Nonlinear regression modeling via Compressed Sensing

Inoue, Hiroshi
Graduate School of Mathematics, Kyushu University

Tateishi, Shohei
Graduate School of Mathematics, Kyushu University

Konishi, Sadanori
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/18978

出版情報：MI Preprint Series. 2011-4, 2011-02-21. Faculty of Mathematics, Kyushu University
バージョン：draft
権利関係：
Nonlinear regression modeling via Compressed Sensing

Hiroshi Inoue, Shohei Tateishi & Sadanori Konishi

MI 2011-4

(Received February 21, 2011)
Nonlinear regression modeling via Compressed Sensing

Hiroshi Inoue†, Shohei Tateishi† and Sadanori Konishi‡

† Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
‡ Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.

ma209006@math.kyushu-u.ac.jp s-tateishi@math.kyushu-u.ac.jp konishi@math.chuo-u.ac.jp

Abstract

We consider the problem of constructing nonlinear regression models in case that the dimension of data is less than the number of basis functions. We propose a procedure where the smooth curve are effectively estimated along with the technique of regularization method. We give a simple idea for applying the Restricted Isometry Property to curve fitting. Simulation results and real data analysis demonstrate that our methodology performs well in various situations.

Key Words and Phrases: Basis expansion, Compressed sensing, Nonlinear regression, Regularization, Restricted isometry property.

1 Introduction

Nonlinear regression models have been used to analyze data with complex structure in various situations. As a useful technique for analysing diverse phenomena, a nonlinear regression model based on basis expansions is widely used (Konishi and Kitagawa, 2008). The essential idea behind basis expansions is to express a regression function as a linear combination of known functions, called basis functions (Bishop, 2006; Hastie et al., 2009). In constructing the nonlinear regression model, various functions are used to represent a regression function. For example, B-splines (Eilers and Marx, 1996; de Boor, 2001; Imoto and Konishi, 2003) and radial basis functions (Hastie et al., 2009) involving Gaussian basis functions are used.

Suppose that we have n independent observations $\{(y_i, x_i); i = 1, 2, \cdots , n\}$, where y_i are random response variables and x_i are explanatory variables. We consider a regression problem in the following sense.

\[y_i = \beta^T \phi(x_i) + z_i, \quad i = 1, \cdots , n, \]

(1)
where $\beta = (\beta_1, \cdots, \beta_m)^T$ is a unknown coefficient vector, $\phi(x) = (\phi_1(x), \cdots, \phi_m(x))^T$ is a vector of basis functions and z is an unknown noise term. Our goal is to reconstruct coefficient vector $\beta \in \mathbb{R}^m$. Here we are interested in $n < m$ case and in whether or not it is possible to reconstruct β with accuracy. In this case, there is an ill-posed problem. Although in recent years we have seen the development of various types of nonlinear model, in $n < m$ case we can not have good estimations. As follows, we propose one approach for the problem. In this note, our approach based on the compressed sensing which is relied on the restricted isometry property (Candès, 2006; Donoho, 2006).

It is crucial issue to determine the tuning parameters, including regularization parameter and variance parameter associated with Gaussian basis functions. We choose these parameters using cross-validation.

This paper is organized as follows. Section 2 describes the framework of basis expansions and our proposed basis function models. In Section 3 we present an estimation for nonlinear regression models. In Section 4 we investigate the performance of our nonlinear regression modeling techniques through simulations and real data analysis. Some concluding remarks are presented in Section 5.

2 Nonlinear regression model with basis functions

Now, we expand a coefficient parameter $\beta_j (j = 1, \cdots, m)$ in equation (1) as follows:

$$\beta_j = w^T \psi(t_j), \quad j = 1, \cdots, m,$$

(2)

where $w = (w_1, \cdots, w_m)^T$ is a unknown coefficient vector, $t_j (j = 1, \cdots, m)$ are temporary data such as equally-spaced points in the range of x and $\psi(t) = (\psi_1(t), \cdots, \psi_m(t))^T$ is a vector of basis functions.

