Asymptotic tail dependence of the normal copula

Kondo，Hiroki
Nisshin Fire \＆Marine Insurance Company，Limited
Saito，Shingo
Faculty of Mathematics，Kyushu University
Taniguchi，Setsuo
Faculty of Mathematics，Kyushu University
https：／／hdl．handle．net／2324／18972

出版情報：MI Preprint Series．2011－2，2011－02－15．九州大学大学院数理学研究院
バージョン：
権利関係：

MI Preprint Series

Kyushu University
The Global COE Program
Math-for-Industry Education \& Research Hub

Asymptotic tail dependence of the normal copula

Hiroki Kondo, Shingo Saito \& Setsuo Taniguchi

MI 2011-2
(Received February 15, 2011)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Asymptotic tail dependence of the normal copula

Hiroki Kondo ${ }^{\text {a }}$, Shingo Saito ${ }^{\text {b,* }}$, Setsuo Taniguchi ${ }^{\text {b }}$
${ }^{a}$ Nisshin Fire $\xi^{\mathcal{G}}$ Marine Insurance Company, Limited, 2-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8329, Japan.
${ }^{b}$ Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Abstract

Copulas have lately attracted much attention as a tool for dealing with multiple risks that cannot be considered independent. The normal copula, widely used in practice, is known to have the same tail dependence parameter as the product copula. The present paper brings into question the common interpretation of this fact as evidence that the normal copula lacks tail dependence, both by providing numerical examples and by mathematically determining the asymptotic behaviour of the tail dependence.

Keywords: copula, normal copula, tail dependence.
JEL: C16.
2010 MSC: 62H20 (primary), 62P05 (secondary).

1. Introduction

1.1. Copulas

Copulas have gained increasing popularity in risk management as a tool for investigating dependent risks. We begin by reviewing rudimentary definitions and facts on copulas. See Nelsen (2006) for further reference.

Definition 1.1. A copula is $C:[0,1]^{2} \rightarrow[0,1]$ with the following properties:
(1) $C(u, 0)=C(0, v)=0, C(u, 1)=u$, and $C(1, v)=v$ for all $u, v \in[0,1]$;

[^0](2) if $0 \leq u_{1} \leq u_{2} \leq 1$ and $0 \leq v_{1} \leq v_{2} \leq 1$, then $C\left(u_{2}, v_{2}\right)-C\left(u_{1}, v_{2}\right)-$ $C\left(u_{2}, v_{1}\right)+C\left(u_{1}, v_{1}\right) \geq 0$.

Example 1.2. The function $C(u, v)=u v$ is a copula and called the product copula.

For a bivariate random variable (X, Y), let F_{X} and F_{Y} denote the marginal distribution functions and let $F_{X, Y}$ denote the joint distribution function: $F_{X}(x)=P(X \leq x), F_{Y}(y)=P(Y \leq y)$, and $F_{X, Y}(x, y)=P(X \leq x, Y \leq y)$ for $x, y \in \mathbb{R}$. We say that (X, Y) is continuous if F_{X} and F_{Y} are both continuous.

Theorem 1.3 (Sklar). If (X, Y) is a continuous bivariate random variable, then there exists a unique copula $C_{X, Y}$ such that

$$
F_{X, Y}(x, y)=C_{X, Y}\left(F_{X}(x), F_{Y}(y)\right)
$$

for all $x, y \in \mathbb{R}$.
Example 1.4. The independence of X and Y is equivalent to $C_{X, Y}$ being the product copula.

Remark 1.5. If we write $F^{-1}(u)=\inf \{x \in \mathbb{R} \mid F(x) \geq u\}$ for univariate distribution functions F, we have $C_{X, Y}(u, v)=F_{X, Y}\left(F_{X}^{-1}(u), F_{Y}^{-1}(v)\right)$.

In this paper, the focus will be on the normal copula:
Definition 1.6. Let $-1<\rho<1$. If (X, Y) is a normally distributed bivariate random variable such that $E[X]=E[Y]=0, V(X)=V(Y)=1$, and $\operatorname{Cov}(X, Y)=\rho$, then $C_{X, Y}$ is called the normal copula (or Gaussian copula) with correlation ρ and denoted by C_{ρ}.

1.2. Tail dependence of copulas

Definition 1.7. Let C be a copula. We define $\lambda_{C}:(0,1) \rightarrow[0,1]$ by

$$
\lambda_{C}(t)=\frac{1-2 t+C(t, t)}{1-t}
$$

We call $\lim _{t \neq 1} \lambda_{C}(t)$ the upper tail dependence parameter of C, if it exists.

