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Abstract

R.Bellman left a lot of research problems in his work “Dynamic Programming”
(1957). Having received ideas from Bellman, S. Iwamoto has extracted, out of his
problems, a problem on nondeterministic dynamic programming (NDP). Instead
of stochastic dynamic programming which has been well studied, Iwamoto has
opened a gate to NDP. This report presents specific optimal solutions for NDPs on
continuous state and decision spaces.

Key Words and Phrases: nondeterministic, dynamic programming, controlled integral equation,

unbounded transition weight, continuous state and decision

1. Introduction

R.Bellman (1957) has proposed 373 Exercises and Research Problems in all. Some
of Research Problems are resolved. Some are still unsolved. Among unsolved ones, there
are a few interesting dynamic programming (DP) problems in Bellman (1957; pp.124–
125, pp.132–133). They are neither deterministic nor stochastic. Fujita et al. (2004)
and Iwamoto (2005) has called them nondeterministic. The nondeterministic implies
stochastic, and stochastic does deterministic. Both stochastic DP and deterministic DP
are widely applied in science, engineering, economics and others. However, nondeter-
ministic dynamic programming (NDP) is a new research problem (Iwamoto (2005)).
This paper treats a class of NDP problems on continuous space. Fujita et al. (2004)
have presented a finite discrete NDP model, Hisano (2003) has solved an optimal non-
deterministic stopping problems on finite state and decision spaces, and Hisano (2007)
has solved a stopping problem on tree, which is also viewed as a nondeterminstic DP.

In this paper we consider both finite- and infinite-stage DP problems with non-
deteministic transition law on one-dimensional state and decision spaces. The term
nondeterministic is used here in the following meaning. If a decision maker adopts a
decision u (0 < u < x) on state x (> 0), next state y (0 < y ≤ u) appears with a
transition weight p(y) = 1

y . The weight function p does not satisfy the total unit prop-
erty

∫ u

0
p(y)dy = 1. Since this function is divergent to ∞ as y approaches 0, it does∫ u

0
p(y)dy = ∞. Thus the weight function p(y) = 1

y is no more stochastic.
We discuss a three-stage NDP in Section 2, an n-stage NDP in Section 3 and an

infinite-stage NDP in Section 4. In a stationary model, an optimal policy is shown in the
class of stationary policies. In Section 5, we examine related problems with a discount
factor. In Section 6 we show that there is no appropriate weight other than p(y) = 1

y .
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2. Three-stage NDP

In this section we consider the following minimization problem:

Problem 1

Minimize c(u(x))m + d(x − u(x))m +
∫

C

mα[c(v(y))m + d(y − v(y))m]
y

dy

+
∫∫

D

(mα)2[c(w(z))m + d(z − w(z))m]
yz

dydz +
∫∫∫

E

(mα)3kam

yza
dydzda

subject to 0 < u(x) ≤ x, 0 < v(y) ≤ y, 0 < w(z) ≤ z, u, v, w : continuous

where m is a positive integer and the integral domains are

C = {y| 0 < y < u(x)} ⊂ (0, ∞)

D = {(y , z)| 0 < y < u(x), 0 < z < v(y)} ⊂ (0, ∞)2

E = {(y , z , α)| 0 < y < u(x), 0 < z < v(y) , 0 < α < w(z)} ⊂ (0, ∞)3.

We have recourse to the following lemmas to solve problems in this paper.

Lemma 2.1. Let m be a positive integer. Then the following two problems (P1) and
(P2) are essentially identical.

Minimize cu(x)m + d(x − u(x))m + mα

∫
C

kym

y
dy

(P1)
subject to 0 < u(x) ≤ x, u : continuous, where C = { y | 0 < y < u(x)}

Minimize cumxm + d(x − ux)m + mα

∫
C

kym

y
dy

(P2)
subject to 0 < u ≤ 1, where C = { y | 0 < y < ux}.

Proof. The objective of problem (P1) lies with finding the function u(x) and to
this end it suffices to show that u(x) can be indicated in the form of an linear expression
ux. We have

cu(x)m + d(x − u(x))m + mα

∫
C

kym

y
dy = (c + α k)u(x)m + d(x − u(x))m.

Since x is fixed, this problem means to minimize the function of m-th degree

(c + α k)tm + d(x − t)m

with respect to t. Differentiating (c + αk)tm + d(x − t)m with respect to t and setting
it zero, we get

t =
m−1
√

d
m−1
√

c + α k + m−1
√

d
x.
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Let us set

u =
m−1
√

d
m−1
√

c + α k + m−1
√

d
.