As a result, regression model (1) is expressed as follows:

$$y = \Phi \Psi w + z$$

(3)

where $y = (y_1, \cdots, y_n)^T$, $z = (z_1, \cdots, z_n)^T$, $\Phi = (\phi(x_1), \cdots, \phi(x_n))^T$ and $\Psi = (\psi(t_1), \cdots, \psi(t_m))^T$. Here, we employ B-splines functions of degree 3 with equidistant knots (Imoto and Konishi, 2003; Konishi and Kitagawa, 2008) as $\phi(\cdot)$ and the Gaussian basis
functions whose centers are temporary data points \(t_j \) as \(\psi(\cdot) \), that is,

\[
\psi_j(t) = \exp \left\{ -\frac{(t - t_j)^2}{h} \right\}, \quad j = 1, \cdots, m, \tag{4}
\]

where \(h \) is a width parameter.

3 Estimation

We propose estimating \(w \) as the solution to the convex optimization problem

\[
\min_{\tilde{w} \in \mathbb{R}^m} \| \tilde{w} \|_1 \quad \text{subject to} \quad \| y - A\tilde{w} \|_2 \leq \varepsilon \tag{5}
\]

where \(A = \Phi \Psi \) and \(\varepsilon \) is an upper bound on the noisy contribution, that is \(\| z \|_2 \leq \varepsilon \).

If a new coefficient vector \(w \) is sparse or nearly sparse and the matrix \(A \) obeys a condition known as the restricted isometry property (RIP) introduced below, the optimization problem solution \(w^* \) recover \(w \) exactly. It means that a coefficient vector \(\beta \) is reconstructed exactly. That is,

\[
\beta^* = \Psi w^* \tag{6}
\]

therefore,

\[
y^* = \Phi \beta^* \tag{7}
\]

In order to realize that \(w \) is sparse and \(A \) obeys RIP, we use large size design matrix and a good set of basis function matrices \(\Phi \) and \(\Psi \), though it depends on data set. We introduce a concept of mathematical backgrounds.

Definition 1 (RIP)

For each integer \(s \in \mathbb{N} \), define the isometry constant \(0 < \delta_s < 1 \) of a matrix \(A \) as the smallest number such that the inequalities

\[
(1 - \delta_s) \| w \|_2^2 \leq \| A w \|_2^2 \leq (1 + \delta_s) \| w \|_2^2 \tag{8}
\]

hold for all \(s \)-sparse vector \(w \). A vector is said to be \(s \)-sparse if it has at most \(s \) nonzero entries. (Candès, 2008)
Theorem 1 (Noisy Recovery) \[3\].

Assume that \(\delta_2 < \sqrt{2} - 1 \) and \(\| z \|_2 \leq \varepsilon \). Then the solution \(w^* \) obeys

\[
\| w^* - w \|_2 \leq C_0 s^{-\frac{1}{2}} \| w - w_s \|_1 + C_1 \varepsilon
\]

(9)

where \(C_0, C_1 \) are explicitly given constants. (Candès, 2008)

This theorem assesses how good is the solution \(w^* \). That is, it shows how much the solution \(w^* \) reconstruct the true coefficient vector \(w \) with accuracy. Next, we show simulation results and real data analysis demonstrate that our methodology performs well in various situations.

4 Numerical examples

4.1 Simulation study

In this section we report some simulation studies done to compare the performance of our proposed method with that of the elastic net (Zou and Hastie, 2005), the adaptive lasso (Zou, 2006), and the ridge (Horel and Kennard, 1970). In all examples, we used nonlinear regression model based on \(B \)-spline functions of degree 3 basis functions. In \(m < n \) case, the number of basis functions \(m \) and regularization parameters \(\lambda, \alpha \) (elastic net) were selected by using the criterion Cross-validation (CV) (Stone, 1974), and we computed the adaptive weights for the adaptive lasso using OLS coefficients. In \(n < m \) case, we extended to the coefficient vector by Gaussian basis functions and regularization parameters \(\lambda, \alpha \) and a variance of Gaussian basis functions \(h \) were selected by CV, and we computed the adaptive weights for the adaptive lasso using Ridge coefficients. As follows, we considered functions as true regression model.

