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Abstract

For a kernel estimator of a density function, we obtain an asymptotic represen-
tation of a jackknife variance estimator of the kernel density estimator and prove

its consistency. Assuming a bandwidth hn = cn− 1
4 (c > 0), we also discuss an

Edgeworth expansion with residual term o(n−1/2) and its validity. Many papers
have studied theoretical properties of a kernel density estimator. Especially mean
integrated squared errors are precisely studied. The asymptotic distribution of the
estimator is also discussed, and it is easy to show asymptotic normality. In this
paper, we will discuss higher order approximation of the distribution of the kernel
estimator. We will obtain an Edgeworth expansion, which takes an explicit form
with residual term o(n−1/2).

Key Words and Phrases: Kernel estimator, Density function, Edgeworth expansion, Jackknife

variance estimator, Studentized estimator.

1. Introduction

Let X1, X2, · · · , Xn be independently and identically distributed (i.i.d.) random
variables with distribution and density functions F (x), f(x). The kernel type estimator
of the density function f is given by

f̂n(x) =
1

nhn

n∑
i=1

K

(
x0 −Xi

hn

)

where hn is a bandwidth parameter and hn → 0, nhn → ∞ (n → ∞). K is a kernel
function which satisfies ∫ ∞

−∞
K(u)du = 1.

The kernel estimator was introduced by Fix and Hodges(1951) and Akaike(1954). Rosen-
blatt(1956) and Parzen(1962) have discussed basic properties of the estimator. Mean
integrated squared errors of the kernel density estimator are discussed in many papers.
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There are also many papers which studied bias reduction, bandwidth selection, etc. It is
easy to show the asymptotic normality of a standardized kernel estimator. Le us define

e1,n = E

[
1

hn
K

(
x0 −X1

hn

)]
,

g1,n(x) =
1

hn
K

(
x0 −X1

hn

)
− e1,n,

e2,n = E[g21,n(X1)].

If 0 <
∫
K2(u)du < ∞ and f ′(x) is bounded in a neighborhood around x0, we have

P

(√
n[f̂n(x0)− f(x0)]√

e2,n
≤ y

)
= Φ(y) + o(1) (1)

where Φ(y) is the distribution function of the standard normal distribution N(0, 1).
For improvement of the normal approximation, Hall(1992) has discussed the Edge-

worth expansion for the kernel density estimator. Umeno and Maesono(2013) have ob-
tained the explicit form of the Edgeworth expansion and prove its validity. Hall(1992)
has also discussed the Edgeworth expansion of the studentized kernel estimator, based
on a naive estimator of the variance. In this paper we will obtain the asymptotic repre-
sentation of the jackknife variance estimator of the kernel density estimator f̂n(x0), and
show the consistency of the variance estimator. Using the asymptotic representation, we
also get the Edgeworth expansion of a studentized kernel estimator. Here we discuss an
explicit form of the expansion, and so we use the bandwidth with hn = cn−1/4 (c > 0).

In Section 2, we will discuss the asymptotic properties of the jackknife variance
estimator and the asymptotic normality. Using the asymptotic representation of the
jackknife variance estimator, we obtain an asymptotic representation of the studenitized
kernel estimator and its Edgeworth expansion with residual term o(n−1/2) in Section 3
and 4.

2. Jackknife variance estimator

The jackknife variance estimator of f̂n(x0) is given by

VJ =
n− 1

n

n∑
i=1

[f̂
(i)
n−1(x0)− f̂n(x0)]

2 (2)

where f̂
(i)
n−1(x0) is a corresponding statistics based on the sampleX1, · · · , Xi−1, Xi+1, · · · ,

Xn and, for the sake of simplicity, we use the same bandwidth hn for f̂
(i)
n−1(x0). For this

variance estimator, we have the following theorem.

Theorem 2.1. Assume that the kernel K satisfies
∫
uK(u)du = 0,

∫
u2K(u)du <

∞,
∫
K2(u)du < ∞, and f ′′(x) is bounded in a neibourhoood of x0. Then we have

nVJ = e2,n +
2

n

n∑
i=1

H1,n(Xi) +
2

n(n− 1)

∑
Cn,2

H2,n(Xi, Xj) (3)
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where

H1,n(x) =
1

2
[g21,n(x)− e2,n],

H2,n(x, y) = −g1,n(x)g1,n(y).

