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Evaluation of impat of solar ativity on ourrenesof earthquakes and seletion of effetive variablesRyuei Nishii1,2*, Pan Qin3, and Ryosuke Kikuyama41Institute of Mathematis for Industry, Kyushu University, Motooka 744, Nishiku, Fukuoka 819-0395, Japan2International Center for Spae Weather Siene and Eduation, Kyushu University, Motooka 744, Nishiku,Fukuoka 819-0395, Japan3Faulty of Eletroni Information and Eletrial Engineering, Dalian University of Tehnology, Dalian 116024,China4Graduate Shool of Mathematis, Kyushu University, Motooka 744, Nishiku, Fukuoka 819-0395, Japan*orresponding author nishii�imi.kyushu-u.a.jpABSTRACTPossible triggers of earthquakes suh as tidal stress, rainfall, the building of arti�ial water reservoirs, mining, and extrationof fossil fuels have been disussed in the literature. Furthermore, solar ativity has been also speulated to be a trigger ofearthquakes. In this artile, we takle this problem by support vetor regression in mahine learning approah, wherein weused physial measurements of solar ativity and related variables for prediting frequenies of earthquakes globally. Weonlude that solar ativity is a trigger of earthquakes with magnitudes from 3.0 to 5.9, whereas it has little effet on triggeringlarger earthquakes. In addition, we show that the Earth's eletri �eld is the most effetive variable related to earthquakes.IntrodutionForeasting and predition are two branhes of seismology. Foreasting onerns the probabilisti assessment of earthquakehazards, inluding the frequeny and magnitude of damaging earthquakes in a given area over the ourse of years1. Preditionmainly fouses on the spei�ation of the time, loation, and magnitude of a future earthquakewithin stated limits2. Preditionis often based on various preursors, suh as animal behavior3, radon emissions4, and variations in the travel time ratio of S(seondary) to P (primary) waves5. Seismo-eletromagnetis might also be a basis for short-term earthquake predition6.Earthquake predition and foreasting are far from mature. However, knowledge an be aumulated from seismiity-related data by using statistial methods. The development of observation tehnologies, inluding GPS and InSAR7, hasgiven rise to new theories on and approahes to studying earthquakes. Therefore, a thorough understanding of the data andonsequent improvements to data quality are ruial8�10. Here, several fators assoiated with the distributions of earthquakesize and frequeny have been disovered11�13. Another important role of statistis is to onstrut models, suh as the pointproess model14,15 and hidden Markov model16, that an be used to estimate the probability of earthquakes ourring withina spei� spatio-temporal window. Furthermore, statistial data failitate a disussion of possible triggers of earthquakes,for example, tidal stress17,18, rainfall-triggered earthquakes19, and human ativity suh as the building of arti�ial waterreservoirs20, mining21, and extration of fossil fuels22.�Does solar ativity ause earthquakes?� is a question that dates bak to the early Twentieth entury23. At that time, veryfew measurements on solar ativity (SA) like sun spot numbers (SSN) were available. Reently, a lot of novel spae datarelated to SA has beome available, e.g., real-time proton density and temperature24. Nowadays, the various SA data havebeen available, but still one is negative25 to the question and the other is partly positive26,27.We takled the problem by using support vetor regression (SVR), whih is a regression model dealing with non-linearphenomena. Daily earthquake frequenies are regressed by nine physial measurements related to SA as well as earthquakefrequenies observed earlier. From the analysis of seven years worth of data, we onluded that SA is a trigger of earthquakeswith magnitudes 3 to 5.9 (3 ≤ M ≤ 5.9), but it has little effet on triggering earthquakes of magnitudes M ≥ 6. We also�nd that, aording to the model seletion, the Earth's eletri �eld is the most effetive variable in statistial relation toearthquakes.ResultsTable 1 lists nine physial measurements related to the solar ativity and the magnetosphere. We all these measurementsSA variables for simpliity and give their abbreviations in the table. The daily data of these variables are available from the



