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Abstract

We give a simple idea for verifying the Restricted Isometry Property(Candès [3]).
Although our approach is based on the Candès proofs, the proposed results are more
flexible and meaningful than those of Candès. In this note, we establish our new
results about the accuracy of the reconstruction from undersampled measurements
which are possible to improve estimation depending on the situation.
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1 Introduction

We suppose that we observe

y = Ax, x ∈ Rn, (1)

where A is a m × n matrix. Our goal is to reconstract x ∈ Rn with good accuracy. We

are interested in m < n case. It occurs the problem is of course ill-posed, but we know an

important results when we suppose x is known to be sparse or nearly sparse and A obeys

restricted isometry property(RIP) introduced below. Then we can reconstract x ∈ Rn

with good accuracy. In detail, this premise changes the problem, making the search for

solutions feasible. In fact, we show that the solution x? to the following optimization

problem

min
x̃∈Rn

‖ x̃ ‖1 subject to y = Ax̃ (2)
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recovers x exactly, where ‖ · ‖1 is l1-norm. Furthermore, we extend the results for noiseless

recovery to the case of noisy recovery. We observe

y = Ax + z, (3)

where z is an unknown noise term. In this context, we consider reconstructing x as the

solution x? to the optimization problem

min
x̃∈Rn

‖ x̃ ‖1 subject to ‖ y − Ax̃ ‖2≤ ε, (4)

where ε is an upper bounded on the size of the noisy contribution and ‖ · ‖2 is l2-norm.

Definition 1.1. A matrix A satisfies the Restricted Isometry Property(RIP) of order s

if there exists a constant δ with 0 < δ < 1 such that

(1 − δ) ‖ a ‖2
2≤‖ Aa ‖2

2≤ (1 + δ) ‖ a ‖2
2 (5)

for all s-sparse vectors a. A vector is said to be s-sparse if it has at most s nonzero

entries. The minimum of above constants δ is said to be the isometry constant of A and

it is denoted by δs.

The condition (5) is equivalent to requiring that the matrix AT
SAS has all of its eigenvalues

in [1 − δs, 1 + δs], where AS is the m × |S| matrix composed of these columns for any

subset S of {1, 2, · · · , n}.

It is well-known in[1, 2, 4, 5] that RIP is very useful to study the general robustness

of CS. In particular, Candès [3] has obtained the following results:

Theorem 1.1 (Noiseless recovery). Assume that δ2s <
√

2 − 1. Then the solution x? to

(2) obeys

‖ x? − x ‖1≤ C0 ‖ x − xs ‖1 (6)

and

‖ x? − x ‖2≤ C0
1√
s
‖ x − xs ‖1 (7)

for some constant C0 given explicitly, where xs is the vector x with all but the largest s

components set to zero. In particular, if x is s-sparse, the recovery is exact.

2



Theorem 1.2 (Noisy recovery). Assume that δ2s <
√

2 − 1 and ‖ z ‖2≤ ε. Then the

solution x? to (4) obeys

‖ x? − x ‖2≤ C0
1√
s
‖ x − xs ‖1 +C1ε (8)

where C0, C1 are explicitly given constants.

We shall roughly state the Candès idea. Let {ek}k=1,2,··· ,n be the basic vectors in

Rn. Let a =
∑n

k=1 akek ∈ Rn and T ⊂ {1, 2, · · · , n}. We put aT =
∑n

k=1 aT
k ek, where

aT
k = ak if k ∈ T and ak = 0 if otherwise. Candès obtained the above results by taking

first the location T0 of the s-largest coefficients of x, next the location T1 ⊂ T c
0 of the

s-largest coefficients of h ≡ x − x? and repeating this method, and by investigating

hT0∪T1 and h(T0∪T1)c . In this paper we shall improve the Candès results (Theorem 1.1 and

Theorem 1.2) by taking the numbers s′ that are different from s of above T1, T2, · · · . By

the difference of using the RIP, we have two main results:

Let s, s′ ∈ N with s < n and s′ < n − s. We put

α =
2
√

1 + δs+s′

1 − δs+s′
and ρ =


√

2δs+s′

1−δs+s′
, s′ ≤ s

√
2δ2s′

1−δs+s′
, s′ ≥ s

Suppose that max (δs+s′ , δ2s′) < 1

1+
√

2s
s′

. Then, since δs+s′ ≥ δ2s′ if s′ ≤ s and δs+s′ ≤ δ2s′

if s′ ≥ s, we have ρ < 1. Under this preparation the following main theorems hold:

Theorem 1.3. Assume that A satisfies the RIP of order max (s + s′, 2s′) and

1

1 +
√

2s
s′

> max (δs+s′ , δ2s′) =

{
δs+s′ , s′ ≤ s
δ2s′ , s′ ≥ s

(9)

and put

C0 =


(

1+ρ
1−ρ

)√
s
s′

, s′ ≤ s(
1+ρ
1−ρ

)√
s′

s
, s′ ≥ s

(10)

and

C1 =

{
α

1−ρ
2
√

s , s′ ≤ s
α

1−ρ
2
√

s′ , s′ ≥ s
(11)

Then the following hold:

Noiseless recovery. The solution x? to (2) obeys

‖ x? − x ‖1≤ C0 ‖ x − xs ‖1 (12)
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and

‖ x? − x ‖2≤
2√
s
C0 ‖ x − xs ‖1 (13)

In particular, if x is s-sparse, the recovery is exact.

Noisy recovery. The solution x? to (4) obeys

‖ x? − x ‖1≤ C0 ‖ x − xs ‖1 +C1ε (14)

and

‖ x? − x ‖2≤
2√
s
C0 ‖ x − xs ‖1 +

1√
s′

C1ε (15)

Theorem 1.4. Assume that A satisfies the RIP of order (s + 2s′) and

δs+s′ +

√
s

s′
δs+2s′ < 1 (16)

and put

γ =
δs+2s′

1 − δs+s′
,

D0 =


(

1+γ
1−γ

)√
s
s′

, s′ ≤ s(
1+γ
1−γ

)√
s′

s
, s′ ≥ s

, D1 =

{
α

1−γ
2
√

s , s′ ≤ s
α

1−γ
2
√

s′ , s′ ≥ s
(17)

Then the following hold:

Noiseless recovery. The solution x? to (2) obeys

‖ x? − x ‖1≤ D0 ‖ x − xs ‖1 (18)

and

‖ x? − x ‖2≤
2√
s
D0 ‖ x − xs ‖1 (19)

Noisy recovery. The solution x? to (4) obeys

‖ x? − x ‖1≤ D0 ‖ x − xs ‖1 +D1ε (20)

and

‖ x? − x ‖2≤
2√
s
D0 ‖ x − xs ‖1 +

1√
s′

D1ε (21)
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The RIP requires bounded condition number for all submatrices built by selecting s

arbitrary columns and the spectral norm of a matrix is not generally easy to commute.

Hence, it is meaningful to improve the assumption: δ2s <
√

2 − 1 of Theorem 1.1 and

Theorem 1.2. In Section 3, we shall show that our results are more flexible than those of

Candès by taking some appropriate numbers s′.

2 Proofs

In this section we prove Theorem 1.3 and Theorem 1.4. The proofs are based on those of

Theorem 1.1 and Theorem 1.2 in [3].

Proof of Theorem 1.3. It suffices to show the case of noisy recovery. By Lemma 2.1 in

[3] we have

|〈Aa, Ab〉| ≤ δs+s′ ‖ a ‖2‖ b ‖2 (22)

for all a, b ∈ Rn supported on disjoint subsets T, T ′ ⊂ {1, 2, · · · , n} with |T | ≤ s and

|T ′| ≤ s′.

We put

h = x? − x (23)

By the linearity ofA and the triangle equality we have

‖ Ah ‖2≤ 2ε (24)

For the simplity we use the following symbol: For ∀a ∈ Rn and T ⊂ {1, 2, · · · , n} we put

aT =

 aT
1
...

aT
n

 , aT
i =

{
ai , i ∈ T
0 , i ∈ T c

Let T0 be the location of the s-largest coefficients of x. Then, xT0 = xs and for ∀k ∈ T0

we have ∣∣xT0
k

∣∣ ≥ |xj| , ∀j ≥ s + 1 (25)