Proof. Expanding the right hand side of (2), we will show (3). Since

f̂
(i)
n−1(x0) =

1

(n− 1)


n∑

j=1

g1,n(Xj)− g1,n(Xi)

 ,

we have
n∑

i=1

(
f̂
(i)
n−1(x0)− f̂n(x0)

)2
=

1

(n− 1)2

n∑
i=1

g21,n(Xj)−
1

(n− 1)2n

{
n∑

k=1

g1,n(Xk)

}2

.

Thus we can show that

n− 1

n

n∑
i=1

(
f̂
(i)
n−1(x0)− f̂n(x0)

)2
=

1

n(n− 1)

n∑
i=1

g21,n(Xj)−
1

(n− 1)n2

{
n∑

k=1

g1,n(Xk)

}2

.

Thus we have the equation (3).

Let us consider approximations of e1,n and e2,n. Using the transformation u =
(x0 −X1)/hn and the Taylor expansion around x0, we have

e1,n =

∫
K(u)f(x0 − hnu)du

= f(x0) + hnf
′(x0)

∫
uK(u)du+

1

2
h2
nf

′′(x0)

∫
u2K(u)du+O(h3

n), (4)

e2,n = E[g21,n(X1)]

= E

[{
1

hn
K

(
x0 −X1

hn

)
− E

[
1

hn
K

(
x0 −X1

hn

)]}2
]

=
1

hn

∫
K2(u)f(x0 − hnu)du−

{
E

[
1

hn
K

(
x0 −Xi

hn

)]}2

=
1

hn

∫
K2(u)

{
f(x0)− hnuf

(1)(x0) +
1

2
(hnu)

2f ′′(x0)

}
du

−f2(x0) +O(h2
n). (5)

Similarly we can show that

E(gk1,n(X1)) =
1

hk−1
n

f(x0)

∫
Kk(u)du+O(h−k+2

n ). (6)
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Since e2,n = O(h−1
n ) = O(n1/4), let us define

σ2
n = hne2,n.

Therefore we consider
n3/4VJ = σ2

n +B1,n +B2,n

where

B1,n = 2n−5/4
n∑

i=1

H1,n(Xi) and B2,n = 2n−5/4(n− 1)−1
∑

1≤i<j≤n

H2,n(Xi, Xj).

Using the moment evaluations, we can show the following theorem.

Theorem 2.2. Let us assume that 0 <
∫
u2K(u)du < ∞ and f ′′(x) is bounded in

the neighborhood of x0, we have

|n3/4VJ − σ2
n|

P−→ 0,

f̂n(x0)− E[f̂n(x0)]√
VJ

L−→ G

where G is N(0, 1).

Proof. Since H1,n(Xi), H2,n(Xi, Xj) are H-decomposition, we have moment
evaluations of them. Using the moment evaluations, the equation (6) and the Markov
inequality, we can show that

E(B2
1,n) = 4n−5/2nE[H2

1,n(Xi)] = O(n−3/4),

E(B2
2,n) ≤ n− 9

2n2E[H2
1,n(Xi)]E[H2

1,n(Xj)] = O(n−2).

Thus we have the desired result.

3. Studentized kernel estimator

Using the asymptotic representation of the jackknife variance estimator, we obtain
an asymptotic representation of the studentized kernel estimator

f̂n(x0)− E[f̂n(x0)]√
VJ

.

Hereafter, we use a symbol oL(n
−1/2) which satisfies

P
(
|oL(n−1/2)| ≥ n−1/2(log n)−1

)
= o(n−1/2).

Thus we can ignore oL(n
−1/2) when we discuss the Edgeworth expansion with resid-

ual term o(n−1/2). Using the Markov inequality, we can show that if E(|Rn|c) =
O(n−1/2−c/2−δ) (c > 0, δ > 0), we have Rn = oL(n

−1/2). Let us define a standard-
ized g1,n and its summation

g∗1,n(x) = e
−1/2
2,n g1,n(x) = h1/2

n σng1,n(x),

A1,n =
1

n

n∑
i=1

g∗1,n(Xi).
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Further let us define

ζ = n−1/4E[g∗1,n(X1)H1,n(X1)],

α̃1,n(x) = n−1/4g∗1,n(x)H1,n(x)− ζ,

α2,n(x, y) = n−1/4{g∗1,n(x)H1,n(y) + g∗1,n(y)H1,n(x)},

α3,n(x, y, z) = n−1/2{g∗1,n(x)H1,n(y)H1,n(z) + g∗1,n(y)H1,n(x)H1,n(z)}
+g∗1,n(z)H1,n(x)H1,n(y).

