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Abstract

Formal concept analysis is a mathematical field applied to data mining. Usually,
a formal concept is defined as a pair of sets, called extents and intents, for a given
formal context in binary relation. In this paper we review the idea that Armstrong’s
inference rules are complete and sound for functional dependencies. Then, we prove
that Armstrong’s inference rules are complete and sound for implications of formal
contexts. Still, we give an example which shows the difference between implication
and functional dependency. Besides, we show that functional dependency can be
reduced to implication. Finally, we give the condition on which a set of implications
and a set of functional dependencies for the intensional context are equivalent.

Key Words and Phrases: Formal concept, Functional dependency, Implication, Armstrong
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1. Introduction

In the philosophical theory, a concept is defined as a pair of an extent and an
intent. The extent is a subset of all objects that belong to the concept, and the intent
is a subset of all attributes whose object are common. In the mathematical theory,
formal concepts mean formal models of concepts as defined above. Our subjects are
the correlations between formal concepts. The method to analyze them is called formal
concept analysis. Based on the lattice theory, it was proposed by Wille in 1970’s. The
standard textbook is Ganter and Wille (1999).

What we call a formal context is really a database which consists of a set of objects,
a set of attributes and the binary relation between them. The formal context defines
formal concepts as suitable pairs of an extent and an intent. The idea is an extension of
Dedekind cuts of real numbers. The set of all formal concepts forms a complete lattice by
inclusion between extents. The complete lattice implies the features of a formal context.
Therefore, formal concept analysis is applicable to data mining.

To find a correlation of attributes is important for analyzing a relational database.
Codd (1970) introduced a notion of functional dependency, which is a constraint be-
tween two sets of attributes. Armstrong (1974) proposed so-called Armstrong inference
rules. Beeri, Fagin and Howard (1977) proposed that those inference rules are complete
and sound for functional dependencies. On the other hand, Ganter and Wille defined
implication, or another type of dependency in a formal context.
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In this paper, we review a simple proof that Armstrong inference rules are sound
and complete for functional dependencies in formal contexts. Also we demonstrate that
Armstrong inference rules are sound and complete for implications for formal contexts.
Further, to distinguish semantics and syntax, we give a common proof of implication and
functional dependency. Still, we give an example which shows the difference between
implication and functional dependency.

The paper is organized as follows. In Section 2 we introduce an intensional context
which could be discussed more clearly than a formal context. In Section 3 we review
Armstrong inference rules for the dependency of attributes. In section 4 we examine
the functional dependency in intensional context, and show that Armstrong inference
rules are sound for functional dependencies. In Section 5 we explain a notion of impli-
cation in intensional contexts, and then prove some properties of implication to show
that Armstrong inference rules are sound for it. In Section 6 we demonstrate that Arm-
strong inference rules are complete for implications and functional dependencies. Still,
in Section 7, we notice an example which shows the difference between implication and
functional dependency.

2. Intensional Contexts

A formal context is a binary relation between objects and attributes. The following
shows a simple example of formal contexts.

a b c
x0 × ×
x1 × ×
x2 ×
x3 × ×

Where a, b and c are attributes, x0, x1, x2 and x3 objects. The formal concept lattice C
is:

({x0, x1, x2, x3}, ∅)

({x0, x1, x3}, {b})

33hhhhhhhh
({x1, x2, x3}, {c})

kkVVVVVVVV

({x0}, {a, b})

OO

({x1, x3}, {b, c})

mm[[[[[[[[[[[[[[[[[[[[[[
OO

(∅, {a, b, c})

kkVVVVVVVV
33hhhhhhhh

Construct the family T = {{a, b}, {b, c}, {c}} of the subsets of attributes related
with each object, and the closure system

T ∗ = {{a, b, c}, {a, b}, {b, c}, {b}, {c}, ∅}

generated by T . It is easy to see that T ∗ considers with the set of all intents (second
components) of C. For constructing concept lattices, it is enough to treat with a family
of subsets of attributes instead of a formal context. In this paper, we argue by using
such framework.

Definition 2.1. Let Y be a set of attributes and ℘(Y ) the power set of Y . A
subset T of ℘(Y ) is called an intensional context on Y . ut
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The basic idea on Formal Concept Analysis (FCA) due to Ganter and Wille (1999),
uses closure operations defined for formal contexts. For intensional contexts, the closure
operation is modified as follows: B+ =

∩
{T ∈ T | B ⊆ T} for a subset B of Y . In this

sense the formal concept lattice T ∗ for T is a subset T ∗ = {∩A | A ⊆ T } of ℘(Y ). The
following proposition is fundamental.

