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CLOSURE SYSTEMS AND CLOSURE
OPERATIONS IN DEDEKIND CATEGORIES

By

Yasuo KAWAHARA∗ and Kakuji TANAKA†

Abstract

The concepts of closure systems and closure operations in lattice theory are
basic and applied to many fields in mathematics and theoretical computer science.
In this paper authors find out a suitable definition of closure systems in Dedekind
categories, and thereby give an equivalence proof for closure systems and closure
operations in Dedekind categories.
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1. Introduction

Closure systems and closure operations in complete ordered sets are one of the
basic concepts in mathematics and theoretical computer science. For example, the
closure systems and closure operations are not only used in algebraic systems, graph
theory, a definition of topological spaces and formal concept analysis ,introduced by
Ganter and Wille (1999) and Ishida, Honda and Kawahara (2008), but also related with
Galois connections. Tarski (1941) and Freyd and Scedrov (1990) extensively developed
the mathematical framework for relational methodology. Schmidt and Ströhlein (1993)
and Schmidt (2006) proposed that the framework is applied to computer science.

Now we will briefly review the fundamentals on infima, closure systems and closure
operations in ordered sets. Let (X,≤) be an ordered set. For a subset T of X an element
a of X is called the infimum (greatest lower bound) of T if

x ≤ a ↔ ∀t ∈ T. x ≤ t

for all x ∈ X. The infimum does not always exist. The infimum of T will be denoted
by inf T (if it exists). An ordered set (X,≤) is complete if for all subsets T of X there
exists the infimum of T . Closure systems and closure operations are defined in complete
ordered sets.

Let (X,≤) be a complete ordered set. A subset S of X is a closure system if
T ⊆ S implies inf T ∈ S. A mapping f : X → X is a closure operation if it is extensive
(x ≤ f(x)), idempotent (ff(x) = f(x)) and monotonic (x ≤ y implies f(x) ≤ f(y)).
The motivation of the paper arose from the following four fundamental exercises in a
complete ordered set (X,≤):

(i) The image f(X) of a closure operation f : X → X is a closure system.
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(ii) If S is a closure system of X, then the mapping fS : X → X defined by fS(x) =
inf Sx is a closure operation, where Sx = {t ∈ X | t ∈ S and x ≤ t}.

(iii) If f : X → X is a closure operation, then ff(X) = f holds.

(iv) If S is a closure system of X, then fS(X) = S holds.

In this paper the authors aim to study closure systems and closure operations
in Dedekind categories and to prove the above four statements (i), (ii), (iii) and (iv)
with relational methodology. In general it may be so heavy to implement set theory
or predicate logic on computers. However, in Bergharmmer and Neumann (2005), the
Dedekind categories are algebraically defined by a few conditions and so their imple-
mentation would be much easier. The setting and definitions are eventually simple
but the proofs of our main results (Theorem 4.4, 4.5 and 4.6) seem to be relatively
technical. Also we will glance at point axioms and membership relations to supply
spread around this subject. However the reader should remark that the statements
and the proofs of the main results are independent of the point axioms ,introduced by
Kawahara (2008), and membership relations introduced by Freyd and Scedrov (1990)
and Ishida, Honda and Kawahara (2008).

The paper organised as follows. In Section 2 we recall some fundamentals on
Dedekind categories which are our background. In Section 3 we mention three candidates
of the definition of closure systems in Dedekind categories. In Section 4 we demonstrate
the above statements (i), (ii), (iii) and (iv) in Dedekind categories.

2. Dedekind Categories

In this section we recall a notion of Dedekind categories, due to MacLane (1999)
and Olivier and Serrato (1980), which is an abstraction of the category of sets and binary
relations or the category of sets and fuzzy relations. Throughout this paper, a morphism
α from an object X into an object Y in a Dedekind category (defined below) will be
denoted by a half arrow α : X ⇁ Y , and the composition of a morphism α : X ⇁ Y
followed by a morphism β : Y ⇁ Z will be written as αβ : X ⇁ Z. Also we will denote
the identity morphism on X as idX .