\[
(a) \quad u(x) = \sin(5\pi x) \sin(10\pi x) \\
(b) \quad u(x) = \sin(2\pi x) \exp(-5x) \\
(c) \quad u(x) = \sin(2\pi x^3) \\
(d) \quad u(x) = 4 \cos(8\pi x) \exp(-5x) + \cos(2\pi x)
\]

Then we repeatedly generated random samples \(\{(y_i, x_i); i = 1, 2, \cdots, 100\} \) using the true regression model \(y_i = u(x_i) + z_i \). The design points are equally-spaced in \([0, 1]\) and the
noises z_i are independently, normally distributed with mean 0 and standard deviation σ, where σ is taken as $\sigma = 0.2R_u$, and R_u is the range of $u(x)$ over $x \in [0, 1]$. In $n < m$ case, we put $m = 200$. In this setting, we performed 100 repetitions, then we compare the performance of the averages of the mean square errors (AMSE) defined by
\[
\text{MSE} = \frac{\sum_{n}^{100} (u(x_n) - \hat{y}_n)^2}{100}
\]
and the SD indicates standard deviations for the AMSE to assess the goodness of curve fitting. Table 1 summarizes the simulation results in $n < m$ case. Table 2 summarizes the simulation results in $m < n$ case.

4.2 Real data analysis

We report the analysis of the motorcycle impact data (Härdle, 1990; Silverman, 1985). The motorcycle impact data are a series of measurements of head acceleration in units of gravity and times in millisecond after impact. Although we used the same setting in above simulations, the number of basis functions m is 2000. Figure 1 shows the motorcycle impact data and estimated curve using our proposed procedure.
Table 1: Comparison of results for simulations in $n < m$ case

<table>
<thead>
<tr>
<th></th>
<th>CSreg</th>
<th>Elastic net</th>
<th>Adaptive lasso</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>9.4×10^{-3}</td>
<td>9.6×10^{-3}</td>
<td>1.2×10^{-2}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>3.1×10^{-3}</td>
<td>3.1×10^{-3}</td>
<td>5.0×10^{-3}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>5.0×10^{-2}</td>
<td>1.1×10^{-3}</td>
<td>9.1×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>1.2×10^{-2}</td>
<td>9.0×10^{-4}</td>
<td>2.8×10^{-3}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-9.8×10^{-1}</td>
<td>-9.8×10^{-2}</td>
<td>-9.8×10^{-2}</td>
</tr>
<tr>
<td>SD α</td>
<td>4.5×10^{-2}</td>
<td>3.1×10^{-2}</td>
<td>3.6×10^{-2}</td>
</tr>
<tr>
<td>SD h</td>
<td>6.5×10^{-3}</td>
<td>3.0×10^{-3}</td>
<td>8.4×10^{-3}</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>6.9×10^{-4}</td>
<td>1.3×10^{-3}</td>
<td>9.6×10^{-3}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>2.2×10^{-4}</td>
<td>1.1×10^{-3}</td>
<td>5.5×10^{-3}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>8.6×10^{-2}</td>
<td>1.6×10^{-3}</td>
<td>8.6×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>1.0×10^{-2}</td>
<td>2.3×10^{-3}</td>
<td>2.4×10^{-3}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-7.4×10^{-1}</td>
<td>-3.0×10^{-1}</td>
<td>-3.0×10^{-1}</td>
</tr>
<tr>
<td>SD α</td>
<td>9.4×10^{-2}</td>
<td>4.5×10^{-2}</td>
<td>1.2×10^{-1}</td>
</tr>
<tr>
<td>SD h</td>
<td>9.2×10^{-3}</td>
<td>6.7×10^{-3}</td>
<td>8.1×10^{-3}</td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>1.7×10^{-2}</td>
<td>2.3×10^{-2}</td>
<td>1.6×10^{-1}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>7.3×10^{-3}</td>
<td>9.5×10^{-3}</td>
<td>5.5×10^{-2}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>8.5×10^{-2}</td>
<td>9.6×10^{-3}</td>
<td>5.9×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>1.0×10^{-2}</td>
<td>2.0×10^{-3}</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-5.1×10^{-1}</td>
<td>-2.4×10^{-1}</td>
<td>-2.4×10^{-1}</td>
</tr>
<tr>
<td>SD α</td>
<td>9.3×10^{-2}</td>
<td>4.5×10^{-2}</td>
<td>7.0×10^{-3}</td>
</tr>
<tr>
<td>SD h</td>
<td>1.0×10^{-2}</td>
<td>6.9×10^{-3}</td>
<td>8.2×10^{-3}</td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>1.9×10^{-1}</td>
<td>2.3×10^{-1}</td>
<td>9.1×10^{-1}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>8.1×10^{-2}</td>
<td>1.1×10^{-1}</td>
<td>2.4×10^{-1}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>5.7×10^{-2}</td>
<td>1.0×10^{-2}</td>
<td>1.1×10^{-2}</td>
</tr>
<tr>
<td>SD λ</td>
<td>1.1×10^{-2}</td>
<td>9.0×10^{-4}</td>
<td>9.0×10^{-3}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-2.1×10^{-1}</td>
<td>-2.1×10^{-1}</td>
<td>-2.1×10^{-1}</td>
</tr>
<tr>
<td>SD α</td>
<td>1.0×10^{-1}</td>
<td>4.4×10^{-2}</td>
<td>7.0×10^{-3}</td>
</tr>
<tr>
<td>SD h</td>
<td>1.1×10^{-2}</td>
<td>7.7×10^{-3}</td>
<td>8.8×10^{-4}</td>
</tr>
</tbody>
</table>
Table 2: Comparison of results for simulations in $m < n$ case

