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.jpABSTRACTPossible triggers of earthquakes su
h as tidal stress, rainfall, the building of arti�
ial water reservoirs, mining, and extra
tionof fossil fuels have been dis
ussed in the literature. Furthermore, solar a
tivity has been also spe
ulated to be a trigger ofearthquakes. In this arti
le, we ta
kle this problem by support ve
tor regression in ma
hine learning approa
h, wherein weused physi
al measurements of solar a
tivity and related variables for predi
ting frequen
ies of earthquakes globally. We
on
lude that solar a
tivity is a trigger of earthquakes with magnitudes from 3.0 to 5.9, whereas it has little effe
t on triggeringlarger earthquakes. In addition, we show that the Earth's ele
tri
 �eld is the most effe
tive variable related to earthquakes.Introdu
tionFore
asting and predi
tion are two bran
hes of seismology. Fore
asting 
on
erns the probabilisti
 assessment of earthquakehazards, in
luding the frequen
y and magnitude of damaging earthquakes in a given area over the 
ourse of years1. Predi
tionmainly fo
uses on the spe
i�
ation of the time, lo
ation, and magnitude of a future earthquakewithin stated limits2. Predi
tionis often based on various pre
ursors, su
h as animal behavior3, radon emissions4, and variations in the travel time ratio of S(se
ondary) to P (primary) waves5. Seismo-ele
tromagneti
s might also be a basis for short-term earthquake predi
tion6.Earthquake predi
tion and fore
asting are far from mature. However, knowledge 
an be a

umulated from seismi
ity-related data by using statisti
al methods. The development of observation te
hnologies, in
luding GPS and InSAR7, hasgiven rise to new theories on and approa
hes to studying earthquakes. Therefore, a thorough understanding of the data and
onsequent improvements to data quality are 
ru
ial8�10. Here, several fa
tors asso
iated with the distributions of earthquakesize and frequen
y have been dis
overed11�13. Another important role of statisti
s is to 
onstru
t models, su
h as the pointpro
ess model14,15 and hidden Markov model16, that 
an be used to estimate the probability of earthquakes o

urring withina spe
i�
 spatio-temporal window. Furthermore, statisti
al data fa
ilitate a dis
ussion of possible triggers of earthquakes,for example, tidal stress17,18, rainfall-triggered earthquakes19, and human a
tivity su
h as the building of arti�
ial waterreservoirs20, mining21, and extra
tion of fossil fuels22.�Does solar a
tivity 
ause earthquakes?� is a question that dates ba
k to the early Twentieth 
entury23. At that time, veryfew measurements on solar a
tivity (SA) like sun spot numbers (SSN) were available. Re
ently, a lot of novel spa
e datarelated to SA has be
ome available, e.g., real-time proton density and temperature24. Nowadays, the various SA data havebeen available, but still one is negative25 to the question and the other is partly positive26,27.We ta
kled the problem by using support ve
tor regression (SVR), whi
h is a regression model dealing with non-linearphenomena. Daily earthquake frequen
ies are regressed by nine physi
al measurements related to SA as well as earthquakefrequen
ies observed earlier. From the analysis of seven years worth of data, we 
on
luded that SA is a trigger of earthquakeswith magnitudes 3 to 5.9 (3 ≤ M ≤ 5.9), but it has little effe
t on triggering earthquakes of magnitudes M ≥ 6. We also�nd that, a

ording to the model sele
tion, the Earth's ele
tri
 �eld is the most effe
tive variable in statisti
al relation toearthquakes.ResultsTable 1 lists nine physi
al measurements related to the solar a
tivity and the magnetosphere. We 
all these measurementsSA variables for simpli
ity and give their abbreviations in the table. The daily data of these variables are available from the



Table 1. External variables and abbreviationsAbb. SA variables unitsIMF Magnitude of IMF (Interplanetary Magneti
 Field) nTTemp Proton Temperature KD Proton Density n/

