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ABSTRACT

Possible triggers of earthquakes such as tidal stress, rainfall, the building of artificial water reservoirs, mining, and extraction
of fossil fuels have been discussed in the literature. Furthermore, solar activity has been also speculated to be a trigger of
earthquakes. In this article, we tackle this problem by support vector regression in machine learning approach, wherein we
used physical measurements of solar activity and related variables for predicting frequencies of earthquakes globally. We
conclude that solar activity is a trigger of earthquakes with magnitudes from 3.0 to 5.9, whereas it has little effect on triggering
larger earthquakes. In addition, we show that the Earth’s electric field is the most effective variable related to earthquakes.

Introduction

Forecasting and prediction are two branches of seismology. Forecasting concerns the probabilistic assessment of earthquake
hazards, including the frequency and magnitude of damaging earthquakes in a given area over the course of years!. Prediction
mainly focuses on the specification of the time, location, and magnitude of a future earthquake within stated limits>. Prediction
is often based on various precursors, such as animal behavior?, radon emissions®, and variations in the travel time ratio of S
(secondary) to P (primary) waves®. Seismo-electromagnetics might also be a basis for short-term earthquake prediction®.

Earthquake prediction and forecasting are far from mature. However, knowledge can be accumulated from seismicity-
related data by using statistical methods. The development of observation technologies, including GPS and InSAR’, has
given rise to new theories on and approaches to studying earthquakes. Therefore, a thorough understanding of the data and
consequent improvements to data quality are crucial®~'0. Here, several factors associated with the distributions of earthquake
size and frequency have been discovered!!!3. Another important role of statistics is to construct models, such as the point
process model'* 1 and hidden Markov model', that can be used to estimate the probability of earthquakes occurring within
a specific spatio-temporal window. Furthermore, statistical data facilitate a discussion of possible triggers of earthquakes,
for example, tidal stress!”-18, rainfall-triggered earthquakes!”, and human activity such as the building of artificial water
reservoirs2’, miningn, and extraction of fossil fuels?2.

”Does solar activity cause earthquakes?” is a question that dates back to the early Twentieth century??. At that time, very
few measurements on solar activity (SA) like sun spot numbers (SSN) were available. Recently, a lot of novel space data
related to SA has become available, e.g., real-time proton density and temperature>*. Nowadays, the various SA data have
been available, but still one is negative? to the question and the other is partly positive?®2.

We tackled the problem by using support vector regression (SVR), which is a regression model dealing with non-linear
phenomena. Daily earthquake frequencies are regressed by nine physical measurements related to SA as well as earthquake
frequencies observed earlier. From the analysis of seven years worth of data, we concluded that SA is a trigger of earthquakes
with magnitudes 3 to 5.9 (3 <M < 5.9), but it has little effect on triggering earthquakes of magnitudes M > 6. We also
find that, according to the model selection, the Earth’s electric field is the most effective variable in statistical relation to
earthquakes.

Results

Table 1 lists nine physical measurements related to the solar activity and the magnetosphere. We call these measurements
SA variables for simplicity and give their abbreviations in the table. The daily data of these variables are available from the



Table 1. External variables and abbreviations

Abb. | SA variables | units
IMF | Magnitude of IMF (Interplanetary Magnetic Field) nT
Temp Proton Temperature K
D Proton Density n/cc
v Solar Wind Velocity km/s
P Dynamic Pressure nPa
Ey Earth’s Electric Field (east-west component) mV/m
SSN Sun Spot Number n
DST Disturbance Storm Time index nT
PCI Polar Cap Index

OMNIWeb database supported by NASA?®. The website provides information about magnetic fields, plasma, and energetic
particles relevant to the heliosphere. The value IMF at date ¢ is denoted by IMF(¢) and other eight values are similarly defined.
We analyzed the data from Jan. 1, 2006 (r = 1) to Dec. 31, 2012 (r = 2527).

The daily earthquake data were downloaded from the Advanced National Seismic System (ANSS) database of the northern
California earthquake data center?”, which provides accurate and timely data. The database also provides information related
to earthquake events, including damage to buildings and structures. We used the earthquake data observed in the same period.