Then u(x) takes a linear form ux. ⊓⊔

Lemma 2.2. Let m be a positive integer. Then the following two problems (P3) and
(P4) are essentially identical.

Minimize cu(x)m + d(x − u(x))m + mα

∫
C

c(v(y))m + d(y − v(y))m

y
dy

(P3)
subject to 0 < u(x) ≤ x, u : continuous, where C = { y | 0 < y < u(x)}

Minimize cumxm + d(x − ux)m + mα

∫
C

cvmym + d(y − vy)m

y
dy

(P4)
subject to 0 < u ≤ 1, where C = { y | 0 < y < ux}.

Proof. We can prove Lemma 2.2 by the same way of thinking as Lemma 2.1. ⊓⊔

We solve all problems with the following plan using Lemma 2.1 and Lemma 2.2 every-
where:

1. Suppose that we have already selected u(x) and v(y), we decide w(z).

2. After that, we take the same procedure by backward induction of dynamic pro-
gramming.

2.1. The solution of Problem 1

First we have

(mα)2
∫∫

D

cw(z)m + d(z − w(z))m

yz
dy dz + (mα)3

∫∫∫
E

kam

yza
dy dz da

= (mα)2
∫ u(x)

0

[
1
y

∫ v(y)

0

{
cw(z)m + d(z − w(z))m

z
+

kαw(z)m

z

}
dz

]
dy.

Consider ∫ v(y)

0

{
cw(z)m + d(z − w(z))m

z
+

kαw(z)m

z

}
dz.

Here, the integral function is calculated as follows:

cw(z)m + d(z − w(z))m

z
+

kαw(z)m

z
=

(c + kα)w(z)m + d(z − w(z))m

z
.

By Lemma 2.1 we can consider the last term as

{(c + kα)wm + d(1 − w)m}zm−1,
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and the minimum point is

ŵ =
m−1
√

d
m−1
√

c + α k + m−1
√

d
.

Second we have

c(u(x))m + d(x − u(x))m +
∫

C

mα[c(v(y))m + d(y − v(y))m]
y

dy

+
∫∫

D

(mα)2[c(w(z))m + d(z − w(z))m]
yz

dydz +
∫∫∫

E

(mα)3kam

yza
dydzda

= c(u(x))m + d(x − u(x))m +
∫

C

mα[c(v(y))m + d(y − v(y))m]
y

dy

+(mα)2
∫ u(x)

0

[
1
y

∫ v(y)

0

{
cw(z)m + d(z − w(z))m

z
+

kαw(z)m

z

}
dz

]
dy

≥ c(u(x))m + d(x − u(x))m +
∫

C

mα[c(v(y))m + d(y − v(y))m]
y

dy

+(mα)2
∫ u(x)

0

[
1
y

∫ v(y)

0

{
(c + kα)ŵmzm + d(1 − ŵ)mzm)

z

}
dz

]
dy

= c(u(x))m + d(x − u(x))m

+(mα)
∫ u(x)

0

{cvm + d(1 − v)m + α{(c + kα)ŵm + d(1 − ŵ)m}vm}ym−1dy (1)

Set

k1 = {(c + kα)ŵm + d(1 − ŵ)m},

and we have

(1) = c(u(x))m + d(x − u(x))m + (mα)
∫ u(x)

0

{cvm + d(1 − v)m + k1αvm}ym−1dy. (2)

Set

v̂ =
m−1
√

d
m−1
√

c + α k1 + m−1
√

d
,

and we come to

(2) ≥ c(u(x))m + d(x − u(x))m + (mα)
∫ u(x)

0

{cv̂m + d(1 − v̂)m + k1αv̂m}ym−1dy

= c(u(x))m + d(x − u(x))m + α{cv̂m + d(1 − v̂)m + k1αv̂m}u(x)mdy

= {cum + d(1 − u)m + α{(c + k1α)v̂m + d(1 − v̂)m}um}xm. (3)
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Set

k2 = (c + k1α)v̂m + d(1 − v̂)m,

and we have finally come to

(3) = {cum + d(1 − u)m + αk2u
m}xm.