Then we have an asymptotic representation of the studentized kernel density estimator
as follows.

Theorem 3.1. Assume that the kernel K is a bounded function and satisfies
∫
uK(u)du =

0,
∫
u2K(u)du < ∞. If f ′′(x) is bounded in a neighborhood of x0, we have

f̂n(x0)− E[f̂n(x0)]√
VJ

=
√
nUn(x0)−

ζ√
nσ3

n

+ oL(n
−1/2) (7)

where

Un(x0)

= A1,n +
1

n2σ2
n

n∑
i=1

α̃1,n(Xi)−
1

n2σ2
n

∑
1≤i<j≤n

α2,n(Xi, Xj)

+
3

n3σ4
n

∑
1≤i<j<k≤n

α3,n(Xi, Xj , Xk) +
ζ

n
.

Proof. Using the Taylor expansion around σ2
n, we have

1√
n3/4VJ

=
1

σn
− 1

2σ3
n

(B1,n +B2,n) +
3

8σ5
n

(B1,n +B2,n)
2 +O((B1,n +B2,n)

3).

It follows from the Hoeffding(1961) decomposition and moment evaluations that

E|B1,nB2,n| ≤
{
E(B2

1,n)E(B2
2,n)
}1/2

= O(n−3/8−1) = O(n−1/2−1/2−3/8),

and then B1,nB2,n = oL(n
−1/2). Similarly B2

2,n and (B1,n + B2,n)
3 are oL(n

−1/2), and
so

1√
n3/4VJ

=
1

σn
− 1

2σ3
n

(B1,n +B2,n) +
3

8σ5
n

B2
1,n + oL(n

−1/2).

Next we will evaluate products with A1,n. Since

A1,nB2,n

= O(n−23/8)
∑

1≤i<j≤n

{g1,n(Xi)H2,n(Xi, Xj) + g1,n(Xj)H2,n(Xi, Xj)}

+O(n−23/8)
∑

1≤i<j≤k≤n

{g1,n(Xi)H2,n(Xj , Xk) + g1,n(Xj)H2,n(Xi, Xk)

+g1,n(Xk)H2,n(Xi, Xj)} ,
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using the Hoeffding decomposition and moment evaluations, it is easy to show that these
terms are oL(n

−1/2). Also we get

A1,nB1,n

=
1

n9/4σ2
n

n∑
i=1

{
g∗1,n(Xi)H1,n(Xi)− E[g∗1,n(X1)H1,n(X1)]

}
+

1

n5/4σ2
n

E[g∗1,n(X1)H1,n(X1)]

− 1

n9/4σ2
n

∑
1≤i<j≤n

{
g∗1,n(Xi)H1,n(Xj) + g∗1,n(Xj)H1,n(Xi)

}
.

Finally we can show that

A1,nB
2
1,n

=
3

n7/2σ4
n

∑
1≤i<j<k≤n

{
g∗1,n(Xi)H1,n(Xj)H1,n(Xk) + g∗1,n(Xj)H1,n(Xi)H1,n(Xk)

+g∗1,n(Xk)H1,n(Xi)H1,n(Xj)
}
+ oL(n

−1/2).

4. Edgeworth expansion

Using the asymptotic representation (7), we obtain the Edgeworth expansion with
residual term o(n−1/2). Let us define

ζ = E[g∗1,n(X1)H1,n(X1)],

κ3 = E[{g∗1,n(X1)}3] + 3E[g∗1,n(X1)g
∗
1,n(X2)α2,n(X1, X2)],

κ4 = E[{g∗1,n(X1)}4]− 3 + 4E[g∗1,n(X1)g
∗
1,n(X2)g

∗
1,n(X3)α3,n(X1, X2, X3)]

+12E[{g∗1,n}2(X1)g
∗
1,n(X2)α2,n(X1, X2)]

+12E[g∗1,n(X1)g
∗
1,n(X2)α2,n(X1, X3)α2,n(X2, X3)],

P1(y) =
κ3(y

2 − 1)

6
,

P2(y) =

{
n1/4ζ +

E[α2
2,n(X1, X2)]

4

}
y +

κ4

24
(y3 − 3y) +

κ2
3

72
(y5 − 10y3 + 15y).