Let EQ3(r) be earthquake frequencies with 3 <M < 4 (EQ3) forz = 1,...,2527. Similarly EQ4(7), ..., EQ7(z) are defined,
and EQ8(z) for M > 8. SVR was employed for the target variable log(EQ3(z + v) 4+ 1) with explanatory variables: EQ3(s), ...
,EQ8(s) fors =¢,r—1,...,t —d,+ 1 and

log(IMF(u)), log(Temp(u)), log(D(u)), log(V(u)), log(P(u)), Ey(u), log(SSN(u)+ 1), DST(«), PCI(u)

foru=t,t—1,...,t —d;+ 1, where dy and d, denote the maximum time delays of earthquakes and SA respectively. Here,
v(=1,2,...,5) denotes v-day-ahead prediction. By the numerical study, the transformation of non-negative variables improved
prediction accuracy. In this article, SVR model is estimated by the first 2000 samples up to June 23, 2011 (training data), and
remaining 557 samples are used for validation (test data). We calculated test correlation between actual and predicted target
data. Note that the case d, = 0 means that SA variables are not used for prediction.

Prediction of earthquake frequencies with/without SA variables

Figure 1 depicts the SA effect on the frequencies of earthquakes by magnitude. Figure 1 (a) shows the test correlations
between log(EQ3(r) + 1) and values predicted by the SVR, where the horizontal and vertical axes correspond to time delay
dy and correlation respectively. Test correlations were calculated for the test data with # = 2001, ..,2557 by using the optimal
model based on the training data with r = 1, ...,2000.

The solid curve of Figure 1 (a) shows test correlations based on the SVR model without SA variables (d; = 0). The red
dotted curve denoted as x1 was derived by SVR model with SA variables observed at a date ¢ (d, = 1). The red dotted curve
is above the solid line, which means an effect of SA was detected. The largest correlation was attained by the curve x14 using
SA variables from one day to two weeks ago (d, = 14). The maximum correlation without SA was about 0.36, whereas it was
over 0.45 with the SA variables. Figure 1 (b)-(f) give similar plots for EQ4 to EQS8. It is seen that SA variables have much
effect on EQ4 and a little effect on EQS. However, SA effect cannot be detected for earthquakes with M > 6.

Figure 2 illustrates SA effect on two-day-ahead prediction of frequencies of EQ3 to EQ6. Figure 2 (b) shows the biggest
improvement by using the SA variables for EQ4; the correlation exceeded 0.51. By comparison, Figure 2 (¢) and (d) for
EQS5 and EQ6 do not show any improvement by additional use of SA variables. This implies that SA has little effect on
triggering large earthquakes more than magnitude 6. Figure 3 shows the effect of SA for three- to five-day-ahead predictions
of frequencies of EQ3 and EQ4. An increase in correlation due to SA is clearly seen in these cases. The increase for EQ3 is
especially significant.

Evaluation of impact of SA on seismic activity

Table 2 tabulates the maximum test correlations with or without SA measurements corresponding to Figures 1-3. The v, d,,
dy, and increment columns respectively show the prediction steps, time delays of EQ and SA, and increments had by adding
SA measurements as explanatory variables. The sixth and ninth columns denoted by “corr.” correspond to the black and red
points respectively in the subfigures of Figures 1 to 3.
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Figure 1. Test correlations for one-day-ahead prediction
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Figure 3. Test correlations for three- to five-day-ahead prediction
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Table 2. Maximum test correlations with/without nine SA measurements

v-day-ahead | Magnitudes | Figures dy dy COIT. dy d, corr. | increment
3 Fig.1(a) [ 21 0 0.3934 | 16 14 0.4593 | 0.0659
4 Fig.1(b) | 16 0 0.4486 | 8 8 0.5255 | 0.0768*
1 5 Fig. 1(¢c) | 18 0 0.2011 | 14 13 0.2144 | 0.0133
6 Fig.1(d | 4 0 00979 | 3 12 0.1131 | 0.0152
7 Fig.1(¢) | 17 0 0.1192 |20 4 0.1296 | 0.0103
8 Fig. 1 () | 8 0 0.1080 | 8 0 0.1080 | O
3 Fig.2(a) | 21 0 0.3567 | 15 14 0.4202 | 0.0635
2 4 Fig.2() [ 21 0 03523 | 8 10 0.4353 | 0.0830**
5 Fig.2(¢c) | 17 0 0.1724 | 17 0 0.1724 | 0O
6 Fig.2() | 3 0 0.0868 | 3 I 0.1209 | 0.0341
3 Fig.3(a) [ 20 0 03498 | 9 14 0.4166 | 0.0668
3 4 Fig.3() |20 0 0.3288 | 7 6 03938 | 0.0650
5 16 0 0.1460 | 18 10 0.1510 | 0.0049
3 Fig.3(c) | 17 0 03399 | 8 13 0.4219 | 0.0820%*
4 4 Fig.3(d) | 21 0 03248 | 13 7 0.3865 | 0.0616
5 15 0 0.1410 | 17 10 0.1523 | 0.0113
3 Fig.3(e) | 16 0 03114 | 7 12 0.3945 | 0.0832%*
5 4 Fig.3(H) [ 21 0 03208 | 12 6 0.3550 | 0.0342
5 14 0 0.1528 |16 8 0.1781 | 0.0253

Note: Numerals with ”*” and ”**” mean that the increments are more than 0.07 and 0.08 respectively.