Definition 2.1. A Dedekind category D is a category satisfying the following four
conditions:
DC1. [Complete Heyting Algebra] For all pairs of objects X and Y the hom-set D(X,Y )
consisting of all morphisms of X into Y is a complete Heyting algebra with the least
morphism 0XY and the greatest morphism ∇XY . Its algebraic structure will be denoted
by

D(X,Y ) = (D(X,Y ),v,t,u,⇒, 0XY ,∇XY ),

where v,t,u and ⇒ denote the inclusion order, the join, the meet and the relatively
pseudo-complement of morphisms, respectively.
DC2. [Converse] There is given a converse operation ] : D(X,Y ) → D(Y,X). That
is, for all morphisms α, α′ : X ⇁ Y and β : Y ⇁ Z, the converse laws hold: (a)
(αβ)] = β]α], (b) (α])] = α, (c) If α v α′, then α] v α′].
DC3. [Dedekind Formula] For all morphisms α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z
the Dedekind formula αβ u γ v α(β u α]γ) holds.
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DC4. [Residual Composition] For all morphisms α : X ⇁ Y and β : Y ⇁ Z the residual
composition α Ä β : X ⇁ Z is defined as a morphism such that γ v α Ä β if and only if
α]γ v β for all morphisms γ : X ⇁ Z. ¤

An object I of a Dedekind category is called a (strict) unit if 0II 6= idI = ∇II and
∇XI∇IX = ∇XX for all objects X. The unit I plays a rôle as substitute for a singleton
set.

In what follows, all statements are assumed to be those in a Dedekind category
with a unit I (unless otherwise stated) and the word relation is a synonym for morphism
in the Dedekind category.

A relation f : X ⇁ Y is called a function, denoted by f : X → Y , if it is univalent
(f ]f v idY ) and total (idX v ff ]). The universal relation ∇XI : X ⇁ I and the identity
relation idX : X ⇁ X are functions. Also it is trivial that ∇XI∇IY = ∇XY holds for
all objects X and Y . An I-point x of X, denoted by x ∈ X, is a function x : I → X.
For a relation ρ : I ⇁ X the notation x ∈ ρ will denote that x is an I-point of X with
x v ρ. The residual composition will be frequently used in the paper. For example, the
supremum sup(ρ, ξ) : V ⇁ X is defined by

sup(ρ, ξ) = (ρ Ä ξ) u [(ρ Ä ξ) Ä ξ]]

for a pair of relations ρ : V ⇁ X and ξ : X ⇁ X. Dually the infimum inf(ρ, ξ) is defined
by inf(ρ, ξ) = sup(ρ, ξ]).

The basic properties of Dedekind categories are listed in the following proposition.
For the proof refer to Appendix in Kawahara (2007).

Proposition 2.2. Let α, α′ : X ⇁ Y , β, β′ : Y ⇁ Z, γ : Z ⇁ U , δ : U → Z,
ρ : V ⇁ X and ξ : X ⇁ X relations. Then the following holds.

(a) If α v α′ and β v β′ then αβ v α′β′,

(b) If α v α′ and β v β′ then α′ Ä β v α Ä β′,

(c) α(tjβj) = tjαβj and (tjαj)β = tjαjβ,

(d) If α and δ are univalent then α(β u β′)δ] = αβδ] u αβ′δ],

(e) If α is total, α′ is univalent and α v α′ then α = α′,

(f) α Ä (β Ä γ) = αβ Ä γ and (α Ä β)γ v α Ä βγ,

(g) α v (α Ä β) Ä β],

(h) α Ä β = [(α Ä β) Ä β]] Ä β,

(i) If α is a function then α Ä β = αβ and α(β Ä γ) = αβ Ä γ,

(j) If β is a function then αβ Ä γ = α Ä βγ,

(k) If δ is a function then (α Ä β)δ] = α Ä βδ],
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(l) sup(ρ, ξ]) = sup(ρ Ä ξ], ξ),

(m) sup(ρ, ξ) v ρ Ä ξ v sup(ρ, ξ) Ä ξ,

(n) If ξξ v ξ and sup(ρ, ξ) is total then sup(ρ, ξ)ξ = ρ Ä ξ,

(o) If f : W → V is a function then f sup(ρ, ξ) = sup(fρ, ξ),

(p) If ξ u ξ] v idX then sup(ρ, ξ) is univalent. ¤

An endorelation ξ : X ⇁ X is called an order if it is reflexive (idX v ξ), transitive
(ξξ v ξ) and antisymmetric (ξ u ξ] v idX). Note that ξ is reflexive and transitive if and
only if ξ = ξ] Ä ξ.