Proposition 2.2. Let B be a subset of attributes Y and T an intentional context
on Y . Then the following holds.

(a) B ⊆ B+ = B+ +,

(b) Y ∈ T ∗,

(c) T ∗ is a complete lattice.

3. Armstrong Inference Rules

Armstrong (1974) introduced so-called Armstrong inference rules as a basic frame-
work to treat the logical structure on dependencies on attribute sets.

Definition 3.1. Let A,B,C and D be subsets of an attribute set Y .

(a) A formal expression A B B, namely, an ordered pair of subsets A and B of Y , is
called a dependency on Y .

(b) Armstrong inference rules consist of the following three inference rules:

[A0]
A B A

[A1]
A B B

A ∪ C B B
[A2]

A B B B ∪ C B D

A ∪ C B D

(c) A dependency A B B is provable from a set L of dependencies on Y (written
L ` A B B) if A B B is obtained by using assumptions L and Armstrong inference
rules [A0], [A1] and [A2]. ut

Proposition 3.2. The following system of inference rules [A0’], [A1’] and [A2’] is
equivalent to Armstrong inference rules.

[A0’]
A ⊇ B

A B B
[A1’]

A B B C ⊇ D

A ∪ C B B ∪ D
[A2’]

A B B B B C

A B C

Proof. [A0’], [A1’] and [A2’] imply [A0], [A1] and [A2]:

[A0’] A ⊇ A
A B A

· · · [A0]

[A1’]
A B B

C ⊇ ∅
A ∪ C B B

· · · [A1]

[A2’]
[A1’]

A B B
C ⊇ C

A ∪ C B B ∪ C
B ∪ C B D

A ∪ C B D
· · · [A2]
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[A0], [A1] and [A2] imply [A0’], [A1’] and [A2’]:

[A1]
[A0]

B B B
B ∪ A B B

A ⊇ B

A B B
· · · [A0’]

[A2]
A B B [A0’]

C ⊇ D

B ∪ C ⊇ B ∪ D
B ∪ C B B ∪ D

A ∪ C B B ∪ D
· · · [A1’]

[A2]
A B B [A1]

B B C

B ∪ A B C
A ∪ A B C
A B C

· · · [A2’] ut

Also the union rule
[A3]

A B B A B C

A B B ∪ C

is proved from [A1’] and [A2’] as follows:

Proof.

[A2’]
[A1’]

A B B A ⊇ A

A B A ∪ B
[A1’]

A B C B ⊇ B

A ∪ B B B ∪ C
A B B ∪ C

ut

For a set L of dependencies we define a subset AL of Y by AL = {y ∈ Y | L `
A B {y}}.

Lemma 3.3. If B is a finite subset of Y , then L ` A B B if and only if B ⊆ AL.

Proof. (→) Assume that L ` A B B and let y ∈ B. Then ` B B {y} by [A0’]
and so L ` A B {y} by [A2’]. Hence y ∈ AL.
(←) Assume that B ⊆ AL. Then, for all y ∈ B, we have L ` A B {y} by the definition
of AL and hence L ` A B B by the union rule [A3], because B is finite. ut

4. Functional Dependency

In this section, we review a functional dependency introduced in Codd (1970).
In definition of a functional dependency, we use an equivalence relation that called
indiscernibility relation in Düntsch and Günther (2000).

Definition 4.1. For each subset A of Y we define an equivalence relation θ[A] on
℘(Y ) by (S, T ) ∈ θ[A] ↔ S ∩ A = T ∩ A. ut

The following proposition is trivial.

Proposition 4.2.

(a) (S, T ) ∈ θ[∅] for all subsets S and T of Y ,
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(b) (S, T ) ∈ θ[Y ] if and only if S = T . ut

We define a functional dependency as follows.

Definition 4.3. Let T be an intensional context on Y , A B B a dependency on
Y , and L a set of dependencies.

T |=F A B B ↔ ∀S, T ∈ T . (S ∩ A = T ∩ A → S ∩ B = T ∩ B)

↔ ∀S, T ∈ T . (S, T ) ∈ θ[A] → (S, T ) ∈ θ[B].

T |=F L ↔ ∀A B B ∈ L. T |=F A B B. ut

If T |=F ABB then ABB is called a functional dependency on T and a dependency
A B B is valid (as functional dependency) for an intensional context T on Y . A set of
functional dependencies L is valid for T on Y if T |=F L. Then the following four
propositions hold.

