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Abstract

Copulas have lately attracted much attention as a tool for dealing with multi-
ple risks that cannot be considered independent. The normal copula, widely
used in practice, is known to have the same tail dependence parameter as the
product copula. The present paper brings into question the common interpre-
tation of this fact as evidence that the normal copula lacks tail dependence,
both by providing numerical examples and by mathematically determining
the asymptotic behaviour of the tail dependence.
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1. Introduction

1.1. Copulas

Copulas have gained increasing popularity in risk management as a tool
for investigating dependent risks. We begin by reviewing rudimentary defi-
nitions and facts on copulas. See Nelsen (2006) for further reference.

Definition 1.1. A copula is C : [0, 1]2 → [0, 1] with the following properties:

(1) C(u, 0) = C(0, v) = 0, C(u, 1) = u, and C(1, v) = v for all u, v ∈ [0, 1];
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(2) if 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1, then C(u2, v2) − C(u1, v2) −
C(u2, v1) + C(u1, v1) ≥ 0.

Example 1.2. The function C(u, v) = uv is a copula and called the product
copula.

For a bivariate random variable (X,Y ), let FX and FY denote the marginal
distribution functions and let FX,Y denote the joint distribution function:
FX(x) = P (X ≤ x), FY (y) = P (Y ≤ y), and FX,Y (x, y) = P (X ≤ x, Y ≤ y)
for x, y ∈ R. We say that (X, Y ) is continuous if FX and FY are both
continuous.

Theorem 1.3 (Sklar). If (X, Y ) is a continuous bivariate random variable,
then there exists a unique copula CX,Y such that

FX,Y (x, y) = CX,Y

(
FX(x), FY (y)

)
for all x, y ∈ R.

Example 1.4. The independence of X and Y is equivalent to CX,Y being
the product copula.

Remark 1.5. If we write F−1(u) = inf{x ∈ R | F (x) ≥ u} for univariate
distribution functions F , we have CX,Y (u, v) = FX,Y

(
F−1
X (u), F−1

Y (v)
)
.

In this paper, the focus will be on the normal copula:

Definition 1.6. Let −1 < ρ < 1. If (X,Y ) is a normally distributed bivari-
ate random variable such that E[X] = E[Y ] = 0, V (X) = V (Y ) = 1, and
Cov(X,Y ) = ρ, then CX,Y is called the normal copula (or Gaussian copula)
with correlation ρ and denoted by Cρ.

1.2. Tail dependence of copulas

Definition 1.7. Let C be a copula. We define λC : (0, 1) → [0, 1] by

λC(t) =
1− 2t+ C(t, t)

1− t
.

We call limt↗1 λC(t) the upper tail dependence parameter of C, if it exists.
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Product copula Normal copula Cρ with ρ = 0.5

t = 0.8 0.2000 0.4358
t = 0.9 0.1000 0.3240
t = 0.95 0.0500 0.2438
t = 0.99 0.0100 0.1294
t = 0.995 0.0050 0.0993
t = 0.999 0.0010 0.0543

Table 1: Upper tail dependence λC(t) of the product and normal copulas

Remark 1.8. If (X, Y ) is a continuous bivariate random variable, then

λCX,Y
(t) =

1− P
(
X ≤ F−1

X (t)
)
− P

(
Y ≤ F−1

Y (t)
)
+ P

(
X ≤ F−1

X (t), Y ≤ F−1
Y (t)

)
1− P

(
X ≤ F−1

X (t)
)

=
P
(
X > F−1

X (t), Y > F−1
Y (t)

)
P
(
X > F−1

X (t)
)

= P
(
Y > F−1

Y (t)
∣∣ X > F−1

X (t)
)
.

Example 1.9. If C is the product copula, then λC(t) = 1− t → 0 as t ↗ 1.

The normal copula is known to have upper tail dependence parameter 0:

Proposition 1.10. The normal copula with arbitrary correlation ρ ∈ (−1, 1)
has upper tail dependence parameter 0.

This proposition, with Example 1.9 in mind, is often interpreted to mean
that the normal copula exhibits no tail dependence. However, Table 1 sug-
gests that the product and normal copulas have different rates at which
λC(t) converges to 0. The purpose of this paper is to completely describe
how λCρ(t) converges to 0.