3. Closure Systems

In this section we will study the basic feature for closure systems with respect to
orders in Dedekind categories. First of all we will introduce so-called point axioms:

(PA1) For all objects X the identity ∇IX = tx∈Xx holds.
(PA2) For all relations ρ : I ⇁ X the identity ρ = tx∈ρx holds.

The first point axiom (PA1) holds in the category RelL(Set) of sets and L-relations
as well as the category Rel(Set) of sets and binary relations. Of course the second point
axiom (PA2) comprises (PA1). A Dedekind category D is said to be representable if it
can be embedded in Rel(Set), namely there is a faithful relator from D into Rel(Set). In
a representable Dedekind category almost all statements valid in Rel(Set) hold. (PA2)
is so strong as to hold only in representable Dedekind categories. (PA2) fails even in
the Dedekind category of sets and fuzzy relations, because a lot of fuzzy relations from
a singleton set into a set have no expression as a sum of points which are basically crisp.

Extending the notions of membership predicate ∈ and power sets in set theory one
can define membership relations and power objects in Dedekind categories as follows:
For an object Y a relation 3Y : ℘(Y ) ⇁ Y is called a membership relation if for all
relations α : X ⇁ Y there is a unique function α@ : X → ℘(Y ) such that α = α@3Y .
Then the domain ℘(Y ) of 3Y is called the power object of Y . The relation ΞX =
3X Ä 3X

] : ℘(X) ⇁ ℘(X) is an abstraction of inclusion order (or containment) of
subsets. ΞX is clearly reflexive and transitive. Contrarily its antisymmetry need not
hold. But the paper will concern only the definition and the reflexivity of ΞX .

Proposition 3.1. Let 3X : ℘(X) ⇁ X be a membership relation and ρ, ν : I ⇁ X

relations. Then ρ v ν if and only if ρ@ v ν@Ξ]
X .

Proof. First note that ρ@ΞX
] = (3X Ä ρ])] always holds:

ρ@ΞX
] = ρ@(3X Ä 3X

])] { ΞX = 3X Ä 3X
] }

= (3X Ä 3X
]ρ@ ])] { ρ@ : function and 2.2 (k) }

= (3X Ä ρ])]. { ρ@3X = ρ }
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Assume ρ@ v ν@ΞX
]. Then it holds that

ρ = ρ@3X

v ν@ΞX
]3X

v ν@3Y { 3X
]ΞX v 3X

] }
= ν.

Conversely assume ρ v µ. Then we have

ρ@ v ρ@ΞX
] { id℘(X) v ΞX }

= (3X Ä ρ])]

v (3X Ä ν])] { ρ v ν and 2.2 (b) }
= ν@ΞX

].

¤

Intuitively a closure system is simply a subset C of a complete ordered set in which
the infimum for all subsets of C is in C. The following two propositions state three
candidates (that is, the statements (a), (b) and (c) in Proposition 3.3) for relational
definition of closure systems. The statement (a) may be a naive abstraction of closure
systems in Dedekind categories. Firstly we will show that the statements (a) and (b)
are equivalent under the assumption (PA1).

Proposition 3.2. Let ξ : X ⇁ X and ν : I ⇁ X be relations. Under the assump-
tion of the point axiom (PA1) the following two statements are equivalent.

(a) ρ v ν implies inf(ρ, ξ) v ν for all relations ρ : I ⇁ X.

(b) ∇IV µ v ν implies ∇IV inf(µ, ξ) v ν for all relations µ : V ⇁ X.

Proof. (b)→(a) (b) is a generalisation of (a). That is, setting V = I in (b) yields (a).
(a)→(b) Assume ∇IV µ v ν. Then for x ∈ V it holds that xµ v ∇IV µ v ν and so
inf(xµ, ξ) v ν by (a). Hence we have

∇IV inf(µ, ξ) = (tx∈V x) inf(µ, ξ) { (PA1) }
= tx∈V x inf(µ, ξ)
= tx∈V inf(xµ, ξ) { x : function and 2.2 (o) }
v ν. { inf(xµ, ξ) v ν }

¤

Applying the point axiom (PA2) and the membership relation the statement (a) is
equivalent to (c) in addition to (b).