It is clear that

u = û =
m−1
√

d
m−1
√

c + α k2 + m−1
√

d

minimizes this term. Consequently we can find constants ŵ,v̂ and û using backward
induction. This completes the proof of Problem 1. ⊓⊔

From now on we only consider the case m=2 for the sake of simplicity.

3. An n-stage NDP

Let us expand the three-stage NDP immediately to an n-stage NDP, the formulation
of which gives the following problem:

Problem 3-1

Minimize c(u0x0)2 + d(x0 − u0x0)2

+ 2α

∫
D1

c(u1x1)2 + d(x1 − u1x1)2

x1
dx1

+ (2α)2
∫∫

D2

c(u2x2)2 + d(x2 − u2x2)2

x1x2
dx1 dx2

+ · · ·

+ (2α)n

∫∫∫
· · ·

∫
Dn

c(unxn)2 + d(xn − unxn)2

x1x2 · · ·xn
dx1 dx2 · · · dxn

subject to 0 < u0, u1, · · · , un ≤ 1

where the integral domains are

D1 = {x1|0 < x1 < u0x0} ⊂ (0, ∞)

D2 = {(x1 , x2)|0 < x1 < u0x0, 0 < x1 < u1x1} ⊂ (0, ∞)2
...

Dn = {(x1 , x2, · · · , xn)|0 < x1 < u0x0, · · · , 0 < xn < unxn} ⊂ (0, ∞)n.
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This problem is solved as follows. The objective function takes the following form:

c(u0x0)2 + d(x0 − u0x0)2 + 2α

∫ u0x0

0

[
c(u1x1)2 + d(x1 − u1x1)2

x1

+
2α

x1
{
∫ u1x1

0

c(u2x2)2 + d(x2 − u2x2)2

x2
+

2α

x2
{
∫ u2x2

0

c(u3x3)2 + d(x3 − u3x3)2

x3

+ · · ·

+
2α

xn−2

∫ un−2xn−2

0

{c(un−1xn−1)2 + d(xn−1 − un−1xn−1)2

xn−1

+
2α

xn−1

∫ un−1xn−1

0

kx2
n

xn
dxn}dxn−1 · · · }dx3}dx2

]
dx1.

Calculating the integrals backward from

∫ un−1xn−1

0

kx2
n

xn
dxn,

we have

x2
0

[
c(u0)2 + d(1 − u0)2 + α u2

0{c(u1)2 + d(1 − u1)2

+ α u2
1{c(u2)2 + d(1 − u2)2 + αu2

2{c(u3)2 + · · ·
+ α u2

n−2{c u2
n−1 + d(1 − un−1)2 + kα u2

n−1}
]
.

Consequently, calculating k1, k2, · · · , kn−1, kn in the similar manner as 3-stage NDP, we
set the minimum point to kn and the minima to

ûi =
d

c + d + αkn−1
(1 ≤ i ≤ n)

where k0 = k. Thus we have solved the problem of minimization of n + 1 functions.

4. Infinite-stage NDP

In this section, we take up a problem of minimization P (x0) of countably infinite
functions

u0 = u0(x0), u1 = u1(x1), · · · , un = un(xn), · · ·
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Problem 4-1

Minimize c(u0x0)2 + d(x0 − u0x0)2

+2α

∫
D1

c(u1x1)2 + d(x1 − u1x1)2

x1
dx1

+(2α)2
∫ ∫

D2

c(u2x2)2 + d(x2 − u2x2)2

x1x2
dx1 dx2

+ · · ·

+(2α)n

∫∫∫
· · ·

∫
Dn

c(unxn)2 + d(xn − unxn)2

x1x2 · · ·xn
dx1 dx2 · · · dxn

+ · · ·

subject to 0 < u0, u1, · · · , un, · · · ≤ 1

where the integral domains are

D1 = {x1|0 < x1 < u0x0} ⊂ (0, ∞)
D2 = {(x1 , x2)|0 < x1 < u0x0, 0 < x1 < u1x1} ⊂ (0, ∞)2

...
Dn = {(x1 , x2, · · · , xn)|0 < x1 < u0x0, 0 < x1 < u1x1,

· · · , 0 < xn < unxn−1} ⊂ (0, ∞)n

...

In this situation we call this series of minimal functions optimal policy and x0 the
initial state. When we consider the minima

J(x0) = J(x0; c, d, α)

to be a function of the initial state x0, we call J a minimum value function, an optimal
function or a value function. The dynamics of this infinite stage decision-making is
non-deterministic in the following sense.

