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Abstract

Sparse regression procedures that are typified by the lasso enable us to perform
variable selection and parameter estimation simultaneously. However, the lasso
does not give the estimate of error variance, and also the tuning parameter selection
still remains an important issue. On the other hand, although the Bayesian lasso
can determine the estimate of error variance and the value of a tuning parameter
as some Bayesian point estimates, it is difficult to derive sparse solution for the
estimates of regression coefficients. To overcome these drawbacks, we propose
a MAP Bayesian lasso by using the Monte Carlo integration for the posterior
approximation. Monte Carlo simulations and real data examples are conducted to
examine the efficiency of the proposed procedure.

Key Words and Phrases: Lasso, tuning parameter estimation, posterior distribution, Monte

Carlo integration, Newton’s method.

1. Introduction

Computer and sensor technology advancements enable us to get and save the high-
dimensional or complex data, and the statistical modeling helps us to obtain some
knowledge from such data. The linear regression modeling is used to model a relation-
ship between a response variable and several explanatory variables, and it enables us
to predict and interpret mechanisms of phenomena. Parameter estimation and variable
selection are fundamentally important in the linear regression modeling. The parame-
ters are usually estimated by using the ordinary least squares or maximum likelihood
procedures. Variable selection follows the best subset selection based on model selection
criteria such as the AIC (Akaike, 1973) and the BIC (Schwarz, 1978). Cross-validation
is also widely used as a model selection criterion. For model selection criteria, we re-
fer to Konishi and Kitagawa (2008). For high-dimensional regression, however, these
procedures yield models with poor prediction accuracy. Least square procedures of-
ten yield model estimates with large variances, especially when there is a problem of
multicollinearity. The best subset selection is often unstable because of its inherent
discreteness (Breiman, 1996).

For these drawbacks, one of promising techniques is the lasso (least absolute shrink-
age and selection operator) proposed by Tibshirani (1996). The lasso tends to shrink
some regression coefficients toward exactly zero by imposing an L1 penalty on regression
coefficients, and does both continuous shrinkage and variable selection simultaneously.
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For the last 20 years, various sparse regression procedures inspired by the lasso have
been proposed; e.g. SCAD (smoothly clipped absolute deviation; Fan and Li, 2001),
the elastic net (Zou and Hastie, 2005), the adaptive lasso (Zou, 2006), the group lasso
(Yuan and Lin, 2006), and the MCP (minimax concave penalty; Zhang, 2010).

In sparse regression modeling, the selection of adjusted tuning parameters including
regularization parameters is a crucial issue, since these procedures depend on values of
tuning parameters that identify a set of variables included in a model and also control the
bias-variance trade-off in resulting estimates. In the lasso, the degrees of freedom (e.g.
Ye, 1998; Efron, 1986; Efron, 2004) quantifies the model complexity and plays a key role
in such problem. Efron (2004) showed that Mallows’ Cp type criteria (Mallows, 1973) is
an unbiased estimator of the true prediction error when degrees of freedom is given, and
it often provides better accuracy than cross-validation. It is, however, difficult to derive
a closed form of the degrees of freedom of the lasso, so the estimation procedures have
been integrated by Zou et al. (2007), Kato (2009), Tibshirani and Taylor (2012) and
Hirose et al. (2013). Especially Zou et al. (2007) showed that the number of non-zero
regression coefficients is an unbiased estimator of the degrees of freedom of the lasso.

Tibshirani (1996) indicated the relationship between the lasso and Bayesian models:
the lasso estimates can be interpreted as a MAP (maximum a posteriori) estimates
when the regression coefficients have independent and identical Laplace prior and the
likelihood is taken to be a normal linear regression model. The Bayesian lasso (Park
and Casella 2008, Hans 2009) is a fully Bayesian analysis, and they suggested the Gibbs
sampling for the lasso with the Laplace prior in the hierarchical model. The Bayesian
lasso provides the Bayesian credible intervals of the lasso, and it guides the variable
selection.

Compared to non-Bayesian modeling, the Bayesian lasso also has two advantages:

1. estimating error variance.

2. choosing the values of tuning parameters.

In the lasso, the estimate of error variance is not directly obtained, and efficient proce-
dures were studied (see e.g. Reid et al., 2014). On the other hand, the Bayesian lasso
determines it as mode, median, or mean of the posterior distribution. Tuning parameters
which can be viewed as the Bayesian hyper parameters, are estimated by a hierarchical
or an empirical Bayesian method.

The Bayesian lasso has two drawbacks: it is difficult to calculate a posterior mode
of the regression coefficients, and the resulting regression coefficients are not sparse.
Although the posterior mode of the Bayesian lasso coefficients is equivalent to the lasso
estimates, it is difficult to calculate the posterior mode because posterior density function
is not differentiable at zero. The kernel density estimation may be applicable for this
problem. It is however difficult to calculate a stable posterior mode in high-dimensional
density estimation. Furthermore, Park and Casella (2008) indicate that the Bayesian
lasso (point) estimates for regression coefficients don’t take zero value exactly.