Table 1. External variables and abbreviationsAbb. SA variables unitsIMF Magnitude of IMF (Interplanetary Magneti Field) nTTemp Proton Temperature KD Proton Density n/V Solar Wind Veloity km/sP Dynami Pressure nPaEy Earth's Eletri Field (east-west omponent) mV/mSSN Sun Spot Number nDST Disturbane Storm Time index nTPCI Polar Cap IndexOMNIWeb database supported by NASA28. The website provides information about magneti �elds, plasma, and energetipartiles relevant to the heliosphere. The value IMF at date t is denoted by IMF(t) and other eight values are similarly de�ned.We analyzed the data from Jan. 1, 2006 (t = 1) to De. 31, 2012 (t = 2527).The daily earthquake data were downloaded from the AdvanedNational Seismi System (ANSS) database of the northernCalifornia earthquake data enter29, whih provides aurate and timely data. The database also provides information relatedto earthquake events, inluding damage to buildings and strutures. We used the earthquake data observed in the same period.Let EQ3(t) be earthquake frequenies with 3≤M < 4 (EQ3) for t = 1, ...,2527. Similarly EQ4(t), ..., EQ7(t) are de�ned,and EQ8(t) forM ≥ 8. SVR was employed for the target variable log(EQ3(t+n)+1)with explanatory variables: EQ3(s), ..., EQ8(s) for s= t, t−1, ..., t−dy+1 andlog(IMF(u)), log(Temp(u)), log(D(u)), log(V(u)), log(P(u)), Ey(u), log(SSN(u)+1), DST(u), PCI(u)for u = t, t− 1, ..., t− dx + 1, where dy and dx denote the maximum time delays of earthquakes and SA respetively. Here,n(= 1,2, ...,5) denotes n-day-ahead predition. By the numerial study, the transformation of non-negativevariables improvedpredition auray. In this artile, SVR model is estimated by the �rst 2000 samples up to June 23, 2011 (training data), andremaining 557 samples are used for validation (test data). We alulated test orrelation between atual and predited targetdata. Note that the ase dx = 0 means that SA variables are not used for predition.Predition of earthquake frequenies with/without SA variablesFigure 1 depits the SA effet on the frequenies of earthquakes by magnitude. Figure 1 (a) shows the test orrelationsbetween log(EQ3(t)+ 1) and values predited by the SVR, where the horizontal and vertial axes orrespond to time delaydy and orrelation respetively. Test orrelations were alulated for the test data with t = 2001, ..,2557 by using the optimalmodel based on the training data with t = 1, ...,2000.The solid urve of Figure 1 (a) shows test orrelations based on the SVR model without SA variables (dx = 0). The reddotted urve denoted as x1 was derived by SVR model with SA variables observed at a date t (dx = 1). The red dotted urveis above the solid line, whih means an effet of SA was deteted. The largest orrelation was attained by the urve x14 usingSA variables from one day to two weeks ago (dx = 14). The maximum orrelation without SA was about 0.36, whereas it wasover 0.45 with the SA variables. Figure 1 (b)-(f) give similar plots for EQ4 to EQ8. It is seen that SA variables have muheffet on EQ4 and a little effet on EQ5. However, SA effet annot be deteted for earthquakes with M ≥ 6.Figure 2 illustrates SA effet on two-day-ahead predition of frequenies of EQ3 to EQ6. Figure 2 (b) shows the biggestimprovement by using the SA variables for EQ4; the orrelation exeeded 0.51. By omparison, Figure 2 () and (d) forEQ5 and EQ6 do not show any improvement by additional use of SA variables. This implies that SA has little effet ontriggering large earthquakes more than magnitude 6. Figure 3 shows the effet of SA for three- to �ve-day-ahead preditionsof frequenies of EQ3 and EQ4. An inrease in orrelation due to SA is learly seen in these ases. The inrease for EQ3 isespeially signi�ant.Evaluation of impat of SA on seismi ativityTable 2 tabulates the maximum test orrelations with or without SA measurements orresponding to Figures 1-3. The n , dy,dx, and inrement olumns respetively show the predition steps, time delays of EQ and SA, and inrements had by addingSA measurements as explanatory variables. The sixth and ninth olumns denoted by �orr.