Proposition 4.4. Let T = {S, T} be an intensional context on Y . Then

T |=F A B B if and only if ((S, T ) ∈ θ[A] → (S, T ) ∈ θ[B]).

Proof is omitted. ut

The next proposition means that Armstrong inference rules are sound for functional
dependencies.

Proposition 4.5. Let T be an intensional context and ABB a dependency on Y .
Then
(A0’) If A ⊇ B then T |=F A B B,
(A1’) If T |=F A B B and C ⊇ D then T |=F A ∪ C B B ∪ D,
(A2’) If T |=F A B B and T |=F B B C then T |=F A B C.

Proof. (A0’) For all S, T ∈ T it holds that

S ∩ A = T ∩ A → S ∩ A ∩ B = T ∩ A ∩ B
→ S ∩ B = T ∩ B. { A ⊇ B }

(A1’) For all S, T ∈ T we have

S ∩ (A ∪ C) = T ∩ (A ∪ C)
↔ S ∩ A = T ∩ A, S ∩ C = T ∩ C
→ S ∩ B = T ∩ B, S ∩ D = T ∩ D { T |=F A B B, C ⊇ D }
↔ S ∩ (B ∪ D) = T ∩ (B ∪ D).

(A2’) For all S, T ∈ T it holds that

S ∩ A = T ∩ A → S ∩ B = T ∩ B { T |=F A B B }
→ S ∩ C = T ∩ C. { T |=F B B C }

ut
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(A0’), (A1’) and (A2’) are called reflexive law, augmentation law and transitive
law, respectively.

The following proposition will be used in our proof of the completeness of Armstrong
inference rules for functional dependencies.

Proposition 4.6. Let A be a proper subset of Y . There exists a set T0 such that

(a) C ⊆ A if and only if T0 |=F ∅ B C,

(b) C 6⊆ A if and only if T0 |=F C B Y .

Proof. (a)

T0 |=F ∅ B C ↔ (A, Y ) ∈ θ[∅] → (A, Y ) ∈ θ[C] { 4.4 }
↔ (A, Y ) ∈ θ[C] { 4.2(a) }
↔ A ∩ C = Y ∩ C = C { C ⊆ Y }
↔ C ⊆ A.

(b)

T0 |=F C B Y ↔ (A, Y ) ∈ θ[C] → (A, Y ) ∈ θ[Y ] { 4.4 }
↔ (A, Y ) 6∈ θ[C] ∨ A = Y { 4.2(b) }
↔ (A, Y ) 6∈ θ[C] { A 6= Y }
↔ C 6⊆ A. { (a) }

ut

Proposition 4.7. Let T be an intensional context on Y and a, b ∈ Y . If T |=F

{a} B {b} and T 6|=F {b} B {a}, then T |=F ∅ B {b}.

Proof. Since T 6|=F {b} B {a}, there exist S0, T0 ∈ T such that a ∈ S0, a 6∈ T0

and {b}∩S0 = {b}∩T0. Consider Ta = {S ∈ T |a ∈ S} and T¬a = {S ∈ T |a 6∈ S}. Then
{b} ∩ S = {b} ∩ S0 and {b} ∩ T = {b} ∩ T0 for all S ∈ Ta and all T ∈ T¬a, respectively,
because T |=F {a} B {b}. Hence, for all S ∈ Ta and T ∈ T¬a, {b} ∩ S = {b} ∩ S0 =
{b} ∩ T0 = {b} ∩ T . And then {b} ∩ S = {b} ∩ T for all S, T ∈ T . Therefore we have
T |=F ∅ B {b}. ut

5. Implication

In this section, we review implication introduced in Ganter and Wille (1999).

Definition 5.1. Let T be an intensional context on Y , A BB a dependency on Y
and L a set of dependencies on Y . We define two notations T |=I A B B and T |=I L
as follows:

(a) T |=I A B B if A ⊆ T implies B ⊆ T for all T ∈ T ,

(b) T |=I L if T |=I A B B for all A B B ∈ L. ut

If T |=I ABB then ABB is valid (as implication) for an intensional context T on
Y or is called an implication on T . A set of implication L is valid for T on Y if T |=I L.

The next proposition means that Armstrong inference rules are sound for implica-
tions.
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Proposition 5.2. Let T be an intensional context on Y , A B B a dependency on
Y , and L a set of dependencies.

(A0) T |=I A B A,

(A1) If T |=I A B B then T |=I A ∪ C B B,

(A2) If T |=I A B B and T |=I B ∪ C B D then T |=I A ∪ C B D.