To overcome these drawbacks, we propose a new methodology that approximates
the posterior density function of the Bayesian lasso by Monte Carlo integration; estimat-
ing the posterior mode by Newton’s method, and modifying the resulting estimates of
regression coefficients to be sparse along a posterior probability. Note that our method-
ology is not a Bayesian analysis, but we use Bayesian model for sparse modeling. In the
Bayesian analysis, the posterior distribution summarizes knowledge about the unknown
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parameters on the basis of observations. The MAP procedures including our method-
ology, however, only perform point estimation, and they do not provide any measure of
uncertainty on the estimated parameters. (e.g., Murphy, 2012). Thus, our procedure is
not a Bayesian analysis.

The remainder of this paper is organized as follows: Section 2 briefly describes the
Bayesian model of the lasso in the linear regression models. In Section 3, we introduce
a new methodology that approximates a posterior density function by Monte Carlo
integration, estimates a posterior mode by Newton’s method which considers a posterior
probability, and derives sparse estimates of regression coefficients. Section 4 presents
numerical studies for both artificial and real data sets. Some concluding remarks are
given in Section 5.

2. Bayesian lasso

2.1. Lasso

We consider the linear regression model

y = β01n +Xβ + ε, (1)

where y = (y1, . . . , yn)
T is an n-dimensional response vector, β0 is an intercept, 1n is an

n-dimensional vector whose components are all one, X = (x1, . . . ,xn)
T is an n×p design

matrix, with p-dimensional observations for predictor variables xi = (xi1, . . . , xip)
T , β =

(β1, . . . , βp)
T is a p-dimensional regression coefficient vector, and ε = (ε1, . . . , εn)

T is an
n-dimensional error vector which elements have independent and identically distributed
according to a normal distribution with mean zero and unknown variance σ2. Without
loss of generality, we assume that the response and predictors are standardized:

n∑
i=1

yi = 0,

n∑
i=1

xij = 0,

n∑
i=1

x2
ij = n, j = 1, . . . , p.

Since the error vector ε has an n-dimensional normal distribution Nn(0, σ
2In), we

have a probability density function for the response vector y in the form

p(y|X,β, σ2) =
n∏

i=1

1√
2πσ2

exp

{
− 1

2σ2
(yi − xT

i β)
2

}
,

a probability density function of an n-dimensional normal distribution

Nn(y|Xβ, σ2In),

with mean vector Xβ and variance-covariance matrix σ2Ip.
This leads to the log-likelihood function

log p(y|X,β, σ2) = −n

2
log(2πσ2)− 1

2σ2
∥y −Xβ∥2.

Thus, the maximum likelihood estimator (MLE) for the regression coefficients vector β
on model (1) is defined by

β̂MLE = argmax
β

[
− 1

2σ2
∥y −Xβ∥2

]
,
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and this is equivalent to the ordinary least square estimator (OLS)

β̂OLS = argmin
β

[
∥y −Xβ∥2

]
.

Although OLS and MLE procedures are both usual estimation techniques, these
procedures often have large variance when the dimensionality p grows to a large size or
some variables have strong correlation between each other. The ordinal methods cannot
produce sparse solution for estimates of regression coefficients, and do not enable us to
perform regression coefficients estimation and variable selection simultaneously.

The lasso estimates (Tibshirani, 1996) for the regression coefficients are obtained
by solving L1 penalized least square problem

β̂lasso := argmin
β

 1

2n
∥y −Xβ∥2 + λ

p∑
j=1

|βj |

 , (2)

where λ is a regularization parameter which controls the number of predictor variables.
The lasso continuously shrinks the coefficients toward 0 as λ increases. In the case of
λ = 0 and n > p, β̂lasso is equivalent to the OLS or MLE, and some coefficients are
shrunk to exactly zero when the scale of λ is sufficiently large because of nature of
the L1 penalty. From this property, model selection problem in the lasso is naturally
equivalent to the tuning parameter selection problem.

Since the objective function in (2) is not differentiable at βj = 0 (j = 1, . . . , p),
there are no closed form of the lasso estimates. Hence, in order to obtain estimates of
regression coefficients, a number of efficient algorithms are proposed; e.g., the shooting
algorithm (Fu, 1998), the LARS (Efron et al., 2004), the GPS algorithm (Friedman,
2008) and the coordinate descent algorithm (Friedman et al., 2010).

The lasso has been much studied from various viewpoints. For example, Zou and
Hastie (2005), Zou (2006), Yuan and Lin (2006) extended the L1 penalty into the “L1+
L2”, “weighted”, or “group” penalty. Knight and Fu (2000) and Bühlmann and van
de Geer (2011) showed asymptotic properties of the lasso-type estimators. Zou et al.
(2007), Kato (2009), Tibshirani and Taylor (2012), and Hirose et al. (2013) investigated
the degrees of freedom of the lasso that plays a key role in model selection problem.

