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Preface

This volume of Math-for-Industry Lecture Note Series is dedicated to Profes-
sor Izumi Ojima and Professor Kei-ichi Ito on the occasion of their sixtieth
birthdays.

Professor Izumi Ojima and Professor Kei-ichi Ito have organized a lot of
interesting and advanced conferences, e.g., RIMS conference, on quantum
field theory and related topics, and they have encouraged not only young
but also senior scientists. We would like to express our hearty gratitude
to Professor Izumi Ojima and Professor Kei-ichi Ito for their continuous
encouragement to us, stimulating our works, innumerable, unbounded helpful
comments to our scientific researches.

This lecture note is collecting several research papers and survey articles
contributed by invited speakers of the international conference

Mathematical Quantum Field Theory and Renormalization
Theory

held from 26th to 29th, November 2009 at Nishijin Plaza of Kyushu univer-
sity. Twenty invited speakers including four overseas researchers gave talks
and the conference had about 50 participants.

The mathematical analysis of quantum theory and related topics has been
largely developed since its foundation, and mathematics itself has been also
developed by quantum physics. The organizing committee of the confer-
ence considered that it is a good opportunity to organize an international
conference in the occasion of sixtieth birthdays of Professor Izumi Ojima
and Professor Kei-ichi Ito and the conference was planed to make a bridge
between quantum physics and pure mathematics.

A purpose of this conference was also to provide a forum for the discussion
of the latest development of mathematical tools used in quantum physics, and
then the topics talked in this conference were in particular selected within the
purely mathematical research on quantum theory. Twenty invited speakers
gave attractive and splendid lectures on their latest researches, and a lot of
stimulated discussion on the talks were done.



The conference highlighted some purely mathematical aspects on quan-
tum field theory and renormalization, and were focused on the following
topics:

• Operator algebra

• Stochastic analysis

• Rigorous renormalization theory

• Quantum probability

• Spectral analysis and operator theory

We hope that all the participants, including speakers, Professor Izumi
Ojima and Professor Kei-ichi Ito, enjoyed this conference and found new
discovery, and also that this lecture note is presenting the latest research
bringing further development on pure mathematics in quantum physics.

This conference is financially supported by

• Global COE Program-Kyushu University Education and Research Hub for
Mathematics - for - Industry Leader: Prof Masato Wakayama

• JSPS Grant-in-Aid for Scientific Research (A) 19204015, Yasuyuki Kawahi-
gashi

• JSPS Grant-in-Aid for Scientific Research (B) 20340032, Fumio Hiroshima

We also would like to express our gratitude to the secretarial staffs of
Global COE program for their helping in editing this lecture note.

Takashi Hara
Taku Matsui

Fumio Hiroshima
Fukuoka in December, 2010



P r o g r a m 

 
Nov. 26 (Thu) 

 
 14:20-15:10  Hal Tasaki (Gakushuin)  

Origin of ferromagnetism--- A ``constructive condensed matter physics'' approach 

Tea Break 

 15:40-16:30  Ryo Harada (Kyoto) 

A unified scheme of measurement and amplification processes 

 16:40-17:30  Herbert Spohn (München)  

The retarded van der Waals potential 

 

Nov. 27 (Fri) 
 

 10:00-10:30	 Taku Matsui (Kyushu)  

Factorization Lemmas of Hastings and Split Property 

 10:35-11:25	 Hiroshi Tamura (Kanazawa) 

Random point fields, random measures and Bose-Einstein condensation 

Tea Break 
 11:50-12:40	 Yasuyuki Kawahigashi (Tokyo)  

Superconformal field theory, operator algebras and noncommutative geometry 
Lunch Break  

 14:20-15:10	 Martin Porrmann (KwaZulu-Natal) 

Local Causal Structures-Relating Quantum Field Theories on Different Spacetime 

Backgrounds 

Tea Break 
 15:40-16:30	 Tetsuya Hattori (Keio)     

Where is my book? --- Burgers equation in an online bookstore ranking	 	  
 16:40-17:30	 Raymond Streater (London) 

A Theory of Scattering Based on Free Fields 

 

 

 

 

 

 



Nov. 28 (Sat) 
 

 10:00-10:30	 Fumio Hiroshima (Kyushu)    

Relativistic Pauli-Fierz model in QED by path measures 

 10:35-11:25  Shigeki Aida (Osaka)  

Semi-classical limit of the lowest eigenvalue of	 P(Φ)２ Hamiltonian on a finite interval 

Tea Break 

 11:50-12:40	 Akito Suzuki (Kyushu)  

Existence and absence of ground state on a pseudo Riemannian manifold 

Lunch Break  

 14:20-15:10	 Asao Arai (Hokkaido) 

Representations of Quantum Phase Spaces 

Tea Break  

 15:40-16:30  Masao Hirokawa (Okayama) 

Have fun exploring circuit QED with non-commutative oscillators –From mathematics 

to experimental physics  

 16:40-17:30  Hayato Saigo (Kyoto)  

On Generalized Cumulants 

 

Nov. 29 (Sun) 
 

 10:00-10:50  Sumio Watanabe (Tokyo IT) 

A Singular Limit Theorem in Statistical Learning Theory 

Tea Break 

 11:00-11:50  Nobuaki Obata (Tohoku)  

Quantum White Noise Derivatives and Implementation Problem 

 12:00-12:30  Hajime Moriya (Shibaura) 

On supersymmetric states in C* -systems  

Lunch Break 

 13:50-14:40  Takashi Hara (Kyushu) 

Critical Behaviour of Stochastic Geometric Models and the Lace Expansion 

 14:50-15:40  Erhard Seiler (Munchen)  

The Strange World of Non-amenable Symmetries 
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Celebrating Professor K. R. Ito and Professor I. Ojima on their 60th
birthdays

Tetsuya Hattori (Keio Univ.)

As a piece in the proceedings to the International conference at Kyushu Uni-
versity, Nov. 2009, held in honor of Professor K. R. Ito and Professor I. Ojima,
celebrating their 60th birthdays, I would like to leave here a short personal note of
how I came to know Professor K. R. Ito and Professor I. Ojima, a quarter of century
ago.

Though I found that there are lots of potentially important historical background
subjects, both social and scientific, necessary for present (or future) day young
readers to understand why certain things could happen in a way recorded here, I
gave up going into any depth. I apologize if this note is not clear or if there are
misunderstanding on my side, in what follows.

Professor Kei-ichi R. Ito

In the year 1984, in the fourth year out of five years for my graduate study, I was
among a group of a few graduate students who were making a research proposal to
RIFP, Research Institute for Fundamental Physics, Kyoto University, now officially
changed its English name to Yukawa Institute for Theoretical Physics. RIFP was
then located at the next building to RIMS, the Research Institute for Mathematical
Sciences, where Prof. Ito finished his graduate study.

RIFP had, and as I understand still has, a flexible fund for small size research
proposals in physics. This meant something special in 20th century. At those
time, Japan was about to have its best time in economy, but national budget for
fundamental sciences had still been suppressed, and lack of flexibility made it even
difficult to have official financial aid for graduate students. RIFP had been working
hard on this problem, and was taking all possible measures to give small financial
aid to encourage young physicists and improve their research environment. It was
one of such funds from RIFP that we were applying in 1984.
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It was a coincidence that Prof. Ito returned to Japan from Europe in the same
year 1984. As the budget situation for research was bad at those times in Japan,
so was the job situation desperate for graduate students in physics. Japan was
probably so ‘advanced’ a country in this problem, that we already long had had
a Japanese-English word to describe the situation, the ‘over-doctor’ problem; the
problem of large portion of PhDs without research job positions.

After completing graduate course program at RIMS, Prof. Ito remained at RIMS
as a JSPS (Japan Society for the Promotion of Science) research fellow and then as
a research fellow of the elemetary particle group Japan, before finding a three years
SERC fellowship position at Bedford College, London University, where he stayed
until 1983, and after visiting ZiF, Bielefeld University, for a year, he returned to
Japan. He had to survive with a temporal position at Kyoto University, before he
finally succeeded in finding a permanent position at Konan college, where he stayed
from 1987 to 1993. He then moved to Setsunan University, where he is now.

A main ‘social’ reason for the difficulty in winning permanent academic positions
at those times was the ‘over-doctor’ problem. I would say that there must have been
another reason for Prof. Ito’s situation. At those time in Japan, a mathematical
treatment of quantum field theory and statistical mechanics, or a study in quantum
field theory and statistical mechanics as mathematical physics, which is Prof. Ito’s
main research concern to date, was thought to be mathematics from physicists, and
physics from mathematicians. Few people could appreciate the importance of such
studies, and very little number of academic positions could be expected for such
approaches. I am confident about this, because a few year later, at around 1987 or
1988, I was personally warned from a very prominent senior professor, with such a
strong word as ‘You are strangling yourself’.

In fact, the situation partly motivated us in applying for a fund at RIFP. Though
still graduate students, we somehow felt that not many physicists in Japan would
like to be mathematically serious, and therefore, we felt a need to make an appeal
to physics society, that we are interested in mathematical physics approach to quan-
tum field theory and statistical mechanics. A particular topic which excited us then
were the new approaches brought by people such as J. Fröhlich and M. Aizenman.
The new ideas were to represent (Euclidean) quantum fields as random geometrical
objects and use mathematically rigorous inequalities to prove physical intuitions on
these random objects mathematically, resulting in interesting conclusions from quan-
tum field theoretical point of view, such as the ‘triviality’ (non-renormalizability) of
interacting scalar quantum field theories.

I wrote above that I felt an atmosphere in physics society against serious math-
ematical studies of physics. I should however add that scientific information was
not blocked. In fact, the new results of J. Fröhlich and M. Aizenman were brought
quickly to Japan, and the graduate students could know such latest results, even
though the mathematical approach had not been appreciated widely. (This is not
at all trivial, because we had another decade to go before the internet and web
to prevail.) Scientists willingly accept information on new or even exotic ideas,
which is good. Scientists are perhaps more conservative in evaluation, which may
be reasonable, if it is not biased too much.

At the time we were applying to the RIFP funds, I did not know Prof. Ito:
Much less did I know that he was returning to Japan. Anyway, on 5th July 1984, I
attended a meeting at RIFP for proposal explanations, and explained our proposal
with subject title ‘Constructive quantum field theory’.
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Guessing that the subject would not be welcome, and also having no senior
professors joining the application, I anticipated that the proposal would be rejected,
or at least, budget would be largely reduced. To my great surprise, the proposal
was accepted with great encouragement, and with smallest decrease in rate among
the proposals.

Prof. T. Maskawa, a Nobel Laureate of 2008, who was at RIFP, apparently
supported our proposal greatly. It turned out that he independently knew the works
of J. Fröhlich and was interested in these approaches. The document says that he
even ended up in joining our proposal as a member, though I don’t remember how
this was possible. (I think he was on the board of committee at RIFP, judging the
proposals. Perhaps things were very flexible at those times.)

Approved as a RIFP project, we held a meeting at RIFP right away, which
Prof. Ito noticed and, he reached us at the meeting room. I remember a tall person
coming into the meeting room, with lively smile, as if he knew us for a long time.
That was how I met him for the first time.

We applied successfully to the RIFP fund again the next year, this time with
Prof. Ito in the list from the beginning. As an output of our two years activities,



4



5

we were invited to publish a volume of Progress of Theoretical Physics Supplement,
a review journal published by RIFP. Of course, Prof. K. Ito contributes a paper in
the volume: K. R. Ito, ‘Renormalization group methods on hierarchical lattices and
beyond’, Progress of Theoretical Physics Supplement 92 (1987) 46–71.

Prof. Ito has continued to study quantum field theory and statistical mechanics as
mathematical physics. In 1970s his main concern was in quantum electro dynamics
in 2 space-time dimensions, in 1980s he turned to the renormalization group theories,
and in 1990s he focused more on polymer expansions.

Besides these original studies, he continues to organize a series of RIMS Sympo-
sium ‘Applications of Renormalization Group Methods in Mathematical Sciences’
starting in 1999 and held every two years (http://www.setsunan.ac.jp/mpg/). In
this series of symposium, Prof. Ito invites foreign speakers who he finds at meetings
abroad. I suspect that he intentionally does this, as a responsibility of a senior leader
of the field in Japan, to keep introducing to Japan up-to-date research progress of
the rest of the world, to stimulate younger generation, and hopefully, persuade them
to go beyond.

Professor Izumi Ojima

The educational background and job situation for Prof. Ojima is very different from
those for most of us. The way how I came to know the name is also very different
from how I came to know Prof. Ito.

Prof. Ojima graduated Faculty of Medicine, Kyoto University, and has a doctor’s
licence. He however did not choose the field of medicine as his professional career.
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Instead he went to Graduate school of Science, Kyoto University, and received his
PhD in 1980.

Prof. Ojima won Nishina Prize in 1980 for a joint study with Prof. T. Kugo: ‘The-
ory of covariant quantization of non-abelian gauge fields’, which was accomplished
in their graduate studies. I learned their name instantly as I became a graduate
student in 1980. In the weekly seminar for graduate students, my thesis adviser
chose, as a textbook for the seminar, a volume in the series of collected papers in
physics, edited by the Physical Society of Japan.

Volume 70 of the ‘new series’ is devoted to the theory of gauge fields, and in the
volume, a summary of Kugo and Ojima’s results published in Physics Letters 73B
is included.

Nishina Prize was then the only prize in physics society in Japan, so winning the
prize meant being noticed by all the physicists at the time in Japan. It is no wonder
that after being in a research position at Princeton IAS for a year, Prof. Ojima won
a permanent position at RIMS in 1981, where he is now.

I hear that, nowadays, in the applications for job positions or for promotions
especially in smaller universities, one has to compete with candidates from other
fields of study of very wide range, and also has to explain one’s academic accom-
plishments. Such a kind of social pressure resulted in creating more and more prizes
in physics, with a reason that it makes it easier to explain to non-specialists. In con-
trast, in the good old days, Japanese physics society preferred to doubt authority,
and moreover, kept the physics society itself from being an authority. I heard that
it was from these basic idea that the Japanese physics society kept the number of
prizes to minimum, in those days when Prof. Ojima won Nishina Prize.

The study of covariant quantization of non-abelian gauge fields, for which Prof.
Kugo and Prof. Ojima won Nishina Prize, gives a clear algebraic structure of the rea-
son why the physical states of non-abelian gauge theories, such as QCD, are positive
metric, in spite of the fact that in the covariant formulations of the theories, negative
metric states are inevitable. The problem was known as the unitarity problem of
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non-abelian gauge theories and is also related to the (perturbative) renormalizabil-
ity of the theories. The unitarity problem was first solved by t’Hooft and Veltman
using perturbation theories, and the Kugo–Ojima theory gives an algebraic inter-
pretation of why the diagrammatic cancellation worked in t’Hooft–Veltman results:
A graded Lie algebra structure of the field operators, now known as the BRST-
symmetry, implies the consistency of the restriction to the positive metric states,
namely, the consistency of the Kugo-Ojima physical state condition. A page in
Kugo and Ojima’s Physic Letters paper shows all these theoretical structure in a
compact and clear way, just like what one would see in the present day textbooks,
which shows the perfectness of Kugo-Ojima theory well ahead of time. The theory
is also described in full detail and in an utmost clarity in T. Kugo, I. Ojima, Local
Covariant Operator Formalism of Non-Abelian Gauge Theories and Quark Confine-
ment Problem, Progress of Theoretical Physics Supplement 66 (1979) 1–130. The
name BRST-symmetry is due to an independent work published a year earlier than
Kugo and Ojima Physics Letters paper. But the full algebraic theory, including the
definition of physical states using the BRST-charge, the Kugo-Ojima condition, and
the mechanism that the symmetry implies the consistency of the condition, is the
discovery of Kugo and Ojima.

After the accomplishment of his graduate study, Prof. Ojima gradually moved to
philosophically deeper problems of mathematical and information theoretical foun-
dation of quantum physics through thermodynamic and statistical physics. Sym-
metry breaking and micro-macro duality are among the key words of his study.
These key words suggest me that Prof. Ojima is trying to give an answer to a ques-
tion: ‘What is the mathematical structure in quantum physics which intellectually
attracts people (in particular, its relation with classical physics)?’

Quantum phenomena are very different from macroscopic phenomena explained
by classical physics. For example, it is well-known that Albert Einstein, who played
a leading role in the construction of quantum physics, could not accept probabilistic
interpretation of quantum fields. A classical phenomena, on the other hand, is
theoretically a many body problem of the quantum physics, so at least theoretically
it is a logical consequence of quantum physics. All these thoughts enchant people.
It seems to me that Prof. Ojima is trying to find out precisely which aspect of the
mathematical (or intellectual, if ‘mathematics’ is too restrictive a word) structure
in quantum physics attracts people. We say that a theory explains a reality only if
we are convinced that the theory reflects some essential aspect of the reality, and
we cannot be convinced by an unattractive theory. Therefore a theoretical essence
must be at the part where people are intellectually attracted most. That is perhaps
what Prof. Ojima is now trying to find out.

Professor Ito and Professor Ojima

I have been a lazy student all my life, trying to learn neither in depth nor in width.
I still have lot to learn both from Prof. Ito and Prof. Ojima. But I think I uncon-
sciously learned one common lesson from the two professors: Be absolutely sincere
to one’s own scientific interest, and be proud enough to stick to unpopular field of
research.

The two professors perhaps are examples from good old days when there were
people who studied what they thought are important, in spite of (perhaps) au-
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thorities’ warning that they are wasting their academic talent and career. A new
direction, invention or discovery, means important and not standard. We always
need a new direction to push forward our intellectual frontier. I hope we continue
to have a few, non-zero good young people in the future, following the examples of
Prof. Ito and Prof. Ojima, who would stick to their own scientific interest, to surprise
the scientific community with new ideas, and eventually persuade the community
to move on to new research directions.

A happy 60th birthday to Professor Ito and Professor Ojima!



A Theory of Scattering Based on Free Fields

R.F. Streater
Department of Mathematics

King’s College London

16 October 2009

Abstract

In 3 + 1 dimensions, only quasifree fields have been shown to satisfy
the Haag-Araki axioms for local algebras of observables; we show from
a model in 1 + 1 dimensions that there can be representations in which
two ingoing free particles produce a pair of out-going solitons, provided
that one chooses to observe this outcome. It is proposed that the same
idea will work in 3 + 1 dimensions.

Contents

1. Introduction to Haag fields

2. Reduction to Abelian Multipliers

3. A Model in 1 + 1 dimensions

4. Some Remarks in Four Space-time Dimensions

1 Introduction to Haag Fields

It has been extremely difficult to construct solutions to renormalisable quan-
tum field theories that satisfy the Wightman axioms, in four space-time
dimensions, except free fields and generalised free fields. It has been conjec-
tured that quantum electrodynamics does not exist; only theories containing
non-abelian gauge fields, it is claimed, could exist and give a non-trivial S-
matrix. Similar remarks apply to the C∗-algebraic systems of Haag and
Araki.

The relation between the Wightman axioms and the C∗-algebras is not
clear for a general Wightman theory, but for any free boson field a key
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result due to Slawny [14] suggests a natural way to construct a set of local
C∗-algebras which obey the Haag-Kastler axioms. Consider for example a
free scalar quantised field of mass m > 0. In any Lorentz frame, the free
quantised field φ and its time derivative π at constant time (say, time zero)
can be smeared in the space variable with a continuous function of compact
support, to get self-adjoint operators on Fock space. Thus

φ(g) :=
∫

φ(0,x)g(x)d3x (1)

π(f) :=
∫

φ̇(0,x)f(x)d3x (2)

have well-defined exponentials, as do their sums; let H be the space of real
solutions ϕ(t,x) to the wave equation with initial values ϕ(0,x) = f(x)
and ϕ̇(0,x) = g(x). This is a dense subspace of the one-particle space,
a complex Hilbert space. The imaginary part of the scalar product, the
symplectic structure of the classical field theory, is the Wronskian B of the
two solutions, the Lorentz invariant anti-symmetric bilinear expression

B(ϕ1, ϕ2) :=
∫

d3x [f1(x)g2(x) − g1(x)f2(x)] . (3)

The expression
B(φ,ϕ) := φ(g) − π(f), (4)

the Wronskian between the quantised and the classical solution, is then
self-adjoint. Segal uses the operators

W (ϕ) := exp{iB(φ,ϕ)}, (5)

and these obey Segal’s form of the Weyl relations for the commutation re-
lations of a free quantised field:

W (ϕ1)W (ϕ2) = W (ϕ1 + ϕ2) exp{− i

2
B(ϕ1, ϕ2)}. (6)

Eq.(6) gives a product to the vector space defined by symbols W (ϕ) as ϕ runs
over the symplectic space H, irrespective of the representation by operators
W . What Slawny [14] did was to prove that the ∗-algebra obtained by
including this product has a unique C∗-norm; this is a norm on the algebra
obeying ‖A∗A‖ = ‖A‖2.

We define the Haag field as follows. Let O be a bounded open set in R4,
of the form of the intersection of the interiors of a forward and backward
light cone. The cones themselves intersect in a two-dimensional ellipse. Let
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f and g be continuous functions of the points in the interior of the three-
dimensional region spanned by this ellipse. Then the local C∗-algebra A(O)
is the completion, in the Slawny norm, of the Segal-Weyl algebra generated
by such f and g. The algebra of all observables, A, is then the completion
of the inductive limit of all the local algebras. The algebra defined for an
arbitrary connected open region of R4 is the completion of the union of all
A(O), O being a subset of the region.

This field nearly obeys the Haag-Kastler [8] axioms; Haag and Kastler
assumed that the Poincaré group acted on A norm-continuously, which we
do not. The free field satisfies one more, the split property of Doplicher
and Roberts [5]. We use the notation L for the Poincaré group, which is the
semi-direct product of the group of space-time translations, x �→ x+a, where
a is a real four-vector, and the Lorentz group x �→ Λx. Thus L = (a,Λ) will
denote a general element of L. Then the axioms we use are:

1. There is given an automorphism group τL of the Poincaré group; this
maps A(O) onto A(LO).

2. If two regions A1 and A2 are space-like separated, then the algebras
A1 and A2 commute.

3. The vacuum representation: there exists a representation R0 of A,
such that there is a unique vacuum state vector, the Poincaré group
is continuously represented by unitary operators, and the spectrum of
the energy is bounded below.

4. The split property: if O−
1 ⊂ O2 then there exists a sub-algebra N of

type I such that A(O1) ⊂ N ⊂ A(O2); by type I is meant that the
weak closure in the vacuum representation is a von Neumann algebra
of type I.

Another possible axiom is Haag duality; this fails to hold in our model in
one-plus-one dimensions and we shall not use it.

In their set-up, Haag and Kastler give the following explanation of su-
perselection rules; charged states are not in the state-space containing the
vacuum, but are states in some other representation R of the algebra A,
which is not equivalent to R0. We mean the following by equivalence; let A
be a C∗-algebra. Two representations of A, π1 on a Hilbert space H1 and
π2 on a Hilbert space H2, are said to be equivalent if there exists a unitary
operator U : H1 → H2 such that

π1(A) = U−1π2(A)U (7)
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holds for all A ∈ A. We say that an automorphism σ of A is spatial in a
representation π of A on a Hilbert space H if there exists a unitary operator
Uσ on H such that

σ(A) = UAU−1 (8)

holds for all A ∈ A. We say that U implements the automorphism in this
case. Most automorphisms are not spatial.

Haag and Kastler assume that the Poincaré automorphisms are spatial
in R, and that the generator of time evolution also has positive spectrum. R
is related to the vacuum representation R0 by an automorphism σ, A �→ σA
of A; this cannot be a spatial automorphism, since if it were, R and R0

would be equivalent. Clearly, the representation is given by

Rσ(A) = R0(σA), (9)

as A runs over A; this acts on the Hilbert space containing the vacuum, but
is not equivalent to the representation R0, since the automorphism σ is not
implemented by a unitary operator. We do not expect σ to commute with
the space-time translations; thus, the automorphisms of A, τaσ, a ∈ R4,
are not the same as στa in general. Haag showed that one might reveal the
existence of Fermions, carrying a charge, by exploring the representations

Rn(A) = R0(τ1σ ◦ τa2σ...τanσA), (10)

which would define the n-particle states. A little later, Doplicher and
Roberts [5] generalised this idea; to get a representation of A, one can make
do with an endomorphism rather than an automorphism; one then gets a
reducible representation of the algebra A by using eq (9). The unitaries of
the cummutant of the representation then make up the gauge group. Start-
ing with axioms similar to (1), ..., (4), they [5, 7] find that the gauge group
must be a compact Lie group. Now, this holds also for the free field algebra,
though Doplicher and Roberts assumed that the given system was not the
free field. They are stuck, in that no interacting Wightman theory in four
dimensions has yet been constructed.

In this paper, we start with the free field as in [17], and try to find
what endomorphisms give rise to new states. We note that it is not obvious
that the Lorentz group should be implemented in R even if the space-time
automorphisms are; more, the space-time group might acquire non-abelian
multipliers. In Sect (2) we show that if every one-parameter space-time
translation group with a time-like direction has spectrum that is bounded be-
low, then the four-dimensional translation group is represented by unitaries

4



which have multipliers in the centre of R(A)′′. This proof uses Borchers’s
theorem [2] in the form proved in Brattelli and Robinson [1]; it arose from a
discussion with G. Morchio. We are then reduced to the suggestion of several
authors, that the space-time group might be represented with multipliers in
the commutant.

In Sect. (3) we study the case of a free massless field in 1 + 1 dimensions,
following [18]. This model has been further developed by Ciolli [3]. We show
that a soliton pair of states with opposite charges does lie in Fock space, and
converges ∗-weakly to an out-going pair in a new representation. The pair
is created from a state in Fock space by the very act of asking the question,
is a pair present at t = ∞?

In Sect.(4) we suggest a programme that might lead to similar results in
four space-time dimensions.

