1)

=
P (T−|µ = 0)

P (T−|µ = 0) +RP (T−|µ = µ1)
,

where R = P (µ = µ1)/P (µ = 0). For the unified decision rule defined in Section 2, since

P
(
T−|µ = 0

)
= 1− αc, P

(
T−|µ = µ1

)
= βc.

we have

NPVc =
1− αc

(1− αc) +Rβc
.

From (1) we have
1− αc = 1− 2 (1− Φ(c)) = Φ(c)− Φ(−c).

Thus

NPVc =
Φ(c)− Φ(−c)

(Φ(c)− Φ(−c)) +R{Φ(c+An)− Φ(−c+An)}
,

where An =
√
nµ1.

Substituting c = zα/2,
√
2,
√
logn, we have the following lemma.

Lemma 5. The NPV of each decision rule at µ = µ1 is represented as follows.
(1) The decision rule that based on statistical test:

NPVT =
Φ(zα/2)− Φ(−zα/2)

Φ(zα/2)− Φ(−zα/2) +R{Φ(zα/2 +An)− Φ(−zα/2 +An)}
.

(2) The decision rule that based on AIC:

NPVA =
Φ(

√
2)− Φ(−

√
2)

Φ(
√
2)− Φ(−

√
2) +R{Φ(−

√
2 +An)− Φ(−

√
2 +An)}

.
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(3) The decision rule that based on BIC:

NPVB =

(
Φ(

√
log n)− Φ(−

√
log n)

)(
Φ(−

√
log n)− Φ(−

√
log n)

+R{Φ(−
√
log n+An)− Φ(−

√
logn+An)}

)−1

.

We need following lemmas to compare these NPV’s.

Lemma 6. For any constant A put

s(y) =

∫ y

−y

(
e−Ay + eAy − 2e−At

)
ϕ(t)dt,

then s(y) > 0 for any y > 0.

Proof. Since s(y) is rewritten by

s(y) = 2

∫ y

0

(
e−Ay + eAy − (e−At + eAt)

)
ϕ(t)dt,

and
e−Ay + eAy − (e−At + eAt) > 0

for any t such that 0 < t < y, we have s(y) > 0 for any constant A.

Lemma 7. For any constant A put

k(y) =

(
ϕ(y +A) + ϕ(y −A)

)(
Φ(y)− Φ(−y)

)
− 2

(
Φ(y +A)− Φ(−y +A)

)
ϕ(y),

then k(y) > 0 for any y > 0.

Proof. We have

ϕ(y +A) = exp(−Ay −A2/2)ϕ(y),

Φ(y +A)− Φ(−y +A) = exp(−A2/2)

∫ y

−y

ϕ(x)e−Axdx.

Substiting these formula to k(y), we may represent k(y), by using s(y) defined in Lemma
6, as k(y) = exp(A2/2)ϕ(y)s(y). Thus from Lemma 6 we have k(y) > 0 for any y > 0.

Lemma 8 For An =
√
nµ1 put

ℓ(y) =
Φ(y +An)− Φ(−y +An)

Φ(y)− Φ(−y)
.

Then ℓ(y) is a strictly increasing function of y > 0.
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Proof. Since

dℓ(y)

dy
=

(
{ϕ(y +An) + ϕ(y −An)}{(Φ(y)− Φ(−y)}

−2{Φ(y +An)− Φ(−y +An)}ϕ(y)
)(

Φ(y)− Φ(−y)

)−2

=
k(y)(

Φ(y)− Φ(−y)

)2

at A = An, we have dℓ(y)/dy > 0 from Lemma 7. Thus ℓ(y) is a strongly increasing
function of y > 0.

Theorem 2. Consider decision rules based on statistical test, AIC and BIC for
H0: µ = 0 vs. H1: µ ̸= 0 and their NPV’s at µ = µ1. Then we have the following
relationships for any R and µ1.

(1) NPVA > NPVT ⇐⇒ α < 0.157,
(2) When n > 1, NPVB > NPVT ⇐⇒ n < exp(Z2

α/2),

(3) When n > 1, NPVB > NPVA ⇐⇒ n < 8,

Proof. Put

f(x) =
1

1 +Rℓ(x)
,

by using function ℓ(x) defined in Lemma 7. Then we may represent NPV’s by

NPVT = f(Zα/2), NPVA = f(
√
n), NPVB = f(

√
log n)

Since f(x) is a strictly decreasing function of x > 0 from Lemma 8, we have

NPVA > NPVT ⇐⇒ f(
√
2) > f(Zα/2) ⇐⇒

√
2 < Zα/2 ⇐⇒ α < 0.157,

NPVB > NPVT ⇐⇒ f(
√

logn) > f(Zα/2) ⇐⇒ n < exp(Z2
α/2),

NPVB > NPVA ⇐⇒ f(
√
log n) > f(

√
2) ⇐⇒ n < 8.

6. Discussion

The positive predictive value (PPV) is a key index for evaluating treatment effects,
such as efficacies of new drugs in a clinical trials. We proved in Theorem 1 that PPVA >
PPVT if and only if α > 0.157. Statistical tests are usually designed to satisfy 5% level
and 80% power in confirmative clinical trias. If this is the case, Theorem 1 shows that
statistical tests are superior to the AIC. However, if it is not the case, for example, when
sample sizes are small like a pilot study, one must increases the level of significance since
otherwize probabilities of Type II error inflate; often the level of significance is raised up
to 20%. If this is the case the theorem shows that the AIC is superior to the statistical
test in the sense of the positive predictive value. Theorem 1 also shows that the decision
based on AIC is superior to the decision based on BIC if and only if 1 < n < 8.

Suppose that an animal experiment is conducted to determine whether certain
chemical compound is carcinogenesis or not; namely, to determine whether the chemical
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compound is not carcinogen (H0) or the chemical compound is carcinogen (H1). Type
II errors should be more strictly controlled than Type I error in the determination,
since number of cancer patients increase among the users of compound if it is falsely
determined no carcinogen and released in the country. Thus NPV is more important
than PPV for general public in such bioassays. Theorem 2 shows that the decision based
on AIC is superior to the decision based on statistical test unless α > 0.157 and that it
is also superior to the BIC if n ≥ 8.
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