� orrespond to the blak and redpoints respetively in the sub�gures of Figures 1 to 3. 2/12
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Table 2. Maximum test orrelations with/without nine SA measurementsn-day-ahead Magnitudes Figures dy dx orr. dy dx orr. inrement3 Fig. 1 (a) 21 0 0.3934 16 14 0.4593 0.06594 Fig. 1 (b) 16 0 0.4486 8 8 0.5255 0.0768*1 5 Fig. 1 () 18 0 0.2011 14 13 0.2144 0.01336 Fig. 1 (d) 4 0 0.0979 3 12 0.1131 0.01527 Fig. 1 (e) 17 0 0.1192 20 4 0.1296 0.01038 Fig. 1 (f) 8 0 0.1080 8 0 0.1080 03 Fig. 2 (a) 21 0 0.3567 15 14 0.4202 0.06352 4 Fig. 2 (b) 21 0 0.3523 8 10 0.4353 0.0830**5 Fig. 2 () 17 0 0.1724 17 0 0.1724 06 Fig. 2 (d) 3 0 0.0868 3 1 0.1209 0.03413 Fig. 3 (a) 20 0 0.3498 9 14 0.4166 0.06683 4 Fig. 3 (b) 20 0 0.3288 7 6 0.3938 0.06505 ��� 16 0 0.1460 18 10 0.1510 0.00493 Fig. 3 () 17 0 0.3399 8 13 0.4219 0.0820**4 4 Fig. 3 (d) 21 0 0.3248 13 7 0.3865 0.06165 ��� 15 0 0.1410 17 10 0.1523 0.01133 Fig. 3 (e) 16 0 0.3114 7 12 0.3945 0.0832**5 4 Fig. 3 (f) 21 0 0.3208 12 6 0.3550 0.03425 ��� 14 0 0.1528 16 8 0.1781 0.0253Note: Numerals with �*� and �**� mean that the inrements are more than 0.07 and 0.08 respetively.For example, the seond row of Table 2 gives maximum orrelations (0.3934) with the time delay dy = 21 without SAmeasurements (dx = 0) for one-day-aheadpredition log(EQ3(t+1)+1). It also shows that the orrelation inreased to 0.4593with SA measurements with time delays (dy,dx) = (16,14), and the inrement was 0.0659, see Fig. 1 (a). The inrement of 0in the last olumn means that additional SA variables failed to inrease the test orrelation.From this table, we an onlude the following.
• The inrements in the last olumn are mostly positive for n-day-ahead predition for n = 1,2, ...,5. The inrease in testorrelation as a result of using SA measurements for EQ3 and EQ4 is about 0.07.
• The optimal time delay dy is about 20 days for EQ3, EQ4 and EQ5. This implies that aftershoks our for three weeks.
• The ontribution from SA to EQ4 is outstanding for one- or two-day-ahead predition. For more than two-day-aheadpreditions, however, the ontribution from SA to EQ3 is highest.
• The ontribution from SA to EQ5 an be deteted, but it is not signi�ant.
• The ontribution from SA to earthquakes ofM ≥ 6 is insigni�ant.Variable seletion of SA measurementsThe results show that SA variables impat EQ3 to EQ5, but they do not give impat equally. We tested two variable seletionmethods as follows.The �rst approah fouses on SA variables useful for one-day-ahead predition. If an effetive variable for earthquakepredition is eliminated from the regression funtion, the test orrelation would beome worse. Given this onsideration, wean �nd effetive variables for EQ3 predition in the following steps.
• Obtain the optimal test orrelations by eliminating one of the nine physial measurements for one-day-ahead preditionwith time delays dy = 1, ...,21 and dx = 0,1, ...,14.
• Find an effetive order of SA measurements aording to the small order of the test orrelations. 6/12



The seond approah is based on the variable-redution method. Table 2 shows the best models based on the whole nineSA variables. This approah is to redue variables sequentially as long as the optimal test orrelation is improved.
• Obtain the best test orrelation by omitting one of SA variables for dy = 1, ...,21 and dx = 0,1, ...,14.