	Product copula	Normal copula C_{ρ} with $\rho=0.5$
$t=0.8$	0.2000	0.4358
$t=0.9$	0.1000	0.3240
$t=0.95$	0.0500	0.2438
$t=0.99$	0.0100	0.1294
$t=0.995$	0.0050	0.0993
$t=0.999$	0.0010	0.0543

Table 1: Upper tail dependence $\lambda_{C}(t)$ of the product and normal copulas

Remark 1.8. If (X, Y) is a continuous bivariate random variable, then

$$
\begin{aligned}
\lambda_{C_{X, Y}}(t) & =\frac{1-P\left(X \leq F_{X}^{-1}(t)\right)-P\left(Y \leq F_{Y}^{-1}(t)\right)+P\left(X \leq F_{X}^{-1}(t), Y \leq F_{Y}^{-1}(t)\right)}{1-P\left(X \leq F_{X}^{-1}(t)\right)} \\
& =\frac{P\left(X>F_{X}^{-1}(t), Y>F_{Y}^{-1}(t)\right)}{P\left(X>F_{X}^{-1}(t)\right)} \\
& =P\left(Y>F_{Y}^{-1}(t) \mid X>F_{X}^{-1}(t)\right) .
\end{aligned}
$$

Example 1.9. If C is the product copula, then $\lambda_{C}(t)=1-t \rightarrow 0$ as $t \nearrow 1$.
The normal copula is known to have upper tail dependence parameter 0 :
Proposition 1.10. The normal copula with arbitrary correlation $\rho \in(-1,1)$ has upper tail dependence parameter 0 .

This proposition, with Example 1.9 in mind, is often interpreted to mean that the normal copula exhibits no tail dependence. However, Table 1 suggests that the product and normal copulas have different rates at which $\lambda_{C}(t)$ converges to 0 . The purpose of this paper is to completely describe how $\lambda_{C_{\rho}}(t)$ converges to 0 .

Now we state a particular case of our main theorem, of which the complete statement will be given in Section 2 (Theorem 2.3).

Theorem 1.11. We have

$$
\lambda_{C_{\rho}}(t)=\sqrt{\frac{(1+\rho)^{3}}{2 \pi(1-\rho)}} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}}\left(s^{-1}-\frac{1+2 \rho-\rho^{2}}{1-\rho} s^{-3}+O\left(s^{-5}\right)\right)
$$

as $t \nearrow 1$, where $s=\Phi^{-1}(t) \nearrow \infty$, with Φ denoting the distribution function of the standard normal distribution: $t=\Phi(s)=(2 \pi)^{-1 / 2} \int_{-\infty}^{s} \exp \left(-x^{2} / 2\right) d x$.

Remark 1.12. By using Proposition 3.2, we may infer from Theorem 1.11 that the leading behaviour of $\lambda_{C_{\rho}}(t)$ is

$$
\begin{aligned}
\lambda_{C_{\rho}}(t) & \sim \sqrt{\frac{(1+\rho)^{3}}{2 \pi(1-\rho)}} e^{-\frac{1-\rho}{2(1+\rho)^{2}} s^{2}} s^{-1} \\
& \sim(4 \pi)^{-\frac{\rho}{1+\rho}} \sqrt{\frac{(1+\rho)^{3}}{1-\rho}}(1-t)^{\frac{1-\rho}{1+\rho}}(-\log (1-t))^{-\frac{\rho}{1+\rho}} .
\end{aligned}
$$

Note that Heffernan (2000) mentions the order $(1-t)^{(1-\rho) /(1+\rho)}$ in a different language.

2. Precise statement of the main theorem

This section is devoted to giving the precise statement of our main theorem. Henceforth we fix a real number ρ with $-1<\rho<1$ and denote $\lambda_{C_{\rho}}(t)$ simply by $\lambda(t)$.

Definition 2.1. We define sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ of real numbers by

$$
\begin{aligned}
& a_{n}=(-1)^{n} n!(1+\rho)^{n} \sum_{l=0}^{n} \frac{(2 l-1)!!}{l!}(1-\rho)^{-l}, \\
& b_{n}=(-1)^{n}(2 n-1)!!
\end{aligned}
$$

where $(-1)!!=1$ by definition. We further define a sequence $\left(c_{n}\right)_{n \geq 0}$ of real numbers by the following equation between formal power series in X :

$$
\sum_{n=0}^{\infty} c_{n} X^{n}=\frac{\sum_{n=0}^{\infty} a_{n} X^{n}}{\sum_{n=0}^{\infty} b_{n} X^{n}} \in \mathbb{R}[[X]] .
$$

In other words, we define $\left(c_{n}\right)_{n \geq 0}$ recursively by setting $c_{0}=a_{0} / b_{0}$ and

$$
c_{n}=\frac{1}{b_{0}}\left(a_{n}-\sum_{k=0}^{n-1} b_{n-k} c_{k}\right)
$$

for $n \geq 1$.