For example, the second row of Table 2 gives maximum correlations (0.3934) with the time delay d, = 21 without SA
measurements (dy = 0) for one-day-ahead prediction log(EQ3(z + 1)+ 1). It also shows that the correlation increased to 0.4593
with SA measurements with time delays (dy,d,) = (16,14), and the increment was 0.0659, see Fig. 1 (a). The increment of O
in the last column means that additional SA variables failed to increase the test correlation.

From this table, we can conclude the following.

e The increments in the last column are mostly positive for v-day-ahead prediction for v = 1,2,...,5. The increase in test
correlation as a result of using SA measurements for EQ3 and EQ4 is about 0.07.

e The optimal time delay dy is about 20 days for EQ3, EQ4 and EQS. This implies that aftershocks occur for three weeks.

e The contribution from SA to EQ4 is outstanding for one- or two-day-ahead prediction. For more than two-day-ahead
predictions, however, the contribution from SA to EQ3 is highest.

e The contribution from SA to EQS5 can be detected, but it is not significant.

e The contribution from SA to earthquakes of M > 6 is insignificant.

Variable selection of SA measurements
The results show that SA variables impact EQ3 to EQS, but they do not give impact equally. We tested two variable selection
methods as follows.

The first approach focuses on SA variables useful for one-day-ahead prediction. If an effective variable for earthquake
prediction is eliminated from the regression function, the test correlation would become worse. Given this consideration, we

can find effective variables for EQ3 prediction in the following steps.

e Obtain the optimal test correlations by eliminating one of the nine physical measurements for one-day-ahead prediction
with time delays dy = 1,...,21 and d;, = 0,1, ..., 14.

e Find an effective order of SA measurements according to the small order of the test correlations.
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The second approach is based on the variable-reduction method. Table 2 shows the best models based on the whole nine
SA variables. This approach is to reduce variables sequentially as long as the optimal test correlation is improved.

e Obtain the best test correlation by omitting one of SA variables ford, = 1,...,21 and d, =0, 1,...,14.

e Find the maximum value among the nine best correlations derived in the previous step. If the maximum is less than the
maximum based on the whole variables, we regard the whole variable set as the best and stop the procedure. Otherwise,
we regard the variable redundant and omit from the explanatory variables.

This procedure is conducted repeatedly until the test correlation become worse with respect to the maximum value derived by
the previous step. This was conducted for EQ3 to EQ5and v =1,2,...,5.

Table 3 unifies the optimal models derived by the first and second approaches. The third column shows selected SA
variables expressed in the variable order of Table 1. For example, a variable set 00000 1111 represents a set of Ey, SSN, DST
and PCI (the last four variables in Table 1). Increments denote values in comparison with the maximum values without SA
variables. Actually, the second approach succeeded to find the best model except two cases with (v = 3, EQS) and (v =5,
EQ5). Apparently, the selection of SA variables was effective. In addition, these findings are valid for one- to five-day-ahead
predictions.

Table 3. Maximum test correlations with selected SA variables

v-day-ahead | Magnitudes | SA variables | d, dy  corr. | increment
3 00000 1111 | 20 12 0.4777 | 0.0843%%*
1 4 110111101 | 8 8 0.5298 | 0.0812%%*
5 010001111 | 6 6 0.2404 | 0.0394
3 100101111 | 15 14 0.4342 | 0.0775%
2 4 010101111 | 7 9 0.4438 | 0.0914%%*%*
5 000101100 | 6 10 0.1993 | 0.0269
3 100101110 | 9 14 0.4319 | 0.0821%*
3 4 000101111 | 14 14 0.4134 | 0.0847**
5 00000 1110 | 16 6 0.1650 | 0.0190
3 110101110 | 8 13 0.4357 | 0.0958%**
4 4 000101100 | 13 13 0.4059 | 0.0811%**
5 01000 1111 | 17 7 0.1752 | 0.0341
3 10010 1110 | 7 12 0.4143 | 0.1030%%**
5 4 010001011 |21 6 0.3833 | 0.0625
5 000001110 | 4 6 0.1884 | 0.0356

Note 1: The column ”SA variables” denotes the selected variables in the order of Table 1.
Note 2: Numerals with ”*”, ”#%” and ”#%*” mean that the increments are more than 0.07, 0.08, and 0.09+ respectively. .