Proposition 3.3. Let ξ : X ⇁ X and ν : I ⇁ X be relations. Under the assump-
tions of the point axiom (PA2) and the existence of membership relations the following
three statements are equivalent.

(a) ρ v ν implies inf(ρ, ξ) v ν for all relations ρ : I ⇁ X,

(b) ∇IV µ v ν implies ∇IV inf(µ, ξ) v ν for all relations µ : V ⇁ X,
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(c) ν@ΞX
] inf(3X , ξ) v ν.

Proof. In the last Proposition 3.2 we have already seen that (a) and (b) are equivalent
under (PA1).
(a)→(c) We will use the point axiom (PA2) here. Let s ∈ ν@ΞX

]. Then (s3X)@ =
s v ν@ΞX

] and so s3X v ν by Proposition 3.1. Hence we have inf(s3X , ξ) v ν by the
hypothesis (a) and

ν@ΞX
] inf(3X , ξ) = (ts∈ν@ΞX

]s) inf(3X , ξ) { (PA2) }
= ts∈ν@ΞX

]s inf(3X , ξ)
= ts∈ν@ΞX

] inf(s3X , ξ) { s : function and 2.2 (o) }
v ν, { inf(s3X , ξ) v ν }

which proves (c).
(c)→(b) Assume ∇IV µ v ν. (It is trivial that ∇IV µ v ν if and only if µ v ∇V Iν.)
Then µ v ∇V Iµ and so µ@ v (∇V Iν)@ΞX

] = ∇V Iν
@ΞX

] by Proposition 3.1. Hence we
have

inf(µ, ξ) = µ@ inf(3X , ξ) { µ = µ@3X }
v ∇V Iν

@ΞX
] inf(3X , ξ) { µ@ v ∇V Iν

@ΞX
] }

v ∇V Iν. { (c) }
This completes the proof. ¤

Remark that implications (b)→(a) and (c)→(b) in the last Proposition 3.3 have
been proved without point axioms. The statement (c) looks like a simple definition
of closure systems in Dedekind categories. However it is too strong, because when we
may adopt it as the definition of closure systems we encounter some difficulty to show
Theorem 4.4 below, one of main results in the paper. On the other hand the statement
(a) is so weak that the proof of Theorem 4.6 (b) fails. Originally category theory is
an algebraic system without elements and so we prefer to establish theory of closure
systems without the point axioms. Hence closure systems in Dedekind categories are
formally defined by using the statement (b) in 3.3. For more detailed discussion the
reader should refer Remark 1 and 2 after Theorem 4.4 and 4.6, respectively.

Definition 3.4. Let ξ : X ⇁ X be a relation. A relation ν : I ⇁ X is a closure
system (with respect to ξ) if ∇IV µ v ν implies ∇IV inf(µ, ξ) v ν for all relations
µ : V ⇁ X. ¤

In what follows the point axioms (PA1) and (PA2) as well as the completeness of
Heyting algebras in Definition 2.1 (DC1) will not formally assumed.

4. Closure Operations

In this section we will describe the definition of closure operations in Dedekind cat-
egories and demonstrate the equivalence between closure systems and closure operations
in a relational fashion. Usually closure operations are extensive, idempotent and mono-
tonic endofunctions. As the definition is quite transparent and universal, it is natural
to reach the following definition.

Definition 4.1. Let ξ : X ⇁ X be a relation. A function f : X → X is a closure
operation (with respect to ξ) if f v ξ, ff = f and ξ v fξf ]. ¤
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To discuss the equivalence of closure systems and closure operations we need that
involved infima are functions.

Definition 4.2. A relation ξ : X ⇁ X is called complete if sup(µ, ξ) : V ⇁ X is
total for all relations µ : V ⇁ X. ¤

A relation ξ is complete if and only if for all relations µ : V ⇁ X the infimum
inf(µ, ξ) : V ⇁ X is total. Recall inf(µ, ξ) = sup(µ Ä ξ], ξ).

The following proposition shows that the completeness of endorelations reflects the
ordinary completeness defined for all subsets of the universe of discourse.

Proposition 4.3. Let 3X : ℘(X) ⇁ X be a membership relation. A relation
ξ : X ⇁ X is complete if and only if sup(3X , ξ) is total.