Example 2.2. The first three terms of the sequences are as follows:

$$
\begin{array}{lll}
a_{0}=1, & a_{1}=-(1+\rho)\left(1+\frac{1}{1-\rho}\right), & a_{2}=(1+\rho)^{2}\left(2+\frac{2}{1-\rho}+\frac{3}{(1-\rho)^{2}}\right) \\
b_{0}=1, & b_{1}=-1, & b_{2}=3 \\
c_{0}=1, & c_{1}=-\frac{1+2 \rho-\rho^{2}}{1-\rho}, & c_{2}=\frac{3+13 \rho-3 \rho^{2}-3 \rho^{3}+2 \rho^{4}}{(1-\rho)^{2}}
\end{array}
$$

Now our main theorem goes as follows:
Theorem 2.3 (Main Theorem). For every positive integer N, we have

$$
\lambda(t)=\sqrt{\frac{(1+\rho)^{3}}{2 \pi(1-\rho)}} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}}\left(\sum_{n=0}^{N-1} c_{n} s^{-2 n-1}+O\left(s^{-2 N-1}\right)\right)
$$

as $t \nearrow 1$, where $s=\Phi^{-1}(t) \nearrow \infty$.
Remark 2.4. Theorem 1.11 is the $N=2$ case of our main theorem.

3. Proof of the main theorem

Let $1 / 2<t<1$ and put $s=\Phi^{-1}(t)>0$. If we set

$$
\begin{aligned}
& A=\int_{s}^{\infty} \int_{s}^{\infty} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right) d x d y \\
& B=\int_{s}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x
\end{aligned}
$$

then $\lambda(t)=A / B$ by Remark 1.8. We shall estimate A and B separately.
Let $\mathbb{R}_{+}, \mathbb{N}_{0}$, and \mathbb{N} denote the sets of positive real numbers, nonnegative integers, and positive integers, respectively.

3.1. Estimate of B

Proposition 3.1. If $\theta \in \mathbb{R}_{+}$and $N \in \mathbb{N}$, then

$$
(-1)^{N} \int_{\theta}^{\infty} e^{-x^{2} / 2} d x>(-1)^{N} e^{-\theta^{2} / 2} \sum_{n=0}^{N-1} b_{n} \theta^{-2 n-1}
$$

Proof. For $n \in \mathbb{N}_{0}$, set

$$
I_{n}=\int_{\theta}^{\infty} x^{-n} e^{-x^{2} / 2} d x
$$

Then the left-hand side of the required inequality is $(-1)^{N} I_{0}$.
Since integration by parts gives

$$
\begin{aligned}
I_{n} & =-\int_{\theta}^{\infty} x^{-n-1}\left(e^{-x^{2} / 2}\right)^{\prime} d x \\
& =-\left[x^{-n-1} e^{-x^{2} / 2}\right]_{\theta}^{\infty}+\int_{\theta}^{\infty}(-n-1) x^{-n-2} e^{-x^{2} / 2} d x \\
& =\theta^{-n-1} e^{-\theta^{2} / 2}-(n+1) I_{n+2},
\end{aligned}
$$

we have

$$
\begin{aligned}
(-1)^{N} e^{-\theta^{2} / 2} \sum_{n=0}^{N-1} b_{n} \theta^{-2 n-1} & =\sum_{n=0}^{N-1}(-1)^{N+n}(2 n-1)!!\theta^{-2 n-1} e^{-\theta^{2} / 2} \\
& =\sum_{n=0}^{N-1}(-1)^{N+n}(2 n-1)!!\left(I_{2 n}+(2 n+1) I_{2 n+2}\right) \\
& =\sum_{n=0}^{N-1}\left((-1)^{N+n}(2 n-1)!!I_{2 n}-(-1)^{N+n+1}(2 n+1)!!I_{2 n+2}\right) \\
& =(-1)^{N} I_{0}-(2 N-1)!!I_{2 N} \\
& <(-1)^{N} I_{0} .
\end{aligned}
$$

Proposition 3.2. For every $N \in \mathbb{N}$, we have

$$
B=\frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2}\left(\sum_{n=0}^{N-1} b_{n} s^{-2 n-1}+O\left(s^{-2 N-1}\right)\right)
$$

as $s \nearrow \infty$.
Proof. If N^{\prime} is an even integer with $N^{\prime} \geq N$, then Proposition 3.1 shows that

$$
B>\frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2} \sum_{n=0}^{N^{\prime}-1} b_{n} s^{-2 n-1}=\frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2}\left(\sum_{n=0}^{N-1} b_{n} s^{-2 n-1}+O\left(s^{-2 N-1}\right)\right)
$$

By taking N^{\prime} to be an odd integer with $N^{\prime} \geq N$, we may similarly obtain

$$
B<\frac{1}{\sqrt{2 \pi}} e^{-s^{2} / 2}\left(\sum_{n=0}^{N-1} b_{n} s^{-2 n-1}+O\left(s^{-2 N-1}\right)\right)
$$

The proposition follows from these estimates.

3.2. Estimate of A

Definition 3.3. We set $\alpha=\sqrt{(1-\rho) / 2}$ and $\beta=\sqrt{(1+\rho) / 2}$, so that α and β are positive real numbers with $\alpha^{2}+\beta^{2}=1$.