When we choose the decision un(∈ (0, xn]) in a state xn(∈ (0,∞)) at time n, it
does not necessarily transit to a state xn+1 determined uniquely by the state xn and the
decision un at time n + 1, but does to any state xn+1 in the half open interval (0, un]
with the weight

β(xn, un, xn+1) =
2α

xn+1
(> 0).

Then, the total of the possible transition weights is indicated by∫ un

0

β(xn, un, xn+1)dxn+1 = 2α

∫ un

0

dxn+1

xn+1
.

This value is never finite and divergent to ∞. Therefore, this transit rule is not stochastic.
Under the stochastic transition rule, the summation of the probability of transiting to
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possible next states is finite and becomes one with appropriate normalization. In three
transition rulees the following inclusive relation holds:

deterministic ⊂ stochastic ⊂ non deterministic

In this paper, non-deterministic transition means a transit to one state or more with
appropriate nonnegative weight(s). A transition law where the total of weights is 1
is called stochastic. And the transition weight is called a transition probability. A
transition law where the total of weights is not finite is called non-deterministic.

An n-th decision function prescribes the way to select a decision at time n. This
function is indicated as

fn : (0,∞) → (0,∞)

which satisfies

0 < fn(x) ≤ x for any x ∈ (0,∞).

We call a series of decision functions

π = {f0, f1, · · · , fn, · · · }

a policy or Markov policy. We indicate the whole policies as Π and call Markov policy
class or policy class in short.

Suppose now that a decision maker adopts a policy

π = {f0, f1, · · · , fn, · · · }(∈ Π).

Then, on state of xn ∈ (0,∞) at time n the decision

un = f(xn)(∈ (0, xn])

is selected by n-th decision function fn. This decision incurs a quadratic cost

rn = rn(xn, un) = cu2
n + d(xn − un)2.

However, this cost is evaluated by the product

β0β1 · · ·βn−1rn =
(2α)n[cu2

n + d(xn − un)2]
x1x2 · · ·xn

of the weight related to the path (x0, u0, x1, u1, xn−1, un−1, xn) from the initial state x0

to xn

β0β1 · · ·βn−1 =
2α

x1

2α

x2
· · · 2α

xn
=

(2α)n

x1x2 · · ·xn
(βm = β(xm, um, xm+1)).

The summation of the value over the whole possible paths is indicated as n-th iterated
integral:

Wx0 [rn] =
∫∫

· · ·
∫

R

β0β1 · · ·βn−1rn dx1dx2 · · · dxn

=
∫∫

· · ·
∫

R

(2α)n
[
cu2

n + d(xn − un)2
]

x1x2 · · ·xn
dx1dx2 · · · dxn
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where the integral domain is determined by a series of decision functions f0, f1, · · · , fn−1

as follows：

R = {(x1, x2, · · · , xn)|0 < x1 < u0, 0 < x2 < u1, · · · , 0 < xn < un−1} ⊂ (0,∞)n.

Here um = fm(xm) m = 0, 1, · · · , n − 1. Especially when n = 0,

Wx0 [r0] = cu2
0 + d(x0 − u0)2.

The total summation of m-th iterated integral for all m = 0, 1, · · · , n, · · ·

J(x0; π) = Wx0 [r0] + Wx0 [r1] + · · · + Wx0 [rn] + · · ·

is a function of the initial state x0 and policy π. This is called the total weighted cost
from the initial state x0 with the policy π. An optimization problem is to select a
policy which minimizes the total weighted cost for given initial state. The problem is
represented as the following minimization problem:

P (x0) minimize J(x0; π) subject to π ∈ Π

As is well-known in DP theory, the minimun value function

v(x) = J(x; π̂) : (0,∞) → R1

satisfies the following Bellman equation (4), where π̂ is an optimal policy. In stead of
solving P (x0), we solve the following equivalent problem.

Problem 4-2 [Controlled integral equation（Iwamoto)]

Let c > 0, d > 0 and 0 < α < 1 be constant. Find a pair of a function v(x) and the
minimal function u(x), which satisfy the controlled integral equation

v(x) = min
0<u<x

[
cu2 + d(x − u)2 +

∫ u

0

2αv(y)
y

dy

]
x > 0. (4)

We solve this problem for case c = d = α = 1 using the method of successive
approximation.
Let us solve the iterated equation

vn+1(x) = min
0<u<x

[
cu2 + d(x − u)2 +

∫ u

0

2αvn(y)
y

dy

]
v0(x) = 0.