Now we state a particular case of our main theorem, of which the complete
statement will be given in Section 2 (Theorem 2.3).

Theorem 1.11. We have

λCρ(t) =

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2
(
s−1 − 1 + 2ρ− ρ2

1− ρ
s−3 +O(s−5)

)
as t ↗ 1, where s = Φ−1(t) ↗ ∞, with Φ denoting the distribution function
of the standard normal distribution: t = Φ(s) = (2π)−1/2

∫ s

−∞ exp(−x2/2) dx.
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Remark 1.12. By using Proposition 3.2, we may infer from Theorem 1.11
that the leading behaviour of λCρ(t) is

λCρ(t) ∼

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2s−1

∼ (4π)−
ρ

1+ρ

√
(1 + ρ)3

1− ρ
(1− t)

1−ρ
1+ρ
(
− log(1− t)

)− ρ
1+ρ .

Note that Heffernan (2000) mentions the order (1− t)(1−ρ)/(1+ρ) in a different
language.

2. Precise statement of the main theorem

This section is devoted to giving the precise statement of our main theo-
rem. Henceforth we fix a real number ρ with −1 < ρ < 1 and denote λCρ(t)
simply by λ(t).

Definition 2.1. We define sequences (an)n≥0 and (bn)n≥0 of real numbers
by

an = (−1)nn!(1 + ρ)n
n∑

l=0

(2l − 1)!!

l!
(1− ρ)−l,

bn = (−1)n(2n− 1)!!

where (−1)!! = 1 by definition. We further define a sequence (cn)n≥0 of real
numbers by the following equation between formal power series in X:

∞∑
n=0

cnX
n =

∑∞
n=0 anX

n∑∞
n=0 bnX

n
∈ R[[X]].

In other words, we define (cn)n≥0 recursively by setting c0 = a0/b0 and

cn =
1

b0

(
an −

n−1∑
k=0

bn−kck

)

for n ≥ 1.
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Example 2.2. The first three terms of the sequences are as follows:

a0 = 1, a1 = −(1 + ρ)

(
1 +

1

1− ρ

)
, a2 = (1 + ρ)2

(
2 +

2

1− ρ
+

3

(1− ρ)2

)
,

b0 = 1, b1 = −1, b2 = 3,

c0 = 1, c1 = −1 + 2ρ− ρ2

1− ρ
, c2 =

3 + 13ρ− 3ρ2 − 3ρ3 + 2ρ4

(1− ρ)2
.

Now our main theorem goes as follows:

Theorem 2.3 (Main Theorem). For every positive integer N , we have

λ(t) =

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2

(
N−1∑
n=0

cns
−2n−1 +O(s−2N−1)

)

as t ↗ 1, where s = Φ−1(t) ↗ ∞.

Remark 2.4. Theorem 1.11 is the N = 2 case of our main theorem.

3. Proof of the main theorem

Let 1/2 < t < 1 and put s = Φ−1(t) > 0. If we set

A =

∫ ∞

s

∫ ∞

s

1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
dx dy,

B =

∫ ∞

s

1√
2π

exp

(
−x2

2

)
dx,

then λ(t) = A/B by Remark 1.8. We shall estimate A and B separately.
Let R+, N0, and N denote the sets of positive real numbers, nonnegative

integers, and positive integers, respectively.

3.1. Estimate of B

Proposition 3.1. If θ ∈ R+ and N ∈ N, then

(−1)N
∫ ∞

θ

e−x2/2 dx > (−1)Ne−θ2/2

N−1∑
n=0

bnθ
−2n−1.
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Proof. For n ∈ N0, set

In =

∫ ∞

θ

x−ne−x2/2 dx.