Lemma 3.4. We have

$$
A=\frac{\beta}{\pi} e^{-s^{2} / 2} \int_{\alpha s / \beta}^{\infty}\left(\int_{\alpha w+\beta s}^{\infty} e^{-z^{2} / 2} d z\right) e^{(\alpha w+\beta s)^{2} / 2} e^{-w^{2} / 2} d w
$$

Proof. Symmetry gives

$$
\begin{aligned}
A & =2 \iint_{x \geq y \geq s} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right) d x d y \\
& =\frac{1}{2 \pi \alpha \beta} \iint_{x \geq y \geq s} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right) d x d y .
\end{aligned}
$$

We use the change of variables

$$
\binom{x}{y}=\binom{\beta z+\alpha \beta w-\alpha^{2} s}{\beta z-\alpha \beta w+\alpha^{2} s} \Longleftrightarrow\binom{z}{w}=\binom{(x+y) / 2 \beta}{(x-y) / 2 \alpha \beta+\alpha s / \beta} .
$$

Since

$$
\begin{aligned}
x \geq y \geq s & \Longleftrightarrow \beta z+\alpha \beta w-\alpha^{2} s \geq \beta z-\alpha \beta w+\alpha^{2} s \geq s \\
& \Longleftrightarrow w \geq \alpha s / \beta, z \geq \alpha w+\beta s
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)} & =\frac{(x+y)^{2}}{4(1+\rho)}+\frac{(x-y)^{2}}{4(1-\rho)}=\frac{(2 \beta z)^{2}}{8 \beta^{2}}+\frac{\left(2 \alpha \beta w-2 \alpha^{2} s\right)^{2}}{8 \alpha^{2}} \\
& =\frac{z^{2}}{2}+\frac{(\beta w-\alpha s)^{2}}{2}=\frac{z^{2}}{2}-\frac{(\alpha w+\beta s)^{2}}{2}+\frac{w^{2}+s^{2}}{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
A & =\frac{1}{2 \pi \alpha \beta} \int_{\alpha s / \beta}^{\infty} \int_{\alpha w+\beta s}^{\infty} \exp \left(-\frac{z^{2}}{2}+\frac{(\alpha w+\beta s)^{2}}{2}-\frac{w^{2}+s^{2}}{2}\right)\left|\operatorname{det}\left(\begin{array}{cc}
\beta & \alpha \beta \\
\beta & -\alpha \beta
\end{array}\right)\right| d z d w \\
& =\frac{\beta}{\pi} e^{-s^{2} / 2} \int_{\alpha s / \beta}^{\infty}\left(\int_{\alpha w+\beta s}^{\infty} e^{-z^{2} / 2} d z\right) e^{(\alpha w+\beta s)^{2} / 2} e^{-w^{2} / 2} d w .
\end{aligned}
$$

Lemma 3.5. For every $K \in \mathbb{N}$, we have

$$
(-1)^{K} A>(-1)^{K} \frac{\beta}{\pi} e^{-s^{2} / 2} \sum_{n=0}^{K-1} b_{n} \int_{\alpha s / \beta}^{\infty}(\alpha w+\beta s)^{-2 n-1} e^{-w^{2} / 2} d w .
$$

Proof. Lemma 3.4 and Proposition 3.1 show that

$$
\begin{aligned}
(-1)^{K} A & =\frac{\beta}{\pi} e^{-s^{2} / 2} \int_{\alpha s / \beta}^{\infty}\left((-1)^{K} \int_{\alpha w+\beta s}^{\infty} e^{-z^{2} / 2} d z\right) e^{(\alpha w+\beta s)^{2} / 2} e^{-w^{2} / 2} d w \\
& >\frac{\beta}{\pi} e^{-s^{2} / 2} \int_{\alpha s / \beta}^{\infty}(-1)^{K}\left(\sum_{n=0}^{K-1} b_{n}(\alpha w+\beta s)^{-2 n-1}\right) e^{-w^{2} / 2} d w \\
& =(-1)^{K} \frac{\beta}{\pi} e^{-s^{2} / 2} \sum_{n=0}^{K-1} b_{n} \int_{\alpha s / \beta}^{\infty}(\alpha w+\beta s)^{-2 n-1} e^{-w^{2} / 2} d w .
\end{aligned}
$$

Definition 3.6. For $n \in \mathbb{N}$ and $j, k \in \mathbb{N}_{0}$ with $j \leq k$, we define

$$
r_{j, k, n}=\frac{(2 k-j)!(n+j-1)!}{(2 k-2 j)!!j!(n-1)!} .
$$

Lemma 3.7. If $n \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$, then we have the following:
(1) $r_{0, k+1, n}=r_{0, k, n}(2 k+1)$.
(2) $r_{k+1, k+1, n}=r_{k, k, n}(n+k)$.
(3) $r_{j, k+1, n}=r_{j, k, n}(2 k-j+1)+r_{j-1, k, n}(n+j-1)$ for $j=1, \ldots, k$.