2 Reduction to Abelian Multipliers

It is usually required that the endomorphism, denoted by σ above, should
be such that the Poincaré group should be spatial in the representation Rσ.
However, with particles of zero mass, it might not be true. In any case, we
shall just assume that space-time translations are symmetries in Rσ; that
is, are each given by an isometric operator with transition probabilities that
are measurable functions of the group parameters; then Wigner’s analysis
can be applied. Now, Rσ is reducible if σ is not an automorphism; thus the
commutant Rσ(A)′ of the representation contains non-commuting unitaries,
and so possible multipliers of the group R4 might be non-abelian [15, 16].
It is well known that a one-parameter group of automorphisms, if spatial in
a representation, has only trivial multipliers [9]. It has been suggested that
conditions might be such that the multiplier is abelian. Indeed, there does
exist a natural condition which ensures this.

Theorem 11 Let A be a C∗-algebra and τa be a group action of R4 by au-
tomorphisms. Let A �→ R(A) be a representation of A. Suppose that for
each time-like one-parameter subgroup of R4, the automorphisms are im-
plemented (in the representation R) by a continuous one-parameter unitary
group, whose self-adjoint generator is bounded below. Then the group R4 is
projectively represented by unitary operators with abelian multipliers.

Proof. Borchers’s theorem [2] was modified by Bratteli and Robinson [1] to
the form: Let A be a C∗-algebra on a separable Hilbert space, τt a one-
parameter group of automorphisms of A, implemented by the continuous
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one-parameter unitary group t �→ U(t). Then there exists a continuous
unitary group t �→ V (t) in the weak closure of A which implements τt.

We apply this result to four independent one-parameter timelike one-
parameter groups of space-time translations. The generators are bounded
below, and so can be replaced by unitary operators in the weak closure. The
multipliers, which are expressed as

ω(a, b) = U(a)U(b)U(a + b)−1, a, b being time-like vectors, (12)

shows that for all time-like vectors a, b we have ω(a, b) lying in R(A)′′; but
these multipliers also lie in R(A)′, so must lie in the centre. Since these
group elements generate the group R4, we have proved the theorem.

3 A Model in One-Plus-One Dimensions

The existence of Wightman theories with interaction in 1 + 1-dimensions
[6] means that it has not been necessary to consider our idea in this case;
however, in view of the difficulty, if not the impossibility, of there existing
an interacting Wightman theory in four space-time dimensions, it is worth
while pointing out the following model.

Consider the Wightman theory of a scalar massless free field φ(x, t) in 1+
1 dimensions. This does not exist, but its space-time derivatives, φμ := ∂μφ,
do. We take this derivative, μ = 0, 1, to define the observable Wightman
fields. The smeared fields φμ at time zero, obey a form of the CCR which
can be written in Segal form. We [18] get a Haag field, and show that it
obeys axioms 1, 2 and 3. We consider new representations of the form

∂xφσ = ∂xφ + ∂xϕ (13)
∂tφσ = ∂tφ + 	. (14)

Here, ϕ and 	 are real-valued smooth functions, and such that ∂xϕ and 	
have compact support. It is known that the representation obtained this way
is equivalent to the Fock representation if and only if the classical solution
determined by the initial values ϕ,	 lies in the one-particle space. We
showed [18] that there exists a two-parameter family of superselection rules,
labelled by “charges” Q,Q′ say; these can be any pair of real numbers.
If they are both zero, then the automorphism is spatial in the free Fock
representation. The allowed set of ϕ consists of functions such that ∂xϕ ∈ D,
and the set of 	 is D itself, Schwartz space; this can lead to states not in
Fock space. Two representations with different values of either Q or Q∗ are
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inequivalent; it is thus reasonable to put the discrete topology on the set
R2. The dual of this topological space is thus the compact gauge group
U(1) × U(1).

Consider, for example, the choice of Q = 1, Q′ = 1. A general solution to
the wave equation can be written as the sum of a left-going and a right-going
wave:

f(x, t) = f
L
(x + t) + f

R
(x − t). (15)

We see that a left-going wave can have Q = 1 and Q′ = 1 if f
R

= 0 and
f

L
= ϕ, 	 = ∂xϕ, where ϕ(x) = 1 if x is sufficiently large, and ϕ(x) = 0

for x sufficiently negative. It folllows that there is a state in Fock space,
with ϕ consisting of a right-moving positive bump to the right of space,
with Q = −1 and Q′ = −1, and a left-moving negative bump to the left of
space, with Q = 1 and Q′ = 1. Let F (x, t) be classical solution with these
properties. Then the automorphism is implemented by the unitary operator
W (F ) = exp{i

(
φ(Ḟ ) − π(F )

)
}.

As time goes by, these solitons move as out-going free particles. There
is a non-zero probability P that a given two-particle state |2〉 in Fock space
will lead to this configuration:

P = | 〈2|WΨ0〉 |2 > 0. (16)

It is clear that if we look for the free particles, we will see them; no new
particles particles are produced. The charged particles are produced by the
setting-up of the procedure to see them.

Further work on this model was done by Ciolli [3]. He proved using
Roberts’s net cohomology [13] that all possible superselection rules were
found in [18].

4 An Attempt in Three + One Dimensions

The electromagnetic field obeys the Maxwell equations

divE = ρ (17)
divB = 0 (18)

∂tB = −curlE (19)
∂tE = curlB + j (20)

The free-field arises when ρ and j vanish; the classical electromagnetic wave
is described by a transverse free E,B. That is, E and B are both orthogonal
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to the momentum of the wave. There are two states, labelled by the polar-
isation, for each momentum. The set of such solutions form a real Hilbert
space, with a symplectic form and a complex structure. The action of the
Poincaré group is unitary, the representation being of mass zero and helic-
ity ±1. The three components of curlE are transverse, even when ρ is not
zero. For, the distribution curlE has three components. The x-component
is ∂zEy − ∂yEz; thus, curlE, smeared with the three-vector f , is the space
of operators

curlE.(f) = E.curl f

whereas the longitudinal part of the field is of the form E.∇g. Since the set
curl.f is disjoint from the set of ∇g except for 0, we have shown that curlE
is transverse.

Smeared with test functions f in D(R3), the functions curl f are dense in
the one-particle space. We define the local C∗-algebra A(O) using Slawny’s
theorem, using test-functions in D(O). The global C∗-algebra A is the com-
pletion of the union of all such algebras for bounded regions in space-time.
Let R be the relativistic Fock representation of the transverse electromag-
netic field.

We seek an endomorphism σ of A so that the representation obtained
by Rσ(A) = R(σ(A)) is disjoint from the representation R0. More, we
need that the space-time automorphisms of A should be spatial in Rσ, and
that any one-dimensional time-like translation group should be continuous,
and that its generator should be bounded below. The dynamics of the
operators in Rσ is given by the free automorphism group of the free field.
However it is not a trivial dynamics, so we hope. The Hamiltonian is not a
bounded operator, and neither are the field operators. So these are not in
the C∗-algebra, and their algebraic properties might not be preserved if we
change to an inequivalent representation. The commutator of these gives
the time evolution of the field operator. However, the Lie algebra of such
commutators might not be preserved under the endomorphism: there might
be new terms, an induced interaction. This is due to the anomalies that
arise in commutators. Another possibility, which changes the equations of
motion, is to change coordinates of space-time by a smooth but non-linear
map. This might lead to a new representation, but it is not clear that the
space-time translations would be spatial in the new representation.

Leyland and Roberts [10] have used the theory of sheaf cohomology to
study the possible two-cocycles of some free classsical fields in Minkowski
space. They conclude that for the scalar Klein-Gordon real field, the two-
cohomolgy group is trivial, while for the free Maxwell field there is a two-
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parameter family of two-cocycles, labelled by electric and the magnetic
charge. They also showed that the classical four-potential, Aμ, obeying
the subsidiary condition ∂μAμ = 0 and the wave equation (∂tt − Δ)Aμ = 0,
showed a one-parameter family of electric charges. It is not clear from their
remarks that this holds in the quantum case, which requires non-commuting
operators for the fields; however, it does. As we did in 1 + 1 dimensions,
we can add this classical solution to the free quantised field, to generate an
automorphism of the free field algebra. When we add a cocycle which is not
a coboundary, we get a new representation. Leyland and Roberts do not
consider the condition that the Maxwell field should be transverse, nor the
requirement that the new representations found should have energy bounded
below. The latter condition can be satisfied if we require that the solution
should extend to the point at infinity, as in the methods described by Ward
and Wells [21]. This is possible only for a subset of the solutions, namely,
those with integer charge. Thus, the problem with continuous charge can
be solved in this way. We can remove the occurrence of magnetic charge
by requiring the existence of a potential Aμ. However, this work leads to
sectors with zero mass, since there is no mass-parameter in the model. This
leads to doubts that it is an electron.

Of interest is the model of Prasad and Sommerfield [12]. They explicitly
construct a smooth solution of a free massive boson field in a non-abelian
gauge field, and the electromagnetic part of the gauge field has a magnetic
pole as well as an electric pole. The energy of the solution is finite. The
rigorous treatment [21] concerns the analytic continuation from Minkowski
to Euclidean space R4. It mostly assumes that the Euclidean gauge field
is dual or anti-dual E = ±iH, though the book also deals with some non-
self-dual electromagnetic fields. Donaldson [4] has pointed out that in four
dimensions, in the Euclidean formulation, and in the case of self-dual elec-
tromagnetic tensors, the second sheaf cohomolgy group is non-trivial. He
remarks that this would furnish R4 with new differential structures. From
the point of view of the second quantised theory, the C∗-algebra of the
electromagnetic field reveals the charge in its equations of motion in the
corresponding representation.

The book [21] deals with the classical version of this problem. However,
for linear fields, this is close to the quantum version, as we saw in [18]; we
use the classical solution to get the displaced Fock representations used in
[18]. Further, the non-linearity of the gauge field in classical field theory can
sometimes be linearised by a suitable change of coordinates. The represen-
tations obtained by smooth invertible change of coordinates are generally
spatial in Fock space; they would produce unstable particles instead of su-
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perselected states. The Euclidean approach of Symanzik [19] and Nelson
[11] might be the way to proceed; a coordinate change in Euclidean vari-
ables could lead to the correct version of the relation between the Fock and
non-Fock representations.

In 4 + 1 dimensions, Vasilliev has shown that a four-dimensional change
of coordinates leads us to the soliton, which obeys a Dirac equation.
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Abstract

We survey recent progress in the operator algebraic approach to supercon-
formal field theory in connection to the Jones theory of subfactors and noncom-
mutative theory of Connes.

1 General setting

Quantum field theory is a physical theory, but it has had many rich interactions with
various topics in mathematics over many years. Theory of operator algebras has been
closely connected to quantum physics since its creation by J. von Neumann, and we
recently see many interesting developments in the interface between operator algebras
and quantum field theory, particularly conformal field theory [1], [11], [15]. We present
the current status of such developments here. A more detailed recent review is given
in [24].

We make a general description of quantum field theory in the mathematical setting.
First, we have a space time, e.g. a Minkowski space. Then we have a spacetime
symmetry group, e.g. the Poincaré group of the Minkowski space. Then we have
Wightman fields on the spacetime. Mathematically speaking, they are certain type
of operator-valued distributions on the spacetime.

We now focus on a specific type of quantum field theory, a conformal field theory.
Now the initial spacetime is the two-dimensional Minkowski space {(x, t) | x, t ∈ R},
but with a certain “restriction” procedure, we deal with one of the light rays x = ±t,
and then we work on its compactification S1. This is our “spacetime”, though the
space and time are now combined together. The spacetime symmetry group is now the
orientation preserving diffeomorphism group Diff(S1) of S1. We deal with operator-
valued distributions acting on a fixed Hilbert space of states having a “vacuum”
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vector. This setting is called a chiral conformal field theory and we make an operator
algebraic axiomatization based on the following idea.

Suppose we have ome family {T} of operator-valued distributions on S1. Fix an
interval I ⊂ S1, and consider 〈T, ϕ〉 with supp ϕ ⊂ I. Note that 〈T, ϕ〉 is a (possibly
unbounded) operator on H. Bounded linear operators are much easier to handle, so
we consider the von Neumann algebra A(I) generated by these (possibly unbounded)
operators. We then make the following set of operator algebraic axioms. This is a
version of algebraic quantum field theory [20].

Our object is an assignment of a von Neumann algebra A(I) to each interval I
contained in S1. We impose the following conditions.

1. For I1 ⊂ I2, we have A(I1) ⊂ A(I2).

2. (Locality) For I1 ∩ I2 = ∅, we have [A(I1), A(I2)] = 0.

3. (Conformal covariance) We have a projective unitary representation U of Diff(S1)
with UgA(I)U∗g = A(gI).

4. Positivity of the energy.

5. Unique existence of the vacuum vector in H.

Such a family {A(I)} is called a local conformal net. (See [25] for the precise forms
of the axioms.)

We also mention that full and boundary conformal field theory can be axiomatized
in a similar manner. That is, instead of an interval in S1, we consider certain bounded
regions contained in the 2-dimensional Minkowski space {(x, t) | x, t ∈ R} or its half
space {(x, t) | x, t ∈ R, x > 0}. We impose a set of axioms similar to the above ones.

We have a restriction procedure of a theory from a full/half 2-dimensional Minkowski
space to S1. We also have a machinery to recover a theory on a full/half 2-dimensional
Minkowski space from that on S1. See [26] and [36] for precise results.

2 Examples and classification

The Virasoro algebra is an infinite dimensional Lie algebra generated by {Ln | n ∈ Z}
and a central element c with the following relations.

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0.

Consider a power series L(z) =
∑

n∈Z Lnz
−n−2. In the vacuum representation of

the Virasoro algebra, this power series with z ∈ C, |z| = 1, can be interpreted as an
operator-valued distribution on S1.

This single operator-valued distribution produces a local conformal net, the Vira-
soro net with central charge c ∈ C.



We also have its super version arising from the N = 1 super Virasoro algebras.
We consider the infinite dimensional super Lie algebra generated by a central element
c, even elements Ln, n ∈ Z, and odd elements Gr, r ∈ Z or r ∈ Z + 1/2, with the
following relations.

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0,

[Lm, Gr] = (
m

2
− r)Gm+r,

[Gr, Gs] = 2Lr+s +
c

3
(r2 − 1

4
)δr+s,0.

Depending on r ∈ Z or r ∈ Z + 1/2, we call our super Lie algebra the Ramond
algebra or the Neveu-Schwarz algebra.

We now explain its operator algebraic counterpart, a superconformal net. In the
vacuum representation of the Neveu-Schwarz algebra, the power series

∑
rGrz

−r−3/2

makes sense as an operator-valued distribution called super stress-energy tensor. To-
gether with L(z) (the stress-energy tensor), this gives a superconformal net through
test functions supported in an interval. The Z2-grading of the super Lie algebra passes
to the Z2-grading of the operator algebras. In the operator algebraic axioms, the com-
mutator in the locality axiom is now replaced with graded commutator. (That is, we
have an anticommutator for odd elements.)

We have classification results as follows. Up to the central charge value 1, we
have a discrete series of possible values. For this part, we have complete classification
results for each of chiral, full and boundary conformal field theories in [25], [26], [30].
They are based on [2], [3], [4], [29], [37], [39], [40], [41], [42], [43], [44]. For the
superconformal case, the value of the central charge c is in the set{

3

2

(
1− 8

m(m+ 2)

)∣∣∣∣m = 3, 4, 5, . . .

}
∪ [3/2,∞).

We also have a complete classification result in [8] for the discrete series. They are
labeled with certain pairs of the A-D-E Dynkin diagrams.

3 Vertex operator algebras

We have another mathematical formulation of Wightman fields in conformal field
theory, and it is called a (super)vertex operator algebra. A vertex operator is a
mathematical axiomatization of a Wightman field on S1.

We have a graded C-vector space V =
⊕

n≥0 Vn. Its completion is the Hilbert
space of the states of the theory. For each state in V , we have a corresponding vertex
operator, which is a Fourier expansion of an operator-valued distribution on S1 acting
on V .

All the axioms are purely algebraic, and we have a notion of the automorphism
group. See [14], [23] for a precise presentation. Also see [18], [19], [45] for recent



progresses. Realization of the Monster group and other sporadic finite simple groups
is a deep problem surrounding the Moonshine conjecture [5], [10], [17], [16]. We have
operator algebraic counterparts including the super Moonshine net [28].

4 Geometric aspects of local conformal nets

We recall some well-known facts in classical differential geometry. Consider the Lapla-
cian ∆ on an n-dimensional compact oriented Riemannian manifold. The classical
Weyl formula gives an asymptotic expansion

Tr(e−t∆) ∼ 1

(4πt)n/2
(a0 + a1t+ · · · ),

for t→ 0, where a0 is the volume of the manifold, and if n = 2, then a1 is (constant
times) the Euler characteristic of the manifold. So the coefficients in the asymptotic
expansion have a geometric meaning.

We have some analogue for a local conformal net. For a nice local conformal net,
we have an expansion

log Tr(e−tL0) ∼ 1

t
(a0 + a1t+ · · · ),

where a0, a1, a2 are explicitly given [27].
This gives an analogy of the Laplacian of a manifold and the conformal Hamil-

tonian L0 of a local conformal net. A local conformal net has an infinite dimension
because of log in the expansion, but after some regularization, we could say it has
a dimension 2 because of the above expansions. The term a0 also has some formal
similarity to black hole entropy.

We also explain what a nice local conformal net in the above assumption. Being
nice is defined by coincidence of two actions of SL(2,Z) on the set of irreducible repre-
sentations of the local conformal net. One arises from fractional linear transformation
on characters and the other arises from the braiding structure of representations [38].

A priori, there are no reasons to expect that the two actions coincide and we have
no general proof for the coincidence, but for all explicitly known examples, the two
actions are equal. Such local conformal nets are said to be modular.

5 Noncommutative geometry

The slogan in noncommutative geometry is that noncommutative operator algebras
are regarded as function algebras on noncommutative spaces. Such spaces should be
counterparts of compact Hausdorff spaces or measure spaces, but in geometry, we
need manifolds rather than compact Hausdorff spaces or measure spaces.

The Connes axiomatization gives a noncommutative compact Riemannian spin
manifold in terms of a spectral triple (A, H,D) as follows [9].



1. The algebra A is a ∗-subalgebra of B(H), which should the noncommutative
smooth function algebra on the noncommutative manifold.

2. The space H is a Hilbert space, the space of L2-spinors on the noncommutative
manifold.

3. The operator D is an (unbounded) self-adjoint operator, the Dirac operator on
the noncommutative manifold.

4. We require [D, x] ∈ B(H) for all x ∈ A.

A basic example is given s follows. a noncommutative tori Aθ, the noncommutative
version of the 2-dimensional torus T2, is given as the C∗-algebra generated by two
unitaries u, v with uv = e2πiθvu, with irrational θ. It has a dense ∗-subalgebra A
of the smooth part. The Hilbert space H is a direct sum of two copies of the L2-
completion of Aθ. The Dirac operator D is given by a certain linear combination of
the two standard derivations on Aθ,

δ1(u) = iu, δ1(v) = 0, δ2(u) = 0, δ2(v) = iv.

It has the dimension 2.
We now give our construction of spectral triples in the operator algebraic frame-

work of superconformal field theory. We have a construction of a family (A(I), H,D)
of spectral triples parametrized by intervals I ⊂ S1 from a representation of the
Ramond algebra [7] as follows.

Note tha one of the Ramond relations gives G2
0 = L0−c/24. We have the following

analogy.
The Laplacian → square root = The Dirac operator

l l
L0 → square root = G0

So G0 should play the role of the Dirac operator. We start with a unitary represen-
tation of the Ramond algebra. Its representation space is our Hilbert space H for the
spectral triples (without a vacuum vector). The image of G0 is now the Dirac operator
D for the spectral triples. From L(z) =

∑
n Lnz

−n−2 and G(z) =
∑

rGrz
−r−3/2, we

have a superconformal net {A(I)} of von Neumann algebras without a vacuum vector
parametrized by intervals I.

Then we define
A(I) = {x ∈ A(I) | [D, x] ∈ B(H)}.

By definition, it is clear that we have a net of spectral triples {A(I), H,D} parametrized
by intervals I.

However, we could have A(I) = C, which is too trivial. In order to show that
this does not happen, we use the resolvent method of Buchholz-Grundling [6]. Let
f be a test function supported in I with some nice property. Then for real α with
sufficiently large |α|, we have G(f)(L(f) + iα)−1 ∈ A(I). This further shows that
A(I) is strongly dense in A(I), which in particular shows A(I) is nontrivial.



We now have Tr(e−tD
2
) < ∞ for all t > 0, and this condition is called θ-

summability, which gives a nice class of well-behaved infinite dimensional noncom-
mutative manifolds. Note that we have a very slow growth of eigenvalues of L0.

More topics in noncommutative geometry to be studied include the following.

1. Quantum index in the sense of Longo [33].

2. Analogy between an elliptic operator and a DHR sector [12].

3. Analogy between the Fredholm index and the Jones index [22], [31], [32]. (Note
we have a direct relations between the two in [8].)

4. Computation of JLO-cocycles [21].

Here is some explanation on the JLO-cocycle in the last entry. The entire cyclic
cohomology is a certain cohomology theory for Banach algebras. An entire cocycle is
a sequence of certain multilinear functionals on A. Connes considered the Chern char-
acter as an entire cocycle. Jaffe-Lesniewski-Osterwalder gave another construction of
the Chern character, which is called a JLO cocycle. Its computation in our setting
would deepen our understanding of superconformal field theory in the framework of
noncommutative geometry.
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1 Introduction

Area law of entanglement entropy attracted much attention of researchers of
quantum information and statistical mechanics recently. This is because the
set of matrix product states or projected entangled pair states is dense in state
spaces of quantum spin systems and the condition that certain the density matrix
renormalization group method is valid is related to Area law of entanglement
entropy of quantum ground states.

On the other hand, in [9], we considered a relationship between split property
and symmetry of of translationally invariant pure states for quantum spin chains
on an integer lattice Z . The split property is a kind of statistical independence of
left and right semi-infinite subsystems. Namely, a state of a quantum spin chain
on an integer lattice Z has the split property between left and right semi-infinite
subsystems if the state is quasi-equivalent to a product state of these infinite
subsystems. The condition holds for Gibbs states of finite range interactions for
one-dimensional quantum spin chains. We have shown that the split property
cannot hold for translationally invariant pure states of quantum spin chains if



the state is SU(2) invariant and the spin S is half-odd integer. Our proof is
carried out in a sense that states with split property looks like a generalization
of matrix product state.

In this note we will see that boundedness of entanglement entropy for bipar-
tite quantum spin systems implies split property, which is equivalent to the area
law of entanglement entropy in one-dimesnional systems. Combined with a re-
sult of M.B.Hastings in [6], we see that the presence of the spectral gap between
the ground state energy and the rest of spectrum implies the split property .
We do not assume translational invariance of infinite volume Hamiltonians and
that of states but certain boundedness of the norm of local energy operators.

By area law of entanglement entropy we mean von Neumann entropy of finite
sub-systems on finite connected regions in a pure state of an inifinite quantum
system increase in a rate proportional to the size of boundary of the underlying
space and for one-dimesional lattice models, it is the boundedness of entropy of
finite subsystems.

In [6], M.B. Hastings proved the area law of entanglement entropy for ground
states with a spectral gap and his results implies split property, M.B. Hastings
assumed that uniqueness of finite volume ground states of finite volume Hamil-
tonians in [6]. However, uniqueness condition of finite volume ground states
may not be satisfied for Hamiltonians for which a pure matrix product state
is a ground state. For example, the AKLT model of [2] has a unique infinite
volume ground state while the dimension of the finite volume ground state is
four. We claim that , for any infinite pure ground state with spectral gap, the
split property holds without assuming uniqueness of finite volume ground states.
To prove this, we have to reformulate M.B. Hastings’ proof of the are law of
entanglement entropy in an infinite dimensional setting suitably and for that
purpose, we find that an extension of the factorization lemma of M.B. Hasting
due to E.Hamza, S.Michalakis, B.Nachtergaele, and R.Sims in [5] is useful. In
the proof of the area law of M.B. Hastings, the Lieb-Robinson bound is a cru-
cial mathematical tool and for our infinite dimensional setting a version due to
B.Nachtergaele, and R.Sims in [10] is useful.

As a corollary we can show that a gapless excitation is present in any half-
odd integer spin SU(2) invariant quantum spin chains and the same result holds
in U(1) symmetric spinless fermion models on Z, provided that the ground state
is non-trivial. The similar results of gapless excitation in infinite systems are
available due to known results of [1], [11] ,[12] however, in these previous works,
proof is based on the uniqueness of finite volume ground states, which we do
assume here. Instead purity of infinite volume gauge invariant ground states is
essential in our argument.

Another application of our result is a no-go theorem in quantum information
theory. We see that distillation of infinitely many pairs of maximally entangled
stated in one copy of infinite bipartite systems is not possible if the entanglement
entropy is bounded.
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2 Results

We describe results precisely. We use theory of operator algebras and most of
definitions and notions we need here can be found in [3] and [4]. We denote the
C∗-algebra of (quasi)local observables by A. A will be UHF C∗−algebras n∞

or ( the C∗-algebraic completion of the infinite tensor product of n by n matrix
algebras ) the CAR (canonical anti-commutation relations) algebra on bfZd or
more generally arbitrary graphs. In case of UHF algebra we use the following
notations. :

A =
⊗
Zd

Mn(C)
C∗

,

where Mn(C) is the set of all n by n complex matirces. Each component of the
tensor product is specified with a lattice site j = (j1, j2, · · · , jd) ∈ Zd. A is the
totality of quasi-local observables. We denote by Q(j) the element of A with
Q in the j th component of the tensor product and the identity in any other
components :

Q(j) = · · · ⊗ 1 ⊗ 1 ⊗ Q︸︷︷︸
jth component

⊗1 ⊗ 1 ⊗ · · ·

For a subset Λ of Zd , AΛ is defined as the C∗-subalgebra of A generated by
elements Q(j) with all j in Λ. We set

Aloc = ∪Λ⊂Zd:|Λ|<∞ AΛ

where the cardinality of Λ is denoted by |Λ|. We call an element of Aloc a local
observable or a strictly local observable.

By a state ϕ of a quantum spin chain, we mean a normalized positive linear
functional on A which gives rise to the expectation value of a quantum state.
When ϕ is a state of A, the restriction of ϕ to AΛ will be denoted by ϕΛ :

ϕΛ = ϕ|AΛ .