2.2. Bayesian lasso

Several articles (e.g., Tibshirani 1996, Park and Casella 2008) described that the
lasso estimates can be interpreted as the maximum a posteriori (MAP) estimates when
β1, . . . , βp have an independent and identical Laplace priors p(β) = (λ/2) · exp(−λ|β|).
However, the Laplace distribution sometimes makes it difficult to analyze. For exam-
ple, if we have a normal likelihood and a normal prior, then we can easily obtain the
normal posterior distribution through the completing square techniques. By contrast,
we can hardly apply such techniques to the Laplace prior. Andrews and Mallows (1974)
showed that the Laplace distribution can be expressed as a scale mixture of the normal
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distributions with independent exponentially distributed variables:

a

2
exp (−a|z|) =

∫ ∞

0

1

2πs
exp

(
− 1

2s
z2
)
· a

2

2
exp

(
−a2

2
s

)
ds (a > 0)

=

∫ ∞

0

N(z|0, s) · Exp
(
s|a

2

2

)
ds,

where Exp(x|a) is a probability density function of an exponential distribution with
variable x and rate parameter a. In the Bayesian approach, the scale mixture formulation
has a predilection for the hierarchical representation of the full model. Park and Casella
(2008) proposed the Gibbs sampling for the lasso from hierarchical representation of the
full model:

p(y|X,β, σ2) = Nn(y|Xβ, σ2In),

p(β|σ2, τ21 , . . . , τ
2
p ) = Np(β|0p, σ

2D),

p(σ2) =
1

σ2
or IG(σ2|ν0, η0),

p(τ21 , . . . , τ
2
p |λ) =

p∏
j=1

Exp

(
τ2j |

λ2

2

)
,

(3)

where 0q is a q-dimensional vector whose elements are all 0, D = diag(τ21 , . . . , τ
2
p ),

IG(x|ν, η) is the probability density function of an inverse-gamma distribution with
variable x, shape parameter ν and rate parameter η. The Bayesian lasso enables us to
obtain the Bayesian credible intervals, and we can perform the model selection through
these interval estimates. The conditional prior of β given σ2 in the model (3) guarantees
a unimodal full posterior, which avoids the slow convergence of the Gibbs sampler. For
more details, we refer to Andrews and Marrows (1974) and Park and Casella (2008).

The full model in (3) leads to the following full conditional distributions of β, σ2,
and 1/τ21 , . . . , 1/τ

2
p when p(σ2) = 1/σ2:

pfull(β|y, X, σ2, τ21 , . . . , τ
2
p ) = Np(β|A−1XTy, σ2A−1),

pfull(σ
2|y, X,β, τ21 , . . . , τ

2
p ) = IG(σ2|ν1, η1)

pfull(1/τ
2
1 , . . . , 1/τ

2
p |y, X,β, σ2, λ) =

p∏
j=1

IGauss(1/τ2j |µ′
j , λ

′),

(4)

where

A = XTX +D−1,

ν1 =
n+ p

2
, η1 =

(y −Xβ)T (y −Xβ) + βTD−1β

2
,

µ′
j =

√
λ2σ2

β2
j

, λ′ = λ2,

and IGauss(x|ν1, η1) is a probability density function of an inverse-gaussian distribution
with variable x (x > 0), mean ν1, and shape parameter η1. If p(σ

2) is an inverse gamma
prior, then ν1 = (n+ p+ ν0)/2 and η1 = {(y −Xβ)T (y −Xβ) + βTD−1β + η0}/2.
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Park and Casella (2008) also suggested how to choose the Bayesian lasso tuning
parameter λ in Bayesian analysis; considering an empirical Bayes through marginal max-
imum likelihood and a hierarchical Bayes through gamma priors on λ2. By generating
Gibbs samples according to full conditional distributions (4), we can obtain the estimates
of β and σ2 as posterior modes (MAP estimates), medians and means.

We can easily calculate the MAP estimates of σ2 and λ. It is however difficult to
obtain the MAP estimates of β, since the multivariate kernel density estimation requires
high computational cost. The univariate kernel density estimation on this problem
becomes in-stable when estimates becomes large, since mean and variance-covariance
matrix of full conditional of β depend on same parameter A−1. Figure 1 illustrates the
regularization paths for the low-dimensional diabetes dataset (Efron et al., 2004) solved
by the posterior mode (i.e. MAP estimates) and posterior mean. This figure shows that
the MAP estimates is more instable than the posterior mean.

−14 −12 −10 −8 −6 −4 −2 0

−
4

0
−

2
0

0
2

0
4

0

Posterior mode

log lambda

c
o

e
ff
ic

ie
n

ts

−14 −12 −10 −8 −6 −4 −2 0

−
4

0
−

2
0

0
2

0
4

0
Posterior mean

log lambda

c
o

e
ff
ic

ie
n

ts

Figure 1: The regularization paths for the low-dimensional diabetes datasets (Efron et
al., 2004). Left panel shows the regularization path of the posterior mode, and right
panel that for the posterior mean. These point estimates were computed from the Gibbs
sampler with size 10,000 after 1,000 burn in iteration.

Moreover, the Bayesian lasso point estimation does not produce some coefficients
as exactly zero though the original lasso does. The cause of this problem is from the
Gibbs sampler, since there are the estimation errors between the true and estimated
posterior mode, and the posterior median and mean do not consist the posterior mode
in general.

For this problem, Hoshina (2012) proposed an algorithm that sets some regression
coefficients exactly zero so that a posterior probability becomes large. This procedure,
however, only corrects for the resulting point estimates to be sparse, and numerically
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computed MAP estimates are often instable (Figure 1). Instability of point estimation
sometimes leads a poor prediction and estimation accuracy. Hence, we propose another
procedure, the MAP Bayesian lasso, in Section 3.