Proof. (1) We have

$$
r_{0, k, n}(2 k+1)=\frac{(2 k)!}{(2 k)!!}(2 k+1)=\frac{(2 k+2)!}{(2 k+2)!!}=r_{0, k+1, n} .
$$

(2) We have

$$
r_{k, k, n}(n+k)=\frac{(n+k-1)!}{(n-1)!}(n+k)=\frac{(n+k)!}{(n-1)!}=r_{k+1, k+1, n} .
$$

(3) We have

$$
\begin{aligned}
& r_{j, k, n}(2 k-j+1)+r_{j-1, k, n}(n+j-1) \\
& =\frac{(2 k-j)!(n+j-1)!}{(2 k-2 j)!!j!(n-1)!}(2 k-j+1) \\
& \quad \quad \quad+\frac{(2 k-j+1)!(n+j-2)!}{(2 k-2 j+2)!!(j-1)!(n-1)!}(n+j-1) \\
& = \\
& \quad \frac{(2 k-j+1)!(n+j-1)!}{(2 k-2 j+2)!!j!(n-1)!}((2 k-2 j+2)+j) \\
& = \\
& =\frac{(2 k-j+2)!(n+j-1)!}{(2 k-2 j+2)!!j!(n-1)!} \\
& =
\end{aligned}
$$

Lemma 3.8. If $n, K \in \mathbb{N}$, then

$$
\begin{aligned}
& (-1)^{K} \int_{\alpha s / \beta}^{\infty}(\alpha w+\beta s)^{-n} e^{-w^{2} / 2} d w \\
& \quad>(-1)^{K} \sum_{0 \leq j \leq k \leq K-1}(-1)^{k} r_{j, k, n} \alpha^{-2 k+2 j-1} \beta^{n+2 k+1} s^{-n-2 k-1} e^{-\alpha^{2} s^{2} / 2 \beta^{2}} .
\end{aligned}
$$

Proof. Put $u=s / \beta$ for simplicity. For $m \in \mathbb{N}_{0}$ and $n \in \mathbb{N}$, set

$$
I_{m, n}=\int_{\alpha s / \beta}^{\infty} w^{-m}(\alpha w+\beta s)^{-n} e^{-w^{2} / 2} d w=\int_{\alpha u}^{\infty} w^{-m}\left(\alpha w+\beta^{2} u\right)^{-n} e^{-w^{2} / 2} d w
$$

Then what we need to show is that

$$
(-1)^{K} I_{0, n}>(-1)^{K} \sum_{k=0}^{K-1}(-1)^{k} \sum_{j=0}^{k} r_{j, k, n} \alpha^{-2 k+2 j-1} u^{-n-2 k-1} e^{-\alpha^{2} u^{2} / 2} .
$$

Since integration by parts gives

$$
\begin{aligned}
I_{m, n}= & -\int_{\alpha u}^{\infty} w^{-m-1}\left(\alpha w+\beta^{2} u\right)^{-n}\left(e^{-w^{2} / 2}\right)^{\prime} d w \\
= & -\left[w^{-m-1}\left(\alpha w+\beta^{2} u\right)^{-n} e^{-w^{2} / 2}\right]_{\alpha u}^{\infty} \\
& +\int_{\alpha u}^{\infty}\left((-m-1) w^{-m-2}\left(\alpha w+\beta^{2} u\right)^{-n}+w^{-m-1}(-\alpha n)\left(\alpha w+\beta^{2} u\right)^{-n-1}\right) e^{-w^{2} / 2} d w \\
= & \alpha^{-m-1} u^{-m-n-1} e^{-\alpha^{2} u^{2} / 2}-(m+1) I_{m+2, n}-\alpha n I_{m+1, n+1}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \sum_{j=0}^{k} r_{j, k, n} \alpha^{j}\left(\alpha^{-2 k+j-1} u^{-n-2 k-1} e^{-\alpha^{2} u^{2} / 2}-I_{2 k-j, n+j}\right) \\
& \quad=\sum_{j=0}^{k} r_{j, k, n} \alpha^{j}\left((2 k-j+1) I_{2 k-j+2, n+j}+\alpha(n+j) I_{2 k-j+1, n+j+1}\right) \\
& \quad=\sum_{j=0}^{k} r_{j, k, n} \alpha^{j}(2 k-j+1) I_{2 k-j+2, n+j}+\sum_{j=1}^{k+1} r_{j-1, k, n} \alpha^{j}(n+j-1) I_{2 k-j+2, n+j} \\
& \quad=\sum_{j=0}^{k+1} r_{j, k+1, n} \alpha^{j} I_{2 k-j+2, n+j}
\end{aligned}
$$