First we have

v1(x) = min
0≤u≤x

[
u2 + (x − u)2

]
= 2

(x

2

)2

=
x2

2

v2(x) = min
0≤u≤x

[
u2 + (x − u)2 + 2

∫ u

0

y

2
dy

]
= min

0≤u≤x

[
3u2

2
+ (x − u)2

]
=

3
5
x2

v3(x) = min
0≤u≤x

[
u2 + (x − u)2 + 2

∫ u

0

3y

5
dy

]
= min

0≤u≤x

[
8u2

5
+ (x − u)2

]
=

8
13

x2.



10 H. Hisano

Second

vn+1(x) = vn+1x
2 = min

0≤u≤x

[
u2 + (x − u)2 + 2

∫ u

0

vnydy

]
=

vn + 1
vn + 2

x2

yields

vn+1 =
vn + 1
vn + 2

, un+1 =
1

vn + 2
.

Finally setting
lim

n→∞
vn = α,

we have
α =

α + 1
α + 2

.

This implies

α =
−1 +

√
5

2
= v ( α > 0 ).

Moreover we have

lim
n→∞

un =
1

lim
n→∞

vn + 2
=

3 −
√

5
2

= u ; 0.38196.

In this manner we can solve the original control integral equation by the method of
successive approximation. As v(x) is a solution of the original control integral equation,
we come to the the following theorem:

Theorem 4.1. The quadratic function v(x) = vx2 (v = −1+
√

5
2 ) is a solution of

the equation:

(⋆) v(x) = min
0≤u≤x

[
u2 + (x − u)2 + 2

∫ u

0

v(y)
y

dy

]
x ≥ 0.

Proof
When v(x) = vx2, we get

2
∫ u

0

v(y)
y

dy =
1 +

√
5

2
u2 + (x − u)2.

Differentiating this equation in regard to u and setting the derivative to zero, we have

u =
3 −

√
5

2
x.

Therefore,

min
0≤u≤x

[
u2 + (x − u)2 + 2

∫ u

0

v(y)
y

dy

]
=

−1 +
√

5
2

x2.
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The last term is equal to v(x), and the minimal function is

û(x) =
3 −

√
5

2
x.

v ; 0.61803.

The following theorem is also valid:

Theorem 4.2. The control integral equation in Problem 4-1 is equivalent to the
following problem:

min
0≤u<1

[
u2 + (1 − u)2

1 − u2

]
.

Proof. From Problem 4.1,

(ux0)2 + (x0 − ux0)2 + 2
∫

D1

(ux1)2 + (x1 − ux1)2

x1
dx1

+22

∫∫
D2

(ux2)2 + (x2 − ux2)2

x1x2
dx1 dx2 + 23

∫∫∫
D3

(ux3)2 + (x3 − ux3)2

x1x2x3
dx1 dx2 dx3

+ · · · + 2n

∫∫∫
· · ·

∫
Dn

(uxn)2 + (xn − uxn)2

x1x2x3 · · ·xn
dx1 dx2 dx3 · · · dxn + · · ·

= {u2 + (1 − u)2}x2
0 + {u2 + (1 − u)2}(ux0)2 + {u2 + (1 − u)2}(u2x0)2 + · · ·

= {u2 + (1 − u)2}x2
0

∞∑
i=0

u2i =
u2 + (1 − u)2

1 − u2
x2

0. ⊓⊔

Solution

d

du

[
u2 + (1 − u)2

1 − u2

]
=

−2u2 + 6u − 2
(1 − u2)2

.

Setting the numerator to zero, we have

u =
3 −

√
5

2
(0 < u < 1).

5. NDP with discount factor

We can extend the problem considered in Section 4 further with introduction of
discount factor β.

Problem 5-1

v(x) = max
0≤u≤x

[
us + (x − u)s + sβ

∫ u

0

v(y)
y

dy

]
x ≥ 0, 0 < s < 1.
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To solve this, we use the method of successive approximation.
Define the function vn+1(x) to be

vn+1(x) = max
0≤u≤x

[
us + (x − u)s + sβ

∫ u

0

vn(y)
y

dy

]
v0(x) = 0.

First

v1(x) = max
0≤u≤x

[us + (x − u)s] =
(x

2

)s

+
(x

2

)s

= 21−sxs.