3. Sparse model building methodologies

To obtain the sparse MAP estimates of β, the optimization methods such as any
gradient procedures are required. However, it is difficult to obtain the posterior density
function of the Bayesian lasso, and it may be not differentiable at β = 0 since it includes
the Laplace prior. To overcome these drawbacks, we approximate the posterior density
by the Monte Carlo integration, and propose a procedure that enables us to obtain the
MAP estimates of the Bayesian lasso by Newton’s method.

3.1. Posterior distribution approximated by Monte Carlo integration

Since the Bayesian lasso gives us the estimates of σ2 and λ, our procedure leverages
these estimates. Let σ̂2 and λ̂ be the MAP estimates of σ2 and λ. Then the (conditional)

posterior density of β given σ̂2 and λ̂ is proportionate to

∫
· · ·
∫

Nn(y|Xβ, σ̂2In) ·Np(β|0p, σ̂
2D)


p∏

j=1

Exp

(
τ2j

∣∣∣∣∣ λ̂2

2

) dτ21 · · · τ2p

∝
∫

· · ·
∫

Np(β|A−1XTy, σ̂2A−1) · |D|−1/2 · |A|−1/2

· exp
{
− 1

2σ̂2
yT (In −XA−1XT )y

}
p∏

j=1

Exp

(
τ2j

∣∣∣∣∣ λ̂2

2

) dτ21 · · · τ2p .

(5)

It is difficult to evaluate the integration in (5) because of complexity of integrand.
In general, some approximation methods, such as the Laplace approximation (Tierny
and Kadane, 1986), may be used to approximate it. We cannot, however, employ this
procedure since the integrand in (5) is not differentiable at βj = 0.

In contrast, the Monte Carlo integration is applicable for posterior approximation.
The Monte Carlo integration is a well-known numerical technique to approximate a
integration in statistics. For example, we often use x̄ =

∑M
m=1 xm/M as an estimate of

the expectation of some random variable X having a probability density function f(x),
which can be obtained as ∫

xf(x)dx ≈ 1

M

M∑
m=1

xm,

where x1, . . . , xM is a random sample from the distribution of X. We apply this ele-
mentary statistical technique to approximate the integration in (5).

Let {τ21(m), . . . , τ
2
p(m) : m = 1, . . . ,M} be a random sample generated from

∏p
j=1

Exp(τ2j |λ̂2/2) artificially, where size M is encouraged to determine sufficiently large
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number. Then, we have the following approximation of (5):

1

M

M∑
m=1

Np(β|A−1
(m)X

Ty, σ̂2A−1
(m))

· |D(m)|−1/2|A(m)|−1/2 · exp
{
− 1

2σ̂2
yT (In −XA−1

(m)X
T )y

}
,

(6)

where D(m) = diag(τ21(m), . . . , τ
2
p(m)), A(m) = XTX +D−1

(m). Since (6) is formed as the

sum of differentiable function, (6) is totally differentiable. Hence, the posterior mode
of the Bayesian lasso regression coefficients are given by maximizing (6) using Newton’s
method.

Thus, the approximated posterior distribution p̃(β|y, X, λ, σ2) and the approxi-
mated marginal likelihood p̃(y|X,σ2, λ) of the lasso are respectively given by

p̃(β|y, X, σ̂2, λ̂) =

1
M

∑M
m=1 Np(β|A−1

(m)X
Ty, σ̂2A−1

(m)) · ξ(m)∫
1
M

∑M
ℓ=1 Np(β|A−1

(ℓ)X
Ty, σ̂2A−1

(ℓ)) · ξ(ℓ)dβ

=
M∑

m=1

γ(m)Np(β|A−1
(m)X

Ty, σ̂2A−1
(m)),

p̃(y|X, σ̂2, λ̂) =

∫
1

M

M∑
m=1

Np(β|A−1
(m)X

Ty, σ̂2A−1
(m)) · ξ(m)dβ

=
1

M

M∑
m=1

|D(m)|−1/2|A(m)|−1/2

· exp
{
− 1

2σ̂2
yT (In −XA−1

(m)X
T )y

}
,

(7)

where

ξ(m) = |D(m)|−1/2|A(m)|−1/2 · exp
{
− 1

2σ̂2
yT (In −XA−1

(m)X
T )y

}
,

γ(m) =
ξ(m)∑M
ℓ=1 ξ(ℓ)

.

Note that, the approximated posterior of the lasso is given in the form of a mixture of
normal distributions with mixture weights γ(1), . . . , γ(M).

3.2. MAP estimation by Newton’s method

Newton’s method is one of the second order optimization methods that take the
Hessian, i.e. the curvature of the space into account. This iterative algorithm consists
of updates of the following form:

θk+1 = θk + ηkH
−1
k gk, gk =

∂f(θk)

∂θ
, Hk =

∂2f(θk)

∂θ∂θT
,
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where θk (k = 1, . . .) is a sequence of variables which converges to the optimal value θ̂,
f(θ) is a function which is maximized, and ηk is a step size for k-th update.