<table>
<thead>
<tr>
<th></th>
<th>Ridge</th>
<th>Elastic net</th>
<th>Adaptive lasso</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>8.1×10^{-3}</td>
<td>9.3×10^{-3}</td>
<td>1.8×10^{-2}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>3.1×10^{-3}</td>
<td>3.8×10^{-3}</td>
<td>6.7×10^{-3}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>7.0×10^{-3}</td>
<td>1.8×10^{-3}</td>
<td>2.8×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>4.4×10^{-3}</td>
<td>3.2×10^{-3}</td>
<td>5.5×10^{-4}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-6.9×10^{-1}</td>
<td>-3.1×10^{-1}</td>
<td>-1×10^{-1}</td>
</tr>
<tr>
<td>Mean m</td>
<td>18.9</td>
<td>19.3</td>
<td>25.3</td>
</tr>
<tr>
<td>SD m</td>
<td>1.91</td>
<td>2.32</td>
<td>9.5 $\times 10^{-1}$</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>9.2×10^{-4}</td>
<td>7.5×10^{-4}</td>
<td>3.0×10^{-3}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>5.3×10^{-4}</td>
<td>3.0×10^{-4}</td>
<td>2.3×10^{-3}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>6.3×10^{-3}</td>
<td>5.6×10^{-3}</td>
<td>1.4×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>4.6×10^{-3}</td>
<td>4.5×10^{-3}</td>
<td>1.8×10^{-3}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-7.4×10^{-1}</td>
<td>-1.2×10^{-1}</td>
<td>-1×10^{-1}</td>
</tr>
<tr>
<td>Mean m</td>
<td>11.9</td>
<td>10.4</td>
<td>7.13</td>
</tr>
<tr>
<td>SD m</td>
<td>2.90</td>
<td>1.82</td>
<td>2.18</td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>2.2×10^{-2}</td>
<td>1.7×10^{-2}</td>
<td>2.0×10^{-2}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>1.3×10^{-2}</td>
<td>8.4×10^{-3}</td>
<td>8.0×10^{-3}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>6.8×10^{-3}</td>
<td>1.1×10^{-3}</td>
<td>9.5×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>4.4×10^{-3}</td>
<td>2.7×10^{-3}</td>
<td>2.2×10^{-3}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-7.3×10^{-1}</td>
<td>-1.2×10^{-1}</td>
<td>-1×10^{-1}</td>
</tr>
<tr>
<td>Mean m</td>
<td>12.5</td>
<td>9.4</td>
<td>12.2</td>
</tr>
<tr>
<td>SD m</td>
<td>3.19</td>
<td>2.17</td>
<td>1.63</td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMSE</td>
<td>2.5×10^{-1}</td>
<td>2.1×10^{-1}</td>
<td>8.0×10^{-1}</td>
</tr>
<tr>
<td>SD MSE</td>
<td>1.3×10^{-1}</td>
<td>8.7×10^{-2}</td>
<td>1.5×10^{-1}</td>
</tr>
<tr>
<td>Mean λ</td>
<td>8.6×10^{-3}</td>
<td>1.5×10^{-3}</td>
<td>2.0×10^{-3}</td>
</tr>
<tr>
<td>SD λ</td>
<td>3.3×10^{-3}</td>
<td>2.6×10^{-3}</td>
<td>9.1×10^{-4}</td>
</tr>
<tr>
<td>Mean α</td>
<td>-6.3×10^{-1}</td>
<td>-1.4×10^{-1}</td>
<td>-1×10^{-1}</td>
</tr>
<tr>
<td>Mean m</td>
<td>13.6</td>
<td>11.9</td>
<td>6.94</td>
</tr>
<tr>
<td>SD m</td>
<td>2.71</td>
<td>1.31</td>
<td>2.05</td>
</tr>
</tbody>
</table>
5 Concluding remarks