Suppose that Λ1 and Λ2 are subsets of Zd satisfying

Zd = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅.

We set
A1 = AΛ1 , A2 = AΛ2 , ϕ1 = ϕΛ1 , ϕ2 = ϕΛ2 .

By τj , we denote the automorphism of A determined by

τj(Q(k)) = Q(j+k)

for any j and k in Zd. τj is referred to as the lattice translation of A.
Given a state ϕ of A, we denote the GNS representation of A associated

with ϕ by {πϕ(A), Ωϕ, Hϕ} where πϕ(·) is the representation of A on the GNS
Hilbert space Hϕ and Ωϕ is the GNS cyclic vector satisfying

ϕ(Q) = (Ωϕ, πϕ(Q)Ωϕ) Q ∈ A.
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Let π be a representation of A on a Hilbert space. The von Neumann algebra
generated by π(AΛ) is denoted by MΛ. We set

M1 = MΛ1 = π(A1)′′, M2 = MΛ2 = π(A2)′′.

Now we state our results on split property.

Definition 2.1 Let ϕ be a state of A. We say the split property is valid for A1

and A2 if ϕ is quasi-equivalent ti ψ1 ⊗ ψ2 where ψ1 is a state of A1 and ψ2 is
that of A2.

Definition 2.2 Let ϕ be a state of A. Suppose Λ is a finite subset of Zd and ρΛ

is the density matrix of ϕΛ. We consider the entropy s(ϕΛ) = −trN (ρΛ ln ρΛ) =
−ϕ(ln ρΛ) where the trace tr is normalized as tr(1) = |Λ|2N+1.

We say the entanglement entropy is bounded if s(ϕ[Λ]) is bounded ,s(ϕΛ) ≤ C
for any finite subset Λ of Λ1.

If the state ϕ is pure, and the entanglement entropy is bounded it is possible to
show s(ϕΛ) ≤ C for any subset Λ of Λ2.

Theorem 2.3 Let ϕ be a pure state of A for which the entanglement entropy
is bounded. Then the split property is valid for A1 and A2.

We do not have any concrete example of states with split property but not
having bounded entanglement entropy though we believe it exists.

The split property is statistical independence of the sub-system 1 and 2. The
above result has a significant application when the state is a ground state of
Hamiltonian of a one-dimensional integer lattice Z. To explain the application
to quantum ground states, we introduce the time evolution of infinite volume
systems and the ground state in terms of positive linear functionals. For a
while, we consider d=1 systems. By Interaction we mean an assignment {Ψ(X)}
of each finite subset X of Z to a selfadjoint operator Ψ(X) in AX . We say
that an interaction is of finite range if there exists a positive number r such
that Ψ(X) = 0 if that the diameter of X is larger than r. An interaction is
translationally invariant if and only if τj(Ψ(X)) = Ψ(X + j) for any X ⊂ Zd

and for any j ∈ Zd. We consider not necessarily translationally invariant finite
range interactions (range = r ). We assume the following the condition of
boundedness :

sup
j∈Z

∑
X∋j

||Ψ(X)||
|X|

< ∞, (2.1)

where |X| is the cardinality of X(⊂ Z). The infinite volume Hamiltonian H is
an infinite sum of {Ψ(X)},

H =
∑
X⊂Z

Ψ(X).
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This sum does not converge in the norm topology, however the following com-
mutator makes sense:

δ(Q) = [H,Q] = lim
N→∞

[HN , Q] =
∑
X⊂Z

[Ψ(X), Q], Q ∈ Aloc

where HN =
∑

X⊂[−N,N ] Ψ(X).
Then,the following limit exists for any real t in the C∗ norm topology:

αt(Q) = lim
N→∞

eitHN Qe−itHN

for any element Q of A . δ is the generator of αt

We call αt(Q) the time evolution of Q. It is known that αt(Q) as a function
of t has an extension to an entire analytic function αz(Q) for any Q ∈ Aloc.

Definition 2.4 Suppose the time evolution αt(Q) associated with an interaction
satisfying (2.1) is given. Let ϕ be a state of A. ϕ is a ground state of H if and
only if

ϕ(Q∗[H,Q]) =
1
i

d

dt
ϕ(Q∗αt(Q))|t=0 ≥ 0 (2.2)

for any Q in Aloc.

Suppose that ϕ is a ground state for αt . In the GNS representation of
{πϕ(A), Ωϕ,Hϕ}, there exists a positive selfadjoint operator Hϕ ≥ 0 such that

eitHϕπϕ(Q)e−itHϕ = πϕ(αt(Q)), eitHϕΩϕ = Ωϕ

for any Q in A. Roughly speaking, the operator Hϕ is the effective Hamiltonian
on the physical Hilbert space Hϕ obtained after regularization via subtraction
of the vacuum energy.

The spectral gap of an infinite system is that of Hϕ. Note that, in principle,
a different choice of a ground state gives rise to a different spectrum.

Definition 2.5 We say that Hϕ has a spectral gap if 0 is a non-degenerate
eigenvalue of Hϕ and for a positive M > 0, Hϕ has no spectrum in (0,M),i.e.
Spec(Hϕ) ∩ (0,M) = ∅.

It is easy to see that Hϕ has a spectral gap if and only if there exists a positive
constant M such that

ϕ(Q∗[H,Q]) ≥ M(ϕ(Q∗Q) − |ϕ(Q)|2). (2.3)

In [6], M.B.Hastings proved boundedness of entanglement entropy if the finite
volume Hamiltonian HN has non degenerate ground state and the spectral gap
is open uniformly in N . We can extend his argument to infinite volume ground
state with spectral gap.

Theorem 2.6 Let H be a finite range Hamiltonian satisfying the boundedness
condition (2.1) and let ϕ be a ground state of H with spectral gap (2.3) . Then
the split property is valid for A(−∞,0] and A[1,∞).
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We combine the above results and those of [9]. We consider half-odd integer
spin SU(2) symmetry of quantum spin chains and a U(1) symmetry of spinless
Fermion. At this stage we assume translational invariance of Hamiltonians and
their ground states.

Let u(g) be the spin S representation of SU(2) and γg be the infinite product
type action SU(2) on A associated with u(g).

(· · ·u(g) ⊗ u(g) ⊗ · · · )Q(· · ·u(g) ⊗ u(g) ⊗ · · · )−1 = γg(Q), Q ∈ A

Theorem 2.7 Consider the quantum spin chain on Z and the spin at each
site is a half-odd integer. Let HS be a translationally invariant , SU(2) gauge
invariant finite range Hamiltonian. Suppose that ϕ is a translationally invariant
pure ground state of HS. Assume that ϕ is SU(2) invariant( γg invariant for any
g in SU(2)). Then, there exists gapless excitation in the sense that Spec(Hϕ)∩
(0, M) ≠ ∅ for any positive M .

Via Wigner-Jordan transform, we have equivalence of spin models and fermion
on Z. Next we consider fermions on an integer lattice Z. Due to anti-commutativity
we impose parity invariance for states, otherwise the split property cannot be
defined. Let c∗j and cj be the creation annihilation operators satisfying the
standard canonical anti-commutation relations:

{ci, cj} = 0, {c∗i , c∗j} = 0, {ci, c
∗
j} = δij1 i, j ∈ Z

By AF , we denoted the C∗-algebra generated by c∗i and cj . AF is referred to as
CAR algebra. The subalgebras AF

loc, AF
Λ , AF

1 , AF
2 of AF are defined as before.

Let Θ, γF
θ , and τF

k be the automorphisms of AF determined by

Θ(ci) = −ci, Θ(c∗i ) = −c∗i ,

γF
θ (c∗i ) = eiθc∗i , γF

θ (ci) = e−iθci,

τF
k (ci) = ci+k, τF

k (c∗i ) = c∗i+k

γF
θ (resp. τF

k )) is referred to as the U(1) gauge transformation (resp. transla-
tion).

Suppose that ϕΛc is a state of AF
Λc and that a state ϕΛ of AF

Λ is Θ invariant.
The product state ϕΛ ⊗ ϕΛc of AF specified with

ϕΛ ⊗ ϕΛc(Q1Q2 = ϕΛ(Q1)ϕΛc(Q2) ( Q1 ∈ ϕΛ, Q2 ∈ ϕΛc)

can be defined. The split property and the boundedness of entanglement entropy
can be introduced for fermion systems as before.

Theorem 2.8
Let ϕ be a Θ invariant state of AF for which the area law of entanglement
entropy holds. Then the split property is valid for AF

1 and AF
2 .

6



For fermion systems we consider finite range Hamiltonians satisfying

HF =
∞∑

j=−∞
hj

hj ∈ AF
[j−r,j+r], Θ(hj) = hj , ||hj || ≤ C (2.4)

Corollary 2.9 Let HF be a finite range Hamiltonian satisfying the boundedness
condition (2.1) and let ϕ be a ground state of HF with spectral gap (2.3) . Then
the split property is valid for AF

L and AF
R.

By the standard Fock state we mean the state ψF specified by the identity
ψF (c∗jcj) = 0 for any j and the standard anti-Fock state is the state ψAF

specified by the identity ψAF (cjc
∗
j ) = 0 for any j.

Theorem 2.10 Consider the spinless Fermion lattice system on Z. Let HF

be a translationally invariant , U(1) gauge invariant finite range Hamiltonian.
Suppose that ϕ is a U(1) gauge invariant , translationally invariant pure ground
state of HF and that ϕ ̸= ψF , ϕ ̸= ψAF .
Then, gapless excitation exists between the ground state energy and the rest of
the spectrum of the effective Hamiltonian .

We return to systems in Zd. It may be interesting to know if the split
property is useful for higher dimensional systems. The following result shows
that the split property is too restrictive.

Theorem 2.11 We assume that 2 ≤ d. Set

Λ1 = {j = (j1, j2, · · · , jd) ∈ Zd|1 ≤ j1}, Λ2 = {j = (j1, j2, · · · , jd) ∈ Zd|j1 ≤ 0}.

Let ϕ be a translationally invariant pure state of A on Zd If the split property
holds for the above choice of Λ1 Λ2, ϕ is a product state in the sense that

ϕ = ⊗ϕj

where ϕj is a pure state on Λ(j) = {j = (j1, j2, · · · , jd) ∈ Zd|j1 = j}.

Next we explain a significance of our results from a viewpoint of quantum
information theory. A pair of mutually commuting algebras on a Hilbert space
is called a bipartite system. In our context, we have in mind, for example, one-
dimensional conductor we consider von Neumann algebras M1 = πϕ(A1)′′ and
M2 = πϕ(A2)′′ where Λ1 = (−∞, 0] and Λ2 = [1,∞). The maximally entangled
qubit we consider here is a tensor product of two commuting matrix algebras
Mn(C) with a pure state in which restriction to each tensor component is the
tracial state of Mn(C) and one question is whether we can extract maximally
entangled qubit pairs using an physical operation T which does not generate
entanglement itself. To be specific we introduce some notions we use here.
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Definition 2.12 A local operation between two bipartite systems Mn(C)⊗Mn(C)
and M1 ∪ M2 is a unital completely positive map T : Mn(C) ⊗ Mn(C) →
(M1 ∪ M2)′′ such that

1. T (Mn(C) ⊗ 1) ⊂ M1 and T (1 ⊗ Mn(C)) ⊂ M2,

2. and T (AB) = T (A)T (B) holds for all A ∈ Mn(C) ⊗ 1, B ∈ 1 ⊗ Mn(C).

Usual distillation protocols describe procedures, to extract a certain amount
of entanglement per system, if a large (possibly infinite) number of equally pre-
pared systems is available. However, if we study an infinite quantum spin chain,
we have already a system consisting of infinitely many particles. Hence one copy
of the chain could be sufficient for distillation purposes, and if the total amount
of entanglement contained in the system is infinite, it might be even possible
to extract infinitely many singlets from it. This idea is the motivation for the
following definition.

Definition 2.13 Consider a state ϕ of a bipartite system (M1 ∪ M2)′′. The
quantity E1(ω) = log2(n) is called the one copy entanglement of ϕ, if n is
the biggest integer n ≥ 2 which admit for each ϵ > 0 a local operation Tϵ :
Mn(C) ⊗ Mn(C) → (M1 ∪ M2)′′ such that

ϕ(Tϵ(|χn〉〈χn)) > 1 − ϵ, χn =
1√
n

n∑
j=1

|jj〉 (2.5)

holds. If no such n exists we set E1(ω) = 0 and if (2.5) holds for all d ≥ 2 we
say that ϕ contains infinite one copy entanglement (i.e. E1(ϕ) = ∞).

Then, combined with results in [7], we obtain the following.

Proposition 2.14 Let ϕ be a tanslationally invariant ground state of a finite
range Hamiltonian. Consider von Neumann algebras M1 = πϕ(A(−∞,0])′′ and
M2 = πϕ(A[1,∞))′′. (i) If the spectral gap opens it is impossible for ϕ to contain
infinite one copy entanglement (i.e. E1(ϕ) < ∞).

If the Haag duality πϕ(A(−∞,0])′′ = πϕ(A[1,∞))′ is valid and the spin is half-odd
integer, any tanslationally invariant SU(2) invariant pure state contains infinite
one copy entanglement. In [8] we claimed this Haag duality is valid for the
GNS representaiton of any tanslationally invariant pure state, however , there
is a gap in proof and it is not yet known that the duality is valid for general
tanslationally invariant pure state,.
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Abstract

We study supersymmetry in an abstract C∗-algebraic setting. This paper is a
short review of ‘Supersymmetry for infinitely extended C∗-systems’ by this author,
and was presented at the conference“Mathematical Quantum Field Theory and
Renormalization Theory”dedicated to Professor K. R. Ito and Professor I. Ojima.
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1 Superderivation in C∗-systems

We study supersymmetry under a general C∗-algebraic setting. We do not restrict our
consideration to Fock representations of some boson-fermion algebras. A derivation satis-
fying the graded Leibniz rule with respect to some non-trivial Z2-periodic automorphism
is referred to as superderivation. Infinitesimal transformations abstractly defined by such
superderivation imply the usual sense of supersymmetry between bosons and fermions,
and also supersymmetric relations among assembly of sole fermions without bosons.

It is important to start from superderivation rather than fermionic charge operators,
since its existence is assured irrespective of broken or unbroken supersymmetry. We con-
sider strongly continuous C∗-dynamical systems. Those typically describe fermion (or
quantum spin) lattice models. For continuous quantum field models, we need more careful
treatment in formulation of supersymmetric kinematics due to the lack of some properties
e.g. (1.12) below, see our paper ‘Supersymmetry for infinitely extended C∗-systems’.

We are given a graded C∗-algebra F = Fe ⊕ Fo, with its grading automorphism γ,
where

Fe := {F ∈ F ∣∣ γ(F ) = F}, (1.1)

Fo := {F ∈ F ∣∣ γ(F ) = −F}. (1.2)

Supersymmetric transformation is given by superderivation δ. Let Dδ denote its domain.
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It is an odd linear map

δ · γ = −γ · δ on Dδ, (1.3)

satisfying the graded Leibniz rule

δ(FG) = δ(F )G+ γ(F )δ(G) for F,G ∈ Dδ. (1.4)

It is easy to see that Dδ is a γ-invariant subalgebra of F and

δ(Deδ) ⊂ Fo, δ(Doδ) ⊂ Fe,

where Deδ := Dδ ∩ Fe, Doδ := Dδ ∩ Fo. We assume that Dδ is ∗-invariant. The conjugate
of δ is given by

δ(F ) := −δ(γ(F ∗)
)∗
, for F ∈ Dδ. (1.5)

(Note that δ is the conjugate, not the closure of δ.) Let δq denote the bounded superderiva-
tion for q ∈ Fo defined by

δq(F ) :=

{
[q, F ] for F ∈ Fe,
{q, F} for F ∈ Fo. (1.6)

We can immediately check

δq = δq∗ . (1.7)

Let αt be a strongly continuous one-parameter group of ∗-automorphisms of F , t ∈ R,
that encodes the time development. It should preserve the grading,

αt · γ = γ · αt. (1.8)

We assume the commutativity of αt and δ

δ · αt = αt · δ for all t ∈ R on Dδ, (1.9)

hence Dδ is invariant under αt.
Let ω be a state of F , and let

(
π, H, Ω

)
denote the GNS triplet for ω satisfying

ω(F ) =
(

Ω, π(F )Ω
)
, for F ∈ F .

The von Neumann algebra generated by the GNS representation is denoted M := π(F)′′ ⊂
B(H).

We do not restrict our consideration to particular models, even nor particular C∗-
algebras. We have, however, in mind homogeneous fermion (or spin) lattice models with
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constant finite numbers of degree of freedom at each site of the infinitely extended lattice.
Hence the C∗-algebra F under consideration is typically a CAR-algebra. Recently, several
statistical mechanical fermion lattice models with hidden exact supersymmetric relations
have been studied. Here we only mention an earlier work by H. Nikolai, ‘Supersymmetry
and spin systems’ in 1976.

Let

δ0 := −i d
dt
αt

∣∣∣
t=0

(1.10)

denote the generator of αt and Dδ0 the domain of δ0. By (1.8), Dδ0 is a γ-invariant
subalgebra and δ0 is even, i.e.

δ0(Deδ0) ⊂ Fe, δ0(Doδ0) ⊂ Fo.

We assume that the domain Dδ of δ, and also Dδ0 of δ0 are both norm dense in F . Also
δ is assumed to be a closed linear map with respect to C∗-norm.

Let A◦ be a γ-invariant norm-dense ∗-subalgebra of F , on which we will formulate
supersymmetric relations. For this sake, we set the following:

A◦ ⊂ Dδ ∩ Dδ0 . (1.11)

δ(A◦) ⊂ A◦. (1.12)

A◦ is core for δ. (1.13)

A◦ is core for δ0. (1.14)

The above (1.11) (1.12) and (1.13) for δ in place of δ are obviously valid. Due to this
(1.12), one can repeat superderivations δ and δ, so that supersymmetric kinematics is
formulated.

Definition 1.1. Let δ be a superderivation and δ0 be a derivation satisfying all the
assumptions given above. The following set of kinematical relations is referred to as
supersymmetric kinematics:

δ · δ = 0, δ · δ = 0 on A◦, (1.15)

δ0 = δ · δ + δ · δ on A◦, (1.16)

where 0 is a zero map.
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Remark 1.2. We do not require (even not permit) invariance of A◦ under αt:

αt(A◦) ⊂ A◦. (1.17)

For fermion lattice models, we may choose the set of all subsystems on local finite regions
as A◦. Clearly, it is not stable under time development for non-trivial interaction. Without
(1.17) we may keep out of some pitfall on the domain of superderivation pointed out by
Kishimoto-Nakamura 1994.

2 GNS construction of supersymmetric states

The following definition of unbroken supersymmetry is given without reference to time
development (αt or δ0).

Definition 2.1. If a state ω on F is invariant under superderivation δ,

ω(δ(F )) = 0, for any F ∈ Dδ, (2.1)

then it is said to be supersymmetric.

Let
(
π, H, Ω

)
be a GNS triplet for a supersymmetric state ω on F . Let

H◦ := π(A◦)Ω. (2.2)

Let

Hδ := π(Dδ)Ω, (2.3)

which obviously contains H◦. Supercharge operators are given by superderivations in the
GNS Hilbert space for any supersymmetric state.

Proposition 2.2 (Buchholz-Ojima). Assume that ω is a (not necessarily even) supersym-
metric state on F with respect to δ. On the dense subspace H◦, let

Qπ(A)Ω := π
(
δ(A)

)
Ω, A ∈ A◦. (2.4)

It defines a closable linear operator satisfying

QΩ = 0. (2.5)

The following operator equalities hold for A ∈ A◦

π
(
δ(A)

)
= Qπ(A)− π(γ(A)

)
Q on H◦, (2.6)

π
(
δ(A)

)
= Q∗π(A)− π(γ(A)

)
Q∗ on H◦, (2.7)
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where Q∗ denotes the adjoint of Q.

Lemma 2.3. Under the same assumption as in Proposition 2.2, let Q denote the closure
of Q. Then π(Dδ)Ω ⊂ Dom(Q) and

Qπ(A)Ω = π
(
δ(A)

)
Ω, A ∈ Dδ. (2.8)

From now on, we always consider the closureQ and shall denote this byQ for simplicity,
since there is no fear of confusion.

3 Supersymmetric kinematics and its realization

In the preceding section, we have considered solely δ not Hamiltonian dynamics or its
generator. We shall see how the supersymmetric kinematical relations in terms of (su-
per)derivations in Definition 1.1 are implemented as operator forms in the GNS Hilbert
space for unbroken supersymmetry. The following shows the nilpotency of supercharge
operators.

Proposition 3.1. Let ω be a (not necessarily even) supersymmetric state with respect to
δ, and Q be the closure of (2.4) implementing δ in the GNS representation

(
π, H, Ω

)
for

ω. Then

Q2 = 0, Q∗2 = 0, (3.1)

as unique extension of densely defined bounded operators.

In the following proposition, we consider symmetrization of superderivations and su-
percharges.

Proposition 3.2. Under the same assumption as in Proposition 3.1, take

Q1 := Q+Q∗ Q2 := i(Q−Q∗) (3.2)

on the domain Dom(Q1) = Dom(Q2) = Dom(Q) ∩ Dom(Q∗). Then Q1 and Q2 are
symmetric operators implementing symmetric superderivations

δ1 := δ + δ, δ2 := i(δ − δ), (3.3)

in the following manner,

Q1π(A)Ω = π(δ1(A))Ω, Q2π(A)Ω = π(δ2(A))Ω, A ∈ Dδ. (3.4)

On the dense subspace H◦, which is included in Dom(Q1) = Dom(Q2), the following
operator equalities are satisfied :

Q2
1 = Q2

2 = QQ∗ +Q∗Q, (3.5)
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{Q1, Q2} = 0. (3.6)

Now we can relate the above formula of superderivations to Hamiltonian.

Proposition 3.3. Let ω be a supersymmetric state with respect to δ. There is a self-
adjoint operator H satisfying

HΩ = 0, (3.7)

π (αt(F )) = U(t)π(F )U(t)−1 for F ∈ F with U(t) := eitH . (3.8)

Also the following operator equalities are satisfied on H◦:

H = QQ∗ +Q∗Q = Q2
1 = Q2

2, (3.9)

[H, Q] = [H, Q∗] = [H, Q1] = [H, Q2] = 0. (3.10)

For simplicity of notation, by δs and Qs we will denote symmetric superderivation and
its symmetric supercharge operator.

We now assume that ω is even,

ω
(
γ(F )

)
= ω(F ), for any F ∈ F . (3.11)

(Note that so far we have not used the evenness.) By this invariance, there is a grading
automorphism γ̃ on M such that

γ̃
(
π(F )

)
= π

(
γ(F )

)
.

It can be written as

γ̃(x) = Ad(Γ)(x) = Γ∗xΓ, for x ∈M,

where Γ is a self-adjoint unitary,

Γ = Γ∗, Γ2 = 1,

and satisfies

ΓΩ = Ω.

Theorem 3.4. Let ω be an even supersymmetric state with respect to symmetric su-
perderivation δs. Assume supersymmetric kinematics as in Definition 1.1. Let Qs denote
the closed extension of supercharge operator implementing δs, and γ̃ the grading auto-
morphism in the GNS Hilbert space for ω. Then Qs is self-adjoint, and is essentially
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self-adjoint on any core of H. Also the following exact operator equalities are satisfied :

H = Q2
s, (3.12)

γ̃(Qs) = −Qs. (3.13)

The domain of Qs is π(Dδ)-invariant, namely,

π(A)Dom(Qs) ⊂ Dom(Qs) for any A ∈ Dδ. (3.14)

The spectrum of realized Hamiltonian for supersymmetric states is characterized in
the following way.

Corollary 3.5. Under the same setting as in Theorem 3.4, for the self-adjoint Hamilto-
nian H and the self-adjoint supercharge Qs, let

H =
∫

R
λdE(λ), Qs =

∫

R
λdF (λ),

where {dE(λ)}λ∈R and {dF (λ)}λ∈R are uniquely determined projection-valued measures.
Then the support of {dE(λ)}λ∈R is included in R+, non-negative real numbers, and

ΓF (λ)Γ = F (−λ), for λ ∈ R+, (3.15)

E(λ2) = F (λ) + F (−λ), for λ > 0, (3.16)

F (0) = E(0), (3.17)

which includes Ω.

The following statement was already obtained by Buchholz. We provide a new proof
based on Theorem 3.4, namely the self-adjointness of supercharges. Our proof persist in
a more general situation suitable for quantum field theory, which is not covered in the
original work by Buchholz. See ‘Supersymmetry for infinitely extended C∗-systems’ for
details.

Theorem 3.6. Assume the set of supersymmetric kinematical relations in the C∗-algebra
F . Then

(a) If ω is a supersymmetric state, then it is a ground state.
(b) The set of supersymmetric states on F is face.

It is well known that Hamiltonian for ground states is observable in the sense that its
projection-measure belongs to the von Neumann algebra generated by the GNS represen-
tation. We shall show that supercharges realized in the GNS Hilbert space for supersym-
metric states are also observable.
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Theorem 3.7. Assume supersymmetric kinematics. Let ω be an even supersymmetric
state with respect to symmetric superderivation δs. Let Qs denote the self-adjoint super-
charge operator implementing δs in the GNS Hilbert space for ω. Then Qs is affiliated to
M, the von Neumann algebra generated by the GNS representation.

4 Approximately inner superderivation

A strongly continuous one-parameter group of ∗-automorphisms (or a derivation with its
norm-dense domain) on a C∗-algebra is called approximately inner, if it can be approx-
imated by inner one-parameter groups of ∗-automorphisms (bounded derivations) point-
wisely in C∗-norm. Let us introduce a similar class of superderivations and investigate its
properties.

Definition 4.1. A superderivation on a graded C∗-algebra F is said to be approximately
inner, if there exists a norm-dense subalgebra E(⊂ Dδ) which is a core for δ, and a sequence
{qn} of odd elements in F satisfying

δ(A) = lim
n
δqn(A) for each A ∈ E (4.1)

in the norm topology, where δqn is bounded superderivation for qn defined by (1.6).