In our procedure, the resulting regression coefficients are given by maximizing (6)

or p̃(β|y, X, σ̂2, λ̂) of (7). We use (6) as the objective function of the maximization
problem, and the gradient gk and the Hessian Hk for k-th update are respectively given
as follows:

gk =
1

M
(2π)−p/2(σ̂2)−(p+2)/2

M∑
m=1

|D(m)|−1/2

· exp
{
− 1

2σ̂2
(yTy − 2yTXβk + βkD

−1
(m)βk)

}
(XTy −A(m)βk),

Hk =
1

M
(2π)−p/2(σ̂2)−(p+2)/2

·
M∑

m=1

|D(m)|−1/2 exp

{
− 1

2σ̂2
(yTy − 2yTXβk + βkD

−1
(m)βk)

}
·
{
A(m) +

1

σ̂2
(XTy −A(m)βk)(X

Ty −A(m)βk)
T

}
.

(8)

We choose the value of step size ηk from candidate values {η(1)k , . . . , η
(ℓ)
k } so that θk+1 =

βk+1 has the largest posterior density, and we substitute the following function for the
posterior density of estimated β:

q(β,y, X, σ2, λ) = logNn(y|Xβ, σ2In) +

p∑
j=1

log

{
λ√
2σ2

exp

(
− λ√

σ2
|βj |
)}

. (9)

We use this formula to obtain the MAP estimates of the Bayesian lasso. However,
it is difficult to derive sparse solutions for regression coefficients since we use a numerical
procedure. For this problem, we can apply the sparse algorithm (Hoshina, 2012), which
sets some regression coefficients exactly zero so that a posterior probability becomes
large.

Although this procedure enables us to obtain the sparse MAP estimates of the
Bayesian lasso, the optimized solution of Newton’s method depends on the initial value.
Especially, since objective function of this optimization may be waggly, it is considered
that many local optimums exist (Figure 2). To avoid this problem, the initial value
selection is very important. We employ the posterior means as the initial value of the
Newton’s method because of its estimation stability, as shown in Figure 1.

The size of numerical integration M may affect the result of our procedure. For this
point, an empirical evidence shows that the size of M also suffices at the relatively-small
value. Figure 3 shows the solution paths in cases of M = 50, 500, 5000 respectively, and
all solution paths are similar. From these results, we set M to 500 in numerical studies
of Section 4.

We call this procedure the “MAP Bayesian lasso” (Maximum a Approximated
Posteriori with the Bayesian lasso). For the details of the procedure, see Algorithm 1.
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Figure 2: Overview of the objective function of our procedure. Solid and dashed lines
illustrate the approximated posterior and true posterior, respectively. Even if true poste-
rior has no local maximum, the approximated posterior may have many local maximums.
Thus, it is desired that the initial value of Newton’s method is slightly near the global
maximum.

Algorithm 1 MAP Bayesian lasso

1: σ2 ⇐ σ̂2: posterior mode of σ2;
2: λ ⇐ λ̂: posterior mode of λ;
3: Initialize β0 = β̄ : posterior mean;
4: for k = 1, 2, . . . until convergence do
5: Evaluate the gradient gk of (8);
6: Evaluate the Hessian Hk of (8);
7: Solve zk = H−1

k gk;
8: for ℓ = 1, 2, . . . , L, solve βk+1(ℓ) = βk + ηk(ℓ)zk do
9: Evaluate the value q(ℓ) = q(βk+1(ℓ),y, X, σ2, λ) of (9);

10: end for
11: βk+1 ⇐ argmax

βk+1(ℓ)

{q(ℓ)};

12: β̂ = (β̂1, β̂2, . . . , β̂p)
T ⇐ βk+1;

13: end for
14: β̃ = (β̃1, β̃2, . . . , β̃p) ⇐ β̂;
15: for j = 1, 2, . . . , p do
16: β̃j ⇐ 0;

17: if q(β̃,y, X, σ2, λ) > q(β̂,y, X, σ2, λ) then

18: β̂ ⇐ β̃;
19: else β̃ ⇐ β̂;
20: end if
21: end for
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Figure 3: Regularization paths for the diabetes data (Efron etal., 2004) for M = 50
(left), M = 500 (center) and M = 5000 (right).
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3.3. Other procedures

This section describes other sparse model building techniques which choose the
value of a tuning parameter by model selection criteria.

3.3.1. Baysian lasso with model selection criteria

Suppose that p(y|θ) is a likelihood of n-observation y on parameter θ, and p(θ|y) is
a posterior density of θ. Deviance information criterion (DIC) proposed by Spiegelhalter
et al. (2002) measures the effective number of parameters in a Bayesian model using an
information theoretic argument. The measure pD for parameter θ is defined by

pD = −2Eθ|y[log p(y|θ)] + 2 log p(y|θ̄),

where Eθ|y(·) denotes the expectation over posterior distribution of θ, and θ̄ is the
posterior mean of θ.

Based on this measure, Spiegelhalter et al. (2002) proposed a deviance information
criterion

DIC = −2 log p(y|θ̂) + 2pD.