V Solar Wind Velo
ity km/sP Dynami
 Pressure nPaEy Earth's Ele
tri
 Field (east-west 
omponent) mV/mSSN Sun Spot Number nDST Disturban
e Storm Time index nTPCI Polar Cap IndexOMNIWeb database supported by NASA28. The website provides information about magneti
 �elds, plasma, and energeti
parti
les relevant to the heliosphere. The value IMF at date t is denoted by IMF(t) and other eight values are similarly de�ned.We analyzed the data from Jan. 1, 2006 (t = 1) to De
. 31, 2012 (t = 2527).The daily earthquake data were downloaded from the Advan
edNational Seismi
 System (ANSS) database of the northernCalifornia earthquake data 
enter29, whi
h provides a

urate and timely data. The database also provides information relatedto earthquake events, in
luding damage to buildings and stru
tures. We used the earthquake data observed in the same period.Let EQ3(t) be earthquake frequen
ies with 3≤M < 4 (EQ3) for t = 1, ...,2527. Similarly EQ4(t), ..., EQ7(t) are de�ned,and EQ8(t) forM ≥ 8. SVR was employed for the target variable log(EQ3(t+n)+1)with explanatory variables: EQ3(s), ..., EQ8(s) for s= t, t−1, ..., t−dy+1 andlog(IMF(u)), log(Temp(u)), log(D(u)), log(V(u)), log(P(u)), Ey(u), log(SSN(u)+1), DST(u), PCI(u)for u = t, t− 1, ..., t− dx + 1, where dy and dx denote the maximum time delays of earthquakes and SA respe
tively. Here,n(= 1,2, ...,5) denotes n-day-ahead predi
tion. By the numeri
al study, the transformation of non-negativevariables improvedpredi
tion a

ura
y. In this arti
le, SVR model is estimated by the �rst 2000 samples up to June 23, 2011 (training data), andremaining 557 samples are used for validation (test data). We 
al
ulated test 
orrelation between a
tual and predi
ted targetdata. Note that the 
ase dx = 0 means that SA variables are not used for predi
tion.Predi
tion of earthquake frequen
ies with/without SA variablesFigure 1 depi
ts the SA effe
t on the frequen
ies of earthquakes by magnitude. Figure 1 (a) shows the test 
orrelationsbetween log(EQ3(t)+ 1) and values predi
ted by the SVR, where the horizontal and verti
al axes 
orrespond to time delaydy and 
orrelation respe
tively. Test 
orrelations were 
al
ulated for the test data with t = 2001, ..,2557 by using the optimalmodel based on the training data with t = 1, ...,2000.The solid 
urve of Figure 1 (a) shows test 
orrelations based on the SVR model without SA variables (dx = 0). The reddotted 
urve denoted as x1 was derived by SVR model with SA variables observed at a date t (dx = 1). The red dotted 
urveis above the solid line, whi
h means an effe
t of SA was dete
ted. The largest 
orrelation was attained by the 
urve x14 usingSA variables from one day to two weeks ago (dx = 14). The maximum 
orrelation without SA was about 0.36, whereas it wasover 0.45 with the SA variables. Figure 1 (b)-(f) give similar plots for EQ4 to EQ8. It is seen that SA variables have mu
heffe
t on EQ4 and a little effe
t on EQ5. However, SA effe
t 
annot be dete
ted for earthquakes with M ≥ 6.Figure 2 illustrates SA effe
t on two-day-ahead predi
tion of frequen
ies of EQ3 to EQ6. Figure 2 (b) shows the biggestimprovement by using the SA variables for EQ4; the 
orrelation ex
eeded 0.51. By 
omparison, Figure 2 (
) and (d) forEQ5 and EQ6 do not show any improvement by additional use of SA variables. This implies that SA has little effe
t ontriggering large earthquakes more than magnitude 6. Figure 3 shows the effe
t of SA for three- to �ve-day-ahead predi
tionsof frequen
ies of EQ3 and EQ4. An in
rease in 
orrelation due to SA is 
learly seen in these 
ases. The in
rease for EQ3 isespe
ially signi�
ant.Evaluation of impa
t of SA on seismi
 a
tivityTable 2 tabulates the maximum test 
orrelations with or without SA measurements 
orresponding to Figures 1-3. The n , dy,dx, and in
rement 
olumns respe
tively show the predi
tion steps, time delays of EQ and SA, and in
rements had by addingSA measurements as explanatory variables. The sixth and ninth 
olumns denoted by �
orr.� 
orrespond to the bla
k and redpoints respe
tively in the sub�gures of Figures 1 to 3. 2/12