Remark 4.2. The above E and A◦ are norm-dense subalgebras in Dδ and are both cores
for δ, however, not necessarily same. (On E the pointwise approximation of δ by local
superderivations is satisfied, while on A◦ supersymmetric relation (1.15, 1.16) is satisfied.)

Remark 4.3. In this and next sections, the condition (1.12) is not needed.

The oddness of {qn} in Definition 4.1 is in fact a consequence.

Proposition 4.4. Let δ be a superderivation on F such that there exists a sequence {qn} of
(not necessarily odd) elements in F satisfying (4.1). Then it is possible to take a sequence
of odd elements {qon} satisfying (4.1).

Similarly, we obtain

Proposition 4.5. Let δs be a symmetric, approximately inner superderivation on F . Then
it is possible to take a sequence of self-adjoint odd elements {qn} satisfying (4.1).

5 Existence of invariant states

We look for a sufficient condition for the existence of invariant states under superderivation
δ. This problem is raised by Buchholz. For (even) derivations, there are generically plenty
of invariant states, e.g. ground states and equilibrium temperature states at arbitrary
temperature. On the other hand, for some superderivation there is no invariant state,
namely, supersymmetry is broken. Take simply a bounded superderivation δq with q

being odd self-adjoint and q2 being strictly positive.
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It is well known and frequently used that if supersymmetry is unbroken for an arbitrary
finite volume V in a total space, then it remains unbroken in the infinite volume limit.
The reason goes as follows. If the ground-state energy E(V ) confined in V is zero due to
local unbroken supersymmetry, then its infinite volume limit lim

V→∞
E(V ) obviously stays

zero. Since energy is an order-parameter for supersymmetry, unbroken supersymmetry is
concluded.

Then, what if the status of unbroken-broken supersymmetry depends on subsystems
imbedded or boundary conditions? There actually occurs such subtle situation in a con-
crete fermion lattice model. Our answer is that there is no breaking. It follows from the
following general statement for approximately inner superderivations. It makes the above
(somehow heuristic) argument rigorous.

Theorem 5.1. For a graded C∗-algebra F , suppose that there is an increasing sequence
1 ∈ M1 ⊂ M2 · · · ⊂ Mn ⊂ · · · of subalgebras of F such that

⋃
nMn is norm dense. Let

δ be an approximately inner superderivation on F such that {qn} is a set of odd elements
satisfying (4.1) on E =

⋃
nMn, which is assumed to be a core for δ. Suppose further that

for any δqn, there is a state ωn on F such that

ωn
(
δqn(A)

)
= 0 for any A ∈Mn. (5.1)

Then there is a supersymmetric state on F with respect to δ.
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A unified scheme of measurement and amplification

processes

Ryo HARADA
Graduate School of Science, Kyoto University

1 Introduction

I present a unified scheme of quantum measurements containing the aspects
of amplification processes, or translation to macroscopic levels on the basis
of [11], a joint work with Prof. I. Ojima. This formulation is based on
micro-macro duality [5] as a mathematical expression ofthe general idea of
quantum-classical correspondence. An essential difference between classi-
cal physics and quantum physics can be seen in their algebraic structures
describing the physical systems. Quantum systems are generally described
by non-commutative algebras (C*-algebras, von-Neumann algebras, and so
on) consists of observables. The concept of amplification or translation to
macro is nothing but how the information of (quantum) non-commutative
observables is translated in the words of macroscopic worlds, which are de-
scribed by (classical) commutative ones. This point of view is essential for
understanding quantum measurements. In mathematical words, the trans-
formation from quantum internal degrees of freedom to classical ones is con-
structed by Kac-Takesaki operator or multiplicative unitary, which plays a
fundamental roles in harmonic analysis, and the dual structure between q-
numbers and c-numbers can be understood via the Helgason duality control-
ling the Radon transform (in somehow generalized meanings). A concrete
observation for the case of Stern-Gerlach experiment can be seen in [11],
and recently, we obtained more general formulation which is applicative to
various situation.

2 Sector theory and quantum-classical correspon-
dence

Before explaining a concrete setting based on Micro-Macro duality, let us
review the basic idea of sector theory for preparation. Suppose the system
we are interested in is described by a C*-algebra A of (quantum) observables.
Then we can define a sector using quasi-equivalence of factor (centre-trivial)
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representation defined as follows: For two representations π1 and π2 of a C*-
algebra A, they are quasi-equivalent if and only if they are unitary equivalent
up to multiplicity, i.e.,

∃m,n, π⊕m
1 ≃ π⊕n

2 ,

where π⊕n := π ⊕ · · · ⊕ π︸ ︷︷ ︸
n

for a representation π of A and n ∈ N, and then

denoted by π1 ≈ π2.
This condition is equivalent to the following isomorphism of represent-

ing von Neumann algebras π1(A)
′′ ≃ π2(A)

′′. Then a sector is defined as a
quasi-equivalent classes of factor representations. One of the conditions for
disjointness of different sectors is equivalently written down as follows: for
the representations πa, πb of A on Hπa and Hπb

, respectively, for any bounded
operator T : Hπa → Hπb

, Tπa(A) = πb(A)T for ∀A ∈ A ⇒ T = 0 i.e., πa
and πb has no non-zero intertwiner. Then if π is not a factor representation
belonging to a sector, it can be uniquely decomposed into the direct sum
(or integral) of sectors, through the spectral decomposition of a non-trivial
commutative algebra Z(π(A)′′) = π(A)′′ ∩ π(A)′ = Zπ(A) as the centre of
π(A)′′ admitting a “simultaneous diagonalization”. Thus the Gel’fand spec-
trum Sp(Zπ(A)) of the centre parametrizes each sector faithfully and plays
the role of classifying space of sectors to distinguish different sectors, and
(commutative) observables belonging to Zπ(A) is regarded as macroscopic
order parameters. This viewpoint based on factoriality of sectors extends
the traditional understanding of sectors to general cases of any pure phases
associated with reducible factor representations and mixed states which are
common in the thermal and/or local aspects of quantum fields [4].

In the above setting we can construct a clear-cut formulation of quantum-
classical correspondence: The microscopic quantum world is described by
non-commutative elements of algebras of each sector, and, on the other
hand, the macroscopic classical levels are described by means of the notion
of a sector structure consisting of a family of sectors (or pure phases). We
can see a clear “boundary” between microscopic and macroscopic levels as
the gap of inside of sectors and intersectorial level [4, 5].

2.1 Fundamental settings of Micro-Macro duality

In the previous subsection we saw a factor algebra π(A)′′ generated by C*-
algebra A (and satisfies Z(π(A)′′) = C1) describes microscopic quantum
structure (the internal structure of a sector), so we set here a von Neumann
algebra M = π(A)′′ representing the full physical system of our attention.
First we can take its (non-trivial) maximal abelian subalgebra (MASA, in
short) which satisfies A = A′ ∩M. This MASA A means the macroscopic
observables of the system, or more precisely, we can read the macroscopic
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information from Sp(A) (to be introduced later) via experimental obser-
vation schemes. For the purpose of describing correspondences between
microscopic and macroscopic structures, the unitary group U which gener-
ates MASA A (i.e., A = U ′′) also plays essential roles. We now have the
fundamental triple (M,A,U) describing the quantum system, then in the
next step we construct the dual pairs for the latter two objects A and U ,
i.e., the algebraic spectrum Sp(A) of A and the set of group characters Û
of U . We remember that A can be recognized as the fixed subalgebra of M
under the action of U yα M, i.e., A = MU .

Let us see more details of Sp(A) and Û . Owing to the relation of A ⊃ U ,
the restriction of algebraic characters χ ∈ Sp(A) onto U is naturally derived,
and this gives the canonical embedding Sp(A) ⊂ Û . Moreover, considering
the triple (M,U , α) as a W*-dynamical system, we obtain its dual system
and the co-action Û yα̂ M oα U . Under these settings, canonical dy-
namism of reconstructing quantum (microscopic) systems from the classical
(observational, macroscopic) variables is summerized in the two mutually
equivalent isomorphisms as below under the semi-duality condition for the
action α of U [9]:

• Moα U ≃ A⊗B(L∞(U)) [: amplification process]

• (A⊗B(L∞(U))oα̂ Û ≃ M [: reconstruction]

From this viewpoint we can see that the Fourier duality (especially the
role of K-T operator, as seen later) works essentially in order to connect the
full system M and the observed values Sp(A).

2.2 Kac-Takesaki operator for measurement coupling

In this section we introduce a class of operators called Kac-Takesaki op-
erators (K-T operators, in short), which play central roles in the context
of harmonic analysis. For a locally compact group U , the isometry W on
L2(U × U , dµ⊗ dµ) called a Kac-Takesaki operator is defined as

(Wη)(u, v) := η(v−1u, v) for η ∈ L2(U × U , dµ⊗ dµ) and u, v ∈ U ,

where dµ is the Haar measure of U . It is well-known that the K-T operator
W associated to U is characterized by the following two relations [3]:

• W12W23 = W23W13W12 on L2(U ×U ×U , dµ⊗ dµ⊗ dµ) [: pentagonal
relation]

• W (1⊗ λu) = (λu ⊗ λu)W [: intertwining relation]

where λu (u ∈ U) is a regular representation of U .
When the action M x

α
U of the measuring system is unitarily imple-

mented, it is given in the form αu(M) = UuMU−1
u (M ∈ M, u ∈ U) via
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a unitary representation U of U on the (standard) representation Hilbert
space L2(M) of M. Here the representation U(W ) of W corresponding to
α = Ad(U) is defined by

(U(W )ξ)(u) := Uu(ξ(u)) for ξ ∈ L2(M)⊗ L2(U , dµ)

and the modified intertwining and pentagonal relations U(W )(1 ⊗ λu) =
(Uu⊗λu)U(W ) and U(W )12W23 = W23U(W )13U(W )12 hold. If we hope to
obtain a familiar viewpoint to physicists, we can write down this operation
in terms of the Dirac bracket notation;

U(W ) =

∫
g∈U(A)

Ug ⊗ |g⟩dg⟨g|.

In the next step, we consider the Fourier-transformed K-T operator,
denoted by V . As W is a (unitary) action on L2(U×U) , we have its Fourier
transform V = (F ⊗ F)W ∗(F ⊗ F)−1, where (Fξ)(γ) :=

∫
U γ(u)ξ(u)dµ(u)

for ξ ∈ L2(U , dµ). Then V is nothing but the K-T operator of the dual
group Û with the Plancherel measure dµ̂ satisfying the relations:

(V η)(γ, χ) = η(γ, γ−1χ) for η ∈ L2(Û , dµ̂),

V23V12 = V12V13V23,

V (λγ ⊗ 1) = (λγ ⊗ λγ)V.

Similarly, the Fourier transform of U(W ) is given by Ũ(W ) := (id⊗F)U(W )(id⊗
F)−1. Owing to the SNAG theorem due to the abelianness of U , its uni-
tary representation Uu ∈ U(L2(M)) admits the spectral decomposition

Ũ(W ) =
∫
χ∈Sp(A) dE(χ) ⊗ λ∗

χ =: Ũ(V )∗. Hence the spectral decomposi-

tion of Ũ(V ) is given by

Ũ(V ) =

∫
χ∈Sp(A)

dE(χ)⊗ λχ, (1)

and in the Dirac’s notation, the action of Ũ(V ) on L2(M)⊗ L2(Û) is given
for γ ∈ Û , ξ ∈ L2(M), so the decomposition is

Ũ(V )(ξ ⊗ |γ⟩) =
∫
χ∈Sp(A)

dE(χ)ξ ⊗ |χγ⟩. (2)

We will recall the last two equation in describing our measurement scheme
in the next section (see also [5, 9, 7]).
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3 Description of Amplification Processes by In-
struments

Now we describe a measurement scheme in the above mathematical setting,
especially using the typical property of K-T operator given in (2). The basic
idea (the interpretation of probe system,neutral position and instrument, and
the method for describing amplification) is found in [7].

The settings becomes clear-cut in the case Û is discrete (⇔ U is compact)
according to the following description; owing to Û being discrete, we can pick
the group identity ι ∈ Û and substitute γ = ι and ξ =

∑
χ∈Û cχξχ (a generic

state of the observed system) for (2), then it gives

Ũ(V )(ξ ⊗ |ι⟩) =
∑
χ∈Û

cχξχ ⊗ |χ⟩. (3)

In other words, the action of Ũ(V ) provides the change of the probe states
according to the states of the observed system, or transfer the information of
the observed system into the probe system. Thus the K-T operator works to
describe the mathematical essence of measurements. (In the case when the
identity element ι ∈ Û is not represented by a normalized vector in L2(U)
(for non-compact U), the invariant mean mU over U physically plays the
equivalent role of the neutral position ι.)

3.1 Reformulation of instrument for measurement

On the bases we introduced above, we can define an instrument I (originally
defined by Davies and Lewis [2] as a completely positive operation valued
measure, and refined by Ozawa [10]) to unify all the ingredients of measure-
ment scheme. We write down the formula according to [7]: For an initial
vector state of the observed system ωξ = ⟨ξ| · |ξ⟩ and the indicator function
ξ∆ of a Borel set ∆ ⊂ Sp(A),

I(∆|ωξ)(M) := (ωξ ⊗mU )
(
Ũ(V )∗(M ⊗ χ∆)Ũ(V )

)
= (⟨ξ| ⊗ ⟨ι|)Ũ(V )∗(M ⊗ χ∆)Ũ(V )(|ξ⟩ ⊗ |ι⟩)

=

∫
∆
dµ(γ)

√
dE(γ)

dµ(γ)
M

√
dE(γ)

dµ(γ)
, (4)

where dµ is an arbitrary probability measure satisfying dE(γ) ≪ dµ(γ)
(i.e., dE(γ) is absolutely continuous with respect to dµ(γ)). This formula is
equivalent to the original definition given in [2]. The following proposition is
essential for the statistical interpretation in the context of instrument. The
probability distribution of measured values of observables in A to be found
in a Borel set ∆ ⊂ Sp(A) is given by

p(∆|ω) = I(∆|ω)(1)
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which is directly derived from (4). In addition, the initial state ω is changed
into a final state specified in a form as I(∆|ω)/p(∆|ω) according to the
read-out of measured values in ∆ [10].

We remember that, in this description of measurement processes, the mi-
croscopic changes of probe systems such as |ι⟩ → |ξ⟩ are directly interpreted
as the measured data. To adjust our theoretical descriptions to the realistic
experimental situations, however, we need to discuss how these changes of
probe systems dynamically propagate into macroscopic changes of a measur-
ing pointer (because of some kinds of problems in realistic experiments; e.g.,
adiabatic conditions for approximate measurements). This is why we are
concerned with the problem of amplification process, i.e., process to amplify
invisible quantum state changes in the probe system into the macroscopic
data registered on some suitable order parameter.

3.2 Dynamical description of amplification

The basic idea introduced in this subsection is, to sum up, considering state
changes of N -th tensored power of probe system |ι⟩⊗N := |ι⟩ ⊗ · · · ⊗ |ι⟩︸ ︷︷ ︸

N

for

∀N ∈ N caused by N -th tensored power of K-T operator V according to the
following procedure (physically corresponding to such situation as a state
change in one unit of a probe system triggers a state change in the next
unit in such a way as accumulating eventually the effect of changes) [7].
Let λ be a regular representation of Û , then its arbitrary tensor powers
λ⊗N := (Û ∋ γ 7→ λγ ⊗ · · · ⊗ λγ︸ ︷︷ ︸

N

∈ U(L2(Û))⊗N satisfy the property of

mutually quasi-equivalence [11]:

λ⊗m ≈ λ⊗n for ∀m,n ∈ N.

Now let us write down a dynamical representation of amplification process
with large number of iterations by a K-T operator. First, for convenience, we
assume Û is discrete so that the process can be seen in Schrödinger picture
as follows:

UN (ξ ⊗ |ι⟩⊗N ) := VN,N+1 · · ·V23Ũ(V )12(ξ ⊗ |ι⟩⊗N )

=
∑

γ∈Sp(A)

cγVN,N+1 · · ·V34V23(ξγ ⊗ |γ⟩ ⊗ |ι⟩ ⊗ · · · ⊗ |ι⟩)

=
∑

γ∈Sp(A)

cγVN,N+1 · · ·V34(ξγ ⊗ |γ⟩ ⊗ |γ⟩ ⊗ |ι⟩ ⊗ · · · ⊗ |ι⟩) (5)

= · · · · · ·

=
∑

γ∈Sp(A)

cγξγ ⊗ |γ⟩ ⊗ |γ⟩ · · · ⊗ |γ⟩,
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with use of the property given by (3). From this calculation, we obtain the
following result: For N ∈ N and a generic state ξ =

∑
γ∈Sp(A) cγξγ ,

UN (ξ ⊗ |ι⟩⊗N ) =
∑
γ∈Û

cγξγ ⊗
[
|γ⟩⊗N

]
. (6)

This gives us the physical interpretation that the probability for detecting the
state |γ⟩⊗N is equal to |cγ |2 for N ≫ 1. For the treatment being independent

of the discreteness of Û , we may rewrite the above scheme in the Heisenberg
picture;

TN (A⊗ f2 ⊗ · · · ⊗ fN+1)

:= Ũ(V )∗12V
∗
23 · · ·V ∗

N,N+1(A⊗ f2 ⊗ · · · ⊗ fN+1)VN,N+1 · · ·V23Ũ(V )12

= Ad(Ũ(V )∗12)Ad(V
∗
23) · · ·Ad(V ∗

N,N+1)(A⊗ f2 ⊗ · · · ⊗ fN+1)

= Ad(Ũ(V )∗)(A⊗Ad(V ∗)(f2 ⊗Ad(V ∗)(· · · ⊗Ad(V ∗)(fN ⊗ fN+1))) · · · )

for A ∈ M and fi ∈ L∞(Û),

in a similar way to Accardi’s formulation of quantum Markov chain [1].
According to the general basic idea of “quantum-classical correspon-

dence”, a classical macroscopic object can be identified with a condensed
state of infinite number of quanta, as well exemplified by the macroscopic
magnetization of Ising or Heisenberg ferromagnets described by the aligned
states | ↑⟩⊗∞ of infinite number of microscopic spins. Therefore, the above
state |γ⟩⊗N (with N ≫ 1) can physically be interpreted as representing a
macroscopic position via some order parameter (or direction of pointer in
the contexts of measurement), and hence, the above repeated action of the
K-T operator V describes a cascade process to amplify a state change at
the microscopic end of the apparatus into the macroscopic classical motion
of the measuring pointer.

The scheme provides us with the correct value of probability for the re-
currence number N being finite, so the repetition need not be a real infinity.
To be frank, the number N itself is not so critical, except for the neces-
sary condition of being large enough for detecting macroscopic differences of
different states of observed system. This situation becomes clear after refor-
mulating instruments in the following subsection. Moreover, the problem as
to whether the situation is completely made classical or not depends highly
on the relative configurations among many large or small numbers, which
can consistently be described in the framework of the non-standard analysis
(see [8], for instance).

In relation to this, it is also notable that the above amplification process
is closely related to a Lévy process through its “infinite divisibility” as follows
[6]: we can derive λ ≈ λn/m (∀m,n ∈ N) from λ ≈ λn (∀n ∈ N), which
means the infinite divisibility (Ad(V ))t+s ≈ (Ad(V ))t(Ad(V ))s (∀t, s > 0)
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of the process induced by the above transformation. In this way, we see that
simple individual measurements with definite measured values are connected
without gaps with discrete and/or continuous repetitions of measurements.
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On Generalized Cumulants∗

Hayato Saigo (Kyoto university)

Dedicated to K. Ito and I. Ojima
on their 60th birthday

Abstract

A family of quantities known as cumulants, which includes the mean and the
variance, characterizes the properties of random variables and the relations be-
tween them. We generalize the notion in the context of quantum probability, giving
a unified approach to central limit theorems associated to the four notions of “inde-
pendence”, namely, tensor, free, Boolean, and especially, monotone independence.
The present paper is based on [6].

1 Introduction

The notions of mean and variance play important roles in understanding the behaviours
of random variables. Given k-th moments of a random variable X for 1 ≤ k ≤ n,
a quantity known as the n-th cumulant can be defined: it gives the mean of X for
n = 1 and the variance of X for n = 2. The n-th cumulant is additive with respect
to independent random variables and is homogeneous of n-th order under the scalar
multiplication. For the Gaussian distribution, higher n-th cumulants with n ≥ 3 vanish.
In terms of these ingredients, the essense of the central limit theorem (CLT) can easily be
grasped. Accordingly it is naturally expected that cumulants will play some crucial roles
in understanding the nature of CLT and independence.

In quantum probability as a nonncomutative algebraic version of classical probability,
various notions of “independence” have been introduced. Among them, four indepen-
dences known as tensor, free, Boolean and monotone ones are considered as fundamental.
Their corresponding CLT’s are very interesting, especially because their limit distributions
are given, respectively, by the Gaussian law, the Wigner semi-circle law, the Bernoulli law
and the arcsine law. In contrast to the cumulants for commutative, free and Boolean inde-
pendence, the “cumulants” for the monotone case is not additive for arbitrary independent
random variables.

We investigate here the nature of (generalized) CLT’s and the meaning of (generalized)
independence by axiomatizing the generalized cumulants. According to this generalization
of the notion, we can unify four CLT’s in a simple idea, which is expected to facilitate
for us to attain better understanding of the notion of independence (involving “classical”
independence).

∗Joint work with T. Hasebe (Kyoto university)
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2 From variance to cumulants

As is well known, the variance V (X) of random variable X is defined as follows:

V (X) = E(X2)− E(X)2 (2.1)

Here, E(X) denotes the mean of X.
By definition, the properties below are easily proved.

(K1) V (X + Y ) = V (X) + V (Y ) for X, Y independent

(K2) V (λX) = λ2V (X)

As a generalization of the variance (2nd order cumulants), the n-th cumulant of X is
defined as follows:

exp(
∑
n≥1

Kn(X)) :=
∑
n≥0

Mn(X), Mn(X) := E(Xn), (2.2)

where Mn(X) := E(Xn) denotes the n-th moment.
It is easy to see that E(X) and V (X) is nothing but the first and the second order

cumulant, respectively.
From the definition above, the properties below holds:

(K1) Additivity: If X, Y ∈ A are independent,

Kn(X + Y ) = Kn(X) + Kn(Y ), (2.3)

for any n ≥ 1.
(K2) Homogeneity: for any λ and any n,

Kn(λX) = λnKn(X). (2.4)

(K3) Polynomiality: For any n, there exists a polynomial Qn of n− 1 variables such that

Mn(X) = Kn(X) + Qn(K1(X), · · · , Kn−1(X)). (2.5)

As an application of the notion of cumulants, the essensial structure of the central
limit theorem (CLT) are understood as follows. (For simplicity, in this paper we assume
that all random variables have finite moments.)

First, by the properties (K1) and (K2), cumulants of the scaling sum SN := X1+X2+···XN√
N

of independent, identically distributed (i.i.d) random variables Xi are calculated as

Kn(SN) = N1−n
2 Kn(Xi). (2.6)

Hence, when all of Xi are normalized, i.e., E(Xi) = 0 and V (Xi) = 1,

lim
N→∞

Kn(SN) = δn,2. (2.7)

On the other hand, the n-th cumulant of normalized Gaussian is nothing but δn,2 . It is
easy to see that cumulants converge if and only if moments converge. Moreover, under
certain condition which is satisfied here, convergence in moments is equivalent to weak
convergence. Then we have central limit theorem (CLT):

Theorem 2.1. If {Xi} is a family of normalized i.i.d.s (which has all finite moments),
X1+X2+···XN√

N
weakly coverges to normalized Gaussian when N tends to infinity.
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3 Notions of independence in quantum probability

In quantum probability theory, which is a noncommutative extension of (measure-theoretic)
probability theory, many different (analogous) notions of independence are defined. Among
them, tensor, free, Boolean and monotone independence are considered as fundamen-
tal examples[12, 14, 19, 22]. For tensor, free, Boolean and many other notions of in-
dependence, associated cumulants, that is, the quantities or functionals which satisfies
(K1):additivity for each independence, (K2):homogeneity and (K3):polynomiality, have
been introduced[7, 21, 19]. They are fruitful concept especially for understanding asymp-
totics of algebraic random variables such as CLTs.

In the present paper we will introduce generalized cumulants which allow us to give an
unified approach to CLTs, including the case of monotone independence. Since monotone
independence depends on the order of random variables, the additivity of cumulants (K1)
fails to hold. Instead, we introduce a weakened condition and prove the uniqueness of
generalized cumulants in Section 4. In Section 5, we show the existence of the monotone
cumulants and obtain an explicit moment-cumulant formula for monotone independence.
In Section 6, we show the (monotone) central limit theorem in terms of the (monotone)
generalized cumulants.

Let A be an unital *-algebra over C. A linear functional on A is called a state on A
if ϕ(a∗a) ≥ 0 and ϕ(1A) = 1.

Definition 3.1. (Algebraic probability space) An algebraic probability space is a pair
(A,ϕ), where A is an unital *-algebra and ϕ a state on A.

An element a in A is called an algebraic random variable. For algebraic random
variables, quantities such as ϕ(a1a2...an) is called mixed moments.

The notion of independence in classical probability can be understood as a universal
structure which gives a rule for calculating mixed moments, at least from the algebraic
point of view. In quantum probability, lots of different notions of independence have
been introduced. Among them, four notions mentioned below are known as fundamental
examples [12, 14].

Let (A,ϕ) be an algebraic probability space and {Aλ; λ ∈ Λ} be a family of *-subalgebras
of A. In the following four notions of independece are defined as the rules for calculating
mixed moments such as ϕ(a1a2...an), where

ai ∈ Aλi
, ai /∈ C1, λi 6= λi+1, 1 ≤ i ≤ n, n ≥ 2.

Definition 3.2. (Tensor independence). {Aλ} is tensor independent if

ϕ(a1a2...an) = ϕ(a1)ϕ(a2...an)

holds when λ1 6= λr for all 2 ≤ r ≤ n, and otherwise, letting r be the least number such
that λ1 = λr,

ϕ(a1a2...an) = ϕ(a2...ar−1(a1ar)ar+1...an).