Proof. (A0) It is trivial.
(A1) For all T ∈ T we have

A ∪ C ⊆ T → A ⊆ T
→ B ⊆ T. {T |=I A B B}

(A2) For all T ∈ T we have

(A ⊆ T → B ⊆ T ) → (A ∪ C ⊆ T → B ∪ C ⊆ T )
→ (A ∪ C ⊆ T → D ⊆ T ). {T |=I (B ⊆ C B D)}

ut

The following proposition will be used in our proof of the completeness of Armstrong
inference rules for implications.

Proposition 5.3. Let A be a proper subset of Y . There exists a set T0 such that

(a) C ⊆ A if and only if T0 |=I ∅ B C,

(b) C 6⊆ A if and only if T0 |=I C B Y .

Proof. (a) T0 |=I ∅ B C ↔ (∅ ⊆ A → C ⊆ A) ↔ C ⊆ A.
(b) T |=I C B Y ↔ (C ⊆ A → Y ⊆ A) ↔ C 6⊆ A. ut

Proposition 5.4. Let T be an intensional context and ABB a dependency. Then

(a) T |=I A B B if and only if T ∗ |=I A B B,

(b) T |=I A B B if and only if B ⊆ A+.

Proof. (a)

T |=I A B B ↔ ∀T ∈ T . (A ⊆ T → B ⊆ T )
↔ ∀S ⊆ T . ∀T ∈ S. (A ⊆ T → B ⊆ T )
↔ ∀S ⊆ T . (A ⊆ ∩S → B ⊆ ∩S)
↔ T ∗ |=I A B B.

(b)
T |=I A B B ↔ ∀T ∈ T . (A ⊆ T → B ⊆ T )

↔ B ⊆ ∩{T ∈ T |A ⊆ T}
↔ B ⊆ A+.

ut
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6. Soundness and Completeness

Now we will state the soundness and the completeness theorems of implication and
functional dependency for intensional contexts. In the proof, the symbol [A2′] by square
bracket will be used in semantics and the symbol (A2′) by round bracket will be used
in syntax.

Theorem 6.1. Let A B B be a dependency and L a set of dependencies on a finite
set Y . Then the following equivalence holds:

L ` A B B if and only if ∀T ⊆ ℘(Y ). (T |=• L → T |=• A B B),

where • = F or I.

Proof. (soundness) We have already seen the soundness in Proposition 4.5 and
5.2
(completeness) Assume ∀T . (T |=• L → T |=• A B B).
(I) In the case of AL = Y .

AL = Y → B ⊆ AL { B ⊆ Y }
↔ L ` A B B. { 3.3 }

(II) In the case of AL 6= Y . Choose an intensional context T0 satisfying the condition
(4.6 and 5.3). Then we can see T0 |=• L, that is, T0 |=• C B D for all C B D ∈ L:

(II-i) In the case of C ⊆ AL.

C ⊆ AL ↔ L ` A B C { 3.3 }
→ L ` A B D { C B D ∈ L, [A2’] }
↔ D ⊆ AL { 3.3 }
↔ T0 |=• ∅ B D { 4.6(a), 5.3(a) }
→ T0 |=• C B D. { (A0’) T0 |=• C B ∅, (A2’) }

(II-ii) In the case of C 6⊆ AL.

C 6⊆ AL ↔ T0 |=• C B Y { 4.6(b), 5.3(b) }
→ T0 |=• C B D. { (A0’) T0 |=• Y B D, (A2’) }

Therefore T0 |=• A B B holds by the assumption and so we have

L ` A B A ↔ A ⊆ AL { 3.3 }
↔ T0 |=• ∅ B A { 4.6(a), 5.3(a) }
→ T0 |=• ∅ B B { T0 |=• A B B, (A2’) }
↔ B ⊆ AL { 4.6(b), 5.3(a) }
↔ L ` A B B. { 3.3 }

ut

Definition 6.2. A set L of dependencies is closed, if

∀A B B.L ` A B B → A B B ∈ L.

ut
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Then, the following theorem holds.

Theorem 6.3 Maier. A set L of dependencies is closed if and only if L satisfies
the following.

(a) A B A ∈ L,

(b) if A B B ∈ L then A ∪ C B B ∈ L,

(c) if A B B,B ∪ C B D ∈ L then A ∪ C B D ∈ L.