Then the left-hand side of the required inequality is (−1)NI0.
Since integration by parts gives

In = −
∫ ∞

θ

x−n−1(e−x2/2)′ dx

= −[x−n−1e−x2/2]∞θ +

∫ ∞

θ

(−n− 1)x−n−2e−x2/2 dx

= θ−n−1e−θ2/2 − (n+ 1)In+2,

we have

(−1)Ne−θ2/2

N−1∑
n=0

bnθ
−2n−1 =

N−1∑
n=0

(−1)N+n(2n− 1)!!θ−2n−1e−θ2/2

=
N−1∑
n=0

(−1)N+n(2n− 1)!!
(
I2n + (2n+ 1)I2n+2

)
=

N−1∑
n=0

(
(−1)N+n(2n− 1)!!I2n − (−1)N+n+1(2n+ 1)!!I2n+2

)
= (−1)NI0 − (2N − 1)!!I2N

< (−1)NI0.

Proposition 3.2. For every N ∈ N, we have

B =
1√
2π

e−s2/2

(
N−1∑
n=0

bns
−2n−1 +O(s−2N−1)

)
as s ↗ ∞.

Proof. If N ′ is an even integer with N ′ ≥ N , then Proposition 3.1 shows
that

B >
1√
2π

e−s2/2

N ′−1∑
n=0

bns
−2n−1 =

1√
2π

e−s2/2

(
N−1∑
n=0

bns
−2n−1 +O(s−2N−1)

)
.
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By taking N ′ to be an odd integer with N ′ ≥ N , we may similarly obtain

B <
1√
2π

e−s2/2

(
N−1∑
n=0

bns
−2n−1 +O(s−2N−1)

)
.

The proposition follows from these estimates.

3.2. Estimate of A

Definition 3.3. We set α =
√

(1− ρ)/2 and β =
√
(1 + ρ)/2, so that α

and β are positive real numbers with α2 + β2 = 1.

Lemma 3.4. We have

A =
β

π
e−s2/2

∫ ∞

αs/β

(∫ ∞

αw+βs

e−z2/2 dz

)
e(αw+βs)2/2e−w2/2 dw.

Proof. Symmetry gives

A = 2

∫∫
x≥y≥s

1

2π
√
1− ρ2

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
dx dy

=
1

2παβ

∫∫
x≥y≥s

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
dx dy.

We use the change of variables(
x
y

)
=

(
βz + αβw − α2s
βz − αβw + α2s

)
⇐⇒

(
z
w

)
=

(
(x+ y)/2β

(x− y)/2αβ + αs/β

)
.

Since

x ≥ y ≥ s ⇐⇒ βz + αβw − α2s ≥ βz − αβw + α2s ≥ s

⇐⇒ w ≥ αs/β, z ≥ αw + βs

and

x2 − 2ρxy + y2

2(1− ρ2)
=

(x+ y)2

4(1 + ρ)
+

(x− y)2

4(1− ρ)
=

(2βz)2

8β2
+

(2αβw − 2α2s)2

8α2

=
z2

2
+

(βw − αs)2

2
=

z2

2
− (αw + βs)2

2
+

w2 + s2

2
,
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we have

A =
1

2παβ

∫ ∞

αs/β

∫ ∞

αw+βs

exp

(
−z2

2
+

(αw + βs)2

2
− w2 + s2

2

)∣∣∣∣det(β αβ
β −αβ

)∣∣∣∣ dz dw
=

β

π
e−s2/2

∫ ∞

αs/β

(∫ ∞

αw+βs

e−z2/2 dz

)
e(αw+βs)2/2e−w2/2 dw.

Lemma 3.5. For every K ∈ N, we have

(−1)KA > (−1)K
β

π
e−s2/2

K−1∑
n=0

bn

∫ ∞

αs/β

(αw + βs)−2n−1e−w2/2 dw.

Proof. Lemma 3.4 and Proposition 3.1 show that

(−1)KA =
β

π
e−s2/2

∫ ∞

αs/β

(
(−1)K

∫ ∞

αw+βs

e−z2/2 dz

)
e(αw+βs)2/2e−w2/2 dw

>
β

π
e−s2/2

∫ ∞

αs/β

(−1)K

(
K−1∑
n=0

bn(αw + βs)−2n−1

)
e−w2/2 dw

= (−1)K
β

π
e−s2/2

K−1∑
n=0

bn

∫ ∞

αs/β

(αw + βs)−2n−1e−w2/2 dw.