Tensor independence is nothing but a straight generalization of usual independence.
On the other hand, very different and in a sense dual notion of independence, that is, free
independence, is well known.
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Definition 3.3. (Free independence). {Aλ} is free independent if

ϕ(a1a2...an) = ϕ(a1)ϕ(a2...an)

holds whenever ϕ(a2) = ... = ϕ(an) = 0.

Moreover, the concepts below are also considered as basic examples (or analogues) of
independence:

Definition 3.4. (Boolean independence). {Aλ} is Boolean independent if

ϕ(a1a2...an) = ϕ(a1)ϕ(a2...an)

Definition 3.5. (Monotone independence). Assume that the index set Λ is equipped
with a linear order <. {Aλ} is monotone independent if

ϕ(a1...ai...an) = ϕ(ai)ϕ(a1...ai−1ai+1...an)

holds when i satisfies λi−1 < λi and λi > λi+1 (understanding that one of the inequalities
is eliminated when i = 1 or i = n).

A system of algebraic random variables {xλ} are called tensor/free/Boolean/monotone
independent if {Aλ} are tensor/free/Boolean/monotone independent, where Aλ denotes
the algebra generated by xλ.

4 Generalized cumulants

We introduce generalized cumulants as functionals which satisfies (K1’), (K2), (K3).

Definition 4.1. A functional Kn is called a nth order cumulant for each independence
when it satisfies the following condtions.
(K1’) Weakened additivity: If X(1), X(2), · · · , X(N) are independent, identically distributed
to X in the sense of moments (i.e., Mn(X) = Mn(X(i)) for all n), we have

Kn(N.X) := Kn(X(1) + · · ·+ X(N)) = NKn(X). (4.1)

Here we understand that Kn(0.X) := δn0.
(K2) Homogeneity: for any λ and any n,

Kn(λX) = λnKn(X). (4.2)

(K3) Polynomiality: For any n, there exists a polynomial Qn of n− 1 variables such that

Mn(X) = Kn(X) + Qn(K1(X), · · · , Kn−1(X)). (4.3)

We show the uniqueness of generalized cumulants with respect to each notion of inde-
pendence.

Theorem 4.2. Generalized cumulants satisfying (K1’), (K2) and (K3) are (if exist)
unique and the n-th cumulant is given by the coefficient of N in Mn(N.X).
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Proof. By (K3) and (K1’), we obtain

Mn(N.X) = Kn(N.X) + Qn(K1(N.X), · · · ,Mn−1(N.X))

= NKn(X) + Qn(NK1(X), · · · , NKn−1(X)).
(4.4)

By condition (K2), the polynomial Qn does not contain linear terms and a constant for
any n. Therefore, the coefficient of the linear term N is nothing but Kn(X). The right
hand side of (4.4) depends only on the notion of independence and the moments of X,
the uniqueness of generalized cumulants holds.

From now on, we use the word “cumulants” instead of “generalized cumulants” to
label Kn above.

5 The monotone cumulants

Proposition 5.1. For monotone independent random variables X and Y , it holds that

Mn(X + Y ) =
n∑

k=0

∑

j0+j1+···+jk=n−k,
0≤jl, 0≤l≤k

Mk(X)Mj0(Y ) · · ·Mjk
(Y )

= Mn(X) + Mn(Y ) +
n−1∑

k=1

∑

j0+j1+···+jk=n−k,
0≤jl, 0≤l≤k

Mk(X)Mj0(Y ) · · ·Mjk
(Y ).

(5.1)

Proof. (X + Y )n can be expanded as

(X + Y )n = Xn + Y n +
n−1∑

k=1

∑

j0+j1+···+jk=n−k,
0≤jl, 0≤l≤k

Y j0XY j1X · · ·XY jk

(5.2)

Taking the expectation of the above equality, we obtain (5.1).

By this formula, we obtain the proposition below.

Proposition 5.2. Mn(N.X) is a polynomial of degree n w.r.t. N (without a constant
term) for any n ≥ 0.

Proof. We use induction w.r.t. n. For n = 1, it is obvious from linearity of expectation.
Suppose the proposition holds for n ≤ l. From the formula above, we obtain

∆Ml+1(N.X) = Ml+1(X) +
l∑

k=1

∑

j0+j1+···+jk=n−k,
0≤jl, 0≤l≤k

Mk((N − 1).X)Mj0(X) · · ·Mjk
(X). (5.3)

Here, ∆Ml+1(N.X) := Ml+1(N.X) −Ml+1((N − 1).X). Then Ml+1 is a (l + 1)-th poly-
nomial w.r.t. N (without a constant term) because ∆Ml+1(N.X) is a l-th polynomial
w.r.t.N and Ml+1(0.X) = 0.
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As the proposition above holds, we may define mn(t) = Mn(t.X) by replacing N with
t ∈ R. Note that this is a polynomial w.r.t. t and that mn(1) = Mn(X). Moreover, we
easily obtain

mn(t + s) = mn(t) + mn(s) +
n−1∑

k=1

∑

j0+j1+···+jk=n−k,
0≤jl, 0≤l≤k

mk(t)mj0(s) · · ·mjk
(s) (5.4)

from the definition of mn(t) and (5.1) .
Now we come to define the main notion.

Definition 5.3. Let rn = rn(X) be the coefficient of N in Mn(N.X) (or the coefficient
of t in mn(t)). We call rn the n-th monotone cumulant of X.

The monotone cumulants satisfy the axioms (K1’) and (K2) because Mn(N.(M.X)) =
Mn((NM).X) and Mn(N.(λX)) = Mn(λ(N.X)). For the moment-cumulant formula, we
obtain the following proposition.

Proposition 5.4. The equations below hold:

dm0(t)

dt
= 0,

dmn(t)

dt
=

n∑

k=1

krn−k+1mk−1(t) for n ≥ 1,
(5.5)

with initial conditions m0(0) = 1 and mn(0) = 0 for n ≥ 1.

Proof. From (5.4), we obtain

mn(t + s)−mn(t) = mn(s) +
n−1∑

k=1

∑

j0+j1+···+jk=n−k,
0≤jl, 0≤l≤k

mk(t)mj0(s) · · ·mjk
(s) (5.6)

By definition,
mi(s) = ris + s2(· · · ) (5.7)

holds. Comparing the coefficients of s in (5.6), we obtain the conclusion.

We show that {mn}n≥0 := {Mn(X)}n≥0 and {rn}n≥1 are connected with each other
by a formula.

Theorem 5.5. The following formula holds:

mn =
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

1

k!

k∏

l=1

il−1ril−il−1
. (5.8)

Proof. This formula is obtained directly by (5.5). We shall use the equations in the
integrated forms

m0(t) = 1,

mn(t) =
n∑

k=1

krn−k+1

∫ t

0

mk−1(s)ds for n ≥ 1.
(5.9)
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Then we have

mn(t) =
n∑

k1=1

knrn−k1+1

∫ t

0

mk1−1(t1)dt1

=
n∑

k1=1

k1−1∑

k2=1

k1k2rn−k1+1rk1−k2

∫ t

0

dt1

∫ t1

0

dt2 mk2−1(t2)

=
n∑

k1=1

k1−1∑

k2=1

k2−1∑

k3=1

k1k2k3rn−k1+1rk1−k2rk2−k3

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 mk3−1(t3)dt3

= · · · .

When this calculation ends, we obtain the formula

mn(t) =
n∑

k=1

∑
1=i0<i1<···<ik−1<ik=n+1

tk

k!

k∏

l=1

il−1ril−il−1
,

where il := kn−l. Putting t = 1, we have (5.8).

Remark 5.6. This formula has been already obtained in the case of the monotone Poisson
distribution [1, 2].

Corollary 5.7. The monotone cumulants rn = rn(X) satisfy (K3).

Hence, we obtain the main theorem.

Theorem 5.8. rn are the unique (generalized) cumulants for monotone independence.

6 Central Limit Theorem

We apply the monotone cumulants to the monotone CLT which has already been obtained
by combinatorial arguments on certain kind of partitions in [11] and much simplified by
[14, 15]. On the other hand, the argument below is applicable to other independences,
without concerning explicit combinatorics. It is an analogue of the proof of usual CLT
discussed in section 2.

Theorem 6.1. Let (A, φ) be a non-commutative probability space. Let X(1), · · · , X(N), · · ·
be identically distributed, monotone independent self-adjoint random variables with φ(X(1)) =

0 and φ((X(1))2) = 1. Then the probability distribution of X(1)+···+X(N)√
N

converges weakly
to the arcsine law with mean 0 and variance 1.

Proof. It is not difficult to show that Mn(X(1)+···+X(N)√
N

) converges to some Mn which is

characterized by the monotone cumulants (r1, r2, r3, r4, · · · ) = (0, 1, 0, 0, · · · ). We can

calculate the limit moments by (5.8) and obtain r2n−1 = 0 and r2n = (2n−1)!!
n!

for all
n ≥ 1. The limit measure is the arcsine law with mean 0 and variance 1 [11], the moment

problem of which is deterministic. Then the distribution of Mn(X(1)+···+X(N)√
N

) converges

to the arcsine law weakly (see Theorem 4.5.5 in [4]).
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Abstract

Nonlinear sigma models with non-compact target space and non-amen-
able symmetry group were introduced long ago in the study of dis-
ordered electron systems. They also occur in dimensionally reduced
quantum gravity; recently they have been considered in the context of
the AdS/CFT correspondence. These models show spontaneous sym-
metry breaking in any dimension, even one and two (superficially in
contradiction with the Mermin-Wagner theorem) as a consequence of
the non-amenability of their symmetry group. The low-dimensional
models show other peculiarities: invariant observables remain depen-
dent on boundary conditions in the thermodynamic limit and the
Osterwalder-Schrader reconstruction yields a non-separable Hilbert space.
The ground state space, however, under quite general conditions, car-
ries a unique unitary and continuous representation. The existence
of a continuum limit in 2D is an open question: while the perturba-
tive Renormalization Group suggests triviality, other arguments hint
at the existence of a conformally invariant continuum limit at least for
suitable observables.

This talk gives an overview of the work done during the last several
years in collaboration first of all with Max Niedermaier, some of it also
with Peter Weisz and Tony Duncan [1, 2, 3, 4, 5].
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1 Introduction

1.1 What are non-amenable symmetries?

The concept of amenable groups was introduced by J. von Neumann in
1929; it can be described as follows: let C(G) be the space of continuous
bounded functions on G; then a mean m is a positive (hence continuous)
linear functional on C(G) (or on L∞(G)) with m(1I) = 1. Put differently:
m is a state on the commutative C∗ algebra C(G) (or L∞(G)). Since the
group G has a natural left action on functions, it makes sense to speak about
invariance of such a mean.

Definition: The group G is non-amenable if there is no mean on C(G) which
is invariant under G.

A well-known fact is that noncompact semisimple Lie groups are nona-
menable [6].

The concept can be generalized to homogeneous spaces G/H by using the
the algebra C(G/H) instead of C(G). One also speaks of (non-)amenable
actions of a group G on a general G-space M: the left action of G induces
an action on C(M) and non-amenability means nonexistence of a mean
invariant under G on C(M).

Bekka [7] has extended the definition to that of amenable unitary represen-
tations π on a Hilbert space H as follows: π is called amenable if there is a
state on B(H) which is invariant under π. In this context the following re-
sult is important: if G is simple, noncompact, connected, with finite center,
rank > 1, the trivial representation is the only amenable one.

1.2 Physics motivations

(1) Nonlinear σ models with hyperbolic target space – the prototype of a
non-amenable symmetric space – were introduced 1979 by Wegner [8] to
describe the conductor-insulator transition in disordered electron systems.
Since then there has been a lot of activity, see for instance [9, 10, 11]. Later
Efetov [12, 13] and Zirnbauer [14] introduced the supersymmetric version
of that model as a better description of the electron system. This line of
research was continued more recently in [15, 16, 17].

(2) Some ‘warped’ versions of nonlinear σ models with hyperbolic target
space arise in dimensionally reduced gravity and its quantization [18, 19, 20].

(3) Not surprisingly, these models also appear in the context of string theory;
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string theorists think of hyperbolic space as ‘Euclidean Anti-de Sitter space’
[21, 22].

2 Quantum Mechanics on hyperbolic spaces

Insight into the peculiarites of non-amenable symmetries is easiest to obtain
by studying quantum mechanics on hyperbolic spaces. Hyperbolic space can
be described as a hyperboloid imbedded in Minkowski space with the metric
induced by the ambient space:

HN ≡ SOo(1, N)/SOo(N) ≡ G/K = {n ∈ RN+1|n · n = 1, no > 0} , (1)

where n · n′ = non
′
o − ~n · ~n′.

2.1 One particle

Let ∆ denote the Laplace-Beltrami operator on HN . The free one particle
Hamiltonian, acting on L2(HN , dΩ) where dΩ is an invariant measure on
HN , is then

H = −∆ ≥ 0 . (2)

This Hamiltonian is diagonalized using the Mehler-Fock transformation [23];
it reveals that the spectrum of H is absolutely continuous, covering the
interval [(N−1)2/4, ∞); there is no spectrum in the interval [0, (N−1)2/4),
even though there are bounded eigenfunctions for every value in that interval
(the supplementary series). Introducing a spectral parameter ω running
from 0 to ∞, we have the spectral resolution

L2(HN , dΩ) =
∫ ∞

0
dP (ω)Hω; Hψ =

∫ ∞
0

dP (ω)
(

1
4

(N − 1)2 + ω2)ψ
)
.

(3)

Only the principal series appears; the spectrum is infinitely degenerate be-
cause all representations in that series are infinite dimensional. Of course
there is no normalizable ground state vector; instead we have a ‘ground state
space’ corresponding to ω = 0 and spanned by ‘generalized ground states’
(functions in C(M) but /∈ L2) of the form

P1−N/2
−1/2 (gn · n↑), g ∈ SOo(1, N) , (4)
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and linear combinations thereof, where P1−N/2
−1/2 are Legendre functions.

A different scalar product, produced by the Osterwalder-Schrader (OS) re-
construction makes these ground states normalizable. They then generate a
Hilbert space of ground states carrying a special unitary irreducible repre-
sentation σ0. But the main point is this:

There is no invariant ground state
Spontaneous symmetry breaking (SSB) takes place!

2.2 ν particles: separation of ‘center of mass’

When we consider a ν particle system interacting via translation invariant
potentials in Euclidean space, the first step is always to separate out the free
center of mass motion. Here we consider ν particles on HN with a potential
invariant under the symmetry group G = SO0(1, N), and again we would
like to to find a way to extract the rigid motions. This requires some tricks.

Our Hilbert space is now H = L2(M) (M = H
ν
N ) and the Hamiltionian is

H = −
n∑
i=1

∆i +
∑
i<j

V (ni · nj) ≡ H0 + V . (5)

Let `M be the unitary representation of G on H induced by the left diagonal
action of G, representing rigid motions of the particle system. Clearly

[H, `M(G)] = 0 , (6)

We now turn the left diagonal action on M into a right action on a differ-
ent manifold Mr ins such a way that only one ‘center of mass’ variable is
affected. First we define

M̃r ≡ G×Hν−1 (7)

and an injective but not surjective map φ̃ :M→ M̃r given by

φ̃(n1, . . . , nn) = (gs(n1)−1, gs(n1)−1n2, . . . gs(n1)−1nν) , (8)

where gs is a function (global section) HN → G such that n = gs(n↑). gs is
obviously only determined up to gs → gsk

−1, k ∈ K. Let d`(K) be the left
diagonal action of K on M̃r and define

Mr = M̃r/d`(K) . (9)
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φ̃ projects to a well-defined map φ : M → Mr and this φ does the job of
converting the left diagonal action d`(G) on M into a right action r(G) on
Mr acting only on the first entry:

r(g′)[(g, n1, . . . , nν)] = [gg′, n1, . . . , nν)] , (10)

φ ◦ d` = r ◦ φ . (11)

φ induces a unitary map Φ between the corresponding Hilbert spaces L2(Mr)
and L2(M); the latter can be viewed as the subspace of L2(M̃r) invariant
under the unitary map induced by d`(K).

The right action of G on the first entry of Mr induces a unitary represen-
tation ρ(G) of the rigid motions:

ρ = Φ−1 ◦ `M ◦ Φ (12)

and ρ(G) commutes with `r(K).

2.3 The ground state representation

The harmonic analysis of ρ is the analogue of the decomposition according to
the center of mass momentum in flat space. The Hilbert space H = L2(Mr)
decomposes into a direct integral of irreps

H =
∫ ⊕
Ĝr

dν(σ)H(σ) , (13)

where Ĝr is the restricted dual of G, which is the union of the principal and
the discrete series (see [24])

Ĝr = Ĝp ∪ Ĝd ; (14)

dν arises from the Plancherel measure.

The Hamiltonian on H is Hr = Φ−1 ◦H ◦ Φ; we drop the subscript r from
now on. Because H commutes with ρ, it can also be resolved into fiber
Hamiltonians

H =
∫ ⊕
Ĝr

dν(σ)h(σ) , (15)

which is analogous to the resolution of a ν particle Hamiltonian according
to the c.m. momentum in flat space.
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We conjecture that generally dν is carried by Ĝp alone, but we can prove
only that

inf
σ

inf spec h(σ) /∈ Ĝd . (16)

This is seen most easily under a certain compactness condition on the inter-
action V, namely

tr e−t(Ho+V+V1) ≤ tr (e−tHoe−t(V+V1)) <∞ . (17)

This implies that the fiber Hamiltonians h(.) have discrete spectrum; for
σ ∈ Ĝd the ground state of the fiber Hamiltonian would give rise to a (nor-
malizable) eigenfunction of H; because σ is not the trivial representation,
this ground state could not be unique. This leads to a contradiction with
the Perron-Frobenius theorem. We can show furthermore that the ground
state representation is always σ0, the special representation found for the
one particle case. Details can be found in [3], where, however, we deal with
a discrete time evolution given by a transfer matrix.

The ground state representation σ0 is universal, and the fact that it is non-
trivial means again that there is SSB.

3 Statistical mechanics / lattice quantum field the-
ory

3.1 Action, Gibbs state

We consider configurations of ‘spins’ given by mapping each site x ∈ Λ ⊂ Zd
to a n(x) ∈ HN . The Gibbs measure is formally given by

exp(−βS)
∏
x

dΩ(x) , (18)

with (for instance)

S =
∑
〈xy〉

n(x) · n(y) . (19)

To make the Gibbs measure normalizable, ‘gauge fixing’ is needed. The
simplest choice is to fix a spin at the boundary of the finite lattice Λ.
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3.2 Spontaneous symmetry breaking

If in the thermodynamic limit Λ↗ Z
d the Gibbs state is not invariant under

G, we speak of SSB. Non-amenability enforces SSB, because if there were a
symmetric Gibbs measure, it would automatically induce an invariant mean
on the functions of a single spin. This holds independent of the dimension
d or any other details (type of lattice, action).

SSB is unavoidable!

Note that the Mermin-Wagner theorem is not in conflict with this finding:
it forbids SSB only for compact symmetry groups in dimensions 1 and 2.

3.3 The hyperbolic spin chain

For d = 1 the problem can be solved analytically to a large extent [1]. ‘Gauge
fixing’ is done by fixing the spin at the left hand end of the chain, say

n(−L) = n↑ . (20)

As the general considerations require, SSB occurs in the form that the system
remembers the orientation of the spin n(−L) even in the limit L → ∞. A
concrete ‘order parameter’ that shows this is

Te(n(0)) := tanh(n(0) · e) , (21)

where e · e = −1. In [1] it is shown that

lim
L→∞

〈Te(n(0))〉bc = 1− 2
π

cos−1

(
e · n↑√

1 + (e · n↑)2

)
. (22)

Two facts are might be unexpected:
(1) even the expectation values of invariant functions, such as n(0) · n(x)
remain dependent on b.c. in the thermodynamic limit.

(2) The OS reconstruction of a Hilbert space from the correlation functions
yields a non-separable space and discontinuous representations, except for
the ground state space. This is related to the fact that the construction
always produces a normalizable ground state, even though there is none in
the original L2 space, so in some sense the OS reconstruction renormalizes
the scalar product.
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3.4 Two or more dimensions

Not very much is known rigorously beyond the fact of SSB. The models do
not have high temperature expansions; presumably they are massless at all
temperatures.

Spencer and Zirnbauer [15] have shown, however, that in dimension 3 or
more at low temperature there is a ‘stronger version’ of SSB that presum-
ably is not true in dimensions 1 or 2 or at high temperatures; namely the
quadratic fluctuations away from the mean ‘magnetiztion’ have a finite ex-
pectation value.

In [2] we carried out some detailed numerical simulation of the model in
d = 2 with a different (translation invariant) gauge fixing. We found

(1) The explicit symmetry violations due to the gauge fixing disappear in
the thermodynamic limit; this is seen by verifying Ward identities

(2) SSB is seen by looking at 〈T (e)〉 as above.

(3) The thermodynamic limit for invariant observables seems to exist.

4 Quantum field theoretic considerations

4.1 Peculiarities of the Osterwalder-Schrader reconstruction

As in the hyperbolic spin chain, the OS reconstruction will presumably
always lead to a nonseparable Hilbert space. This is a consequence of the
fact that the construction always yields a normalized ground state, even
though the spectrum of the transfer matrix is most likely continuous.

This somewhat unphysical feature might be avoided by restricting the space
of observables. For instance one might restrict attention to only a certain
component of the spins, or maybe a special (horospherical) coordinate and
functions of it. In this way one would of course lose the signal of SSB.

4.2 Existence of a continuum limit?

Consideration of the perturbative one loop Renormalization Group [25, 26]
yields essentially the Ricci flow, indicating that the model is infrared asymp-
totically free. In the case at hand, however, this is counterintuitive: if the
long-distance fluctuations become Gaussian, as infrared asymptototic free-
dom would predict, this would mean that they doen’t feel the curvature of
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the target manifond. But in the infrared the fluctuations necessarily cover
the target space over large distances and therefore should become extremely
sensitive to the curvature.

But if the conventional wisdom is right, it would suggest that there is no
nontrivial continuum limit of 2D nonlinear σ models whose target space
has negative curvature; the situation would be similar to the QED4 or φ4

4

quantum field theories, which are believed to be trivial (i.e. Gaussian) in
the continuum limit.

A counterpoint has been provided long ago by Haba [27], who by a formal
calculation of the 2D hyperbolic σ model concluded that it corresponded
to a conformal quantum field theory with central Virasoro charge c = 1, as
long as β > 1/3π (it should be noted, however, that he considered only cor-
relations of a so-called horospherical coordinate on the hyperbolic plane). It
would be very interesting to know if this formal calculation can be justified.

4.3 Axiomatic considerations

When considering possible continuum limits, it is worthwhile to pause and
think how such limits could possibly look, in agreement with the axiomatic
structure of quantum field theory.

One thing becomes clear immediately: it is not possible to have a multiplet
of quantum fields φi transforming under the non-unitary vector represen-
tation of G = SO(1, N) with unbroken symmetry (as one would expect
naively if the φi are continuum fields arising from renormalizing the basic
spin components ni).

The reasoning goes like this: an unbroken symmetry means that there is a
unitary representation U(.) of the symmetry group G leaving the vacuum
state invariant and transforming the fields according to the vector represen-
tation, i.e.

U(g)−1φi(x)U(g) =
∑
j

(
g−1
)
ij
φj(x) . (23)

This leads to a conflict with the positive metric in Hilbert space when con-
sidering orbits of U(.)ψ: let φ0(f), φ1(f) be field components smeared with
a test function f . Then by the unitarity of U(.)

‖ (φo(f) ch t+ φ1(f) sh t Ω) ‖2 = ‖φo(f)Ω‖2 ∀t , (24)

which is impossible unless all φi = 0.
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Possible alternatives are:

(1) There is SSB, hence no unitary represntation U(.) of G (see for instance-
blot
(2) There is an infinite multiplet of fields, transforming according to a uni-
tary representation of G – this could, however, not correspond to a contin-
uum limit of the lattice model
(3) A Quantum Field Theory arises only for a subset of fields. The symme-
try is then not visible. Haba’s computation suggests that this might be the
right scenario.

5 Conclusions, open questions

(1) We have found a certain universal ground state representation both in
Quantum Mechanic and Lattice field theory (in a finite spatial volume).

(2) There is always SSB; the Mermin-Wagner theorem does not apply.

(3) In a potential continuum limit also Coleman’s version of the Mermin-
Wagner theorem would not apply because the currents needed for this ar-
gument don’t have thermodynamic and continuum limits.

(4) In D ≥ 3 for large β there is SSB of the conventional kind: with large
fluctuations suppressed[15].

(5) There is probably no mass gap, but a proof is lacking.

(6) In 2D infrared asymptotic freedom is suggested by perturbation theory,
but there is no proof; the existence of a continuum limit remains an unsolved
question.
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Abstract

This is a report on joint work with Claudio Dappiaggi and Nicola
Pinamonti (arXiv:1001.0858v1 [hep-th]). We set up a local version of the
bulk-to-boundary correspondence for quantum field theories on curved
spacetimes which makes it possible to compare expectation values of local
field observables in different spacetimes and to extend the principle of
general local covariance. In doing so, we single out a distinguished state
on the boundary whose pull-back in the bulk is of Hadamard form and
which exhibits properties of a local vacuum state.

1 Introduction

One question that both Izumi Ojima and the present author have found in-
triguing and that has always been present as a background in our discussions
is the following one: How are the characteristics of spacetime encoded in the
mathematical structure of physical measurements, and are we able to deduce
the former from the latter? The foundation for this is our common conviction
that spacetime is not a concept pertaining to the way human beings are able to
perceive reality but indeed engenders from physical measurements as a means
to organise the data taken in a sensible way. An obvious problem related to
this area of investigation is the characterisation of inertial frames in terms of
physical measurements. A closer look reveals that eventually inertial frames are
singled out by the fact that measurements with respect to them are subject to
the Poincaré symmetry. But this poses further problems:

• This symmetry which involves the whole Minkowski spacetime is actually
checked only locally (in a laboratory).
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• Moreover, to be able to characterise inertial frames by their symmetry
properties, we have to specify a suitable physical state. Otherwise it might
happen that the system at hand only appears to exhibit the Poincaré
symmetry due to the fact that the physical state selected masks the actual
complicated structure of the frame.