Proof. It is trivial that the completeness of ξ implies the totality of sup(3X , ξ). Now
assume that sup(3X , ξ) is total. Then for all relations µ : V ⇁ X we have

sup(µ, ξ) = sup(µ@3X , ξ) { µ = µ@3X }
= µ@ sup(3X , ξ), { µ@ : function }

which proves that sup(µ, ξ) is total. ¤

As stated in the introduction the image of a closure operation induces a closure
system. This indicates the following theorem in the relational setting.

Theorem 4.4. Let ξ : X ⇁ X be a complete order. If f : X → X is a closure
operation, then the relation νf = ∇IXf : I ⇁ X is a closure system.

Proof. Assume µ v ∇V I∇IXf = ∇V Xf . To see inf(µ, ξ) v ∇V Xf it suffices to show
inf(µ, ξ) v inf(µ, ξ)f . First note that µ v ∇V Xf iff µ = µf ]f = µf . Then it holds that

inf(µ, ξ)f v (µ Ä ξ])f
v µ Ä ξ]f { 2.2 (f) }
v µ Ä fξ] { ξ] v fξ]f ] }
= µf Ä ξ] { 2.2 (j) }
= µ Ä ξ] { µf = µ }
= inf(µ, ξ)ξ], { ξ : complete and 2.2 (n) }

and so

inf(µ, ξ)f = inf(µ, ξ)f u inf(µ, ξ)ξ] { inf(µ, ξ)f v inf(µ, ξ)ξ] }
= inf(µ, ξ)(f u ξ]) { inf(µ, ξ) : function }
v inf(µ, ξ)(ξ u ξ]) { f v ξ }
= inf(µ, ξ). { ξ u ξ] v idX }

Since f and inf(µ, ξ) are functions, the identity inf(µ, ξ) = inf(µ, ξ)f holds by Proposi-
tion 2.2 (e). ¤
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Remark 1. Suppose that the statement (c) in Proposition 3.3 is used as the definition
of closure systems. Then an inclusion ν@

f ΞX
] inf(3X , ξ) v νf should be proved in the

last Theorem 4.4. If (νf )@ΞX
] v ∇I℘(X)(3Xf)@ holds, then we have

ν@
f ΞX

] inf(3X , ξ) v ∇I℘(X)(3Xf)@ inf(3X , ξ)
= ∇I℘(X) inf((3Xf)@3X , ξ)
= ∇I℘(X) inf(3Xf, ξ)

and the proof will be completed after showing inf(3Xf, ξ) v inf(3Xf, ξ)f by the same
proof in Theorem 4.4. The inclusion (νf )@ΞX

] v ∇I℘(X)(3Xf)@ is readily seen in
Rel(Set) to show the equivalence that µ v ∇V Xf iff µ v µf ]f by Dedekind formula
(DC3) in Definition 2.1. However it is difficult (Curtis and Lowe (1995)) to show it
without point wise discussion or point axioms. For we do not know how to internally
manipulate Dedekind formula in power objects.

The following informal observation suggests how to construct a closure operation
from a closure system:

inf{y ∈ ν | x ≤ y} = inf(xξ u ν, ξ)
= inf(xξ u x∇XIν, ξ) { x∇XI = idI }
= x inf(ξ u∇XIν, ξ).

Theorem 4.5. Let ξ : X ⇁ X be a complete order. For all relations ρ : I ⇁ X
the function fρ = inf(ξ u∇XIρ, ξ) : X → X is a closure operation.

Proof. Set ρ̂ = ξ u ∇XIρ for short. The antisymmetry and the completeness of ξ
guarantee that fρ is a function (Cf. Proposition 2.2 (p)). The inclusion fρ v ξ directly
follows from

fρ v (ρ̂ Ä ξ]) Ä ξ { fρ = inf(ρ̂, ξ) }
v (ξ Ä ξ]) Ä ξ { ρ̂ v ξ }
= ξ. { ξ : order }

Next we remark that the identities fρρ̂ = ξρ̂ = ρ̂ hold:

fρρ̂ v ξρ̂ v ρ̂ { fρ v ξ and ξξ v ξ }

and
ρ̂ v [(ρ̂ Ä ξ]) Ä ξ] u∇XIρ { 2.2 (g) }

v (fρ Ä ξ) u∇XIρ { fρ v ρ̂ Ä ξ] }
= fρξ u∇XIρ { fρ : function and 2.2 (i) }
v fρ(ξ u∇XIρ). { DF (DC3) }