dy: Time delay of earthquakes

T
e

s
t 

c
o

rr
e

la
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.3

0
0

.3
5

0
.4

0
0

.4
5

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

T
e

s
t 

c
o

rr
e

la
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(a) Predi
tion of log(EQ3(t+1)+1) (b) Predi
tion of log(EQ4(t+1)+1)

dy: Time delay of earthquakes

T
e

s
t 

c
o

rr
e

la
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.1

0
0

.1
2

0
.1

4
0

.1
6

0
.1

8
0

.2
0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

T
e

s
t 

c
o

rr
e

la
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(
) Predi
tion of log(EQ5(t+1)+1) (d) Predi
tion of log(EQ6(t+1)+1)

dy: Time delay of earthquakes

T
e

s
t 

c
o

rr
e

la
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.0

0
0

.0
5

0
.1

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

T
e

s
t 

c
o

rr
e

la
ti
o

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.0

0
0

.0
5

0
.1

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(e) Predi
tion of log(EQ7(t+1)+1) (f) Predi
tion of log(EQ8(t+1)+1)Figure 1. Test 
orrelations for one-day-ahead predi
tion

3/12



dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.2

5
0

.3
0

0
.3

5
0

.4
0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(a) Predi
tion of log(EQ3(t+2)+1) (b) Predi
tion of log(EQ4(t+2)+1)

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

0
.1

6

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.0

0
0

.0
5

0
.1

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(
) Predi
tion of log(EQ5(t+2)+1) (d) Predi
tion of log(EQ6(t+2)+1)Figure 2. Test 
orrelations for two-day-ahead predi
tion

4/12



dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5
0

.4
0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(a) Predi
tion of log(EQ3(t+3)+1) (b) Predi
tion of log(EQ4(t+3)+1)

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5
0

.4
0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.2

0
0

.2
5

0
.3

0
0

.3
5

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(
) Predi
tion of log(EQ3(t+4)+1) (d) Predi
tion of log(EQ4(t+4)+1)

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14

dy: Time delay of earthquakes

Te
st

 c
o

rr
e

la
tio

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5

x0
x1
x2
x3
x4
x5
x6
x7

x8
x9
x10
x11
x12
x13
x14(e) Predi
tion of log(EQ3(t+5)+1) (f) Predi
tion of log(EQ4(t+5)+1)Figure 3. Test 
orrelations for three- to �ve-day-ahead predi
tion