by Lemma 3.7. It follows that

$$
\begin{aligned}
& (-1)^{K} \sum_{k=0}^{K-1}(-1)^{k} \sum_{j=0}^{k} r_{j, k, n} \alpha^{-2 k+2 j-1} u^{-n-2 k-1} e^{-\alpha^{2} u^{2} / 2} \\
& \quad=(-1)^{K} \sum_{k=0}^{K-1}(-1)^{k}\left(\sum_{j=0}^{k} r_{j, k, n} \alpha^{j} I_{2 k-j, n+j}+\sum_{j=0}^{k+1} r_{j, k+1, n} \alpha^{j} I_{2 k-j+2, n+j}\right) \\
& \quad=(-1)^{K} \sum_{k=0}^{K-1}\left((-1)^{k} \sum_{j=0}^{k} r_{j, k, n} \alpha^{j} I_{2 k-j, n+j}-(-1)^{k+1} \sum_{j=0}^{k+1} r_{j, k+1, n} \alpha^{j} I_{2 k-j+2, n+j}\right) \\
& \quad=(-1)^{K}\left(r_{0,0, n} I_{0, n}-(-1)^{K} \sum_{j=0}^{K} r_{j, K, n} \alpha^{j} I_{2 K-j, n+j}\right) \\
& \quad=(-1)^{K} I_{0, n}-\sum_{j=0}^{K} r_{j, K, n} \alpha^{j} I_{2 K-j, n+j} \\
& \quad<(-1)^{K} I_{0, n} .
\end{aligned}
$$

Lemma 3.9. If l and m are integers with $0 \leq l \leq m$, then

$$
\sum_{n=0}^{m-l} \frac{(m+l-n)!(m-l+n)!}{(m-l-n)!(2 n)!!}=(2 l-1)!!(2 m)!!
$$

Proof. For each $l \in \mathbb{N}_{0}$, let P_{l} be the statement that the lemma is true for all $m \geq l$. We shall prove P_{l} by induction on l.

To establish P_{0}, we need to prove that

$$
\sum_{n=0}^{m} \frac{(m+n)!}{(2 n)!!}=(2 m)!!
$$

for all $m \geq 0$. If $m=0$, then both sides are 1 . Suppose that equality holds
for m. Then

$$
\begin{aligned}
\sum_{n=0}^{m+1} \frac{(m+n+1)!}{(2 n)!!} & =\sum_{n=0}^{m+1} \frac{(m+n)!}{(2 n)!!}(m+n+1) \\
& =(m+1) \sum_{n=0}^{m+1} \frac{(m+n)!}{(2 n)!!}+\frac{1}{2} \sum_{n=1}^{m+1} \frac{(m+n)!}{(2 n-2)!!} \\
& =(m+1)\left((2 m)!!+\frac{(2 m+1)!}{(2 m+2)!!}\right)+\frac{1}{2} \sum_{n=0}^{m} \frac{(m+n+1)!}{(2 n)!!} \\
& =\frac{(2 m+2)!!}{2}+\frac{1}{2} \sum_{n=0}^{m+1} \frac{(m+n+1)!}{(2 n)!!}
\end{aligned}
$$

from which it follows that

$$
\sum_{n=0}^{m+1} \frac{(m+n+1)!}{(2 n)!!}=(2 m+2)!!
$$

Therefore equality holds for $m+1$ as well. Hence P_{0} has been verified.
Now suppose that P_{l} is true. Let $m \geq l+1$. Since

$$
\begin{aligned}
& \frac{(m-l+n+1)!}{(m-l-n+1)!}-\frac{(m-l+n-1)!}{(m-l-n-1)!} \\
& \quad=\frac{(m-l+n-1)!}{(m-l-n+1)!}((m-l+n)(m-l+n+1)-(m-l-n)(m-l-n+1)) \\
& \quad=\frac{(m-l+n-1)!}{(m-l-n+1)!} \cdot 2 n(2 m-2 l+1)
\end{aligned}
$$

for $0 \leq n \leq m-l-1$, we have

$$
\begin{aligned}
\sum_{n=0}^{m-l-1} & \frac{(m+l-n+1)!(m-l+n-1)!}{(m-l-n-1)!(2 n)!!} \\
& =\sum_{n=0}^{m-l-1} \frac{(m+l-n+1)!(m-l+n+1)!}{(m-l-n+1)!(2 n)!!} \\
& \quad-\sum_{n=0}^{m-l-1} \frac{(m+l-n+1)!(m-l+n-1)!}{(m-l-n+1)!(2 n)!!} 2 n(2 m-2 l+1) .
\end{aligned}
$$

The inductive hypothesis shows that

$$
\begin{aligned}
\sum_{n=0}^{m-l-1} & \frac{(m+l-n+1)!(m-l+n+1)!}{(m-l-n+1)!(2 n)!!} \\
= & \sum_{n=0}^{m-l+1} \frac{(m+l-n+1)!(m-l+n+1)!}{(m-l-n+1)!(2 n)!!} \\
& \quad-\frac{(2 l+1)!(2 m-2 l+1)!}{1!(2 m-2 l)!!}-\frac{(2 l)!(2 m-2 l+2)!}{0!(2 m-2 l+2)!!} \\
& =(2 l-1)!!(2 m+2)!!-\frac{(2 l+1)!(2 m-2 l+1)!}{(2 m-2 l)!!}-\frac{(2 l)!(2 m-2 l+1)!}{(2 m-2 l)!!}
\end{aligned}
$$