Proof. (←) is trivial by structural induction.
(→)

(a)
true → L ` A B A { [A0] }

→ A B A ∈ L. { L : closed }

(b)
A B B ∈ L → L ` A B B

→ L ` A ∪ C B B { [A1] }
→ A ∪ C B B ∈ L. { L : closed }

(c)

A B B, B ∪ C B D ∈ L → L ` A B B ∧ L ` B ∪ C B D
→ L ` A ∪ C B D { [A2] }
→ A ∪ C B D ∈ L. { L : closed }

Conversely assume that L satisfies the conditions (a), (b) and (c). Recall the complete-
ness theorem

L ` A B B if and only if ∀T. (T |=I L → T |=I A B B).

If ∀T. (T |=I L → T |=I A B B), then L ` A B B by the completeness theorem and so
A B B ∈ L by the conditions (a), (b) and (c). ut

Therefore, Armstrong Inference rules are sound and complete for functional depen-
dencies and implications.

7. Difference between Implication and Functional Dependency

In this section, we show the difference between an implication and a functional
dependency, by using examples.

Let an intensional context T be {{a, b}, {b, c}, {c}}.

a b c
x × ×
y × ×
z ×

We consider about the dependency {a} B {b}. The set {a}+ is {a, b}. Therefore
T |=I {a} B {b}. But, for {b, c}, {c} ∈ T , {b, c} ∩ {a} = {c} ∩ {a}, and {b, c} ∩ {b} 6=
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{c}∩{b}. Therefore {a}B{b} is not a functional dependency on T . On the other hand,
we consider about the dependency {a} B {c}. It is a functional dependency on T , but
it is not an implication on T . Hence, an implication and a functional dependency are
different.

Proposition 7.1. For an intensional context T , there is not always U ⊆ ℘(Y )
such that T |=I A B B if and only if U |=F A B B.

Proof. Let an intensional context T be {{a, b}, {b, c}, {c}}. Then T |=I {a}B{b},
T 6|=I {b} B {a} and T 6|=I ∅ B {b}.

By assumption of an intensional context U , it satisfy (1) U |=F {a} B {b}, (2)
U 6|=F {b} B {a} and (3) U 6|=F ∅ B {b}.

Since (1) and (2), we get U |=F ∅ B {b}. However it is inconsistent with (3). ut

We consider the condition on which the functional dependency and the implication of
an intensional context are equivalent. And we find the following condition.

Proposition 7.2. Let T be an intensional context. Define a set T ′ of subsets of
Y by T ′ = {(S− ∪ T ) ∩ (T− ∪ S) | S, T ∈ T }.

(a) T ′ |=I A B B if and only if T |=F A B B,

(b) If T ⊆ T ′ ⊆ T ∗, then T |=F A B B if and only if T |=I A B B.

Proof. (a) First remark that

S ∩ A = T ∩ A ↔ (S ∩ A ⊆ T ) ∧ (T ∩ A ⊆ S)
↔ (A ⊆ S− ∪ T ) ∧ (A ⊆ T− ∪ S)
↔ A ⊆ (S− ∪ T ) ∩ (T− ∪ S).

(→) Let S, T ∈ T and set U = (S− ∪ T ) ∩ (T− ∪ S). Then U ∈ T ′ and so we have

S ∩ A = T ∩ A ↔ A ⊆ U
→ B ⊆ U { T |=I A B B }
↔ S ∩ B = T ∩ B.

(←) For all U ∈ T ′ there exists a pair of subsets S, T ∈ T such that U = (S− ∪
T ) ∩ (T− ∪ S) and so we have

A ⊆ U ↔ S ∩ A = T ∩ A
→ S ∩ B = T ∩ B { T |=F A B B }
↔ B ⊆ U.

(b) (→)
T |=F A B B ↔ T ′ |=I A B B

→ T |=I A B B. { T ⊆ T ′}

(←)
T |=I A B B ↔ T ∗ |=I A B B

→ T ′ |=I A B B { T ′ ⊆ T ∗ }
↔ T |=F A B B.

ut
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8. Summary and Outlook

In this paper, we review the idea that Armstrong inference rules are sound and com-
plete for functional dependencies. Then, we prove that Armstrong inference rules are
sound and complete for implications of formal contexts. Further, to distinguish the se-
mantic and syntax, we give a proof which is different from that of Ganter and Wille (1999).
In the proof, we ordered the thing of semantic or syntax theory. Still, we give an example
which shows the difference between implication and functional dependency. Besides, we
show that functional dependency can be reduced to implication. Finally, we give the
condition that a set of implications and a set of functional dependencies for a intensional
context are equivalent.

In the future, we will consider other conditions on which implication and functional
dependency are equivalent.
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