Let T1 be the location of s′-largest coefficients of hT c
0
. Then,∣∣hT1

k

∣∣ ≥ |hi| , ∀k ∈ T1,
∀i ∈ (T0 ∪ T1)

c (26)
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Repeating this method, we get vectors hTj
(j ≥ 2) satisfying the conditions∣∣∣hTj

k

∣∣∣ ≥ |hi|, ∀k ∈ Tj,
∀i ∈ (T0 ∪ T1 ∪ · · · ∪ Tj)

c (27)

Let {1, 2, · · · , n} = T0 ∪ T1 ∪ · · · ∪ Tr−1 ∪ Tr, |Tr| ≤ s′. Let 2 ≤∀ j ≤ r − 1. Clearly,

‖ hTj
‖2=

(
s′∑

k=1

∣∣∣hTj

k

∣∣∣2)
1
2

≤
√

s′ ‖ hTj
‖∞≡

√
s′ max

k∈Tj

∣∣∣hTj

k

∣∣∣ (28)

and it follows from (26) and (28) that

‖ hTj−1
‖1=

s′∑
k=1

∣∣∣hTj−1

k

∣∣∣ ≥ s′ ‖ hTj
‖∞, (29)

which implies that

‖ hTj
‖2≤

1√
s′

‖ hTj−1
‖1, 2 ≤∀ j ≤ r − 1 (30)

Furthermore, it follows that

‖ hTr−1 ‖1=
s′∑

k=1

|hTr−1

k | ≥ s′ ‖ hTr ‖∞

and

‖ hTr ‖2 ≤
√

|Tr| ‖ hTr ‖∞

≤
√

s′ ‖ hTr ‖∞

≤ 1√
s′

‖ hTr−1 ‖1 (31)

By (30) and (31) we have

‖ hTj
‖2≤

1√
s′

‖ hTj−1
‖1, 2 ≤ j ≤ r (32)

We next show

‖ h(T0∪T1)c ‖2≤
1√
s′

‖ hT c
0
‖1 (33)
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Indeed, this follows from (32) that

‖ h(T0∪T1)c ‖2 = ‖
∑
j≥2

hTj
‖2

≤
∑
j≥2

‖ hTj
‖2

≤ 1√
s′

∑
j≥1

‖ hTj
‖1

=
1√
s′

‖
∑
j≥1

hTj
‖1

=
1√
s′

‖ hT c
0
‖1 (34)

Since

‖ x ‖1 ≥ ‖ x? ‖1

= ‖ x + h ‖1

= ‖ xT0 + hT0 + xT c
0

+ hT c
0
‖1

= ‖ xT0 + hT0 ‖1 + ‖ xT c
0

+ hT c
0
‖1

≥ ‖ xT0 ‖1 − ‖ hT0 ‖1 + ‖ hT c
0
‖1 − ‖ xT c

0
‖1,

it follows that

‖ hT c
0
‖1 ≤ ‖ x ‖1 − ‖ xT0 ‖1 + ‖ xT c

0
‖1 + ‖ hT0 ‖1

= ‖ xT c
0
‖1 + ‖ xT c

0
‖1 + ‖ hT0 ‖1

= 2 ‖ xT c
0
‖1 + ‖ hT0 ‖1

= 2 ‖ x − xs ‖1 + ‖ hT0 ‖1, (35)

which implies by (28) that

‖ h(T0∪T1)c ‖2 ≤ 1√
s′

‖ hT c
0
‖1

≤ 1√
s′

(‖ hT0 ‖1 +2 ‖ x − xs ‖1)

≤
√

s

s′
‖ hT0 ‖2 +

2√
s′

‖ x − xs ‖1 (by Schwartz inequality)

≤
√

s

s′
‖ hT0∪T1

‖2 +
2√
s′

‖ x − xs ‖1 (36)
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Suppose that s′ ≤ s. Then we have δ2s′ ≤ δs+s′ by the definition of restricted isometry

constants. Hence it follows from (22) that for ∀j ≥ 2∣∣〈AhT0∪T1 , AhTj
〉
∣∣ ≤

∣∣〈AhT0 , AhTj
〉
∣∣+ ∣∣〈AhT1 , AhTj

〉
∣∣

≤ δs+s′ ‖ hT0 ‖2‖ hTj
‖2 +δ2s′ ‖ hT1 ‖2‖ hTj

‖2

≤ δs+s′ ‖ hTj
‖2 (‖ hT0 ‖2 + ‖ hT1 ‖2)