Let us count the frequencies of each SA variable in the 12-best models shown in Table 3. The sixth variable Ey was
selected 12 times; i.e., all the best models need Ey. This means that Ey is very effective for predicting earthquakes. This
is understandable because it is the east-west component of the electric field induced on the ground by geomagnetic activity.
SSN, Velocity, DST and PCI selected by 10, 9, 9 and 8, respectively, are also effective variables, whereas D (density) was not
selected.

Discussion

We investigated the relation between solar activity and earthquakes. We predicted daily global earthquake frequencies at
different magnitude levels for the whole earth by using SVR. Here, we used earthquake frequencies up to 21 days earlier and
nine SA variables up to 14 days earlier. The parameters of SVR were tuned by minimizing cross validation errors on the
basis of 2000 training time-series data collected from Jan.1, 2006 to June 23, 201 1. The model accuracy was evaluated by its
correlation with 557 test data collected from June 24, 2011 to Dec. 31, 2012. We obtained the following results.

1. SA undoubtedly affected EQ3 and EQ4. SA affected EQS as well, but not so strongly. The time delays were about three
weeks for earthquakes and two weeks for SA.
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2. Our approach did not detect any SA effect on EQ6 and higher.

3. The increase in test correlation as a result of considering SA measurements was significant for EQ3 and EQ4. The
increase was about 0.08 in each case. It was about 0.03 in the case of EQS.

4. Variable selection of SA measurements was examined. The selected SA variables slightly increased the test correlations
obtained by all the SA variables about 0.005 to 0.01.

5. The Ey, SSN, Velocity, DST and PCI physical measurements are effective SA variables for predicting EQ3, EQ4, and
EQS.

We still have several problems to tackle. Our purpose here was to determine whether SA affects earthquakes, and this
was positively shown by analyzing seven years worth of daily data. The next problem is to examine our approach for periods
longer than one solar cycle. The second problem regards development of a less computationally intensive variable selection
method. This is very important because running the variable-reduction method on five computers took two months for it to
make a selection.

In this study, we used SVR as given by equation (7), which treats all the explanatory variables equally. As we have seen,
however, some variables are more important than others. Another problem is to evaluate the effectiveness of the explanatory
variables in SVR modeling. This problem will be discussed elsewhere.

Data Sets and Methods

This section describes the time series data on earthquakes, solar activity, and magnetosphere observed from 01/01/2006 to
12/31/2012.

Daily frequencies of earthquakes

Table 4 illustrates the frequencies of earthquakes whose Richter magnitude scales are 3 or larger (M > 3). The bottom row
of the table gives the sum of each column. It can be seen that the sum of the EQ3 frequencies is less than that of the EQ4
frequencies. This may come from difficulties with the observing system of EQ3. The data contain measurements of the
earthquake M = 7.2 (04/05/2010) that occurred in Estado de Baja California, Mexico, and the Touhoku earthquake M = 9.0
(03/11/2011) in north-east Japan. Large earthquakes always caused aftershocks, whereas small earthquakes may be foreshocks
of larger one. Therefore, frequencies of the earthquakes are also taken as explanatory variables as well as SA variables for
predicting future occurrences of earthquakes.

Table 4. Frequencies of earthquakes by magnitude and their notation (n = 2,557)

[ Dae [ ¢ [ EQ3 | EQ4 | EQ5 | EQ6 | EQ7 [ BQS |
Jan. 1,2006 | 1 28 24 4 0 ] 0O
Jan. 2,2006 | 2 22 53 5 o | 2|0
Jan. 3,2006 | 3 30 33 8 T N )
Jan. 4,2006 | 4 25 35 2 1 0] 0
Jan. 5,2006 | 5 26 24 4 o | o] o

Dec. 27,2012 | 2552 | 6 1 4 o | o] o
Dec. 28,2012 | 2553 || 3 14 4 o | o] o
Dec. 29,2012 | 2554 || 2 17 6 1 0| o
Dec. 30,2012 | 2555 || 7 5 5 I N )
Dec. 31,2012 | 2556 || 6 11 3 o oo