• Find the maximum value among the nine best orrelations derived in the previous step. If the maximum is less than themaximum based on the whole variables, we regard the whole variable set as the best and stop the proedure. Otherwise,we regard the variable redundant and omit from the explanatory variables.This proedure is onduted repeatedly until the test orrelation beome worse with respet to the maximum value derived bythe previous step. This was onduted for EQ3 to EQ5 and n = 1,2, ...,5.Table 3 uni�es the optimal models derived by the �rst and seond approahes. The third olumn shows seleted SAvariables expressed in the variable order of Table 1. For example, a variable set 00000 1111 represents a set of Ey, SSN, DSTand PCI (the last four variables in Table 1). Inrements denote values in omparison with the maximum values without SAvariables. Atually, the seond approah sueeded to �nd the best model exept two ases with (n = 3, EQ5) and (n = 5,EQ5). Apparently, the seletion of SA variables was effetive. In addition, these �ndings are valid for one- to �ve-day-aheadpreditions. Table 3. Maximum test orrelations with seleted SA variablesn-day-ahead Magnitudes SA variables dy dx orr. inrement3 00000 1111 20 12 0.4777 0.0843**1 4 11011 1101 8 8 0.5298 0.0812**5 01000 1111 6 6 0.2404 0.03943 10010 1111 15 14 0.4342 0.0775*2 4 01010 1111 7 9 0.4438 0.0914***5 00010 1100 6 10 0.1993 0.02693 10010 1110 9 14 0.4319 0.0821**3 4 00010 1111 14 14 0.4134 0.0847**5 00000 1110 16 6 0.1650 0.01903 11010 1110 8 13 0.4357 0.0958***4 4 00010 1100 13 13 0.4059 0.0811**5 01000 1111 17 7 0.1752 0.03413 10010 1110 7 12 0.4143 0.1030***5 4 01000 1011 21 6 0.3833 0.06255 00000 1110 4 6 0.1884 0.0356Note 1: The olumn �SA variables� denotes the seleted variables in the order of Table 1.Note 2: Numerals with �*�, �**� and �***� mean that the inrements are more than 0.07, 0.08, and 0.09+ respetively. .Let us ount the frequenies of eah SA variable in the 12-best models shown in Table 3. The sixth variable Ey wasseleted 12 times; i.e., all the best models need Ey. This means that Ey is very effetive for prediting earthquakes. Thisis understandable beause it is the east-west omponent of the eletri �eld indued on the ground by geomagneti ativity.SSN, Veloity, DST and PCI seleted by 10, 9, 9 and 8, respetively, are also effetive variables, whereas D (density) was notseleted.DisussionWe investigated the relation between solar ativity and earthquakes. We predited daily global earthquake frequenies atdifferent magnitude levels for the whole earth by using SVR. Here, we used earthquake frequenies up to 21 days earlier andnine SA variables up to 14 days earlier. The parameters of SVR were tuned by minimizing ross validation errors on thebasis of 2000 training time-series data olleted from Jan.1, 2006 to June 23, 2011. The model auray was evaluated by itsorrelation with 557 test data olleted from June 24, 2011 to De. 31, 2012. We obtained the following results.1. SA undoubtedly affeted EQ3 and EQ4. SA affeted EQ5 as well, but not so strongly. The time delays were about threeweeks for earthquakes and two weeks for SA. 7/12



2. Our approah did not detet any SA effet on EQ6 and higher.3. The inrease in test orrelation as a result of onsidering SA measurements was signi�ant for EQ3 and EQ4. Theinrease was about 0.08 in eah ase. It was about 0.03 in the ase of EQ5.4. Variable seletion of SA measurements was examined. The seleted SA variables slightly inreased the test orrelationsobtained by all the SA variables about 0.005 to 0.01.5. The Ey, SSN, Veloity, DST and PCI physial measurements are effetive SA variables for prediting EQ3, EQ4, andEQ5.We still have several problems to takle. Our purpose here was to determine whether SA affets earthquakes, and thiswas positively shown by analyzing seven years worth of daily data. The next problem is to examine our approah for periodslonger than one solar yle. The seond problem regards development of a less omputationally intensive variable seletionmethod. This is very important beause running the variable-redution method on �ve omputers took two months for it tomake a