≤ δs+s′ ‖ hTj
‖2

√
2
(
‖ hT0 ‖2

2 + ‖ hT1 ‖2
2

) 1
2 by hT0 ⊥ hT1

=
√

2δs+s′ ‖ hTj
‖2‖ hT0 + hT1 ‖2

=
√

2δs+s′ ‖ hTj
‖2‖ hT0∪T1 ‖2,

which implies by (24) and (32) that

‖ AhT0∪T1 ‖2
2 = 〈AhT0∪T1 , Ah −

∑
j≥2

AhTj
〉

= 〈AhT0∪T1 , Ah〉 − 〈AhT0∪T1 ,
∑
j≥2

AhTj
〉

≤ ‖ AhT0∪T1 ‖2‖ Ah ‖2 +
∑
j≥2

∣∣〈AhT0∪T1 , AhTj
〉
∣∣ (37)

≤
√

1 + δs+s′ ‖ hT0∪T1 ‖2 2ε

+
√

2δs+s′

(∑
j≥2

‖ hTj
‖2

)
‖ hT0∪T1 ‖2

= ‖ hT0∪T1 ‖2

(
2ε
√

1 + δs+s′ +
√

2δs+s′

∑
j≥2

‖ hTj
‖2

)

≤ ‖ hT0∪T1 ‖2

(
2ε
√

1 + δs+s′ +
√

2δs+s′
1√
s′

∑
j≥1

‖ hTj
‖1

)

= ‖ hT0∪T1 ‖2

(
2ε
√

1 + δs+s′ +
√

2δs+s′
1√
s′

‖ hT c
0
‖1

)
Hence we have

(1 − δs+s′) ‖ hT0∪T1 ‖2
2 ≤ ‖ AhT0∪T1 ‖2

2

≤ ‖ hT0∪T1 ‖2

(
2ε
√

1 + δs+s′ +
√

2δs+s′
1√
s′

‖ hT c
0
‖1

)
,

which implies that

‖ hT0∪T1 ‖2 ≤
2
√

1 + δs+s′

1 − δs+s′
ε +

√
2δs+s′

1 − δs+s′

1√
s′

‖ hT c
0
‖1

= αε +
ρ√
s′

‖ hT c
0
‖1 (38)
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Furthermore, since

‖ hT c
0
‖1 ≤ ‖ hT0 ‖1 +2 ‖ x − xs ‖1 (by (35))

≤
√

s ‖ hT0 ‖2 +2 ‖ x − xs ‖1

≤
√

s ‖ hT0∪T1 ‖2 +2 ‖ x − xs ‖1, (39)

it follows from (38) that(
1 −

√
s

s′
ρ

)
‖ hT0∪T1 ‖2≤ αε +

2√
s′

ρ ‖ x − xs ‖1

Hence, the assumption δs+s′ < 1

1+
√

2s
s′

(iff 1 −
√

s
s′
ρ > 0), we have

‖ hT0∪T1 ‖2≤
α

1 −
√

s
s′
ρ
ε +

2ρ(
1 −

√
s
s′
ρ
) 1√

s′
‖ x − xs ‖1 (40)

Thus we have by (36) and (40)