• Finally, in a curved background the Poincaré symmetry can only hold ap-
proximately; spacetime curvature should manifest itself by measurements
that reveal the geodesic deviation equation. This amounts to the need
to compare measurements performed in flat Minkowski spacetime with
corresponding ones in a curved background.

Our strategy in addressing this circle of questions can be summarised in the
following three steps:

1. Geometry : Consider a point p in a strongly causal four-dimensional space-
time (M, g). Then there exists a geodesic neighbourhood on which the
exponential map acts as a local diffeomorphism. Select a second point
q in this set such that D(p, q)

.
= I+(p) ∩ I−(q) is a globally hyperbolic

spacetime. Then C +
p

.
= J+(p) ∩ D(p, q) is a local null hypersurface. The

very same procedure can be repeated for a point p′ in a second spacetime
M ′. Since the exponential map is invertible and the tangent spaces Tp(M)
and Tp′(M

′) are isomorphic, it is possible to arrange the geometric data
in such a way that the boundaries C +

p and C +
p′ are related by a suitable

restriction map with the choice of a frame (coordinate system) at p and
p′, respectively, as the only freedom left.

2. Quantum Field Theory : Consider the Borchers-Uhlmann algebra and the
extended algebra of observables containing more singular objects like Wick
polynomials. Then it is possible to construct on C +

p a scalar field the-
ory and, in addition, a natural concept of an extended algebra can also
be introduced on this boundary. Moreover, there exists an injective ∗-
homomorphism Π between the bulk and boundary counterparts of this
extended algebra.

3. Natural State: It is possible to identify a natural state on the boundary
which is independent of the choice of the frame at p and whose pull-back
in the bulk D(p, q) via Π turns out to still be invariant with respect to
the choice of the frame. Physically speaking, this state is the same for all
inertial observers at p. This result of ours provides a potential candidate
for a local vacuum in the large class of backgrounds amenable to the above
constructions.

2 Geometrical Considerations

The geometric setup for the following investigations can be structured in the
form of a sequence of fundamental definitions followed by the use of these con-
cepts in a spacetime endowed with a smooth Lorentzian metric.

Definition 2.1 (Spacetime). A spacetime M is a four-dimensional Hausdorff
connected smooth manifold of signature (−,+,+,+). Henceforth it is second-
countable and paracompact [11, 12].
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The common requirement of global hyperbolicity (cf. [1]) is not presupposed
at this point in order to restrict attention only to structures that are actually
needed in the constructions.

Definition 2.2 (Frames). To any point p ∈M one associates a linear frame Fp
of the tangent space Tp(M), i.e. a non-singular linear mapping e : R4 → Tp(M)
or, equivalently, an ordered basis e1, . . . , e4 of Tp(M).

Definition 2.3 (Exponential Map). If Dp, p ∈M , denotes the set of vectors v
in Tp(M) such that the geodesic γv : [0, 1] → M admits v as tangent vector in
0, then the exponential map at p is expp : Dp →M with expp(v)

.
= γv(1).

Definition 2.4 (Normal Neighbourhoods). For any point p ∈ M there always
exists a neighbourhood Õ of the 0-vector in Tp(M) such that the exponential
map is a diffeomorphism onto an open subset O ⊂ M . Whenever O is star-
shaped it is called a normal neighbourhood carrying the inverse map exp−1

p .

Now, if the spacetime M is endowed with a smooth Lorentzian metric, the
concepts just defined can be combined with the additional metric information
to yield the basis for further progress. The properties arising in this case are:

1. Given a linear frame at p ∈ M one can endow the tangent space Tp(M)
with the standard Minkowski metric η.

2. Every point in a Lorentzian manifold admits a normal neighbourhood as
introduced above [17, Chapter 5, Proposition 7 and Definition 5].

3. There is always a choice of normal coordinates such that the pull-back of
the metric g under the exponential map is η on the pre-image of the point
p.

4. In a Lorentzian manifold the Gauss Lemma holds true [17, Chapter 5,
Lemma 1] so that, if C̃ ⊂ Tp(M) denotes the null cone, then C̃ ∩ Õ is
mapped into a null cone in O ⊂ M consisting of initial segments of all
null geodesics starting at p.

Having the above concepts at one’s disposal it is possible to establish the con-
nection between different spacetimes via their respective tangent spaces. Con-
sider two spacetimes (M, g) and (M ′, g′) and two generic points p ∈ M and
p′ ∈ M ′, together with their normal neighbourhoods Op and Op′ . If we equip
each tangent space with an orthonormal basis via frames, ep : R4 → Tp(M) and
ep′ : R4 → Tp′(M

′), we are also free to introduce a map ie,e′ : Tp(M)→ Tp′(M
′)

which is constructed simply by identifying the elements of the two ordered bases.
Then the exponential map is a diffeomorphism (hence invertible) in a geodesic
neighbourhood. Therefore we introduce a map ιe,e′ : O → O ′ such that

ιe,e′
.
= expp′ ◦ie,e′ ◦ exp−1

p . (2.1)

Remark 2.5. (i) The required inclusion ie,e′ ◦ exp−1
p (Op) ⊂ Õp′ can always be

satisfied by choosing a smaller Op with all the desired properties.

(ii) The map ιe,e′ is not unique, but depends on the orthonormal frames e and
e′.
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In order to ensure the possibility to assign a well-defined quantum field
theory to the background M one has to require additional properties of the
spacetime. Being interested only in local quantities here, one can relax the
standard assumption of global hyperbolicity to strong causality [2] for the class
of spacetimes M to be investigated.

Definition 2.6 (Strong Causality). The spacetime M is said to be strongly
causal if for every point p ∈ M and every open neighbourhood Op there exists
a subset O ′p ⊂ Op such that no causal curve intersects O ′p more than once. In
other words, O ′p is itself globally hyperbolic.

With the ultimate goal to compare quantum field theories locally on differ-
ent spacetimes via a bulk-to-boundary reconstruction, we have to single out a
preferred submanifold of codimension one. Our analysis is based on the class of
double cones,

D(p, q)
.
= I+(p) ∩ I−(q) ⊂M , (2.2)

I± denoting the chronological future and past of the points, respectively, while
q ∈ O ′p. D(p, q) is an open, globally hyperbolic subset of O ′p. Its closure,

D(p, q), is a compact set (see for example [20, Chapter 8]) which coincides with
J+(p)∩J−(q)∪{p}∪{q} (using a definition of causal future and past, J±, such
that p 6∈ J+(p) and q 6∈ J−(q)). The image of D(p, q) in Tp(M) under the map
exp−1

p , U(p, q), is not necessarily the closure of a double cone in Tp(M) ∼ R4.
The very existence and properties of the sets D(p, q) and J+(p) under the

exponential map suggest to consider ∂J+(p)∩D(p, q) as the natural boundary on
which to encode data from the bulk field theory. Thus, as the natural boundary
of D(p, q) we take

C +
p

.
= ∂J+(p) ∩D(p, q). (2.3)

C +
p is generated by future-directed null geodesics originating from p. These are

not complete, since the set we are interested in is restricted to D(p, q) ⊂ O ′p. Its
image under exp−1

p in Tp(M) is a portion of a null cone C+ constructed with
respect to the flat metric η, topologically equivalent to I × S2, I ⊆ R.

Remark 2.7. (i) The above characteristics are universal properties that do not
depend on the specific choice of frame e as does the shape of the image under
exp−1

p or the pull-back of the metric in normal coordinates under exp∗p.

(ii) The bulk is D(p, q) which is a globally hyperbolic submanifold of M which
can carry a full-fledged quantum field theory.

(iii) In contradistinction to the situation investigated in the relevant literat-
ure on the bulk-to-boundary techniques, the situation at hand is much more
complicated and does not exhibit any symmetry group.

3 Algebras of Observables

Real scalar field theories on different spacetimes M and M ′ are known to be
comparable in the special case that the spacetimes are either isometrically or
conformally embedded into one another. If the spacetimes are related by diffeo-
morphisms it is always possible to transplant smooth field configurations from
one spacetime to the other. But this is not the natural transformation since
the diffeomorphisms do not in general preserve the geometric structures of the
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quantum or classical field theories. E.g., if the equations of motion of a dynam-
ical system are constructed out of the spacetime metric, generic diffeomorphisms
do not preserve their form unless they are related to isometries.

Thus, the question arises what then is an appropriate procedure to compare
quantum field theories on different spacetime backgrounds. The proposal to be
put forward here is based on the fact that information on the existence and
properties of physically relevant states (Hadamard states) can be extracted for
a wide class of spacetimes by relating a field theory within the spacetime to
one on its conformal boundary, a differentiable null submanifold of codimension
one of (a suitable extension) of the underlying spacetime. This construction is
both universal and intrinsic and thus allows for the comparison of different field
theories on different spacetimes.

For the sake of simplicity, we shall henceforth only deal with a free real
scalar field with generic mass m and generic curvature coupling ξ. The standard
properties of such a physical system can be summarised along the lines of e.g.
[21]. Consider a free real scalar field φ : D → R subject to the equation of
motion

Pφ
.
=
(
�g +ξR+m2

)
φ = 0, m2 > 0, ξ ∈ R, (3.1)

where �g = −∇µ∇µ is the D’Alembert wave operator constructed out of the
metric g while R is the scalar curvature. Each solution of this second-order
hyperbolic partial differential equation can be constructed as the image of the
map

∆ : C∞0 (D)→ C∞(D) (3.2)

with the causal propagator ∆ defined as the difference of the advanced and the
retarded fundamental solution.

By construction, D is contained in a larger globally hyperbolic set, O ′, so
that φf

.
= ∆(f) allows for a unique extension to a solution of the wave equation

on all of O ′. Thus we are allowed to consider the restriction of φf on C +
p ,

φf |C+
p
∈ C∞

(
C +
p

)
. (3.3)

Based on the above construction of the free real scalar field one introduces a
suitable quantisation scheme that yields the quantum algebras on the bulk D .

Definition 3.1. We define Fb(D) as the subset of sequences with a finite
number of elements lying in ⊕

n≥0

⊗nsC∞0 (D), (3.4)

where n = 0 yields C while ⊗ns denotes the n-fold symmetric tensor product.
Fb(D) can be promoted to a topological ∗-algebra via

• a tensor product ·S such that

(F ·S G)n =
∑

p+q=n

S(Fp ⊗Gq), (3.5)

where S is the operator which realises total symmetrisation;

• a ∗-operation via complex conjugation, i.e., {Fn}∗n = {Fn}n for all F ∈
Fb(D);

5



• the topology induced by the natural one of ⊗nsC∞0 (D).

This construction can be cast in a different way developed in [5, 3] by consid-
ering Fb(D) as a set of functionals over the smooth field configurations C∞(D).
Every F ∈ Fb(D) yields a functional F : C∞(D)→ R, using the standard pair-
ing 〈 , 〉 between ⊗nC∞(D) and ⊗nC∞0 (D), via

F (ϕ)
.
=

∞∑
n=0

1

n!
〈Fn, ϕn〉. (3.6)

Decisive in what follows is a modification of the algebraic product ·S to be
replaced by ?, which is unambiguously constructed out of the causal propagator
∆ according to (3.2),

(F ? G)(ϕ) =

∞∑
n=0

in

2nn!

〈
F (n)(ϕ),∆⊗nG(n)(ϕ)

〉
, F , G ∈ Fb(D). (3.7)

Direct inspection shows that F ? G still lies in Fb(D) and, more importantly,
that (Fb(D), ?) gets the structure of a ∗-algebra under the operation of complex
conjugation.

No use has been made as yet of the equation of motion (3.1). Dividing
out the ideal I generated by those elements of Fb(D) that are images of the
operator P in (3.1), one gets another algebra,

Fbo(D)
.
= Fb(D)/I , (3.8)

that inherits the ?-operation from Fb(D). This on-shell algebra Fbo(D) is the
Borchers-Uhlmann algebra commonly used.

Neither Fb(D) nor its on-shell version Fbo(D) are sufficient to fully analyse
the underlying quantum field theory. E.g. the components of the stress-energy-
momentum tensor are not included as they involve products of fields evaluated
at the same spacetime point, a procedure not a priori permitted due to the
distributional character of the fields. The way out of this problem is the so-
called Hadamard regularisation [13, 14]. To be more specific, it is impossible to
include objects of the form

F (ϕ) =

∫
D

dµ(g) f(x)ϕ2(x)

in Fb(D), where dµ(g) is the metric-induced volume form, while f is a test
function in C∞0 (D) and ϕ ∈ C∞(D). The star product (3.7) applied to such
fields involves the ill-defined pointwise product of ∆ with itself.

A solution to this problem can be given, following the line of reasoning in
[5], by introduction of a new class of functionals, Fe(D), which have a finite
number of non-vanishing derivatives, the n-th of which has to be a symmetric
element of the space of compactly supported distributions E ′(Dn), whose wave
front sets satisfy the restriction

WF(Fn) ∩
{(

D × V +)n ∪ (D × V −)n} = ∅, (3.9)

V
±

the forward and the backward causal cone in tangent space, respectively.
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Fe(D) is a ∗-algebra if one extends the ∗-operation of Fb(D) and endows it
with a new product, ?H , whose well-posedness was first proved in [6, 4, 13, 14].
The explicit form is

(F ?H G)(ϕ) =

∞∑
n=0

1

n!

〈
F (n)(ϕ), H⊗nG(n)(ϕ)

〉
, (3.10)

where H ∈ D′(D2) is the so-called Hadamard bi-distribution which satisfies
the microlocal spectrum condition, hence yields a natural substitute for the
notion of positivity of energy out of the wave front set. But it also suffers
from an ambiguity as there exists the freedom to add a smooth symmetric
function which means that, if H and H ′ are two Hadamard distributions, then
the integral kernel of H−H ′ is a symmetric element of C∞(D2). On the level of
the algebra this freedom yields an algebraic isomorphism iH′,H : (Fe(D), ?H)→
(Fe(D), ?H′) [13, 3],

iH′,H = αH′ ◦ α−1
H ,

αH(F )
.
=

∞∑
n=0

1

n!

〈
H⊗n, F (2n)

〉
.

(3.11)

Also the extended algebra, Fe, has its on-shell counterpart, Feo, constructed
from the quotient with the ideal generated by the equation of motion applied
to the elements of Fe.

One advantage of the formalism expounded above is that it allows for a
presentation in terms of categories, revealing the clear-cut concept of the math-
ematical structures involved and their interrelations. This idea has first been
used in [7] to formulate the principle of general local covariance. The categories
to be utilised here are:

• DoCo: Objects are the oriented and time-oriented double cones D(p, q)
with the property that there exists a normal neighbourhood Op ⊂ M
centred in p that contains D(p, q). The morphisms are equivalence classes
of the maps ıe,e′ : Op → O′p′ of (2.1) such that ıe,e′

∣∣
D

(
D(p, q)

)
⊂ D ′(p′, q′)

with respect to the following equivalence relation ∼: ıe,e′ ∼ ıẽ,ẽ′ if and only
if there exists an element Λ ∈ SO0(3, 1) such that ẽ = Λe and ẽ′ = Λe′.

• DoCoiso: This is the subcategory of DoCo with the same objects as above
but the morphisms restricted to isometric embeddings.

• Algi: Objects are the unital topological ∗-algebras Fi(D), i = b, bo, and
i = e, eo, which in the latter case actually are equivalence classes with
respect to the map (3.11). The morphism are injective unit-preserving
∗-homomorphisms.

As in [7] one associates a suitable algebra to each double cone D via a functor
F between DoCoiso and Algi,

F : D → Fi(D), i = b, bo. (3.12)

It is obvious to try to extend the functor (3.12) to the category DoCo with its
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larger group of morphisms. But this is not possible; the diagram

D
F //

ιe,e′

��

Fi(D)

D ′
F
// Fi(D ′)

(3.13)

cannot be closed on the right-hand side since ιe,e′ is not an isometry in general
and will thus not map solutions of the wave equation in D into those in D ′ (of
a different metric). It will also neither preserve the causal propagator spoiling
the ?-operation nor the singular structure of the Hadamard bi-distribution that
only depends on the underlying geometry.

Following the procedure indicated above, one now introduces quantum al-
gebras on the boundary, treating the null cone itself as a carrier of a quantum
field theory. But in doing so one has to be careful to make these constructs
large enough to contain the images of suitable projections of all the elements in
the bulk. To this end, consider three sets in R× S2 ⊂ R4,

C +
p

.
=
{

(V, θ, φ) ∈ R2
∣∣ V ∈ (0, V0(θ, φ)) ⊂ R, (θ, φ) ∈ S2

}
, (3.14)

where V0(θ, φ) is a bounded smooth function on the sphere, while Cp and C are
defined by allowing the coordinate V to vary in (0,∞) and the full real line R,
respectively. Hence, C +

p ⊂ Cp ⊂ C .
On the boundary one then defines a space of functions,

S
(
Cp
) .

=
{
ψ ∈ C∞

(
Cp
)∣∣ ψ = hf |Cp , f ∈ C∞0

(
R4
)
, h ∈ C∞

(
Cp
)}

, (3.15)

where, uniformly on S2, h → 0 for V → 0 and each derivative along V tends
to a constant. S (Cp) is a symplectic space when furnished with the strongly
non-degenerate symplectic form,

σC (ψ,ψ′)
.
=

∫
Cp

[
ψ
dψ′

dV
− dψ

dV
ψ′
]
dV ∧ dS2, ψ, ψ′ ∈ S (Cp), (3.16)

where dS2 is the standard measure on the unit 2-sphere. Based on this space of
functions, an algebra of observables on the boundary is introduced in

Definition 3.2. We define Ab(Cp) as the space, whose generic element F is a
sequence {Fn}n with a finite number of components in⊕

n≥0

⊗nsS (Cp), (3.17)

where ⊗ns again denotes the symmetrised n-fold tensor product and the first
term in the sum is C. The space (3.17) is a full topological ∗-algebra when
endowed with

• a ∗-operation which is the complex conjugation, i.e., {Fn}∗n = {Fn}n for
all F ∈ Ab(Cp);

• multiplication of elements such that for any F , G ∈ Ab(Cp),

(F ·S G)n =
∑

p+q=n

S(Fp ⊗Gq); (3.18)
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• the topology induced by the natural topology of S (Cp), viz. the topology
of smooth functions on Cp.

This algebra on the cone is not yet suited to be put in correspondence with
the one on the bulk. Again, a deformation of the product is needed to achieve
this. Let X

.
=
{

Φ ∈ C∞(Cp) | V −1Φ ∈ C∞(C )
}

, then the pairing 〈 , 〉 between
⊗nX and ⊗nS (Cp) allows for F ∈ Ab(Cp) to be considered as a functional
F : X → R,

F (Φ) =

∞∑
n=0

1

n!
〈Fn,Φn〉, Φ ∈ X. (3.19)

While there is no equation of motion for the theory on Cp and, hence, no causal
propagator, a new ?B-product on Ab(Cp) can be introduced nonetheless,

(F ?B G)(Φ)
.
=

∞∑
n=0

in

2nn!

〈
Fn(Φ),∆n

σC
Gn(Φ)

〉
, Φ ∈ X, (3.20)

where ∆σC is the integral kernel of (3.16), i.e.,

∆σC

(
(V, θ, ϕ), (V ′, θ′, ϕ′)

)
= − ∂2

∂V ∂V ′
sign(V − V ′) δ(θ, θ′), (3.21)

where δ(θ, θ′) stands for δ(θ− θ′)δ(ϕ−ϕ′) and the derivatives have to be taken
in the weak sense.

To conclude the general strategy outlined in the introduction one has to
define a notion of extended algebra also on the boundary. But in this case there
is no standard Hadamard state or bi-distribution available. As a replacement
we select a natural bi-distribution on C +

p that has already been studied in
[9, 10, 8, 16, 15, 18, 19].

Definition 3.3. A natural distinguished boundary state on C 2 is the weak limit

ω
(
(V, θ, φ), (V ′, θ′, φ′)

) .
= − 1

π
lim
ε→0+

1

(V − V ′ − iε)2
δ(θ, θ′),

a well-defined bi-distribution in D′(C 2), where C ∼ R× S2.

This bi-distribution yields a Gaussian state.

Proposition 3.4. The Gaussian (quasi-free) state constructed out of the dis-
tribution ω has the following properties:

1. It is a well-defined algebraic state on Ab(Cp) and on Ab(C ).

2. It is a vacuum with respect to derivatives in the V -coordinate.

3. It is invariant under the change of the local frame.

Now it is possible to introduce a suitable extended algebra on the boundary.
In preparation one needs the following

Definition 3.5. An is the set of elements Fn ∈ D′(C n
p ) that fulfil the following

properties:

9



1. Compactness: The Fn are compact towards the future, i.e., the support
of Fn is contained in a compact subset of C n ∼ (R× S2)n.

2. Causal non-monotonic singular directions: The wave front set of Fn
contains only causal non-monotonic directions which means that

WF(Fn) ⊆Wn
.
=
{

(x, ζ) ∈ (T ∗Cp)
n \{0} | (x, ζ) 6∈ V +

n ∪V
−
n , (x, ζ) 6∈ Sn

}
,

(3.22)

where (x, ζ) ≡ (x1, . . . , xn, ζ1, . . . , ζn) ∈ V
+

n if, employing the standard
coordinates on Cp, for all i = 1, . . . , n, (ζi)V > 0 or ζi vanishes. The
subscript V here refers to the component along the V -direction on Cp.

Analogously, (x, ζ) ∈ V −n if every (ζi)V < 0 or ζi vanishes. Furthermore,
(x, ζ) ∈ Sn if there exists an index i such that, simultaneously, ζi 6= 0 and
(ζi)V = 0.

3. Smoothness Condition: The distribution Fn can be factorised into
the tensor product of a smooth function and an element of An−1 when
localised in a neighbourhood of V = 0, i.e., there exists a compact set
O ⊂ Cp such that, if Θ ∈ C∞0 (Cp) so that it is equal to 1 on O and
Θ′

.
= 1 − Θ, then for every multi-index P in {1, . . . , n} and for every

i 6 n,
f
.
= F̃n(uxPi+1

,...,xPn
) Θ′xP1

· · · Θ′xPi
∈ C∞(C i

P ), (3.23)

where F̃n : C∞0 (C n−i−1
p )→ D′(C i

p) is the unique map from C∞0 (C n−i−1
p )

to D′(C i
p) determined by Fn using the Schwartz kernel theorem. Further-

more, uxPi+1
,...,xPn

∈ C∞0 (C n−i
p ), xPi+1 , . . . , xPn specifying the integrated

variables. For every j 6 i, ∂V1 · · · ∂Vjf lies in C∞(C i
p) ∩ L2(C i

p , dVP1 ∧
dS2

P1
· · · dVPi ∧ dS2

Pi
)∩L∞(C i

p), while the limit of f as Vj tends uniformly
to 0.

Based on this set the extended algebra on the boundary can be defined
making use of the bi-distribution ω to define the appropriate ?-product.

Definition 3.6. The extended algebra on Cp is defined as

Ae(Cp) =
⊕
n>0

Ans ,

where Ans is the subset of totally symmetric elements in An introduced in Defin-
ition 3.5 and only sequences with a finite number of elements are considered;
the first space in the direct sum being C. This set can be given the structure
of a ∗-algebra by introducing the ∗-operation {Fn}∗

.
= {Fn} for all F ∈ Ae.

The composition law arises from a modification of ?B by means of the state ω
introduced above. In the functional representation the composition law is

?ω : Ae(Cp)×Ae(Cp)→ Ae(Cp),

(F ?ω G)(Φ) =

∞∑
n=0

1

n!

〈
F (n)(Φ), ωnG(n)(Φ)

〉
,

(3.24)

for all F , G ∈ Ae(Cp) and all Φ ∈ C∞(Cp).

An important result then is
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Proposition 3.7. The operation (3.24) is a well-defined product in Ae.

The relation between the data on the bulk and on the boundary is brought
about by the following map.

Definition 3.8. Let D be a double cone and regard the portion C +
p of the

boundary as part of a cone Cp. Then we introduce the linear map Π : Fe(D)→
Ae(C +

p ) by setting

Πn(Fn)
.
= 4
√
|gAB |1 · · ·

4
√
|gAB |n ∆⊗n(Fn)

∣∣
Cn

p
, (3.25)

where ∆ is the causal propagator (3.2), |C+
p

denotes the restriction on C +
p and

the subscripts 1, . . . , n entail dependence of the root on the coordinates of the
i-th cone.

This map enjoys all the properties needed for its intended use to connect the
bulk and boundary.

Proposition 3.9. The linear map

Π : Fe(D)→ Ae(C
+
p )

is injective when restricted to the extended algebra Feo(D).
Moreover, it gives rise to an Hadamard bi-distribution Hω constructed as the
pull-back of the distinguished boundary state ω,

Hω
.
= Π∗ω.

The connection between the bulk and boundary is then given by the map Π
according to

Theorem 3.10. Under the assumptions of Definition 3.8, one has:

1) Π induces a unit-preserving ∗-homomorphism between the algebras(
Fe(D), ?Hω

)
and

(
Ae(C +

p ), ?ω
)
.

2) Π is an injective ∗-homomorphism when acting “on shell” on(
Feo(D), ?Hω

)
.

4 General Covariance and Comparison of The-
ories

One problem indicated in Section 3 in connection with the principle of general
covariance has been the fact that it is impossible to close the diagram 3.13 on
the right-hand side. Now we introduce the category

• BAlg: Objects are the extended boundary (topological ∗-) algebras con-
structed on C +

p , and the morphisms are the corresponding ∗-homomor-
phisms.
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Furthermore, αıe,e′ is the ∗-homomorphism αıe,e′ : Ae(C +
p ) → Ae(C +

p
′
) whose

action on the F ∈ Ae(C +
p ) is defined as follows: By means of the push-forward,

it is
αıe,e′ (Fn) = ıe,e′∗Fn,

on
(
ıe,e′(C +

p )
)n ⊂ (C +

p
′
)n, while αıe,e′ (Fn) = 0 on the complement of

(
ıe,e′(C +

p )
)n

in (C +
p
′
)n. Then we have

Proposition 4.1. Consider Ae : DoCo → BAlg, whose action on the objects
and morphisms is as follows,

• the action of Ae on the objects of DoCo is such that Ae(D) = Π◦Fe(D) =
Ae(C +

p );

• the action of Ae on the morphisms ıe,e′ is such that Ae(ıe,e′) = αıe,e′ .