Widely applicable or Watanabe-Akaike information criterion (WAIC) is proposed
by Watanabe (2010a, 2010b). WAIC intends to evaluate the model accuracy by the
Bayes or Gibbs generalization loss for singular or non-singular model. However, it is
difficult to obtain these losses since we need to evaluate a expectation on predictive
distribution. For this problem, Watanabe (2010a, 2010b) showed that the consistent
estimator of the Bayes generalization loss is given by

WAIC =− 1

n

n∑
i=1

logEθ|y [p(y|θ)]

+
1

n

n∑
i=1

{
Eθ|y

[
(log p(yi|θ))2

]
− Eθ|y [log p(yi|θ)]2

}
.

DIC and WAIC need to evaluate the posterior and predictive distribution respec-
tively. The Gibbs sampler enables us to derive these values, and the Bayesian lasso
which gives us the Gibbs sample of the lasso can be applicable for these procedures.

3.3.2. Lasso with model selection criteria

The degrees of freedom can lead to several model selection criteria (e.g. Hirose et
al., 2013) which may improve prediction accuracy in the lasso.

In the lasso, Zou et al. (2007) introduced the AIC (Akaike, 1973), the BIC (Schwarz,
1978) and the Mallows’ Cp (Mallows, 1973), respectively, given by

AIC = n log(2πσ̂2) +
∥y −Xβ̂∥2

2σ̂2
+ 2DF,

BIC = n log(2πσ̂2) +
∥y −Xβ̂∥2

2σ̂2
+ log n ·DF,

Cp = ∥y −Xβ̂∥2 + 2σ̂2DF,
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where the likelihood of y is given by Nn(y|Xβ, σ2In) and DF is the degrees of freedom
of the lasso. Although true value of DF is unknown, Zou et al. (2007) showed that the
number of non-zero coefficients of the lasso estimate is an unbiased estimator of DF.
The AIC and Cp yield the same results when same estimated σ2 is used.

Hirose et al. (2013) also introduced the generalized cross validation (GCV; Craven
and Wahba, 1979)

GCV = n
∥y −Xβ̂∥2

(n−DF)2
.

Note that the GCV does not need estimate of σ2.

4. Numerical result

In order to examine the effectiveness of our proposed procedure, we conducted
Monte Carlo simulations and real data analysis.

4.1. Monte Carlo experiments

Monte Carlo experiments were conducted to investigate the efficacy of our proce-
dure. The data were generated from

y = xTβ∗ + ε,

where β∗ is a p-dimensional regression coefficients vector, ε ∼ N(0, σ2), and x =
(x1, . . . , xp)

T is assumed to be a p-variate normal distribution with mean vector 0p.
We consider the following cases.

Example 1 n = 20, p = 8, β∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T , σ2 = 32.
cor(xi, xj) = ρ|i−j|, ρ = 0.5.

Example 2 n = 20, p = 8, β∗ = 0.85 · 1p, σ
2 = 32. cor(xi, xj) = ρ|i−j|,

ρ = 0.5.

Example 3 n = 20, p = 8, β∗ = (5,0T
p−1)

T , σ2 = 22. cor(xi, xj) = ρ|i−j|,
ρ = 0.5.

Example 4 n = 200, p = 40, β∗ = (0T
10,2

T
10,0

T
10,2

T
10)

T , σ2 = 152.
cor(xi, xj) = ρ (i ̸= j), ρ = 0.5.

We compute the following four indicators; prediction squared error (PSE), mean
squared error of the regression coefficients vector (MSE), false positive rate (FPR), and
false negative rate (FNR) to evaluate the prediction and estimation accuracy of outcome
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model, and the simulation results were obtained by 200 Monte Carlo trials.

PSE =
1

200

(
200∑
k=1

∥ŷ(k) − ỹ(k)∥2/n

)
,

MSE =
1

200

{
200∑
k=1

(β̂(k) − β∗)TR(β̂(k) − β∗)

}
,

FPR =
1

200

(
200∑
k=1

#{β̂(k)
j ̸= 0 ; β∗

j = 0}/#{β∗
j = 0}

)
,

FNR =
1

200

(
200∑
k=1

#{β̂(k)
j = 0 ; β∗

j ̸= 0}/#{β∗
j ̸= 0}

)
.

Where ŷ(k) is a predicted vector of k-th data sets, ỹ(k) is a new response vector that in-

dependent from y, p×p matrix R is a correlation matrix of x, and β̂(k) = (β̂
(k)
1 , . . . , β̂p)

T

is an estimated regression coefficients vector from k-th data set. We set M in (8) to
500, shape and rate parameter ν0, η0 of inverse-gamma prior on σ2 to both 0.001, and
the tuning parameter λ is estimated by the hierarchical Bayesian estimation with non-
informative gamma prior on λ2. In all examples, 3000 samples from the Gibbs sampler
were used for estimating parameters after 1000 burn in.

We compare the indicators of our procedure with those of the other procedures
described in Section 3.3 and the 10-fold Cross validation (CV). The full Bayesian ap-
proach (Mean) which estimates all parameters by the posterior mean is also compared
with our procedure. Table 1 shows the comparison of these sparse regression modeling
procedures. The result of AIC is not presented, since Mallows’ Cp criterion and AIC
yield the same results when σ̂2 is given. The Bayesian estimates derived by three proce-
dures (Mean, DIC, and WAIC) were calculated by the sparse algorithm (Hoshina, 2012),
since they have no sparse solution for the estimates of regression coefficients. The error
variance σ2 was estimated by the MLE in the lasso procedures with Cp and BIC.