Definition 3.6. For n ∈ N and j, k ∈ N0 with j ≤ k, we define

rj,k,n =
(2k − j)!(n+ j − 1)!

(2k − 2j)!!j!(n− 1)!
.

Lemma 3.7. If n ∈ N and k ∈ N0, then we have the following:

(1) r0,k+1,n = r0,k,n(2k + 1).

(2) rk+1,k+1,n = rk,k,n(n+ k).

(3) rj,k+1,n = rj,k,n(2k − j + 1) + rj−1,k,n(n+ j − 1) for j = 1, . . . , k.

Proof. (1) We have

r0,k,n(2k + 1) =
(2k)!

(2k)!!
(2k + 1) =

(2k + 2)!

(2k + 2)!!
= r0,k+1,n.
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(2) We have

rk,k,n(n+ k) =
(n+ k − 1)!

(n− 1)!
(n+ k) =

(n+ k)!

(n− 1)!
= rk+1,k+1,n.

(3) We have

rj,k,n(2k − j + 1) + rj−1,k,n(n+ j − 1)

=
(2k − j)!(n+ j − 1)!

(2k − 2j)!!j!(n− 1)!
(2k − j + 1)

+
(2k − j + 1)!(n+ j − 2)!

(2k − 2j + 2)!!(j − 1)!(n− 1)!
(n+ j − 1)

=
(2k − j + 1)!(n+ j − 1)!

(2k − 2j + 2)!!j!(n− 1)!

(
(2k − 2j + 2) + j

)
=

(2k − j + 2)!(n+ j − 1)!

(2k − 2j + 2)!!j!(n− 1)!

= rj,k+1,n.

Lemma 3.8. If n,K ∈ N, then

(−1)K
∫ ∞

αs/β

(αw + βs)−ne−w2/2 dw

> (−1)K
∑

0≤j≤k≤K−1

(−1)krj,k,nα
−2k+2j−1βn+2k+1s−n−2k−1e−α2s2/2β2

.

Proof. Put u = s/β for simplicity. For m ∈ N0 and n ∈ N, set

Im,n =

∫ ∞

αs/β

w−m(αw + βs)−ne−w2/2 dw =

∫ ∞

αu

w−m(αw + β2u)−ne−w2/2 dw.

Then what we need to show is that

(−1)KI0,n > (−1)K
K−1∑
k=0

(−1)k
k∑

j=0

rj,k,nα
−2k+2j−1u−n−2k−1e−α2u2/2.
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Since integration by parts gives

Im,n = −
∫ ∞

αu

w−m−1(αw + β2u)−n(e−w2/2)′ dw

= −
[
w−m−1(αw + β2u)−ne−w2/2

]∞
αu

+

∫ ∞

αu

(
(−m− 1)w−m−2(αw + β2u)−n + w−m−1(−αn)(αw + β2u)−n−1

)
e−w2/2 dw

= α−m−1u−m−n−1e−α2u2/2 − (m+ 1)Im+2,n − αnIm+1,n+1,

we have

k∑
j=0

rj,k,nα
j(α−2k+j−1u−n−2k−1e−α2u2/2 − I2k−j,n+j)

=
k∑

j=0

rj,k,nα
j
(
(2k − j + 1)I2k−j+2,n+j + α(n+ j)I2k−j+1,n+j+1

)
=

k∑
j=0

rj,k,nα
j(2k − j + 1)I2k−j+2,n+j +

k+1∑
j=1

rj−1,k,nα
j(n+ j − 1)I2k−j+2,n+j

=
k+1∑
j=0

rj,k+1,nα
jI2k−j+2,n+j
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by Lemma 3.7. It follows that

(−1)K
K−1∑
k=0

(−1)k
k∑

j=0

rj,k,nα
−2k+2j−1u−n−2k−1e−α2u2/2

= (−1)K
K−1∑
k=0

(−1)k

(
k∑

j=0

rj,k,nα
jI2k−j,n+j +

k+1∑
j=0

rj,k+1,nα
jI2k−j+2,n+j

)

= (−1)K
K−1∑
k=0

(
(−1)k

k∑
j=0

rj,k,nα
jI2k−j,n+j − (−1)k+1

k+1∑
j=0

rj,k+1,nα
jI2k−j+2,n+j

)

= (−1)K

(
r0,0,nI0,n − (−1)K

K∑
j=0

rj,K,nα
jI2K−j,n+j

)

= (−1)KI0,n −
K∑
j=0

rj,K,nα
jI2K−j,n+j

< (−1)KI0,n.