Then Ae is a functor between the two categories.

This result allows for the diagrammatic representation,

D
F−−−−→ Fe(D)

Π−−−−→ Ae(C +
p )

ıe,e′

y yαı
e,e′

D ′ −−−−→
F

Fe(D ′) −−−−→
Π′

Ae(C +
p
′
) ,

(4.1)

which is the closed version of diagram 3.13.
The comparison of theories on different spacetime backgrounds is performed

by pulling a state ω on Ae(C ′p) back either on Fe(D ′) via Π′ or on Fe(D)
via αıe,e′ ◦ Π. An example for this procedure is the extraction of information
about the curvature from measurements. Consider a massless real scalar field
minimally coupled to scalar curvature both in Minkowski spacetime and in a
Friedman-Robertson-Walker spacetime. Upon choosing a reference state ω and
another Gaussian state ω′, the difference of the expectation values of the regu-
larised squared scalar fields in these two spacetimes can be expanded in a power
series of a suitable local coordinate system and yields, at first order, a contri-
bution dependent on the derivative of the scale factor, a′(x0), at the point x0

in the Friedman-Robertson-Walker universe.

5 Summary and Outlook

In the general framework presented it can be established that to double cones
strictly contained in a normal neighbourhood one can associate a Borchers-
Uhlmann algebra of observables and extend it to contain more singular objects
like Wick polynomials. The novel result is the construction of the extended
algebra also on the causal boundary, well-posed by its mathematical properties
and its relation to the theory on the bulk. Using these constructs one can
identify a local state on the double cone which is physically well-behaved and
looks the same for all inertial observers. It thus turns out to be a kind of local
vacuum on a curved spacetime.
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From the above scheme arises the possibility to compare the expectation
values of field observables in the bulk of different spacetimes. This proced-
ure is compatible with the standard principle of general local covariance and
complements it. In particular, the comparison in the special case where one
spacetime is Minkowski space can be used to determine the role and magnitude
of geometric quantities.

The special Hadamard state in the bulk has to be studied in more detail. Its
relation to states of minimum energy in Friedman-Robertson-Walker spacetimes
is an example to be investigated. And it seems safe to expect that the procedure
suggested here will be the method of choice to tackle many other basic problems
of quantum field theories on curved spacetimes.
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1 Introduction

In the previous paper [1], we introduced a quantum phase space (QPS) with n degrees

of freedom (n = 1, 2, · · ·), i.e., the associative algebra generated by elements Q̂j, P̂j (j =

1, · · · , n) and a unit element I obeying commutation relations

[Q̂j, Q̂k] = iθjkI, [P̂j, P̂k] = iηjkI, (1.1)

[Q̂j, P̂k] = iδjkI, j, k = 1, · · · , n, (1.2)

with θ = (θjk) and η = (ηjk) being n × n real anti-symmetric matrices, where [X,Y ] :=

XY − Y X, i is the imaginary unit and δjk is the Kronecker delta, and considered Hilbert

space representations of it, which are unbounded due to (1.2). As is easily seen, (1.1) and

(1.2) are deformations of the canonical commutation relations (CCR) with n degrees of
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freedom which are given by the case θ = η = 0 in (1.1) and (1.2). Hence the QPS with n

degrees of freedom can be viewed as a deformation of the canonical quantum phase space

with the same degrees of freedom.

It was shown in [1] that, under a general condition for the parameter (θ, η) describ-

ing the non-commutativity of the QPS, there exists a one-to-one correspondence between

representations of relations (1.1), (1.2) and representations of the CCR with n degrees

of freedom, provided that domains of linear combinations of operators constituting rep-

resentations are well behaved. Moreover, a QPS version of the von Neumann uniqueness

theorem on Weyl representations of the CCR with n degrees of freedom ([3, Theorem

VIII.14], [5]) was established. In this paper we introduce a QPS with infinite degrees of

freedom as a natural extension of the QPS with the n degrees of freedom and consider

its Hilbert space representations. To our best knowledge, this notion of QPS is new.

Since the present paper is intended to be a summary of some fundamental results on

representations of the QPS, we state almost of the results without proof.

2 Definitions

In general, we denote the inner product and the norm of a Hilbert space by 〈 · , · 〉 (linear

in the second variable) and ‖ · ‖ respectively. For a linear operator A on a Hilbert space

K, we denote its domain by D(A). If A is densely defined, then its adjoint is denoted A∗.

We say that A is anti-self-adjoint if A is densely defined and A∗ = −A. We denote by

B(K) the set of all bounded linear operators B on K with D(B) = K.

Let Hreal be a real Hilbert space, and θ and η be anti-self-adjoint operators in B(Hreal).

We set

Λ := (θ, η). (2.1)

Let V be a dense subspace of Hreal and QPSV(Λ) be the associative algebra generated

by elements φ̂(f), π̂(f) (f ∈ V) and a unit element I, obeying linearity

φ̂(af + bg) = aφ̂(f) + bφ̂(g), π̂(af + bg) = aπ̂(f) + bπ̂(g), a, b ∈ R, f, g ∈ V

and commutation relations

[φ̂(f), φ̂(g)] = i 〈f, θg〉 I, [π̂(f), π̂(g)] = i 〈f, ηg〉 I, (2.2)

[φ̂(f), π̂(g)] = i 〈f, g〉 I, f, g ∈ V , (2.3)

We call QPSV(Λ) the quantum phase space indexed by V with parameter Λ.

Remark 2.1 Relations (2.2) and (2.3) can be written in a concise form. We denote by

H the complexification of Hreal. Let

Φ̂(f) := φ̂(f1) + π̂(f2), f = f1 + if2 ∈ H, f1, f2 ∈ Hreal
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and define σΛ : H×H → R by

σΛ(f, g) := Im 〈f, g〉 + 〈f1, θg1〉 + 〈f2, ηg2〉 , f, g ∈ H, (2.4)

where, for a complex number z ∈ C (the set of complex numbers), Im z denotes the

imaginary part of z. Then it is easy to see that (2.2) and (2.3) are equivalent to

[Φ̂(f), Φ̂(g)] = iσΛ(f, g), f, g ∈ H.

Note that σΛ is a real bilinear form on H×H and anti-symmetric:

σΛ(f, g) = −σΛ(g, f), f, g ∈ H.

If θ 6= η, then σΛ is non-degenerate and hence is a symplectic form on H ×H. Thus σΛ

can be a natural extension of the well known symplectic form σ0(f, g) := Im 〈f, g〉 on

H×H which is σΛ with Λ = (0, 0).

We now come to a definition of representation of QPSV(Λ):

Definition 2.2 Let Hreal, V , θ, η and Λ be as above. Let F be a complex Hilbert space

and D 6= {0} be a subspace of F. We say that (F,D, {φ̂(f), π̂(f)|f ∈ V}) (or sim-

ply {φ̂(f), π̂(f)|f ∈ V}) is a representation of QPSV(Λ) if, for all f ∈ V , φ̂(f) and

π̂(f) are symmetric operators on F and satisfy D ⊂ ∩f,g∈VD(φ̂(f)φ̂(g)) ∩ D(π̂(f)π̂(g)) ∩
D(φ̂(f)π̂(g)) ∩ D(π̂(g)π̂(f)) with (2.2) and (2.3) on D.

In particular, if, for all f ∈ V, φ̂(f) and π̂(f) are self-adjoint, then {φ̂(f), π̂(f)|f ∈ V}
is called a self-adjoint representation of QPSV(Λ).

Remark 2.3 Let Hreal be an n-dimensional real Hilbert space and E = {ej}n
j=1 be an

orthonormal basis of Hreal. Take V = Hreal. Then, putting

Q̂j := φ̂(ej), P̂j := π̂(ej), θjk := 〈ej, θek〉 , ηjk := 〈ej, ηek〉 , j, k = 1, · · · , n,

we see that {Q̂j, P̂j, I}n
j=1 satisfies (1.1) and (1.2). Hence QPSV(Λ) includes, as special

cases, QPS’s with finite degrees of freedom.

Remark 2.4 The case where θ = η = 0 in (2.2) and (2.3) gives the CCR indexed by V:

[φ̂(f), φ̂(g)] = 0, [π̂(f), π̂(g)] = 0, [φ̂(f), π̂(g)] = i 〈f, g〉 I, f, g ∈ V.

Hence, in this case, QPSV(Λ) reduces to the canonical algebra (unbounded CCR algebra)

indexed by V [2]. Thus QPSV(Λ) is a deformation of the canonical algebra indexed by V .
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3 Fock Space Representations

3.1 Boson Fock spaces

Let K be a complex Hilbert space and Fb(K) be the boson Fock space over K:

Fb(K) :=
∞⊕

n=0

⊗n
s K =

{
Ψ = {Ψ(n)}∞n=0|Ψ(n) ∈ ⊗n

s K, n ≥ 0,
∞∑

n=0

‖Ψ(n)‖2 < ∞

}
,

where ⊗n
s K is the n-fold symmetric tensor product Hilbert space of K with ⊗0

sK := C.

For each u ∈ K, we denote by a(u) the annihilation operator on Fb(K), i.e., a(u) is a

densely defined closed linear operator on Fb(K) such that, for all u, v ∈ K, α, β ∈ C and

α∗a(u) + β∗a(v) ⊂ a(αu + βv) and

(a(u)∗Ψ)(0) = 0, (a(u)∗Ψ)(n) =
√

nSn(u ⊗ Ψ(n−1)), n ≥ 1, u ∈ K, Ψ ∈ D(a(u)∗),

where Sn is the symmetrization operator on ⊗nK (e.g., [4, §X.7]). It is well known that,

for all u ∈ K, a(u)# (a(u) or a(u)∗) leaves the subspace

D0 := {Ψ = {Ψ(n)}∞n=0 ∈ Fb(K)|Ψ(n) = 0 for all sufficiently large n}

invariant and satisfies commutation relations

[a(u), a(v)∗] = 〈u, v〉 , [a(u), a(v)] = 0, [a(u)∗, a(v)∗] = 0 (u, v ∈ K) (3.1)

on D0.

For a closable linear operator A on a Hilbert space, we denote its closure by Ā.

For each f ∈ K, the operator

ΦS(u) :=
1√
2
(a(u)∗ + a(u)),

called the Segal field operator, is self-adjoint and essentially self-adjoint on D0 [4, Theorem

X.41]. It follows from (3.1) that, for all u, v ∈ K,

[ΦS(u), ΦS(v)] = iIm 〈u, v〉 (3.2)

on D0, where, for z ∈ C, Im z denotes the imaginary part of z.

Let CK be a conjugation on K. Then

Kreal := {u ∈ K|CKu = u}

is a real Hilbert space and K is the complexification of Kreal with respect to CK.
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For all u ∈ Kreal, we define φF(u) and πF(u) by

φF(u) := ΦS(u), πF(u) := ΦS(iu) = i
1√
2
(a(u)∗ − a(u)).

Then, by (3.2), we have for all u, v ∈ Kreal,

[φF(u), πF(v)] = i 〈u, v〉 , [φF(u), φF(v)] = 0, [πF(u), πF(v)] = 0

on D0. Namely {φF(u), πF(u)|u ∈ Kreal} satisfies the CCR indexed by Kreal on D0. This

representation of the CCR indexed by Kreal is called the Fock representation on Fb(K).

3.2 A class of self-adjoint representations of QPSV(Λ) on a boson
Fock space

We say that Λ = (θ, η) is normal if there exist densely defined linear operators A,B,C

and D from Hreal to Kreal such that

V ⊂ D(A∗B)∩D(B∗A)∩D(C∗D)∩D(D∗C)∩D(A∗D)∩D(D∗A)∩D(B∗C)∩D(C∗B)

and

A∗B − B∗A = θ, C∗D − D∗C = η, A∗D − B∗C = I on V . (3.3)

In this case we define an operator matrix

G :=

(
A C
B D

)
, (3.4)

a linear operator from Hreal⊕Hreal to Kreal⊕Kreal with D(G) = [D(A)∩D(B)]⊕ [D(C)∩
D(D)]. We call it a generating operator matrix of Λ. It is easy to see that (3.3) is

equivalent to

G∗JG = K(Λ) on V , (3.5)

where

J =

(
0 I
−I 0

)
, K(Λ) =

(
θ I
−I η

)
.

Remark 3.1 Let H be the complexification of Hreal and σΛ be the real bilinear form on

H × H given by (2.4) (Remark 2.1). The operator G can be extended to a real linear

operator on H by

GCf := Af1 + Cf2 + i(Bf1 + Df2),

f = f1 + if2 ∈ H, f1 ∈ D(A) ∩ D(B), f2 ∈ D(C) ∩ D(D).

It follows from (3.5) that

σ0(GCf,GCg) = σΛ(f, g), f, g ∈ VC,
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where VC is the complexification of V . This shows the deformation structure of σ0 to

σΛ in terms of GC. In particular, if Λ = (0, 0), then GC is a symplectic transformation

with respect to the symplectic form σ0. But, for Λ 6= (0, 0), GC is not a symplectic

transformation with respect to σΛ. Indeed we have

σΛ(GCf,GCg) = σΛ(f, g) + SΛ(GCf,GCg), f, g ∈ VC,

where

SΛ(f, g) := 〈f1, θg1〉 + 〈f2, ηg2〉 , f = f1 + if2, g = g1 + ig2 ∈ H.

Let Λ be normal with generating operator matrix G given by (3.4) and

φ̂F(f) := ΦS(Af + iBf) = φF(Af) + πF(Bf), (3.6)

π̂F(f) := ΦS(Cf + iDf) = φF(Cf) + πF(Df), f ∈ V. (3.7)

Then we have:

Proposition 3.2 (Fb(K),D0, {φ̂F(f), π̂F(f)|f ∈ V}) is a self-adjoint representation of

QPSV(Λ).

We call the representation (Fb(K),D0, {φ̂F(f), π̂F(f)|f ∈ V}) the Fock representation

of QPSV(Λ) with generating operator matrix G given by (3.4).

Remark 3.3 Note that

φ̂F(f) = ΦS(GCf), π̂F(f) = ΦS(GC(if)), f ∈ V .

Example 3.4 We consider the case where Kreal = Hreal so that Fb(K) = Fb(H). Let Γ be

a bounded anti-self-adjoint operator on H leaving Hreal invariant and satisfying Γ2 = −I.

For a > 0 and b > 0, we define

θΓ := ξ2aΓ, η
Γ

:= ξ2bΓ

with

ξ :=
1√

1 +
ab

4

.

Put ΛΓ := (θΓ, η
Γ
). Then ΛΓ is normal with generating operator matrix

GΓ :=

(
ξI − ξb

2
Γ

ξa
2
Γ ξI

)
.

In this case, φ̂F(f) and π̂F(f) (f ∈ Hreal) take the following form respectively:

φ̂Γ(f) := ΦS

(
ξf + i

ξa

2
Γf

)
, π̂Γ(f) := ΦS

(
iξf − ξb

2
Γf

)
.

Thus (Fb(H),D0, {φ̂Γ(f), π̂Γ(f)}f∈Hreal
) is a self-adjoint representation of QPSHreal

(ΛΓ).
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3.3 Reconstruction of the Fock representation of the CCR

We next consider representing φF(u) and πF(u) (u ∈ Kreal) in terms of φ̂F(f) and π̂F(f)

(f ∈ V) defined by (3.6) and (3.7) respectively. For this purpose, we introduce a class of

Λ defined by (2.1).

Definition 3.5 We say that a parameter Λ is semi-regular if it is normal and it has a

generating operator matrix G such that there exists a densely defined linear operator F

from Kreal ⊕Kreal to V ⊕V with domain D(F ) = W⊕W (W is a dense subspace of Kreal)

satisfying

GF ⊂ I. (3.8)

Let Λ be semi-regular with generating operator matrix G given by (3.4) and satisfying

(3.8). We write F as

F =

(
F1 F3

F2 F4

)
, (3.9)

where Fj : W → V is a linear operator (j = 1, 2, 3, 4). Then (3.8) is equivalent to the

following relations:

AF1 + CF2 ⊂ I, BF1 + DF2 ⊂ 0

AF3 + CF4 ⊂ 0, BF3 + DF4 ⊂ I.

The next theorem shows that the Fock representation {φF(u), πF(u)|u ∈ W} of the

CCR indexed by W can be recovered from the representation {φ̂F(f), π̂F(f)|f ∈ V} of

QPSV(Λ):

Theorem 3.6 Suppose that Λ is semi-regular and let F be as above. Then, for all u ∈ W,

φF(u) = φ̂F(F1u) + π̂F(F2u), πF(u) = φ̂F(F3u) + π̂F(F4u)

on D0.

Example 3.7 We consider Example 3.4. Suppose that

χ := 1 − ab

4
6= 0. (3.10)

Let

FΓ :=
1

ξχ

(
I 1

2
bΓ

−1
2
aΓ I

)
.

Then we have

GΓFΓ = I

Hence, under condition (3.10), ΛΓ is semi-regular, Therefore, by Theorem 3.6, we have

φF(u) =
1

ξχ

{
φ̂Γ(u) − a

2
π̂Γ(Γu)

}
, πF(u) =

1

ξχ

{
b

2
φ̂Γ(Γu) + π̂Γ(u)

}
, u ∈ Kreal

on D0.
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4 Construction of a representation of QPSV(Λ) from a

representation of the CCR indexed by V
The method described in Subsection 3.2 can be extended to constructing a representation

of QPSV(Λ) from a representation of the CCR indexed by a real vector space.

Let W be a dense subspace of Kreal and (F,D, {φ(u), π(u)}u∈W) be a representation

of the CCR indexed by W , i.e., F is a Hilbert space, D is a dense subspace of F and φ(u)

and π(u) (u ∈ W) are symmetric operators on F such that D ⊂ ∩u,v∈WD(φ(u)φ(v)) ∩
D(π(u)π(v)) ∩ D(φ(u)π(v)) ∩ D(π(v)φ(u)) and

[φ(u), φ(v)] = 0, [π(u), π(u) = 0, [φ(u), π(v)] = i 〈u, v〉 , u, v ∈ W

on D.

Let Λ be normal with generating operator matrix G given by (3.4) and

φ̂(f) := φ(Af) + π(Bf), π̂(f) := φ(Cf) + π(Df), f ∈ V . (4.1)

Then we have:

Theorem 4.1 The set
(
F, D, {φ̂(f), π̂(f)}f∈V

)
is a representation of QPSV(Λ).

5 Construction of a representation of CCR from a

representation of QPSV(Λ)

In this section we generalize the method of Subsection 3.3. Throughout this section we

assume the following:

Hypothesis I. The parameter Λ defined by (2.1) is semi-regular with generating operator

matrix G such that (3.4) and (3.8) hold with (3.9).

Lemma 5.1 Under Hypothesis I, the following relations hold on W:

F ∗
1 θF1 + F ∗

2 ηF2 + F ∗
1 F2 − F ∗

2 F1 = 0, (5.1)

F ∗
3 θF3 + F ∗

4 ηF4 + F ∗
3 F4 − F ∗

4 F3 = 0, (5.2)

F ∗
1 θF3 + F ∗

2 ηF4 + F ∗
1 F4 − F ∗

2 F3 = I. (5.3)

.

Proof. It follows from (3.5) and (3.8) that J ⊂ F ∗K(Λ)F , which implies (5.1)–(5.3).

Let
(
F,D, {φ̂(u), π̂(u)}f∈V

)
be a representation of QPSV(Λ).
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Theorem 5.2 Let Hypothesis I be satisfied and, for each u ∈ W, define φ(u) and π(u)

by

φ(u) := φ̂(F1u) + π̂(F2u), π(u) := φ̂(F3u) + π̂(F4u) (5.4)

on D. Then (F,D, {φ(u), π(u)}u∈W) is a representation of the CCR indexed by W.

6 Conditions for Unitary Equivalences

Let (Fj, Dj, {φj(u), πj(u)}u∈W), j = 1, 2, be two self-adjoint representations of the CCR

indexed by W and assume that Λ is normal with generating operator matrix G given by

(3.4). Then, by Theorem 4.1, we have two representations
(
Fj, Dj, {φ̂j(f), π̂j(f)}f∈V

)
, j =

1, 2, of QPSV(Λ), where

φ̂j(f) := φj(Af) + πj(Bf), π̂j(f) := φj(Cf) + πj(Df), f ∈ V .

In this context, it is interesting to investigate conditions for these two representations to

be unitarily equivalent.

Theorem 6.1 Assume Hypothesis I. Suppose that, for each j = 1, 2 and all u ∈ W,

φj(u) and πj(u) are essentially self-adjoint on Dj. Then {φ̂1(f), π̂1(f)}f∈V is unitarily

equivalent to {φ̂2(f), π̂2(f)}f∈V if and only if {φ1(u), π1(u)}u∈W is unitarily equivalent to

{φ2(u), π2(u)}u∈W .

Remark 6.2 There exist infinitely many unitarily inequivalent self-adjoint representa-

tions of CCR with infinite degrees of freedom (e.g., [4, Theorem X.46]). Hence, Theorem

6.1 shows that there may exist infinitely many unitarily inequivalent representations of a

QPS with infinite degrees of freedom.

7 Weyl Representations of QPSV(Λ)

Let {φ(u), π(u)}u∈W be a set of self-adjoint operators on F. The set {φ(u), π(u)}u∈W is

called a Weyl representation of the CCR indexed by W if it obeys the Weyl relations

eiφ(u)eiπ(v) = e−i〈u,v〉eiπ(v)eiφ(u),

eiφ(u)eiφ(v) = eiφ(v)eiφ(u), eiπ(u)eiπ(v) = eiπ(v)eiπ(u), u, v ∈ W .

In analogy with Weyl representations of CCR with infinite degrees of freedom, we can

define Weyl representations of QPSV(Λ) as follows:
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Definition 7.1 Let {φ̂(f), π̂(f)}f∈V be a set of self-adjoint operators on a Hilbert space.

We say that {φ̂(f), π̂(f)}f∈V is a Weyl representation of QPSV(Λ) if

eiφ̂(f)eiπ̂(g) = e−i〈f,g〉eiπ̂(g)eiφ̂(f),

eiφ̂(f)eiφ̂(g) = e−i〈f,θg〉eiφ̂(g)eiφ̂(f), eiπ̂(f)eiπ̂(g) = e−i〈f,ηg〉eiπ̂(g)eiπ̂(f), f, g ∈ V .

Theorem 7.2 Assume that Λ be normal. Let {φ(u), π(u)}u∈W be a Weyl representation

of the CCR indexed by W and φ̂(f), π̂(f) (f ∈ V) be defined by (4.1). Suppose that, for

all f ∈ V, φ̂(f) and π̂(f) are essentially self-adjopint. Then {φ̂(f), π̂(f)}f∈V is a Weyl

representation of QPSV(Λ).

We can also construct a Weyl representation of CCR from a Weyl representation of a

QPS:

Theorem 7.3 Assume Hypothesis I. Let φ̂(f), π̂(f) (f ∈ V) be Weyl representation of

QPSV(Λ). Let φ(u) and π(u) be defined by (5.4). Suppose that, for all u ∈ W, φ(u) and

π(u) are essentially self-adjopint. Then {φ(u), π(u)}u∈W is a Weyl representation of the

CCR indexed by W.

8 Irreducibility

Let A be a linear operator on a Hilbert space H. We say that A strongly commutes with

B ∈ B(H) if BA ⊂ AB (i.e., for all ψ ∈ D(A), Bψ ∈ D(A) and BAψ = ABψ).

For a set A of (not necessarily bounded) linear operators on H, we define

A′ := {B ∈ B(H)|BA ⊂ AB, ∀A ∈ A}. (8.1)

We call A′ the strong commutant of A.

We say that A is strongly irreducible if A′ = {cI|c ∈ C}. In the case where A ⊂ B(H),

we say that A is irreducible if A′ = {cI}.

Remark 8.1 It is easy to see that, if A is strongly irreducible, then it cannot be decom-

posed into a non-trivial direct orthogonal sum.

Example 8.2 The Fock representation {φF(u), πF(u)|u ∈ W} of the CCR indexed by a

subspace W dense in K is strongly irreducible. This follows from the irreducibility of the

set {eiφF(u), eiπF(u)|u ∈ W} of unitary operators (e.g., [4, Appendix to X.7]).

Theorem 8.3 Assume Hypothesis I. Let
(
F,D, {φ(u), π(u)}u∈W

)
be a strongly irre-

ducible, self-adjoint representation of the CCR indexed by W such that D is a core of

φ(u) and π(u) for all u ∈ W. Then the representation
(
F, D, {φ̂(f), π̂(f)}f∈V

)
given by

(4.1) is strongly irreducible.
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Corollary 8.4 Under Hypotheis I, the Fock representation (Fb(K),D0, {φ̂F(f), π̂F(f)

|f ∈ V}) of QPSV(Λ) is strongly irreducible.

Proof. This follows from Example 8.2 and Theorem 8.3.

As for irreducibility of Weyl representations of a QPS, we have the following:

Theorem 8.5 Let {φ̂(f), π̂(f)}f∈V be a Weyl representation of QPSV(Λ). Then, {φ̂(f),

π̂(f)}f∈V is strongly irreducible if and only if {eitφ̂(f), eitπ̂(f)|t ∈ R, f ∈ V} is irreducible.
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1 Introduction

The boson (as well as fermion) random point fields were derived by taking the thermo-
dynamic limit of the canonical quantum statistical system of finite number of bosons in
bounded boxes in Rd [TI1], based on the framework of [ShTa]. In [TI2], boson point fields
corresponding to boson gases in Bose-Einstein condensation are derived. Paraparticle
gases are considered in [TI3]. A model of mean field interacting boson gas trapped by a
weak harmonic potential is considered by the boson random point fields method [TZ1].
In those models of boson gases, we got two typical random point fields; the usual boson
random point field for the systems of low density boson gases, and another random point
field for the systems of large density boson gas, i.e., one which describes the position
distribution of boson gas in the state of Bose-Einstein condensation. In [TZ2], the large
scale properties of the latter random point field were examined and compared to the
corresponding known properties of the usual boson random point field.