[ — [ sum [[ 60474 [ 76,770 | 12,023 [ 1,052 89 | 11 |

Daily solar activity and magnetosphere data

The daily data of SA variables are available from the OMNIWeb database supported by NASA?®, where the website provides
information about magnetic fields, plasma, and energetic particles relevant to the heliosphere. Table 5 shows the first and last
five samples of the nine variables related to the solar activity and the magnetosphere.
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Table 5. Measurements of solar activity and magnetosphere

| Date | + |[IMF|Temp| D | V [ P | Ey |[SSN|DST[PCI]
Jan. 1, 2006 1 10.6 [69,616] 93 | 465 [ 438] 27 [ 25| 3 [05
Jan. 2, 2006 2 5.7 193,551 5.8 | 442 | 228 | -1.11| 24| 0 |03
Jan. 3, 2006 3 42 (42,310] 2.6 | 423 | 093] -032| 19| -3 |05
Jan. 4, 2006 4 4.6 |43,776| 29 | 380 | 0.81 | -04 | 17| -2 |03
Jan. 5, 2006 5 5.1 |36,086| 55 | 339 | 127|008 | 15| 2 [0.7

Dec. 27,2012 2552 | 3.3 |18,453] 8 292 | 1.36 | -0.07 | 39 | -1 {02
Dec. 28,2012| 2553 | 4.6 |20,183] 13.5 | 288 | 224 | 0.16 | 38 | 6 |04
Dec. 29,2012 2554 | 5.2 |39,178] 64 | 296 1.1 | 0.06 | 40 | -4 |05
Dec. 30,2012 2555 | 8.1 |91,979| 7.8 372 1199 -008 | 40| 1 |05
Dec. 31,2012 2556 | 3.3 |59,632| 2 410 | 0.65|-0.01 | 64 | -5 {02

[ — [ mean | 47 [86,224] 6.1 [ 4172 ] 1.71 | 0.03 [22.7]-75] 1.5 |

A short review on support vector regression

Each column of the earthquake frequencies in Table 4 was modeled by using machine learning on the SA variables in Table 1.
This section starts by reviewing the general SVR. Then, it introduces an SVR for time-series data with a time delay. Consider
a set of training data {(y;,x;) | i = 1,2,...,n} for a general regression problem, where y; and x; respectively denote a target
variable and a vector of p explanatory variables. Regression problems aim to predict a target variable y; by using a weighted
sum of base functions ¢ (x;), ..., ¢, (x;) of explanatory vectors x;:

yi = w1(¢1(x,-)+---+wd¢d(x,-)+b+error,-EwT¢(x,-)+b+err0r,-. (D)

Usually, the unknown vector w is estimated by minimizing the squared sum of errors Q(w) = YL, {y; — w! ¢ (x;) — b}, or
its penalized formula given by CQ(w) + %wl w, where C > 0 is called a trade-off parameter between the data fitting and
smoothness of the regression function. Support vector regression takes an €-insensitive error function defined by

Ec(u) = (lul—e)I(|u]>¢€)

for the error evaluation, where € > 0 is a constant and () denotes the indicator function. The target function of SVR to be
minimized is given by the following regularized error function:

CZES( —wlho(x)— b)+%w1'w (2)

where C > 0 is also called a trade-off parameter. The first term of (2) takes zero if and only if w/ ¢(x;)) +b—¢€ <y; <
w!'¢(x;) + b+ € (e-tube of y;) for all i. We relax the condition by introducing slack variables & > 0 and &* > 0 satisfying

wlo(i)+b—e—& <yi<w'o(x)+b+e+& fori=1,..n 3)

Then, formula (2) can be rewritten as

(§z+§)+ whw “)

HM=

which must be minimized for nonnegative & and & subject to the constraints (3). The minimization problem can be solved
by using the Lagrangian,

n

CY (G &)+ 30w Y (it &)
i=1

i=1

L(w,b,{(&, &)}

ai (yi—w'o(x;) —b+e+ &) (5)

-

— iai (WT¢(Xi)+b+8+§f_yi) -

i=1 i

1

where a;, a}, W;, u;* are the Lagrange multipliers corresponding to the non-negativity restrictions. We can then obtain relations
which hold for the optimum values by setting all partial derivatives of L with respect to w, b, &, & to zero.
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Finally, formula (5) can be rewritten as