5/12



Table 2. Maximum test 
orrelations with/without nine SA measurementsn-day-ahead Magnitudes Figures dy dx 
orr. dy dx 
orr. in
rement3 Fig. 1 (a) 21 0 0.3934 16 14 0.4593 0.06594 Fig. 1 (b) 16 0 0.4486 8 8 0.5255 0.0768*1 5 Fig. 1 (
) 18 0 0.2011 14 13 0.2144 0.01336 Fig. 1 (d) 4 0 0.0979 3 12 0.1131 0.01527 Fig. 1 (e) 17 0 0.1192 20 4 0.1296 0.01038 Fig. 1 (f) 8 0 0.1080 8 0 0.1080 03 Fig. 2 (a) 21 0 0.3567 15 14 0.4202 0.06352 4 Fig. 2 (b) 21 0 0.3523 8 10 0.4353 0.0830**5 Fig. 2 (
) 17 0 0.1724 17 0 0.1724 06 Fig. 2 (d) 3 0 0.0868 3 1 0.1209 0.03413 Fig. 3 (a) 20 0 0.3498 9 14 0.4166 0.06683 4 Fig. 3 (b) 20 0 0.3288 7 6 0.3938 0.06505 ��� 16 0 0.1460 18 10 0.1510 0.00493 Fig. 3 (
) 17 0 0.3399 8 13 0.4219 0.0820**4 4 Fig. 3 (d) 21 0 0.3248 13 7 0.3865 0.06165 ��� 15 0 0.1410 17 10 0.1523 0.01133 Fig. 3 (e) 16 0 0.3114 7 12 0.3945 0.0832**5 4 Fig. 3 (f) 21 0 0.3208 12 6 0.3550 0.03425 ��� 14 0 0.1528 16 8 0.1781 0.0253Note: Numerals with �*� and �**� mean that the in
rements are more than 0.07 and 0.08 respe
tively.For example, the se
ond row of Table 2 gives maximum 
orrelations (0.3934) with the time delay dy = 21 without SAmeasurements (dx = 0) for one-day-aheadpredi
tion log(EQ3(t+1)+1). It also shows that the 
orrelation in
reased to 0.4593with SA measurements with time delays (dy,dx) = (16,14), and the in
rement was 0.0659, see Fig. 1 (a). The in
rement of 0in the last 
olumn means that additional SA variables failed to in
rease the test 
orrelation.From this table, we 
an 
on
lude the following.
• The in
rements in the last 
olumn are mostly positive for n-day-ahead predi
tion for n = 1,2, ...,5. The in
rease in test
orrelation as a result of using SA measurements for EQ3 and EQ4 is about 0.07.
• The optimal time delay dy is about 20 days for EQ3, EQ4 and EQ5. This implies that aftersho
ks o

ur for three weeks.
• The 
ontribution from SA to EQ4 is outstanding for one- or two-day-ahead predi
tion. For more than two-day-aheadpredi
tions, however, the 
ontribution from SA to EQ3 is highest.
• The 
ontribution from SA to EQ5 
an be dete
ted, but it is not signi�
ant.
• The 
ontribution from SA to earthquakes ofM ≥ 6 is insigni�
ant.Variable sele
tion of SA measurementsThe results show that SA variables impa
t EQ3 to EQ5, but they do not give impa
t equally. We tested two variable sele
tionmethods as follows.The �rst approa
h fo
uses on SA variables useful for one-day-ahead predi
tion. If an effe
tive variable for earthquakepredi
tion is eliminated from the regression fun
tion, the test 
orrelation would be
ome worse. Given this 
onsideration, we
an �nd effe
tive variables for EQ3 predi
tion in the following steps.
• Obtain the optimal test 
orrelations by eliminating one of the nine physi
al measurements for one-day-ahead predi
tionwith time delays dy = 1, ...,21 and dx = 0,1, ...,14.
• Find an effe
tive order of SA measurements a

ording to the small order of the test 
orrelations. 6/12



The se
ond approa
h is based on the variable-redu
tion method. Table 2 shows the best models based on the whole nineSA variables. This approa
h is to redu
e variables sequentially as long as the optimal test 
orrelation is improved.
• Obtain the best test 
orrelation by omitting one of SA variables for dy = 1, ...,21 and dx = 0,1, ...,14.
• Find the maximum value among the nine best 
orrelations derived in the previous step. If the maximum is less than themaximum based on the whole variables, we regard the whole variable set as the best and stop the pro
edure. Otherwise,we regard the variable redundant and omit from the explanatory variables.This pro
edure is 
ondu
ted repeatedly until the test 
orrelation be
ome worse with respe
t to the maximum value derived bythe previous step. This was 
ondu
ted for EQ3 to EQ5 and n = 1,2, ...,5.Table 3 uni�es the optimal models derived by the �rst and se
ond approa
hes. The third 
olumn shows sele
ted SAvariables expressed in the variable order of Table 1. For example, a variable set 00000 1111 represents a set of Ey, SSN, DSTand PCI (the last four variables in Table 1). In
rements denote values in 
omparison with the maximum values without SAvariables. A
tually, the se
ond approa
h su