‖ x − x? ‖2=‖ h ‖2 ≤ ‖ hT0∪T1 ‖2 + ‖ h(T0∪T1)c ‖2

≤ ‖ hT0∪T1 ‖2 +

√
s

s′
‖ hT0∪T1 ‖2 +

2√
s′

‖ x − xs ‖1

=

(
1 +

√
s

s′

)
‖ hT0∪T1 ‖2 +

2√
s′

‖ x − xs ‖1

≤
1 +

√
s
s′

1 −
√

s
s′
ρ
αε +

2√
s′

(
1 + ρ

1 −
√

s
s′
ρ

)
‖ x − xs ‖1

≤
(

1 +

√
s

s′

)(
α

1 − ρ

)
ε +

2√
s′

(
1 + ρ

1 − ρ

)
‖ x − xs ‖1

≤ 2

√
s

s′

(
α

1 − ρ

)
ε +

2√
s

(√
s

s′
1 + ρ

1 − ρ

)
‖ x − xs ‖1

Hence, we have

‖ x − x? ‖2≤
2√
s
C0 ‖ x − xs ‖1 +

1√
s′

C1ε

Furthermore, we have by (39) and (40),

‖ x − x? ‖1 = ‖ hT0 ‖1 + ‖ hT c
0
‖1

≤ 2
√

s ‖ hT0∪T1 ‖2 +2 ‖ x − xs ‖1

≤ 2
√

sα

1 −
√

s
s′
ρ
ε +

(
1 +

√
s
s′
ρ

1 −
√

s
s′
ρ

)
‖ x − xs ‖1

≤ 2
√

s

(
α

1 − ρ

)
ε +

√
s

s′

(
1 + ρ

1 − ρ

)
‖ x − xs ‖1

= C1ε + C0 ‖ x − xs ‖1
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This completes the proof in case of s′ ≤ s.

Suppose that s′ ≥ s and δ2s′ < 1

1+
√

2s
s′

. Then δs+s′ ≤ δ2s′ and the assumption δ2s′ <

1

1+
√

2s
s′

implies that
(
1 −

√
s
s′
ρ
)

> 0. Hence we can prove (11) and (12) at the same way

as the case s′ ≤ s. This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. Using (22) on (37) directly, we can obtain the inequality:

‖ AhT0∪T1 ‖2
2 ≤ ‖ AhT0∪T1 ‖2‖ Ah ‖2 +

∑
j≥2

∣∣〈AhT0∪T1 , AhTj
〉
∣∣

≤
√

1 + δs+s′ ‖ hT0∪T1 ‖2 2ε +
∑
j≥2

δs+2s′ ‖ hT0∪T1 ‖2‖ hTj
‖2

= ‖ hT0∪T1 ‖2

(
2ε
√

1 + δs+s′ + δs+2s′

∑
j≥2

‖ hTj
‖2

)
,

and by (32), (35), (36), (39) and (40)

‖ x − x? ‖2≤
√

1 + s
s′

1 −
√

s
s′
γ
αε +

2√
s′

(
1 + γ

1 −
√

s
s′
γ

)
‖ x − xs ‖1,

which implies that

‖ x − x? ‖2≤
2√
s
D0 ‖ x − xs ‖1 +

1√
s′

D1ε,

and then

‖ x − x? ‖1≤ D0 ‖ x − xs ‖1 +D1ε

This completes the proof.

3 Discussions

By taking appropriate numbers s′ for s, we shall search good conditions under which

Theorem 1.3 and Theorem 1.4 hold and under which the Candès results are improved.

(1) In Theorem 1.3 and Theorem 1.4, taking s′ = s, the assumption (9) coincides with

the assumption

δ2s <
√

2 − 1 (41)

in Theorem 1.1 and Theorem 1.2, and the assumption (16) coincides with the assumption

δ2s + δ3s < 1 (42)
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in the Candès. [2].

(2) Let s = 2k, k ∈ N . Taking s′ = k, the assumption (9) becomes

δ 3
2
s <

1

3
(43)

and the assumption (16) becomes

δ 3
2
s +

√
2δ2s < 1 (44)

Since δ 3
2
s +

√
2δ2s <

(
1 +

√
2
)
δ2s, this condition is better than the condition (41) in

Theorem 1.1 and Theorem 1.2.

(3) Let s = 2k + 1, k ∈ N . Taking s′ = k + 1, Theorem 1.3 holds under the assumption

δ 3s+1
2

<
1

3
(45)

and Theorem 1.4 holds under the assumption

δ 3s+1
2

+
√

2δ2s+1 < 1 (46)

(4) We take s′ = 2s. Then, Theorem 1.3 holds under the assumption

δ4s <
1

2
(47)

and Theorem 1.4 holds under

δ3s +
1√
2
δ5s < 1 (48)

(5) Let s = 2k, k ∈ N . Taking s′ = 3k, Theorem 1.3 holds under

δ3s <
1

1 +
√

2
3

(49)

and Theorem 1.4 holds under

δ 5
2
s +

√
2

3
δ4s < 1 (50)
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The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance
vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA &
Yoshihiro MIWA
An algebraic approach to underdetermined experiments



MI2010-10 Kei HIROSE & Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI & Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equa-
tion around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI & Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia
weight

MI2010-15 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Fre-
quency

MI2010-16 Yu KAWAKAMI & Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar
bose field

MI2010-19 Reiichiro KAWAI & Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with
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