The simulation results are summarized as follows:

1. For Examples 1, 3, and 4, the Bayesian procedures except for DIC have smaller
errors than all lasso procedures in terms of PSE and MSE.

2. Our procedure has slightly large FPR in Examples 1, 3, 4, but all examples show
that our procedure has smaller FNR. This may denotes that our procedure takes
in more variables into the estimated model.

3. In Examples 1, 2, and 3, our procedure has the smallest value in terms of PSE,
and has the smallest value in terms of MSE in Examples 1, 3.

From the summary of the Monte Carlo simulations, our procedure has better pre-
diction and estimation accuracy. Moreover, it hardly wastes the important variables
from the model. Thus, we believe that our proposed methodology seems to be useful
in terms of variable selection, parameter estimation and prediction. Note that DIC and
WAIC need the Gibbs sampling for each candidate value of λ.
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Table 1: Comparison of sparse regression modeling procedures. The values in parenthesis
for PSE and MSE are their standard deviations.

Example 1.

Proposed Mean DIC WAIC CV Cp BIC GCV
PSE 6.17 8.04 15.18 6.45 7.49 11.66 9.44 12.00

(2.71) (4.66) (6.28) (3.23) (4.60) (9.00) (7.24) (5.79)
MSE 3.83 5.57 10.29 4.39 4.25 7.01 5.47 4.67

(2.89) (5.35) (5.28) (3.37) (4.02) (6.96) (5.90) (4.90)
FPR 0.53 0.27 0.04 0.46 0.47 0.28 0.39 0.44
FNR 0.09 0.25 0.50 0.14 0.12 0.24 0.18 0.14

Example 2.

Proposed Mean DIC WAIC CV Cp BIC GCV
PSE 6.33 8.70 15.30 7.06 6.99 10.71 9.48 12.54

(2.90) (5.04) (6.05) (3.80) (4.34) (7.57) (6.97) (5.18)
MSE 4.22 6.12 10.26 4.86 4.21 6.49 5.76 5.30

(2.28) (4.29) (3.38) (3.21) (2.84) (4.40) (4.16) (3.92)
FPR – – – – – – – –
FNR 0.34 0.55 0.80 0.45 0.36 0.50 0.45 0.42

Example 3.

Proposed Mean DIC WAIC CV Cp BIC GCV
PSE 2.59 2.76 6.56 2.79 3.73 6.76 4.64 5.26

(1.11) (1.23) (2.23) (1.32) (4.17) (8.03) (5.25) (4.79)
MSE 1.34 1.36 3.37 1.40 1.53 3.81 2.04 1.57

(1.07) (1.16) (2.00) (1.24) (3.64) (7.05) (4.76) (3.74)
FPR 0.62 0.44 0.01 0.44 0.42 0.18 0.31 0.35
FNR 0.00 0.00 0.00 0.00 0.02 0.06 0.03 0.02

Example 4.

Proposed Mean DIC WAIC CV Cp BIC GCV
PSE 193.70 193.67 437.80 202.37 238.87 315.58 220.94 322.67

(21.85) (22.01) (49.79) (24.00) (36.03) (144.96) (33.12) (97.32)
MSE 25.08 24.66 234.72 24.23 67.19 140.80 50.27 106.31

(5.76) (5.83) (46.73) (7.11) (34.35) (137.76) (27.49) (100.60)
FPR 0.49 0.42 0.36 0.46 0.28 0.23 0.31 0.26
FNR 0.14 0.15 0.13 0.09 0.26 0.34 0.23 0.31
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4.2. Real data analysis

We explore our procedure by the following two types of the diabetes datasets of
Efron et al. (2004) which have been obtained from 442 diabetes patients.

low-dimensional dataset
consists of ten baseline variables (age, sex, body mass index,
average blood pressure and six blood serum measurements) and
the response variable which is a quantitative measure of disease
progression one year after baseline.

high-dimensional dataset
consists of ten baseline variables of low-dimensional dataset and
54 certain interactions. The response variable which is also a
quantitative measure of disease progression one year after base-
line.

In order to compare the prediction accuracy, the out-of-sample comparison is also
conducted. We divide the datasets into 221 training and 221 test data randomly, and
we compute the following prediction error for test data after model building in training
data for k-th trial:

PE(k) = ∥ŷ(k)
train − y

(k)
test∥2/221,

where ŷ
(k)
train is a predicted vector of k-th training data, ỹ

(k)
test is a response vector of k-th

test data. We also set M in (8) to 500, (ν0, η0) to (0.001, 0.001), λ is estimated by
the hierarchical Bayesian estimation with non-informative gamma prior on λ2, and 3000
samples from the Gibbs sampler are used for estimating after 1000 burn in, for each
datasets.

We compare 8 procedures, the proposed procedure (Proposed), posterior mean
(Mean), DIC, WAIC, 10-fold Cross validation (CV), Mallows’ Cp (Cp), BIC, and Gen-
eralized Cross-validation (GCV).