eeded to �nd the best model ex
ept two 
ases with (n = 3, EQ5) and (n = 5,EQ5). Apparently, the sele
tion of SA variables was effe
tive. In addition, these �ndings are valid for one- to �ve-day-aheadpredi
tions. Table 3. Maximum test 
orrelations with sele
ted SA variablesn-day-ahead Magnitudes SA variables dy dx 
orr. in
rement3 00000 1111 20 12 0.4777 0.0843**1 4 11011 1101 8 8 0.5298 0.0812**5 01000 1111 6 6 0.2404 0.03943 10010 1111 15 14 0.4342 0.0775*2 4 01010 1111 7 9 0.4438 0.0914***5 00010 1100 6 10 0.1993 0.02693 10010 1110 9 14 0.4319 0.0821**3 4 00010 1111 14 14 0.4134 0.0847**5 00000 1110 16 6 0.1650 0.01903 11010 1110 8 13 0.4357 0.0958***4 4 00010 1100 13 13 0.4059 0.0811**5 01000 1111 17 7 0.1752 0.03413 10010 1110 7 12 0.4143 0.1030***5 4 01000 1011 21 6 0.3833 0.06255 00000 1110 4 6 0.1884 0.0356Note 1: The 
olumn �SA variables� denotes the sele
ted variables in the order of Table 1.Note 2: Numerals with �*�, �**� and �***� mean that the in
rements are more than 0.07, 0.08, and 0.09+ respe
tively. .Let us 
ount the frequen
ies of ea
h SA variable in the 12-best models shown in Table 3. The sixth variable Ey wassele
ted 12 times; i.e., all the best models need Ey. This means that Ey is very effe
tive for predi
ting earthquakes. Thisis understandable be
ause it is the east-west 
omponent of the ele
tri
 �eld indu
ed on the ground by geomagneti
 a
tivity.SSN, Velo
ity, DST and PCI sele
ted by 10, 9, 9 and 8, respe
tively, are also effe
tive variables, whereas D (density) was notsele
ted.Dis
ussionWe investigated the relation between solar a
tivity and earthquakes. We predi
ted daily global earthquake frequen
ies atdifferent magnitude levels for the whole earth by using SVR. Here, we used earthquake frequen
ies up to 21 days earlier andnine SA variables up to 14 days earlier. The parameters of SVR were tuned by minimizing 
ross validation errors on thebasis of 2000 training time-series data 
olle
ted from Jan.1, 2006 to June 23, 2011. The model a

ura
y was evaluated by its
orrelation with 557 test data 
olle
ted from June 24, 2011 to De
. 31, 2012. We obtained the following results.1. SA undoubtedly affe
ted EQ3 and EQ4. SA affe
ted EQ5 as well, but not so strongly. The time delays were about threeweeks for earthquakes and two weeks for SA. 7/12