Thus we have fρfρ = fρ from the following computation

fρfρ = fρ inf(ρ̂, ξ) { fρ = inf(ρ̂, ξ) }
= inf(fρρ̂, ξ) { fρ : function and 2.2 (o) }
= inf(ρ̂, ξ) { fρρ̂ = ρ̂ }
= fρ,
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and ξ v fρξf
]
ρ from

ξ]fρ v ξ](ρ̂ Ä ξ]) { fρ = inf(ρ̂, ξ) }
= ξ](ξρ̂ Ä ξ]) { ρ̂ = ξρ̂ }
v ρ̂ Ä ξ] { 2.2 (f) and α](α Ä β) v β }
= inf(ρ̂, ξ)ξ] { 2.2 (n) }
= fρξ

].

¤

Finally we show the equivalence of closure systems and closure operations in Dedekind
categories.

Theorem 4.6. Let ξ : X ⇁ X be a complete order.

(a) If f : X → X is a closure operation, then f = inf(ξ u∇XXf, ξ) = fνf
holds.

(b) If ν : I ⇁ X is a closure system, then ν = ∇IX inf(ξ u∇XIν, ξ) = νfν holds.

Proof. (a) Let f : X → X be a closure operation. First note that ξ u ∇XI∇IXf =
ξ u∇XXf = fξf = ξf follows from

ξ u∇XXf v (fξf ]f ] u∇XX)f { DF and ξ v fξf ] }
v fξf { ff = f and f ]f v idX }
v ξf { f v ξ }
v ξ u∇XXf. { ξξ v ξ }

Set g = inf(ξ u∇XXf, ξ). Then it holds that

g = inf(fξf, ξ) { ξf = fξf }
= f inf(ξf, ξ) { f : function and 2.2 (o) }
= fg
v fξ { g v ξ by 4.5 }

and
g v gξ] { idX v ξ }

= ξf Ä ξ] { g = inf(ξf, ξ) : function and 2.2 (n) }
v f Ä ξ] { idX v ξ }
= fξ]. { f : function }

Hence we have
g v fξ u fξ] = f(ξ u ξ]) v f,

which proves g = f , because g and f are functions.
(b) First of all we note that ν v ∇IXfν follows from

ν v ν(idX u∇XIν) { DF }
v ν(ξ u∇XIν u ξ]) { idX v ξ u ξ] }
= ν[ν̂ u (ξ Ä ξ])] { ξ] = ξ Ä ξ] }
v ν[ν̂ u (ν̂ Ä ξ])] { ν̂ v ξ }
v ν inf(ν̂, ξ) { 2.2 (g) }
= νfν .
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On the other hand
∇IXfν = ∇IX inf(ν̂, ξ) v ν

holds because ν is a closure system and ν̂ v ∇XIν. ¤

Remark 2. In the proof of Theorem 4.6 (b) the inclusion ∇IXfν v ν has been proved by
virtue of Definition 3.4 of closure systems applying the statement (b) in Proposition 3.3.
The first point axiom (PA1) might be needed to show the inclusion using the statement
(a). In the concrete case (iv) in Introduction the containment fS(X) ⊆ S for a closure
system S readily follows from fS(x) = inf Sx ∈ S obtained by the definition of (concrete)
closure systems.

5. Conclusion

In this paper authors have studied the definitions of closure systems and closure
operations in Dedekind categories. In particular we could prove the equivalence of closure
systems and closure operations in Dedekind categories without point axioms by selecting
a suitable definition of closure systems. This means that the equivalence also holds for
not only (usual) set theory but higher-order intuitionistic set theory, since a Dedekind
category with power objects may be regarded as the relation category of a topos. Also
we encountered one concrete inclusion (∇IXf)@ΞX

] v ∇I℘(X)(3Xf)@ with a so-called
traditional difficulty ,indicated by Curtis and Lowe (1995), to manipulate intermediate
variables in relational methods. The idea given in the paper proposes a possible way
to avoid such difficulties in relation algebras. The proof of the equivalence was rather
technical than an ordinary proof with set theory. However the relational proofs might
be similar to programs with functional languages and so will be useful in the future,
for example, to analyse some topological structure of algebraic systems such as Boolean
algebras in Dedekind categories by Kawahara (2008) .
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