Using the Edgeworth expansion of Lai and Wang(1993), it is easy to show that

P

{
f̂(x0)− E[f̂(x0)]√

VJ

≤ y

}
= Φ(y)− n−1/2ϕ(y)P1(y)− n−1ϕ(y)P2(y) + o(n−1/2). (8)

The validity of the Edgeworth expansion (8) can be proved by using the method of
Garćıa-Soidán et al.(1997). Let us evaluate each term. Note that we assume the kernel
K(·) is symmetric around 0. Using the transformation and the Taylor expansion, it is
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easy to see that

E[{g∗1,n(X1)}3] = e
−3/2
2,n E

[
1

h3
n

K3

(
x0 −X1

hn

)]
+O(h1/2

n )

=
1

h2
ne

3/2
2,n

f(x0)

∫ ∞

−∞
K3(u)du+O(h1/2

n )

=
1

h
1/2
n σ3

n

f(x0)

∫ ∞

−∞
K3(u)du+O(h1/2

n ).

Similarly we can show that

E[g∗1,n(X1)g
∗
1,n(X2)α2,n(X1, X2)]

= n−1/4E[{g1,n(X1)}2]E[g∗1,2H1,n(X1)]

=
1

n1/4h
3/2
n σ3

n

f(x0)

∫ ∞

−∞
K3(u)du+O(n−1/4h−1/2

n ).

Furthermore, using the same method, we get

E[{g∗1,n(X1)}4] = O(n1/4),

E[g∗1,n(X1)g
∗
1,n(X2)g

∗
1,n(X3)α3,n(X1, X2, X3)] = O(n1/4),

E[g∗1,n(X1)g
∗
1,n(X2)α2,n(X1, X3)α2,n(X2, X3)] = O(n−1/2h−2

n ),

E[g∗1,n(X1)g
∗
1,n(X2)α2,n(X1, X3)α2,n(X2, X3)] = O(n−1/2h−3

n ),

E[α2
2,n(X1)] = O(n−1/2h−3

n )

The coefficient of these values are n−1, and so we can ignore these terms. Finally we
have

n−3/4E[g∗1,n(X1)H1,n(X1)] = O(n−1h−3/2
n ),

E[α2
2,n(X1, X2)] = O(n−1/2h−3

n ).

Then we have the following theorem.

Theorem 4.1. Assume that the kernel K is a bounded function and satisfies
∫
uK(u)du =

0,
∫
u2K(u)du < ∞. If f ′′(x) is bounded in a neighborhood of x0, we have

P

{
f̂(x0)− E[f̂(x0)]√

VJ

≤ y

}

= Φ(y)− n−1/2ϕ(y)
y2 − 1

6σ3
n

f(x0)

∫ ∞

−∞
K3(u)du

{
h−1/2
n + n1/4h−3/2

n

}
+ o(n−1/2).

The bias E[f̂(x0)] − f(x0) is not ignorable. We assume that f (4)(x) is bounded
around x0. Since

∫
uK(u)du =

∫
u3K(u)du = 0, we can obtain the approximation of

the bias

E

[
1

hn
K

(
x0 −X1

hn

)]
− f(x0)

=
n3/8h2

n

2

∫ ∞

−∞
u2K(u)du+O(n3/8h4

n).
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Using the probability evaluation of the large deviation for U -statistics (Malevich and
Abdalimov(1979)), we have

n3/8h2
n(B1,n +B2,n) = oL(n

−1/2)

and then
E[g1,n(X1)]− f(x0)√

VJ

= bn + oL(n
−1/2)

where

bn =
n3/8h2

n

2σn
f ′′(x0)

∫ ∞

−∞
u2K(u)du.

Since bn = O(n−1/8, we have

Φ(y + bn) = Φ(y) + bnϕ(y)−
b2n
2
yϕ(y) +

b3n(y
2 − 1)

6
ϕ(y)

−b4n(y
3 − 3y)

24
ϕ(y) + o(n−1/2).

Finally, we can get the following theorem.

Theorem 4.2. Assume that the kernel K is a bounded function and satisfies
∫
uK(u)du =

0,
∫
u2K(u)du < ∞. If f (4)(x) is bounded in a neighborhood of x0, we have

P

{
f̂(x0)− E[f̂(x0)]√

VJ

≤ y

}

= Φ(y)− n−1/2ϕ(y)
y2 − 1

6σ3
n

f(x0)

∫ ∞

−∞
K3(u)du

{
h−1/2
n + n1/4h−3/2

n

}
+bnϕ(y)−

b2n
2
yϕ(y) +

b3n(y
2 − 1)

6
ϕ(y)− b4n(y

3 − 3y)

24
ϕ(y) + o(n−1/2).
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