2. Our approa
h did not dete
t any SA effe
t on EQ6 and higher.3. The in
rease in test 
orrelation as a result of 
onsidering SA measurements was signi�
ant for EQ3 and EQ4. Thein
rease was about 0.08 in ea
h 
ase. It was about 0.03 in the 
ase of EQ5.4. Variable sele
tion of SA measurements was examined. The sele
ted SA variables slightly in
reased the test 
orrelationsobtained by all the SA variables about 0.005 to 0.01.5. The Ey, SSN, Velo
ity, DST and PCI physi
al measurements are effe
tive SA variables for predi
ting EQ3, EQ4, andEQ5.We still have several problems to ta
kle. Our purpose here was to determine whether SA affe
ts earthquakes, and thiswas positively shown by analyzing seven years worth of daily data. The next problem is to examine our approa
h for periodslonger than one solar 
y
le. The se
ond problem regards development of a less 
omputationally intensive variable sele
tionmethod. This is very important be
ause running the variable-redu
tion method on �ve 
omputers took two months for it tomake a sele
tion.In this study, we used SVR as given by equation (7), whi
h treats all the explanatory variables equally. As we have seen,however, some variables are more important than others. Another problem is to evaluate the effe
tiveness of the explanatoryvariables in SVR modeling. This problem will be dis
ussed elsewhere.Data Sets and MethodsThis se
tion des
ribes the time series data on earthquakes, solar a
tivity, and magnetosphere observed from 01/01/2006 to12/31/2012.Daily frequen
ies of earthquakesTable 4 illustrates the frequen
ies of earthquakes whose Ri
hter magnitude s
ales are 3 or larger (M ≥ 3). The bottom rowof the table gives the sum of ea
h 
olumn. It 
an be seen that the sum of the EQ3 frequen
ies is less than that of the EQ4frequen
ies. This may 
ome from dif�
ulties with the observing system of EQ3. The data 
ontain measurements of theearthquake M = 7.2 (04/05/2010) that o

urred in Estado de Baja California, Mexi
o, and the Touhoku earthquake M = 9.0(03/11/2011) in north-east Japan. Large earthquakes always 
aused aftersho
ks, whereas small earthquakesmay be foresho
ksof larger one. Therefore, frequen
ies of the earthquakes are also taken as explanatory variables as well as SA variables forpredi
ting future o

urren
es of earthquakes.Table 4. Frequen
ies of earthquakes by magnitude and their notation (n = 2,557)Date t EQ3 EQ4 EQ5 EQ6 EQ7 EQ8Jan. 1, 2006 1 28 24 4 0 0 0Jan. 2, 2006 2 22 53 5 0 2 0Jan. 3, 2006 3 30 33 8 0 0 0Jan. 4, 2006 4 25 35 2 1 0 0Jan. 5, 2006 5 26 24 4 0 0 0... ... ... ... ... ... ... ...De
. 27, 2012 2552 6 11 4 0 0 0De
. 28, 2012 2553 3 14 4 0 0 0De
. 29, 2012 2554 2 17 6 1 0 0De
. 30, 2012 2555 7 5 5 0 0 0De
. 31, 2012 2556 6 11 3 0 0 0�- sum 60,474 76,770 12,023 1,052 89 11Daily solar a
tivity and magnetosphere dataThe daily data of SA variables are available from the OMNIWeb database supported by NASA28, where the website providesinformation about magneti
 �elds, plasma, and energeti
 parti
les relevant to the heliosphere. Table 5 shows the �rst and last�ve samples of the nine variables related to the solar a
tivity and the magnetosphere. 8/12