and that

$$
\begin{aligned}
\sum_{n=0}^{m-l-1} & \frac{(m+l-n+1)!(m-l+n-1)!}{(m-l-n+1)!(2 n)!!} 2 n(2 m-2 l+1) \\
= & (2 m-2 l+1) \sum_{n=1}^{m-l-1} \frac{(m+l-n+1)!(m-l+n-1)!}{(m-l-n+1)!(2 n-2)!!} \\
= & (2 m-2 l+1) \sum_{n=0}^{m-l-2} \frac{(m+l-n)!(m-l+n)!}{(m-l-n)!(2 n)!!} \\
= & (2 m-2 l+1)\left((2 l-1)!!(2 m)!!-\frac{(2 l+1)!(2 m-2 l-1)!}{1!(2 m-2 l-2)!!}-\frac{(2 l)!(2 m-2 l)!}{0!(2 m-2 l)!!}\right) \\
= & (2 l-1)!!(2 m+2)!!-(2 l+1)!!(2 m)!!-\frac{(2 l+1)!(2 m-2 l+1)!}{(2 m-2 l)!!} \\
& \quad-\frac{(2 l)!(2 m-2 l+1)!}{(2 m-2 l)!!} .
\end{aligned}
$$

Therefore we have

$$
\sum_{n=0}^{m-l-1} \frac{(m+l-n+1)!(m-l+n-1)!}{(m-l-n-1)!(2 n)!!}=(2 l+1)!!(2 m)!!,
$$

as required.
Proposition 3.10. For every $N \in \mathbb{N}$, we have

$$
A=\frac{1}{2 \pi} \sqrt{\frac{(1+\rho)^{3}}{1-\rho}} e^{-s^{2} / 2} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}}\left(\sum_{n=0}^{N-1} a_{n} s^{-2 n-2}+O\left(s^{-2 N-2}\right)\right) .
$$

Proof. Lemmas 3.5 and 3.8 show that

$$
\begin{aligned}
&(-1)^{K} A>(-1)^{K} \frac{\beta}{\pi} e^{-s^{2} / 2} \sum_{n=0}^{K-1} b_{n} \int_{\alpha s / \beta}^{\infty}(\alpha w+\beta s)^{-2 n-1} e^{-w^{2} / 2} d w \\
&>(-1)^{K} \frac{\beta}{\pi} e^{-s^{2} / 2} e^{-\alpha^{2} s^{2} / 2 \beta^{2}} \\
& \times \sum_{\substack{0 \leq n \leq K-1 \\
0 \leq j \leq k \leq K-1}}(-1)^{n+k}(2 n-1)!!r_{j, k, 2 n+1} \alpha^{-2 k+2 j-1} \beta^{2 n+2 k+2} s^{-2 n-2 k-2}
\end{aligned}
$$

for every $K \in \mathbb{N}$.
Now let $N \in \mathbb{N}$. If $K \geq N$, then

$$
\begin{aligned}
& \sum_{\substack{0 \leq n \leq K-1 \\
0 \leq j \leq k \leq K-1}}(-1)^{n+k}(2 n-1)!!r_{j, k, 2 n+1} \alpha^{-2 k+2 j-1} \beta^{2 n+2 k+2} s^{-2 n-2 k-2} \\
= & \sum_{m=0}^{N-1}(-1)^{m} \beta^{2 m+2} s^{-2 m-2} \sum_{\substack{n \geq 0,0 \leq j \leq k \\
n+k=m}}(2 n-1)!!r_{j, k, 2 n+1} \alpha^{-2 k+2 j-1}+O\left(s^{-2 N-2}\right) \\
= & \sum_{m=0}^{N-1}(-1)^{m} \beta^{2 m+2} s^{-2 m-2} \sum_{l=0}^{m} \alpha^{-2 l-1} \sum_{n=0}^{m-l}(2 n-1)!!r_{m-l-n, m-n, 2 n+1}+O\left(s^{-2 N-2}\right) \\
= & \sum_{m=0}^{N-1}(-1)^{m} \beta^{2 m+2} s^{-2 m-2} \sum_{l=0}^{m} \frac{1}{(2 l)!!} \alpha^{-2 l-1} \sum_{n=0}^{m-l} \frac{(m+l-n)!(m-l+n)!}{(m-l-n)!(2 n)!!}+O\left(s^{-2 N-2}\right) \\
= & \sum_{m=0}^{N-1}(-1)^{m}(2 m)!!\left(\sum_{l=0}^{m} \frac{(2 l-1)!!}{(2 l)!!} \alpha^{-2 l-1}\right) \beta^{2 m+2} s^{-2 m-2}+O\left(s^{-2 N-2}\right)
\end{aligned}
$$