Table 2 shows the average prediction errors of 50 trials of the out-of-sample compar-
isons. Table 3 reports the estimated standardized regression coefficients for this datasets,
and Figure 4 and 5 also illustrate the estimated standardized regression coefficients.

The results of the real data analysis are summarized as follows:

1. In low-dimensional diabetes dataset, the resulting models of the Bayesian pro-
cedures except for DIC have more variables than all lasso procedures. These
procedures also have smaller average prediction error.

2. In high-dimensional diabetes datasets, the resulting models of the Bayesian pro-
cedures except to a DIC have also more variables than all lasso procedures. Our
procedure, posterior mean, and BIC have smaller average prediction error though
WAIC has larger value.

From the summary of the real data analysis, our procedure has better prediction
accuracy.
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Table 2: The average prediction error of the out-of-sample comparison. The values in
parenthesis are the standard deviations.

Low-dimensional diabetes dataset

Proposed Mean DIC WAIC CV Cp BIC GCV
3025.39 3024.16 3856.53 3034.29 4212.28 4397.09 3430.46 4394.36
(203.31) (207.78) (268.22) (205.80) (993.33) (1096.13) (651.82) (1099.76)

High-dimensional diabetes dataset

Proposed Mean DIC WAIC CV Cp BIC GCV
3095.19 3090.59 3933.00 3848.07 3152.15 3259.43 3046.11 3230.48
(197.05) (190.03) (302.43) (1597.29) (259.40) (386.14) (184.40) (327.78)

Table 3: The estimated standardized regression coefficients for low-dimensional diabetes
dataset. ∗s in table show variables estimated their coefficients to be exactly zero.

age sex bmi map tc ldl hdl tch ltg glu
Proposed ∗ -10.62 24.94 14.94 -13.07 3.15 -5.63 5.39 26.65 3.17
Mean ∗ -10.18 24.96 14.65 -9.80 ∗ -6.73 4.85 25.35 3.07
DIC ∗ ∗ 18.47 3.68 ∗ ∗ ∗ ∗ 14.71 ∗
WAIC ∗ -9.77 24.88 14.34 -7.42 ∗ -7.73 4.34 24.48 2.94
CV ∗ ∗ 17.44 0.24 ∗ ∗ ∗ ∗ 14.58 ∗
Cp ∗ ∗ 14.65 ∗ ∗ ∗ ∗ ∗ 11.79 ∗
BIC ∗ ∗ 14.65 ∗ ∗ ∗ ∗ ∗ 11.79 ∗
GCV ∗ ∗ 14.65 ∗ ∗ ∗ ∗ ∗ 11.79 ∗
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Figure 4: Barplots of the estimated standardized regression coefficients for the high
dimensional diabetes dataset: (a) proposed, (b) Mean, (c) the DIC, (d) the WAIC, (e)
the CV, (f) the Cp, (g) the BIC, and (h) the GCV.
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Figure 5: The sparsity of the estimated standardized regression coefficients for the high
dimensional diabetes dataset: (a) proposed, (b) Mean, (c) the DIC, (d) the WAIC, (e)
the CV, (f) the Cp, (g) the BIC, and (h) the GCV. Grey areas correspond to non-zero
coefficients, and black areas correspond to zero coefficients.
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4.3. Computational speed

The computational times for parameter estimation and model selection in 8 proce-
dures were compared. Table 4 shows the result of timings for the low-dimensional and
high dimensional diabetes datasets in section 4.2. All procedures are computed on a PC
with an Intel Core i7 2.8 GHz processor on Mac OSX.

From Table 4, it is shown that WAIC and DIC take a lot of time to perform.
Although proposed procedure and posterior mean need more time than 10-fold Cross
validation, Mallows’ Cp, BIC and Generalized Cross-validation, they are faster than
WAIC and DIC in both the low-dimensional and high-dimensional diabetes datasets.
Our procedures needs more time to analyze the high-dimensional diabetes datasets than
low-dimensional, because we need to calculate an inverse matrix of dimensionality size.
Note that the timing of our proposed procedure included the time for computing the
posterior mean, since our procedure uses the posterior mean as the initial value.

Table 4: Computational times (seconds) for the low-dimensional and high-dimensional
diabetes datasets.

Proposed Mean DIC WAIC CV Cp BIC GCV
Low-dim. 2.024 1.588 148.215 340.020 0.080 0.002 0.091 0.003
High-dim. 9.832 5.518 461.248 619.127 0.172 0.005 0.087 0.004

5. Conclusion and remarks

The main aim of the present paper is to investigate model estimation procedures
in the Bayesian sparse regression modeling which enables parameter estimation and
variable selection simultaneously. We proposed the approximation procedure of the
Bayesian lasso posterior by the Monte Carlo integration, and derived the optimization
procedure which enables us to obtain sparse MAP estimates of the Bayesian lasso. Monte
Carlo experiments showed that our procedure performs well in terms of variable selection,
parameter estimation, and prediction. The real data analysis also showed the prediction
efficiency of our procedure.

Future studies will be required to consider the generalized sparse regression proce-
dures such as the elastic net, the adaptive lasso, and the group lasso.
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