seletion.In this study, we used SVR as given by equation (7), whih treats all the explanatory variables equally. As we have seen,however, some variables are more important than others. Another problem is to evaluate the effetiveness of the explanatoryvariables in SVR modeling. This problem will be disussed elsewhere.Data Sets and MethodsThis setion desribes the time series data on earthquakes, solar ativity, and magnetosphere observed from 01/01/2006 to12/31/2012.Daily frequenies of earthquakesTable 4 illustrates the frequenies of earthquakes whose Rihter magnitude sales are 3 or larger (M ≥ 3). The bottom rowof the table gives the sum of eah olumn. It an be seen that the sum of the EQ3 frequenies is less than that of the EQ4frequenies. This may ome from dif�ulties with the observing system of EQ3. The data ontain measurements of theearthquake M = 7.2 (04/05/2010) that ourred in Estado de Baja California, Mexio, and the Touhoku earthquake M = 9.0(03/11/2011) in north-east Japan. Large earthquakes always aused aftershoks, whereas small earthquakesmay be foreshoksof larger one. Therefore, frequenies of the earthquakes are also taken as explanatory variables as well as SA variables forprediting future ourrenes of earthquakes.Table 4. Frequenies of earthquakes by magnitude and their notation (n = 2,557)Date t EQ3 EQ4 EQ5 EQ6 EQ7 EQ8Jan. 1, 2006 1 28 24 4 0 0 0Jan. 2, 2006 2 22 53 5 0 2 0Jan. 3, 2006 3 30 33 8 0 0 0Jan. 4, 2006 4 25 35 2 1 0 0Jan. 5, 2006 5 26 24 4 0 0 0... ... ... ... ... ... ... ...De. 27, 2012 2552 6 11 4 0 0 0De. 28, 2012 2553 3 14 4 0 0 0De. 29, 2012 2554 2 17 6 1 0 0De. 30, 2012 2555 7 5 5 0 0 0De. 31, 2012 2556 6 11 3 0 0 0�- sum 60,474 76,770 12,023 1,052 89 11Daily solar ativity and magnetosphere dataThe daily data of SA variables are available from the OMNIWeb database supported by NASA28, where the website providesinformation about magneti �elds, plasma, and energeti partiles relevant to the heliosphere. Table 5 shows the �rst and last�ve samples of the nine variables related to the solar ativity and the magnetosphere. 8/12



Table 5. Measurements of solar ativity and magnetosphereDate t IMF Temp D V P Ey SSN DST PCIJan. 1, 2006 1 10.6 69,616 9.3 465 4.38 -2.7 25 3 0.5Jan. 2, 2006 2 5.7 93,551 5.8 442 2.28 -1.11 24 0 0.3Jan. 3, 2006 3 4.2 42,310 2.6 423 0.93 -0.32 19 -3 0.5Jan. 4, 2006 4 4.6 43,776 2.9 380 0.81 -0.4 17 -2 0.3Jan. 5, 2006 5 5.1 36,086 5.5 339 1.27 0.08 15 2 0.7... ... ... ... ... ... ... ... ... ... ...De. 27, 2012 2552 3.3 18,453 8 292 1.36 -0.07 39 -1 0.2De. 28, 2012 2553 4.6 20,183 13.5 288 2.24 0.16 38 6 0.4De. 29, 2012 2554 5.2 39,178 6.4 296 1.1 0.06 40 -4 0.5De. 30, 2012 2555 8.1 91,979 7.8 372 1.99 -0.08 40 1 0.5De. 31, 2012 2556 3.3 59,632 2 410 0.65 -0.01 64 -5 0.2�- mean 4.7 86,224 6.1 417.2 1.71 -0.03 22.7 -7.5 1.5A short review on support vetor regressionEah olumn of the earthquake frequenies in Table 4 was modeled by using mahine learning on the SA variables in Table 1.This setion starts by reviewing the general SVR. Then, it introdues an SVR for time-series data with a time delay. Considera set of training data {(yi,xi) | i = 1,2, ...,n} for a general regression problem, where yi and xi respetively denote a targetvariable and a vetor of p explanatory variables. Regression problems aim to predit a target variable yi by using a weightedsum of base funtions f1(xi), ...,fd(xi) of explanatory vetors xi:yi = w1(f1(xi)+ · · ·+wdfd(xi)+b+ errori ≡ wTf (xi)+b+ errori. (1)Usually, the unknown vetor w is estimated by minimizing the squared sum of errors Q(w) ≡ åni=1{yi −wTf (xi)− b}2, orits penalized formula given by CQ(w) + 12wTw, where C > 0 is alled a trade-off parameter between the data �tting andsmoothness of the regression funtion. Support vetor regression takes an e-insensitive error funtion de�ned byEe(u) = (|u|− e)I(|u|> e)for the error evaluation, where e > 0 is a onstant and I(·) denotes the indiator funtion. The target funtion of SVR to beminimized is given by the following regularized error funtion:C nåi=1Ee(yi−wTf (xi)−b)+ 12wTw (2)where C > 0 is also alled a trade-off parameter. The �rst term of (2) takes zero if and only if wT f(xi) + b− e ≤ yi ≤wTf(xi)+b+ e (e-tube of yi) for all i. We relax the ondition by introduing slak variables xi ≥ 0 and x ∗i ≥ 0 satisfyingwTf (xi)+b− e− x ∗i ≤ yi ≤ wTf (xi)+b+ e+ xi for i= 1, ...,n. (3)Then, formula (2) an be rewritten asC nåi=1(xi+ x ∗i )+ 12wTw (4)whih must be minimized for nonnegative xi and x ∗i subjet to the onstraints (3). The minimization problem an be solvedby using the Lagrangian,L(w,b,{(xi, x ∗i )}) = C nåi=1(xi+ x ∗i )+ 12wTw−