Table 5. Measurements of solar a
tivity and magnetosphereDate t IMF Temp D V P Ey SSN DST PCIJan. 1, 2006 1 10.6 69,616 9.3 465 4.38 -2.7 25 3 0.5Jan. 2, 2006 2 5.7 93,551 5.8 442 2.28 -1.11 24 0 0.3Jan. 3, 2006 3 4.2 42,310 2.6 423 0.93 -0.32 19 -3 0.5Jan. 4, 2006 4 4.6 43,776 2.9 380 0.81 -0.4 17 -2 0.3Jan. 5, 2006 5 5.1 36,086 5.5 339 1.27 0.08 15 2 0.7... ... ... ... ... ... ... ... ... ... ...De
. 27, 2012 2552 3.3 18,453 8 292 1.36 -0.07 39 -1 0.2De
. 28, 2012 2553 4.6 20,183 13.5 288 2.24 0.16 38 6 0.4De
. 29, 2012 2554 5.2 39,178 6.4 296 1.1 0.06 40 -4 0.5De
. 30, 2012 2555 8.1 91,979 7.8 372 1.99 -0.08 40 1 0.5De
. 31, 2012 2556 3.3 59,632 2 410 0.65 -0.01 64 -5 0.2�- mean 4.7 86,224 6.1 417.2 1.71 -0.03 22.7 -7.5 1.5A short review on support ve
tor regressionEa
h 
olumn of the earthquake frequen
ies in Table 4 was modeled by using ma
hine learning on the SA variables in Table 1.This se
tion starts by reviewing the general SVR. Then, it introdu
es an SVR for time-series data with a time delay. Considera set of training data {(yi,xi) | i = 1,2, ...,n} for a general regression problem, where yi and xi respe
tively denote a targetvariable and a ve
tor of p explanatory variables. Regression problems aim to predi
t a target variable yi by using a weightedsum of base fun
tions f1(xi), ...,fd(xi) of explanatory ve
tors xi:yi = w1(f1(xi)+ · · ·+wdfd(xi)+b+ errori ≡ wTf (xi)+b+ errori. (1)Usually, the unknown ve
tor w is estimated by minimizing the squared sum of errors Q(w) ≡ åni=1{yi −wTf (xi)− b}2, orits penalized formula given by CQ(w) + 12wTw, where C > 0 is 
alled a trade-off parameter between the data �tting andsmoothness of the regression fun
tion. Support ve
tor regression takes an e-insensitive error fun
tion de�ned byEe(u) = (|u|− e)I(|u|> e)for the error evaluation, where e > 0 is a 
onstant and I(·) denotes the indi
ator fun
tion. The target fun
tion of SVR to beminimized is given by the following regularized error fun
tion:C nåi=1Ee(yi−wTf (xi)−b)+ 12wTw (2)where C > 0 is also 
alled a trade-off parameter. The �rst term of (2) takes zero if and only if wT f(xi) + b− e ≤ yi ≤wTf(xi)+b+ e (e-tube of yi) for all i. We relax the 
ondition by introdu
ing sla
k variables xi ≥ 0 and x ∗i ≥ 0 satisfyingwTf (xi)+b− e− x ∗i ≤ yi ≤ wTf (xi)+b+ e+ xi for i= 1, ...,n. (3)Then, formula (2) 
an be rewritten asC nåi=1(xi+ x ∗i )+ 12wTw (4)whi
h must be minimized for nonnegative xi and x ∗i subje
t to the 
onstraints (3). The minimization problem 
an be solvedby using the Lagrangian,L(w,b,{(xi, x ∗i )}) = C nåi=1(xi+ x ∗i )+ 12wTw−
nåi=1(mixi+ m∗i x ∗i )

−
nåi=1ai (wTf(xi)+b+ e+ xi− yi)− nåi=1a∗i (yi−wTf(xi)−b+ e+ x ∗i ) (5)where ai, a∗i , mi, m∗i are the Lagrangemultipliers 
orresponding to the non-negativity restri
tions. We 
an then obtain relationswhi
h hold for the optimum values by setting all partial derivatives of L with respe
t to w, b, xi, x ∗i to zero. 9/12



Finally, formula (5) 
an be rewritten as�L({(ai, a∗i )}) = −
12 nåi=1 nåj=1(ai−a∗i )(a j −a∗j)K(xi,x j)− e nåi=1(ai+a∗i )+ nåi=1(ai−a∗i )yi (6)where K(xi,x j) denotes the inner produ
t f(xi)Tf (x j) of the transformed input ve
tors xi,x j. The dual problem is requiredto maximize the formula (6) subje
t to the 
onstraints 0 ≤ ai ≤C and 0≤ a∗i ≤C. Then, the regression fun
tion f (x) of anexplanatory ve
tor x is given byf (x) =