Then setting vn(x) = vnxs, we have

vn+1x
s = max

0≤u≤x

[
us + (x − u)s + sβ

∫ u

0

vnys

y
dy

]
= max

0≤u≤x
[(βvn + 1)us + (x − u)s] .

Differentiating f(u) ≡ (βvn + 1)us + (x − u)s in regard to u and setting the derivative
to zero, we get

u =
1

(βvn + 1)
1

s−1 + 1
x.

When we set lim
n→∞

vn = v, lim
n→∞

un = u, we have

v =
(βv + 1)(

(βv + 1)
1

s−1 + 1
)s−1 ,

(
(βv + 1)

1
s−1 + 1

)s−1

=
βv + 1

v
.

Now we set f(v) =
(
(βv + 1)

1
s−1 + 1

)s−1

− βv+1
v and t = (βv + 1)

1
s−1 .

g(t) = (t + 1)s−1 − ts−1

(ts−1−1)
β

= (t + 1)s−1 − βts−1

(ts−1 − 1)
.

Then

g′(t) = (s − 1)
{

(t + 1)s−2 +
βts−2

(ts−1 − 1)2

}
< 0.

Since g(t) is a decreasing function and

g(0) = 1, lim
t→1−0

g(t) = −∞,

there exists only one t which satisfies g(t) = 0 in 0 < t < 1. As t = (βv +1)
1

s−1 , we have

v =
ts−1 − 1

β
.
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6. Consideration on weight function

So far we have only considered

1
z

as a weight function. We wonder if there are other weight functions that are suitable
for recursive equations. We should consider the necessary and sufficient conditions for∫ u

0

f(y)
g(y)

dy

to be represented in the form of f(u). Since it is sufficient that∫ x

0

f(y)
g(y)

dy = kf(x),

we differentiate the both sides of the equation to get

f(x)
g(x)

= kf ′(x).

When

f(x) ̸= 0,

we have

f ′(x)
f(x)

=
1

kg(x)
.

Now let’s consider separately the cases depending on the type of g(x). In this section
C1, C2, C3 and C4 are constants.

(1) g(x) = c(constant)

{log f(x)}′ = C1 log f(x) = C1x + C2 f(x) = C3e
C1x.

(2) g(x) = x

{log f(x)}′ =
C1

x
log f(x) = C1 log x + C2 f(x) = C3x

C1 .

(3) g(x) = xα

{log f(x)}′ =
C1

xα
α ̸= 1 → log f(x) = C1x

−α+1 + C2 f(x) = C3e
C1x−α+1

.

(4) g(x) = ex

{log f(x)}′ = C1e
−x log f(x) = −C1e

−x + C2 f(x) = C3e
C4e−x

.
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(5) g(x) = x log x

{log f(x)}′ =
C1

x log x
log f(x) = C1 log(log x) + C2 f(x) = C3(log x)C4 .

(6) g(x) = tanx

{log f(x)}′ = C1 cot x log f(x) = C1 log(sinx) + C2 f(x) = C3(sinx)C4 .

(7) g(x) = cot x

{log f(x)}′ = C1 tanx log f(x) = −C1 log(cos x) + C2 f(x) = C3(cos x)C4 .

Among these cases, the weight becomes ∞ at x = 0 only in cases (2), (3) and (6). We
examine the case (6).
When g(x) = tanx, f(x) = sin x.

v(x) = min
0≤u≤x

[
sinu + sin(x − u) +

∫ u

0

sin y

tan y
dy

]
x ≥ 0.

We apply the method of successive approximation to solve this. Define the function
vn+1(x) to be

vn+1(x) = min
0≤u≤x

[
sinu + sin(x − u) +

∫ u

0

vn(y)
tan y

dy

]
x ≥ 0.

v1(x) = min
0≤u≤x

[sinu + sin(x − u)] = sin
x

2
+ sin

x

2
= 2 sin

x

2
.

As above trigonometric functions are not suitable because the form of the functions
changes after calculation. We examine the case(3).

When g(x) = xα (α ̸= 1), f(x) = C3e
C1x−α+1

.

If we set f(x) = e−x−α+1
then

v(x) = max
0≤u≤x

[
e−u−α+1

+ e−(x−u)−α+1
+

∫ u

0

v(y)
yα

dy

]
x ≥ 0.

It is clear that exponential functions are not suitable. From the above examination, we
should conclude that there is no weight function other than

g(x) =
1
x

.
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