Lemma 3.9. If l and m are integers with 0 ≤ l ≤ m, then

m−l∑
n=0

(m+ l − n)!(m− l + n)!

(m− l − n)!(2n)!!
= (2l − 1)!!(2m)!!.

Proof. For each l ∈ N0, let Pl be the statement that the lemma is true for
all m ≥ l. We shall prove Pl by induction on l.

To establish P0, we need to prove that

m∑
n=0

(m+ n)!

(2n)!!
= (2m)!!

for all m ≥ 0. If m = 0, then both sides are 1. Suppose that equality holds
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for m. Then

m+1∑
n=0

(m+ n+ 1)!

(2n)!!
=

m+1∑
n=0

(m+ n)!

(2n)!!
(m+ n+ 1)

= (m+ 1)
m+1∑
n=0

(m+ n)!

(2n)!!
+

1

2

m+1∑
n=1

(m+ n)!

(2n− 2)!!

= (m+ 1)

(
(2m)!! +

(2m+ 1)!

(2m+ 2)!!

)
+

1

2

m∑
n=0

(m+ n+ 1)!

(2n)!!

=
(2m+ 2)!!

2
+

1

2

m+1∑
n=0

(m+ n+ 1)!

(2n)!!
,

from which it follows that

m+1∑
n=0

(m+ n+ 1)!

(2n)!!
= (2m+ 2)!!.

Therefore equality holds for m+ 1 as well. Hence P0 has been verified.
Now suppose that Pl is true. Let m ≥ l + 1. Since

(m− l + n+ 1)!

(m− l − n+ 1)!
− (m− l + n− 1)!

(m− l − n− 1)!

=
(m− l + n− 1)!

(m− l − n+ 1)!

(
(m− l + n)(m− l + n+ 1)− (m− l − n)(m− l − n+ 1)

)
=

(m− l + n− 1)!

(m− l − n+ 1)!
· 2n(2m− 2l + 1)

for 0 ≤ n ≤ m− l − 1, we have

m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n− 1)!(2n)!!

=
m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n+ 1)!

(m− l − n+ 1)!(2n)!!

−
m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n+ 1)!(2n)!!
2n(2m− 2l + 1).
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The inductive hypothesis shows that

m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n+ 1)!

(m− l − n+ 1)!(2n)!!

=
m−l+1∑
n=0

(m+ l − n+ 1)!(m− l + n+ 1)!

(m− l − n+ 1)!(2n)!!

− (2l + 1)!(2m− 2l + 1)!

1!(2m− 2l)!!
− (2l)!(2m− 2l + 2)!

0!(2m− 2l + 2)!!

= (2l − 1)!!(2m+ 2)!!− (2l + 1)!(2m− 2l + 1)!

(2m− 2l)!!
− (2l)!(2m− 2l + 1)!

(2m− 2l)!!

and that
m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n+ 1)!(2n)!!
2n(2m− 2l + 1)

= (2m− 2l + 1)
m−l−1∑
n=1

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n+ 1)!(2n− 2)!!

= (2m− 2l + 1)
m−l−2∑
n=0

(m+ l − n)!(m− l + n)!

(m− l − n)!(2n)!!

= (2m− 2l + 1)

(
(2l − 1)!!(2m)!!− (2l + 1)!(2m− 2l − 1)!

1!(2m− 2l − 2)!!
− (2l)!(2m− 2l)!

0!(2m− 2l)!!

)
= (2l − 1)!!(2m+ 2)!!− (2l + 1)!!(2m)!!− (2l + 1)!(2m− 2l + 1)!

(2m− 2l)!!

− (2l)!(2m− 2l + 1)!

(2m− 2l)!!
.