nåi=1(mixi+ m∗i x ∗i )

−
nåi=1ai (wTf(xi)+b+ e+ xi− yi)− nåi=1a∗i (yi−wTf(xi)−b+ e+ x ∗i ) (5)where ai, a∗i , mi, m∗i are the Lagrangemultipliers orresponding to the non-negativity restritions. We an then obtain relationswhih hold for the optimum values by setting all partial derivatives of L with respet to w, b, xi, x ∗i to zero. 9/12



Finally, formula (5) an be rewritten as�L({(ai, a∗i )}) = −
12 nåi=1 nåj=1(ai−a∗i )(a j −a∗j)K(xi,x j)− e nåi=1(ai+a∗i )+ nåi=1(ai−a∗i )yi (6)where K(xi,x j) denotes the inner produt f(xi)Tf (x j) of the transformed input vetors xi,x j. The dual problem is requiredto maximize the formula (6) subjet to the onstraints 0 ≤ ai ≤C and 0≤ a∗i ≤C. Then, the regression funtion f (x) of anexplanatory vetor x is given byf (x) =

nåi=1(ai−a∗i )K(x,xi)+b. (7)The explanatory vetor xi with ai−a∗i 6= 0 is alled a support vetor beause it ontributes to regression. Note that there is noneed to know the atual formula of f (u) in the optimization proess. We only need to know the exat formula of the kernelK(u,v) = f(u)Tf (v) (the kernel trik). For a detailed disussion on SVR, see Chap. 730.Tuning of SVR parameters by ross-validationIn the analysis of the EQ-SA time series, we use a Gaussian kernel given by K(u,v) = exp(−g‖u− v‖2) for g > 0. Thetrade-off parameterC > 0 used in formula (2) is tuned by ten-fold ross validation. The proedure is as follows.1. Consider a positive onstant C and randomly split the training data into ten subsets D1, ...,D10 having approximatelythe same sample size.2. For s= 1, ...,10,(a) solve the dual problem (6) by using the training data D1∪·· ·∪Ds−1∪Ds+1∪·· ·∪D10, and(b) alulate the sum of squared errors (SSEs) between the observed target variables of Ds and predited values ofthe form (7).3. Calulate the sum of ten SSEs (test error).This proedure is repeated many times to obtain the average test errors with the givenC > 0. Thus, the trade-off parameterCis optimized suh that it minimizes the average test errors.SVR for earthquake frequeniesAs an illustration of our analysis, we will onsider SVR for prediting EQ3(t): the frequeny of EQ3 at date t. The targetvariable at the date t + 1 is predited by earthquake frequenies as well as the SA measurements at the urrent date t andearlier. More preisely, let x(t) and y(t) be vetors of explanatory variables at date t de�ned byy(t) = (EQ3(t),EQ4(t), ...,EQ8(t))T : 6×1 and x(t) = (IMF(t),Temp(t), ...,PCI(t))T : 9×1 (8)for t = 1,2, ...,2000. Now, the vetor y(t) denotes earthquake frequenies by magnitudes and x(t) denotes SA variables. Lety(t−dy+1 : t) ≡ (y(t−dy+1)T ,y(t−dy+2)T , ...,y(t)T )T be a 6dy-dimensional vetor of the earthquake frequenies fromthe date t−dy+1 to t. The effet of aftershoks with a time delay of dy days may be evaluated asEQ3(t+1) = fEQ ( y(t−dy+1 : t) )+ error. (9)Note that EQ3(t), ... , EQ3(t−dy+1) are explanatory variables of EQ3(t+1) (auto-regressivemodel) beause the �rst elementof eah vetor y(s) given by (8) was de�ned by EQ3(s). The regression funtion fEQ(·) an be approximated by the earthquakefrequenies of the training data. The atual formula is a weighted sum of Gaussian kernels K(x,xi) = exp(−g‖x−xi‖2) of theform (7).If solar ativities have no effet on EQ3, the regression funtion with additional SA variables given byEQ3(t+1) = fEQ∪SA(·)( [y(t−dy+1 : t)T , x(t−dx+1 : t)T ]T )

+ error (10)would show no improvement from (9), where x(t−dx+1 : t) : 9dx×1 is similarly de�ned as y(t−dy+1 : t)with the maximumtime delay dy of SA. The regression funtion fEQ∪SA(·) is estimated using earthquake and SA time series of training data inthe form (7). 10/12
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