nåi=1(ai−a∗i )K(x,xi)+b. (7)The explanatory ve
tor xi with ai−a∗i 6= 0 is 
alled a support ve
tor be
ause it 
ontributes to regression. Note that there is noneed to know the a
tual formula of f (u) in the optimization pro
ess. We only need to know the exa
t formula of the kernelK(u,v) = f(u)Tf (v) (the kernel tri
k). For a detailed dis
ussion on SVR, see Chap. 730.Tuning of SVR parameters by 
ross-validationIn the analysis of the EQ-SA time series, we use a Gaussian kernel given by K(u,v) = exp(−g‖u− v‖2) for g > 0. Thetrade-off parameterC > 0 used in formula (2) is tuned by ten-fold 
ross validation. The pro
edure is as follows.1. Consider a positive 
onstant C and randomly split the training data into ten subsets D1, ...,D10 having approximatelythe same sample size.2. For s= 1, ...,10,(a) solve the dual problem (6) by using the training data D1∪·· ·∪Ds−1∪Ds+1∪·· ·∪D10, and(b) 
al
ulate the sum of squared errors (SSEs) between the observed target variables of Ds and predi
ted values ofthe form (7).3. Cal
ulate the sum of ten SSEs (test error).This pro
edure is repeated many times to obtain the average test errors with the givenC > 0. Thus, the trade-off parameterCis optimized su
h that it minimizes the average test errors.SVR for earthquake frequen
iesAs an illustration of our analysis, we will 
onsider SVR for predi
ting EQ3(t): the frequen
y of EQ3 at date t. The targetvariable at the date t + 1 is predi
ted by earthquake frequen
ies as well as the SA measurements at the 
urrent date t andearlier. More pre
isely, let x(t) and y(t) be ve
tors of explanatory variables at date t de�ned byy(t) = (EQ3(t),EQ4(t), ...,EQ8(t))T : 6×1 and x(t) = (IMF(t),Temp(t), ...,PCI(t))T : 9×1 (8)for t = 1,2, ...,2000. Now, the ve
tor y(t) denotes earthquake frequen
ies by magnitudes and x(t) denotes SA variables. Lety(t−dy+1 : t) ≡ (y(t−dy+1)T ,y(t−dy+2)T , ...,y(t)T )T be a 6dy-dimensional ve
tor of the earthquake frequen
ies fromthe date t−dy+1 to t. The effe
t of aftersho
ks with a time delay of dy days may be evaluated asEQ3(t+1) = fEQ ( y(t−dy+1 : t) )+ error. (9)Note that EQ3(t), ... , EQ3(t−dy+1) are explanatory variables of EQ3(t+1) (auto-regressivemodel) be
ause the �rst elementof ea
h ve
tor y(s) given by (8) was de�ned by EQ3(s). The regression fun
tion fEQ(·) 
an be approximated by the earthquakefrequen
ies of the training data. The a
tual formula is a weighted sum of Gaussian kernels K(x,xi) = exp(−g‖x−xi‖2) of theform (7).If solar a
tivities have no effe
t on EQ3, the regression fun
tion with additional SA variables given byEQ3(t+1) = fEQ∪SA(·)( [y(t−dy+1 : t)T , x(t−dx+1 : t)T ]T )

+ error (10)would show no improvement from (9), where x(t−dx+1 : t) : 9dx×1 is similarly de�ned as y(t−dy+1 : t)with the maximumtime delay dy of SA. The regression fun
tion fEQ∪SA(·) is estimated using earthquake and SA time series of training data inthe form (7). 10/12



Parameter estimation and test 
orrelationsTo obtain the optimal model stru
ture, ten-fold 
ross validation was used to tune the model parameters of SVR on the ba-sis of the training samples. Here, the trade-off parameter C was 
hosen from among 81 values exp(−8.0), exp(−7.8),exp(−7.6), ...,exp(8.0), whi
h maximized the test-
orrelation derived in the 
ross validation. The optimal model was thenapplied to the remaining test samples and its predi
tion performan
e was evaluated. The SVR was that of the R librarykernlab31. The above estimation pro
edurewas used for the predi
tions of EQ3(t+n), log(EQ3(t+n)+1),..., EQ8(t+n),log(EQ8(t+ n)+ 1) for n = 1,2, ...,5. The predi
tion performan
e for log(EQ3(t+ n)+ 1) was always better than that forEQ3(t+n), and this is true for the larger earthquakes.Referen
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