by Lemma 3.9, and so

$$
\begin{aligned}
(-1)^{K} A> & (-1)^{K} \frac{\beta}{\pi} e^{-s^{2} / 2} e^{-\alpha^{2} s^{2} / 2 \beta^{2}} \\
& \times\left(\sum_{m=0}^{N-1}(-1)^{m}(2 m)!!\left(\sum_{l=0}^{m} \frac{(2 l-1)!!}{(2 l)!!} \alpha^{-2 l-1}\right) \beta^{2 m+2} s^{-2 m-2}+O\left(s^{-2 N-2}\right)\right) \\
= & (-1)^{K} \frac{1}{2 \pi} \sqrt{\frac{(1+\rho)^{3}}{1-\rho}} e^{-s^{2} / 2} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}} \\
& \times\left(\sum_{m=0}^{N-1}(-1)^{m} \frac{(2 m)!!}{2^{m}}(1+\rho)^{m}\left(\sum_{l=0}^{m} \frac{(2 l-1)!!}{(2 l)!!/ 2^{l}}(1-\rho)^{-l}\right) s^{-2 m-2}+O\left(s^{-2 N-2}\right)\right) \\
= & (-1)^{K} \frac{1}{2 \pi} \sqrt{\frac{(1+\rho)^{3}}{1-\rho}} e^{-s^{2} / 2} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}}\left(\sum_{m=0}^{N-1} a_{m} s^{-2 m-2}+O\left(s^{-2 N-2}\right)\right) .
\end{aligned}
$$

By taking an odd K and an even K, we may obtain the proposition.

3.3. Proof of the main theorem

Proof (of Theorem 2.3). By Propositions 3.2 and 3.10, we have

$$
\begin{aligned}
\lambda(t)=\frac{A}{B} & =\frac{\frac{1}{2 \pi} \sqrt{\frac{(1+\rho)^{3}}{1-\rho}} e^{-s^{2} / 2} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}}\left(\sum_{n=0}^{N-1} a_{n} s^{-2 n-2}+O\left(s^{-2 N-2}\right)\right)}{\sqrt{2 \pi}} e^{-s^{2} / 2}\left(\sum_{n=0}^{N-1} b_{n} s^{-2 n-1}+O\left(s^{-2 N-1}\right)\right) \\
& =\sqrt{\frac{(1+\rho)^{3}}{2 \pi(1-\rho)}} s^{-1} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}} \frac{\sum_{n=0}^{N-1} a_{n} s^{-2 n}+O\left(s^{-2 N}\right)}{\sum_{n=0}^{N-1} b_{n} s^{-2 n}+O\left(s^{-2 N}\right)} \\
& =\sqrt{\frac{(1+\rho)^{3}}{2 \pi(1-\rho)}} s^{-1} e^{-\frac{1-\rho}{2(1+\rho)} s^{2}}\left(\sum_{n=0}^{N-1} c_{n} s^{-2 n}+O\left(s^{-2 N}\right)\right) \\
& =\sqrt{\frac{(1+\rho)^{3}}{2 \pi(1-\rho)}} e^{-\frac{1-\rho}{2(1+\rho \rho} s^{2}}\left(\sum_{n=0}^{N-1} c_{n} s^{-2 n-1}+O\left(s^{-2 N-1}\right)\right) .
\end{aligned}
$$

References

[1] Heffernan, J. E. (2000). A directory of coefficients of tail dependence. Extremes, 3:3, 279-290.
[2] Nelsen, R. B. (2006). An introduction to copulas. Springer, New York.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a padic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI
Variable selection for functional regression model via the L_{1} regularization

MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric \mathbf{T}-functions of the q-Painlevé system of type $E_{8}^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force

MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI

Semi-supervised logistic discrimination via regularized Gaussian basis expansions

MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map

MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

```
MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
```

MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic three-space

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance

MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWA On asymptotic behaviors of solutions to parabolic systems modelling chemotaxis

MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKI Hecke's zeros and higher depth determinants

MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type

MI2009-33 Chikashi ARITA
Queueing process with excluded-volume effect

MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$

MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map

MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes

MI2009-37 Hiroki MASUDA
On statistical aspects in calibrating a geometric skewed stable asset price model

MI2010-1 Hiroki MASUDA
Approximate self-weighted LAD estimation of discretely observed ergodic OrnsteinUhlenbeck processes

MI2010-2 Reiichiro KAWAI \& Hiroki MASUDA
Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations

MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHI Hyper-parameter selection in Bayesian structural equation models

MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

MI2010-5 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and detecting change point via the relevance vector machine

MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHI
Semi-supervised logistic discrimination via graph-based regularization

MI2010-7 Teruhisa TSUDA
UC hierarchy and monodromy preserving deformation

MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments

Variable selection via the grouped weighted lasso for factor analysis models

MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems

MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates

MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight

MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency

MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE
On the classification of rank 2 almost Fano bundles on projective space

MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test
MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs
MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups
MI2010-24 Toshimitsu TAKAESU
A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators
MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling
MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA
Motion and Bäcklund transformations of discrete plane curves
MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves
MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions

Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$

MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms

MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide Fukumoto \& Alexander B. Samokhin
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki Kondo, Shingo Saito \& Setsuo Taniguchi
Asymptotic tail dependence of the normal copula

[^0]: *Corresponding author, Telephone: +81-92-802-4417, Fax: +81-92-802-4405
 Email addresses: hiroki.kondou@nisshinfire.co.jp (Hiroki Kondo),
 ssaito@math.kyushu-u.ac.jp (Shingo Saito), taniguch@math.kyushu-u.ac.jp (Setsuo Taniguchi)