Therefore we have
m−l−1∑
n=0

(m+ l − n+ 1)!(m− l + n− 1)!

(m− l − n− 1)!(2n)!!
= (2l + 1)!!(2m)!!,

as required.

Proposition 3.10. For every N ∈ N, we have

A =
1

2π

√
(1 + ρ)3

1− ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2

(
N−1∑
n=0

ans
−2n−2 +O(s−2N−2)

)
.

13



Proof. Lemmas 3.5 and 3.8 show that

(−1)KA > (−1)K
β

π
e−s2/2

K−1∑
n=0

bn

∫ ∞

αs/β

(αw + βs)−2n−1e−w2/2 dw

> (−1)K
β

π
e−s2/2e−α2s2/2β2

×
∑

0≤n≤K−1
0≤j≤k≤K−1

(−1)n+k(2n− 1)!!rj,k,2n+1α
−2k+2j−1β2n+2k+2s−2n−2k−2

for every K ∈ N.
Now let N ∈ N. If K ≥ N , then∑

0≤n≤K−1
0≤j≤k≤K−1

(−1)n+k(2n− 1)!!rj,k,2n+1α
−2k+2j−1β2n+2k+2s−2n−2k−2

=
N−1∑
m=0

(−1)mβ2m+2s−2m−2
∑

n≥0, 0≤j≤k
n+k=m

(2n− 1)!!rj,k,2n+1α
−2k+2j−1 +O(s−2N−2)

=
N−1∑
m=0

(−1)mβ2m+2s−2m−2

m∑
l=0

α−2l−1

m−l∑
n=0

(2n− 1)!!rm−l−n,m−n,2n+1 +O(s−2N−2)

=
N−1∑
m=0

(−1)mβ2m+2s−2m−2

m∑
l=0

1

(2l)!!
α−2l−1

m−l∑
n=0

(m+ l − n)!(m− l + n)!

(m− l − n)!(2n)!!
+O(s−2N−2)

=
N−1∑
m=0

(−1)m(2m)!!

(
m∑
l=0

(2l − 1)!!

(2l)!!
α−2l−1

)
β2m+2s−2m−2 +O(s−2N−2)
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by Lemma 3.9, and so

(−1)KA > (−1)K
β

π
e−s2/2e−α2s2/2β2

×

(
N−1∑
m=0

(−1)m(2m)!!

(
m∑
l=0

(2l − 1)!!

(2l)!!
α−2l−1

)
β2m+2s−2m−2 +O(s−2N−2)

)

= (−1)K
1

2π

√
(1 + ρ)3

1− ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2

×

(
N−1∑
m=0

(−1)m
(2m)!!

2m
(1 + ρ)m

(
m∑
l=0

(2l − 1)!!

(2l)!!/2l
(1− ρ)−l

)
s−2m−2 +O(s−2N−2)

)

= (−1)K
1

2π

√
(1 + ρ)3

1− ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2

(
N−1∑
m=0

ams
−2m−2 +O(s−2N−2)

)
.

By taking an odd K and an even K, we may obtain the proposition.

3.3. Proof of the main theorem

Proof (of Theorem 2.3). By Propositions 3.2 and 3.10, we have

λ(t) =
A

B
=

1
2π

√
(1+ρ)3

1−ρ
e−s2/2e−

1−ρ
2(1+ρ)

s2(∑N−1
n=0 ans

−2n−2 +O(s−2N−2)
)

1√
2π
e−s2/2

(∑N−1
n=0 bns−2n−1 +O(s−2N−1)

)
=

√
(1 + ρ)3

2π(1− ρ)
s−1e−

1−ρ
2(1+ρ)

s2
∑N−1

n=0 ans
−2n +O(s−2N)∑N−1

n=0 bns−2n +O(s−2N)

=

√
(1 + ρ)3

2π(1− ρ)
s−1e−

1−ρ
2(1+ρ)

s2

(
N−1∑
n=0

cns
−2n +O(s−2N)

)

=

√
(1 + ρ)3

2π(1− ρ)
e−

1−ρ
2(1+ρ)

s2

(
N−1∑
n=0

cns
−2n−1 +O(s−2N−1)

)
.
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