=

L ai))) = =3 % ¥ (0= ai)ay = a)K(o) ~ e Yt a) +
i=1j=

i=1 i

(ai —a;)yi (6)

™=

1

where K(x;,x;) denotes the inner product ¢ (x;)? ¢ (x;) of the transformed input vectors x;,x;. The dual problem is required
to maximize the formula (6) subject to the constraints 0 < a; < C and 0 < af < C. Then, the regression function f(x) of an
explanatory vector x is given by

fix) = Z(a,-—a;‘)K(x,x,-)—l—b. @)
i=1

The explanatory vector x; with a; — a} # 0 is called a support vector because it contributes to regression. Note that there is no
need to know the actual formula of ¢ () in the optimization process. We only need to know the exact formula of the kernel
K(u,v) = ¢(u)" ¢ (v) (the kernel trick). For a detailed discussion on SVR, see Chap. 7.

Tuning of SVR parameters by cross-validation
In the analysis of the EQ-SA time series, we use a Gaussian kernel given by K (u,v) = exp (—y|u—v||*) for y > 0. The
trade-off parameter C > 0 used in formula (2) is tuned by ten-fold cross validation. The procedure is as follows.

1. Consider a positive constant C and randomly split the training data into ten subsets Dy,...,Dio having approximately
the same sample size.

2. Fors=1,...,10,

(a) solve the dual problem (6) by using the training data Dy U---UDy_1 UDg 1 U---UDyg, and

(b) calculate the sum of squared errors (SSE;) between the observed target variables of Dy and predicted values of
the form (7).

3. Calculate the sum of ten SSEs (test error).

This procedure is repeated many times to obtain the average test errors with the given C > 0. Thus, the trade-off parameter C
is optimized such that it minimizes the average test errors.

SVR for earthquake frequencies

As an illustration of our analysis, we will consider SVR for predicting EQ3(¢): the frequency of EQ3 at date r. The target
variable at the date  + 1 is predicted by earthquake frequencies as well as the SA measurements at the current date ¢ and
earlier. More precisely, let x(z) and y(¢) be vectors of explanatory variables at date ¢ defined by

y(t) = (BQ3(r),EQ4(r),...,EQ8(r))! : 6 x 1 and x(t) = (IMF(r), Temp(t),...,PCI(t))" :9x 1 (8)

fort =1,2,...,2000. Now, the vector y(r) denotes earthquake frequencies by magnitudes and x(z) denotes SA variables. Let
yt—dy+1:1)= (vt —dy+ 1)1yt —dy+2)", .., y(0)") "bea 6d,-dimensional vector of the earthquake frequencies from
the date t — dy, + 1 to t. The effect of aftershocks with a time delay of d, days may be evaluated as

EQ3(r+1) = feo(y(t—dy+1:1))+error. )

Note that EQ3(¢), ... , EQ3(r —d,+ 1) are explanatory variables of EQ3 (¢ + 1) (auto-regressive model) because the first element
of each vector y(s) given by (8) was defined by EQ3(s). The regression function fgq(-) can be approximated by the earthquake
frequencies of the training data. The actual formula is a weighted sum of Gaussian kernels K (x,x;) = exp(—7¥||x — x;||?) of the
form (7).

If solar activities have no effect on EQ3, the regression function with additional SA variables given by

EQ3(t+1) = fugusal(®) ( [y(r—dy+1 O x(t—di+1: t)q ! ) -+ error (10)
would show no improvement from (9), where x(r —dy+ 1 : 1) : 9d, x 1 is similarly defined as y(tr —dy + 1 : ¢) with the maximum

time delay d, of SA. The regression function fgqusa(-) is estimated using earthquake and SA time series of training data in
the form (7).
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Parameter estimation and test correlations

To obtain the optimal model structure, ten-fold cross validation was used to tune the model parameters of SVR on the ba-
sis of the training samples. Here, the trade-off parameter C was chosen from among 81 values exp(—8.0), exp(—7.8),
exp(—7.6),...,exp(8.0), which maximized the test-correlation derived in the cross validation. The optimal model was then
applied to the remaining test samples and its prediction performance was evaluated. The SVR was that of the R library
kernlab’!. The above estimation procedure was used for the predictions of EQ3(t + v), log(EQ3(¢ + V) +1),..., EQ8(t + V),
log(EQ8(r + v)+ 1) for v =1,2,...,5. The prediction performance for log(EQ3(z 4+ v) + 1) was always better than that for
EQ3(r+ v), and this is true for the larger earthquakes.
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