We have proposed a procedure where the smooth curve are effectively estimated along with the technique of regularization method in case that the dimension of data is less than the number of basis functions. We have given a simple idea for applying the restricted isometry property to curve fitting. The simulation results and real data analysis reported here demonstrate the effectiveness of the proposed modeling strategy in terms of prediction accuracy.

The two assumptions that \(\mathbf{w} \) is sparse or nearly sparse and \(\mathbf{A} \) obeys RIP are important to our methodology. However, it is hard to know whether or not \(\mathbf{w} \) is sufficiently sparse and \(\mathbf{A} \) obeys RIP because in real data analysis \(\mathbf{\beta} \) is unknown. It remarks that in case of curve fitting \(\Phi \) represents a wavelet basis functions or Gaussian basis functions whose variance is small and a number of basis functions is populous. Therefore, \(\mathbf{w} \) will be sufficiently sparse, and with respect to RIP, we can almost show that \(\mathbf{A} \) is nearly orthogonal matrix.

References

List of MI Preprint Series, Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The initial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in infinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTsu & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHI
Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \(q \)-functions of the \(q \)-Painlevé system of type \(E_8^{(1)} \)

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA
A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI
Large time behavior of the semigroup on \(L^p \) spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain
MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI & Tsuyoshi SAWABE
Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA & Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING & Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO & Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO & Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA & Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER & Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA & Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H^2_0-projection
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI & Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI & Yasunori MAEKAWA
On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA & Yoshinori YAMASAKI
Hecke’s zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU & Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO & Teruhisa TSUDA
Projective reduction of the discrete Painlevé system of type$(A_2 + A_1)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA & Daisuke TAGAMI
Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI & Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes

MI2010-2 Reiichiro KAWAI & Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE & Sadanori KONISHI
Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA & Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI & Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIIDA, Kinji KIMURA, Naoki YOSHIIDA, Junko TANAKA & Yoshihiro MIWA
An algebraic approach to underdetermined experiments
Variable selection via the grouped weighted lasso for factor analysis models

Katsusuke NABESHIMA & Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

On simulation of tempered stable random variates

Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

The value distribution of the Gauss map of improper affine spheres

On the classification of rank 2 almost Fano bundles on projective space

Scaling limits for the system of semi-relativistic particles coupled to a scalar boson field

Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra

MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA & Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time

MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA & Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA & Jun KOGURE
On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA & Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model

MI2010-31 Shohei TATEISHI & Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $(A_2 + A_1)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA & Yoshinori YAMASAKI
Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA & Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $Sp(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA & Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process

MI2011-1 Yasuhide Fukumoto & Alexander B. Samokhin
Singular electromagnetic modes in an anisotropic medium

MI2011-2 Hiroki Kondo, Shingo Saito & Setsuo Taniguchi
Asymptotic tail dependence of the normal copula

MI2011-3 Takehiro Hirotsu, Hiroki Kondo, Shingo Saito, Takuya Sato, Tatsushi Tanaka & Setsuo Taniguchi
Anderson-Darling test and the Malliavin calculus

MI2011-4 Hiroshi Inoue, Shohei Tateishi & Sadanori Konishi
Nonlinear regression modeling via Compressed Sensing