The purpose of this note is to summarize how above two typical random point fields
appear in those simple quantum statistical models of boson gases, and how the limit
properties of them differ from each other. For the details, we refer to [TI1, TI2, TZ2].
It is interesting to glance the situation of the other models such as the free boson
gas constructed from the grand canonical ensemble and the free mean field boson gas,
because mixed random point fields may appear there.

2 Ideal Boson Gas in terms of Canonical Ensemble

and Thermodynamic Limit

Consider L2(ΛL) on ΛL = [−L/2, L/2]d ⊂ Rd with the Lebesgue measure. Let 4L be
the Laplacian in HL = L2(ΛL) satisfying periodic boundary conditions at ∂ΛL. In this
section, we regard

HL = −4L

as the quantum mechanical Hamiltonian of a single free particle. The usual factor
~2/2m is set as unity. For k ∈ Zd, ϕ(L)

k (x) = L−d/2 exp(i2πk · x/L) is an eigenfunction

of 4L, and {ϕ(L)
k }k∈Zd forms an CONS of HL. In the following, we use the operator

GL = exp(β4L), which has the kernel

GL(x, y) =
∑
k∈Zd

e−β|2πk/L|
2

ϕ
(L)
k (x)ϕ

(L)
k (y) (2.1)

for β > 0. We put g
(L)
k = exp(−β|2πk/L|2) for the eigenvalue of GL of the eigenfunction

ϕ
(L)
k .

Consider the system consists of N identical particles which obey Bose-Einstein statis-
tics in a finite box ΛL. The space of the quantum mechanical states of the system is
given by

HB
L,N = {SNf | f ∈ ⊗NHL },
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where

SNf(x1, · · · , xN) =
1

N !

∑
σ∈SN

f(xσ(1), · · ·xσ(N)) ( x1, · · · , xN ∈ ΛL )

is symmetrization in the N indices. Using the CONS {ϕ(L)
k }k∈Zd of L2(ΛL), we define

the element

Ψ
(L)
k (x1, · · · , xN) =

1√
N !n(k)

∑
σ∈SN

ϕ
(L)
k1

(xσ(1)) · · · · · ϕ(L)
kN

(xσ(N)) (2.2)

of HB
L,N for k = (k1, · · · , kN) ∈ Zd, where n(k) =

∏
l∈Zd(]{n ∈ { 1, · · · , N } | kn = l }!).

Let us introduce the subset (Zd)N≺ = { (k1, · · · , kN) ∈ (Zd)N | k1 ≺ · · · ≺ kN } of (Zd)N ,
then {Ψk }k∈(Zd)N≺

forms a CONS of HB
L,N .

From the basic postulate of quantum mechanics and statistical physics, the probabil-
ity density function for the position distribution of the equilibrium state of the system
at the inverse temperature β is given by

pL,N(x1, · · · , xN) =

Z−1
L,N

∑
k∈(Zd)N≺

( N∏
j=1

e−β|2πkj/L|
2
)
|Ψ(L)

k (x1, · · · , xN)|2

=
per {GL(xi, xj)}16i,j6N∫

ΛNL
per {GL(xi, xj)}16i,j6N dx1 · · · dxN

,

where per denotes the permanent:

perA =
∑
σ∈Sn

n∏
j=1

Ajσ(j) for n× n matrix A.

2.1 Brief review of Random Point Field

We would like to study the position distribution of the constituent particles of the
gases in terms of random point fields[RPFs]. In this subsection, we try to give an brief
introduction to the theory of RPFs.

Let Q(Rd) be the set of all the locally finite subsets of Rd, i.e., the space of all the
subsets of Rd which have no accumulation points. A probability measure on Q(Rd) is
called a random point field on Rd. We can identify the set of points {x1, x2, · · ·xn, · · · }
with the point measure

∑
j

δxj = ξ. Then, Q(Rd) is considered as the space of all the

integer valued Radon measures on Rd. In this scheme, we may introduce the natural
functionals on Q(Rd):

〈f, ξ〉 =
∑
j

f(xj)
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for bounded function f on Rd of compact support. By using this functional, various
quantities concerning RPFs are described. For examples,

〈χA, ξ〉 =
∑
j

χA(xj) = #{xj ∈ A }

represents the number of points in the intersection of A and the set identified by ξ,
and so on. Especially, a RPF µ on Rd is characterized by its generating (or Laplace)
functional ∫

Q(Rd)

e−〈f,ξ〉 dµ

for f ∈ C0(Rd), f > 0. Moreover the weak convergence of any sequence of RPF is estab-
lished if the point-wise convergence of corresponding sequence of generating functionals
is shown. For details, see e.g., [DV].

Now let us see how to represent RPFs on Rd which describe the position distribution
of our system and to calculate their generating functionals. Note that our system has
only finite number of particles before the thermodynamic limit. So, our strategy is to
construct first RPFs for finite number of particles, and then get an infinite RPF which
describes boson gas in the whole space Rd through thermodynamic limit. In this respect,
we use the point-wise convergence of the generating functionals.

A finite RPF is determined if the exclusion measures are given. That is to say,

Prob


The total number of points is equal to n

and each point is contained in a
d-dimensional rectangle (xj, xj + dxj]

=
∏d

k=1(x
(k)
j , x

(k)
j + dx

(k)
j ]), (j = 1, · · · , n)

 ≡ Jn(x1, · · · , xn)dx1 · · · dxn,

where xj = (x
(k)
j )dk=1. The partition function ZL,N suggests that the position distribution

of constituent particles of the present system is given by

Jn(x1, · · · , xn) = δn,N per
{
GL(xi, xj)

}
16i,j6N

/ZL,N .

= pL,N(x1, · · · , xN) δn,N

Then the resulting RPF νL,N has the generating functional∫
Q(Rd)

dνL,N(ξ)e−〈f,ξ〉 =
∞∑
n=0

∫
(Rd)n

e−
∑
j f(xj)

Jn(x1, · · · , xn)

n!
dx1 · · · dxn

=
Tr ⊗NsymL2(Rd)[(⊗NGL,N)(⊗Ne−f )]

Tr ⊗NsymL2(Rd)[(⊗NGL,N)]
. (2.3)

Recall that a RPF is characterized by its generating functional as the theory of RPFs
shows. As f , it is enough to consider any non-negative continuous function of compact
support. See the arguments in [TI1, TI2, TI3] for detail.

Now let us consider the thermodynamic limit

L,N →∞, N/Ld → ρ.
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Theorem 2.1 (1) For the normal case ρ < ρc = Γ(d/2)/(4πβ)d/2 = limr→1Kr(x, x),

νL,N → νr weakly,

where νr is the so called boson process characterized by the generating functional∫
Q(Rd)

[
e−<f,ξ>

]
νr(dξ) = Det [1 +

√
1− e−fKr

√
1− e−f ]−1,

where

Kr = rG(1− rG)−1 with G = eβ4 the heat operator on L2(Rd),

and r ∈ (0, 1) is the unique solution of

ρ =

∫
Rd

dp

(2π)d
re−β|p|

2

1− re−β|p|2
= Kr(x, x),

(2) For the BEC case ρ > ρc,

νL,N → ν(B)
ρ weakly.

The limit RPF ν
(B)
ρ has the generating functional:∫
Q(Rd)

[
e−<f,ξ>

]
ν(B)
ρ (dξ) =

exp
(
− (ρ− ρc)(

√
1− e−f , [1 +Kf ]

−1
√

1− e−f )
)

Det [1 +Kf ]

where
Kf =

√
1− e−fG(1−G)−1

√
1− e−f

= ((G(1−G)−1)1/2
√

1− e−f )∗(G(1−G)−1)1/2
√

1− e−f .

RemarkF ν
(B)
ρ is the convolution of two RPFs νBECρ−ρc ∗ νr=1. In other words, the total

point measure ξ is a sum
ξ = ξ(N) + ξ(C)

and ξ(N) and ξ(C) are independent point measures obeying νr=1 and νBEC , respectively.
Thus, ξ(N) describes the “normal particles” obeying νr=1, whose generating functional is
the denominator Det [1+Kf ]

−1. While, ξ(C) describes the “condensed particles” obeying
νBECρ−ρc , whose generating functional is the numerator exp

(
− (ρ − ρc)(

√
1− e−f , [1 +

Kf ]
−1
√

1− e−f )
)
.

For the details, see [TI1, TI2].
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3 Ideal Boson Gas in terms of Grand Canonical

Ensemble and Thermodynamic Limit

In this section, we consider the Grand Canonical Ensemble of free bosons in a bounded
box ΛL = [−L/2, L/2]d ⊂ Rd, and then take the thermodynamic limit to get the corre-
sponding RPF.

As in the previous section, let HL = L2(Λ
)
L be the one particle state space, HL =

−4L the one particle Hamiltonian, GL = eβ4L , and ~2/2m = 1.
The grand partition function is

ΞL(µ) =
∞∑
n=0

enβµTr ⊗nsymHL [⊗nGL],

where µ is the chemical potential, ⊗nsymHL is the n-th symmetric tensor product of HL.
Let us recall the formula [ShTa, V]

Det (1− J)−1 =
∞∑
n=0

1

n!

∫
Rn

per {J(xi, xj)}ni,j=1λ
⊗n(dx1 · · · dxn),

where J is any trace class integral operator on L2(R, λ), satisfying ‖J‖ < 1. Then we
have

ΞL(µ) =
∞∑
n=0

1

n!
enβµ

∫
ΛnL

per {GL(xi, xj)}16i,j6n dx1 · · · dxn

= Det [1− eβµGL]−1

for µ < 0. The condition makes the right hand side well defined, since ‖GL‖ = 1. In
this case, the corresponding RPF νL,µ is given by setting the exclusive measures

Jn(x1, · · · , xn) = eβµnper {GL(xi, xj)}16i,j6n

/
ΞL(µ).

The generating functional of νL,µ is∫
Q(Rd)

e−〈f,ξ〉νL,µ(dξ)

=
∞∑
n=0

∫
(Rd)n

e−
∑
j f(xj)

Jn(x1, · · · , xn)

n!
dx1 · · · dxn =

Ξ̃L(µ)

ΞL(µ)
,

where

Ξ̃L(µ) =
∞∑
n=0

eβµnTr ⊗nsymHL [(⊗ne−f )(⊗nGL)] = Det [1− e−feβµGL]−1.
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Then we get

Ξ̃L(µ)

ΞL(µ)
=

Det [1− eβµGL]

Det [1− e−feβµGL]
=

1

Det [1 + (1− e−f )eβµGL(1− eβµGL)−1]

−→ 1

Det [1 + (1− e−f )eβµG(1− eβµG)−1]
as L→∞.

Theorem 3.1 In the thermodynamic limit L→∞ for fixed µ < 0, we have

νL,µ → νr weakly,

where r = eβµ < 1 and νr is the same one as in the canonical ensemble case.

The RPF νr has the density :

ρ = Kr(x, x) < ρc = K1(x, x).

For µ > 0, the system is not stable. To get BEC state (ρ > ρc), we must tune µ like

ρ− ρc =
1

Ld
eβµ

1− eβµ
i.e., µ = − 1 + o(1)

β(ρ− ρc)Ld
.

Theorem 3.2 We have

νL,µ → νgceρ weakly as L→∞,

where νgceρ has the generating functional∫
Q(Rd)

e−〈f,ξ〉dνgceρ (ξ) =

(1 + (ρ− ρc)(
√

1− e−f , (1 +Kf )
−1
√

1− e−f ))−1Det [1 +Kf ]
−1.

RemarkF νgceρ is the convolution of two RPFs: νgceρ = νbecρ−ρc ∗ νr=1. νr=1 is the same as
in §2 and Theorem 3.1. By inspection, we get

νbecρ−ρc =

∫ ∞
0

νBECt(ρ−ρc)e
−t dt,

that is, the BEC states for grand canonical ensemble is a mixture of BEC states of §2
for various densities.
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4 Mean Field Model of Boson Gas

Mean field model of boson gas is a simplified model of quantum statistical mechanics
of boson gas, where constituent particles interact each other by homogeneous repulsive
force. The grand partition function is given by

ΞL(λ, µ) =
∞∑
n=0

enβµ−n
2βλ/2|ΛL|Tr ⊗nsymHL [⊗nGL],

where µ is the chemical potential and λ represents strength of the mean field interaction
Using the kernel GL(x, y), we get

ΞL(λ, µ) =
∞∑
n=0

1

n!
enβµ−n

2βλ/2|ΛL|
∫

ΛnL

per {GL(xi, xj)}16i,j6ndx1 · · · dxn,

We can introduce the corresponding RPF νL,λ,µ. This model is not trivial like GCE to
handle, but the stability of the system holds for µ ∈ R and λ > 0. The thermodynamic
limit L→∞ is taken for fixed λ, µ. We need not tune the chemical potential µ artificially
to get the BEC states as in the previous section. However, let us content ourselves with
giving the result.

Theorem 4.1 (1) For µ/λ < ρc,

νL,λ,µ → νr weakly,

where r ∈ (0, 1) satisfies

µ

λ
=

log r

βλ
+

∫
Rd

dp

(2π)d
re−β|p|

2

1− re−β|p|2
.

The density ρ of the RPF νr satisfies

µ/λ < ρ < ρc

(2) For µ/λ > ρc,
νL,λ,µ → ν(B)

ρ weakly,

where ν
(B)
ρ is the same as in the canonical ensemble case

ν(B)
ρ = νBECρ−ρc ∗ νr=1

with the density
ρ = µ/λ > ρc.

Remark: RPF νr and the critical density ρc are the same as in the CE case.
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5 Limit properties of νρ

In this final section, we summarize the limit theorems of RPF νρ for ρ > ρc, i.e., BEC
states, and compare them to those for ρ < ρc.

Theorem 5.1 (Law of Large Numbers) For ρ > ρc, the limit

1

κd
〈f(·/κ), ξ〉 −→ ρ

∫
Rd
f(x) dx

holds in L2(Q(Rd), νρ) as κ→∞.[TZ2]

Theorem 5.2 (Central Limit Theorem) For ρ > ρc, the distribution of the random
variable

Zκ :=
〈f(·/κ), ξ〉 − κdρ

∫
Rd f(x) dx√

2(ρ− ρc) ‖(−β∆)−1/2f‖2 κ(d+2)/2

converges to the standard normal distribution:

lim
κ→∞

∫
Q(Rd)

eitZκνρ(dξ) = e−t
2/2 .

Theorem 5.3 (Large Deviation Principle) There exists a certain (good) rate con-
vex function I : R 7→ [0,+∞], such that the large deviation principle

lim sup
κ→∞

1

κd−2
log νρ

( 1

κd
〈
f
(
· /κ
)
, ξ
〉
∈ F

)
6 − inf

s∈F
I(s) for any closed F ⊂ R ,

lim inf
κ→∞

1

κd−2
log νρ

( 1

κd
〈
f
(
· /κ
)
, ξ
〉
∈ G

)
> − inf

s∈G
I(s) for any open G ⊂ R

hold for ρ > ρc.

To compare our results for the case: ρ > ρc (BEC) to the corresponding results for
the case ρ < ρc (normal phase without condensation), we would like to refer [LLS, GLM,
ShTa] for the latter.

Let us put Kz := zGβ(1 − zGβ)−1 with z ∈ (0, 1), which satisfies ρ = Kz(x, x) and

νρ = µ
(det)
Kz

. Then we have :

Theorem 5.4 (The law of large number) For ρ < ρc. the limit

1

κd
〈f(·/κ), ξ〉 −→ ρ

∫
Rd
f(x) dx

holds in L2(Q(Rd), νρ) as κ→∞.
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Theorem 5.5 (The central limit theorem) For ρ < ρc. the distribution of the ran-
dom variable

Zκ =
〈f(·/κ), ξ〉 − κdρ

∫
Rd f(x) dx√

Kz(x, x) +K2
z (x, x)‖f‖2κd/2

,

converges to the standard normal distribution:

lim
κ→∞

∫
Q(Rd)

eitZκνρ(dξ) = e−t
2/2 .

Theorem 5.6 (Large deviation principle) There exists a certain good rate convex
function I ′ : R 7→ [0,+∞] such that

lim sup
κ→∞

1

κd
log νρ

( 1

κd
〈
f
(
· /κ
)
, ξ
〉
∈ F

)
6 − inf

s∈F
I ′(s) for any closed F ⊂ R

and

lim inf
κ→∞

1

κd
log νρ

( 1

κd
〈
f
(
· /κ
)
, ξ
〉
∈ G

)
> − inf

s∈G
I ′(s) for any open G ⊂ R

hold for ρ < ρc.

The behavior of the random variable

Dκ =
1

κd
〈f(·/κ), ξ〉,

under νρ for large ρ and small ρ are different as follows.
(i) The random variable Dκ converges for κ → ∞ to its expectation value m =
ρ
∫
Rd f(x) dx in mean for both cases.

(ii) For large ρ, the law of κ(d−2)/2(Dκ−m) converges to normal distribution as κ→∞.
While, for small ρ, κd/2(Dκ −m) does.
(iii) For large ρ, the law of Dκ obeys a large deviation principle with parameter κd−2,
while for small ρ, it does with κd.

The comparison shows that there are differences in deviation of density fluctuation
between the BEC and the non-BEC states of ideal boson gases, which reminds the large
deviation properties for two-phase classical systems, for example lattice spin models, see
e.g. [P].
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Semi-classical limit of the lowest eigenvalue of
P (�)2 Hamiltonian on a finite interval

Shigeki Aida
Osaka University

1 Introduction

Spatially cut-off P (�)2-Hamiltonian is used to construct a non-trivial scalar quantum
field [23, 12]. The Hamiltonian contains a small physical parameter which is called the
Planck constant ~. The classical field equation which is associated with the P (�)2 quan-
tum field is a non-linear Klein-Gordon equation. It is natural to guess that the asymptotics
of spectrum of the spatially cut-off P (�)2-Hamiltonian is determined by the corresponding
classical system. In this paper, we discuss the semi-classical limit of the lowest eigenvalue
of the P (�)2-Hamiltonian in the case where the space is [−l/2, l/2], where l > 0. The
contents of this report is based on [2].

2 De�nitions and Basic properties

Let I = [−l/2, l/2]. Let ∆ = d2

dx2 be the Laplace-Bertlami operator on L2(I, dx) with
periodic boundary condition, where dx denotes the Lebesgue measure. Note that all func-

tions and function spaces in this paper are real-valued ones. Set e0(x) =
√

1
l

and ek(x) =√
2
l
cos
(

2�k
l

x
)
, e�k(x) =

√
2
l
sin
(

2�k
l

x
)

for positive integer k. {en | n = 0,±1,±2, . . .} are

eigenfunctions of ∆ and constitutes a complete orthonormal system of L2(I, dx). Since
the boundary condition is periodic one, we may consider our function spaces are defined
on a circle with the length l. Let us fix a positive number m > 0. Let µ be the Gaussian
measure on D′(I) such that for any h ∈ C∞(S1(l))∫

D(I)′
〈h,w〉2dµ(w) =

(
(m2 − ∆)�1/2h, h

)
L2(I,dx)

where D′(I) denotes the space of Schwartz distributions. Let FC∞ be the set of smooth
cylindrical functions such that f(w) = F (ϕ1(w), . . . , ϕk(w)), where F ∈ C∞

b (Rk),ϕi(w) =
〈hi, w〉, hi ∈ C∞(S1(l)). For f(w) = F (ϕ1(w), . . . , ϕk(w)), define

(�f)(w) =
k∑

i=1

(∂iF )(ϕ1(w), . . . , ϕk(w))hi ∈ L2(I, dx) (2.1)
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and

E(f, f) =

∫
D′(I)

‖�f(w)‖2
L2(I,dx)dµ(w).

Let −L(≥ 0) be the generator of (the closure of) E which is called the free Hamiltonian.
We introduce potential functions. Let g be a bounded measurable function on I and

let

Vλ(w) = λ : V

(
w√
λ

)
:,

: V

(
w√
λ

)
: =

∫
I

: P

(
w(x)√

λ

)
: g(x)dx,

where λ > 0 and P (u) =
∑2N

k=0 aku
k is a polynomial. : P (w(x)) : denotes the Wick

polynomial with respect to µ. Assume that a2N > 0 and g ∈ C∞ and g(x + l) = g(x),
g(x) > 0 ∀x. The operator (−L + Vλ,FC∞) is essentially self-adjoint in L2(µ) ([26]) and
we denote the self-adjoint extension by −L+Vλ. [22, 23, 26, 12] are basic references to this
operator. −L+Vλ is called a P (�)2-Hamiltonian. It is a representation of the quantization
of the Hamiltonian whose classical field equation is the non-linear Klein-Gordon equation
with space-time dimension 2:

∂2

∂t2
w(t, x) − 1

4

∂2

∂x2
w(t, x) +

m2

4
w(t, x) +

1

2
P ′ (w(t, x)) g(x) = 0 (t, x) ∈ R × I. (2.2)

We determine the limit of the lowest eigenvalue E0(λ) of −L + Vλ when λ → ∞. In this
study, we use the Schilder type large deviation results for Vλ(w). It is convenient to study
this problem in the setting of abstract Wiener space.

To this end, let Ã = (m2 − ∆)
1/4

. We define Sobolev spaces:

Hs =
{

h ∈ D(Ã2s) | ‖h‖Hs := ‖Ã2sh‖L2(I,dx)

}
. (2.3)

Let H = H1/2. For the separable Hilbert space H, the abstract Wiener space (W,H, µ)
is uniquely defined [13]. µ is the Gaussian measure on W which is the same measure we
already defined on D(I)′. Actually, we can take W = H�s0 ⊂ D(I)′, where s0 is any
positive number. That is, the norm is given by ‖w‖2

W := ‖(m2 −∆)�s0/2w‖2
L2 . We define

a self-adjoint operator A on H by

Af = (m2 − ∆)1/4f (2.4)

D(A) = D((m2 − ∆)1/2) ⊂ H. (2.5)

Let S = A�2γ, where γ = 1 + 2s0. Then S is a trace class operator on H and ‖h‖2
W =

‖
√

Sh‖2
H holds. The H-derivative D and � are related as follows:

‖ADf(w)‖2
H = ‖�f(w)‖2

H0 . (2.6)

In our study, the following function U is important.
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De�nition 2.1. Let U(h) = 1
4
‖Ah‖2

H +V (h) for h ∈ D(A) and U(h) = +∞ for h /∈ D(A).
Here V (h) =

∫
I
P (h(x))g(x)dx and h ∈ H.

We can rewrite U .

Lemma 2.2. h ∈ D(A) is equivalent to h ∈ H1 and it holds that for any h ∈ H1

U(h) =
1

4

∫
I

(
h′(x)2 + m2h(x)2

)
dx +

∫
I

P (h(x))g(x)dx.

The following results are very well-known.

Lemma 2.3. For any p > 1, H1/2 ⊂ Lp(I, dx) and the embedding is compact. Also
H1/2 6⊂ L∞(I, dx).

We summarize basic properties of the Hamiltonian and the semi-group.

Theorem 2.4. For any f ∈ FC∞, it holds that∫
W

f 2 log
(
f2/‖f‖2

L2(µ)

)
dµ ≤ 2

∫
W

‖Df(w)‖2
Hdµ. (2.7)

Theorem 2.5 (GNS(=Glimm-Nelson-Segal) bound). Let V ∈ L1(W,dµ) be a bounded
measurable function. Then for any f ∈ FC∞, we have∫

W

‖Df(w)‖2
Hdµ(w) +

∫
W

V (w)f(w)2dµ(w) ≥ −1

2
log

(∫
W

e�2V dµ

)
‖f‖2

L2(µ). (2.8)

Actually the logarithmic Sobolev inequality (2.7) is equivalent to that (2.8) holds for
all bounded measurable V . See [14]. As to −L + Vλ, we have the following (see [26, 4]).

Theorem 2.6. (1) (−L + Vλ,FC∞
A (W )) is essentially self-adjoint.

(2) For any � > 0, ∫
W

exp (−�Vλ(w)) dµ(w) < ∞.

(3) E0(λ) = inf �(−L+Vλ) > −∞ and E0(λ) is an eigenvalue with multiplicity 1 and the
eigenfunction is almost surely positive or negative.
(4) L2-semigroup Tt = et(L�Vλ) is a trace class operator. In particular −L+Vλ has discrete
spectrum only.

Remark 2.7. (1) Arai [4] studied the semi-classical limit of the partition function:

lim
λ→∞

tret(L�Vλ)/λ

tretL/λ
.

(2) Spatially cut-off P (�)2-Hamiltonians are defined, by replacing I by R and g by
a smooth non-negative function with a compact support. (1), (2), (3) above hold for
spatially cut-off P (�)2-Hamiltonians, too. Also it is known that the Hamiltonians have
discrete spectrum only in [E0(λ), E0(λ) + m) by Simon and Hoegh-Krohn. However (4)
does not hold any more for them and the set [E0(λ) + m,∞) may be included in the set
of the continuous spectrum.
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3 A formal argument

The equation (2.2) can be viewed as a Newton’s equation of motion on H0 = L2(I, dx) and
the function U in Definition 2.1 can be viewed as the potential function for the equation
(2.2) in H0. First, let us consider the Newton’s equation of motion on Rd:

ẍt = −(∇U)(xt), xt ∈ Rd.

Then the classical Hamiltonian is E = 1
2
|p|2 + U(x) and the corresponding quantum

Hamiltonian is the Schrödinger operator:

H = −~2

2
∆ + U in L2(Rd, dx).

Using the potential function U in Definition 2.1 we see that (2.2) reads

d2

dt2
wt = −1

2
(∇U)(wt), wt ∈ H0.

Hence the quantized formal Hamiltonian of (2.2) is

−~2

2
∆H0 +

1

2
U in L2(H0, dw), (3.1)

where dw is the “Lebesgue measure” on H0 and ∆H0 = tr�2 = −���. Here �� is
the adjoint operator of � with respect to the “Lebesgue measure”. P (�)2-Hamiltonian
λ�1/2 (−L + Vλ) (λ = ~�2) is the rigorous version of this Schrödinger operator. To see
this, we consider a formal unitary transformation f(w) → ~�dim H0/2f (~�1w). By this,
(3.1) is unitarily equivalent to −~H~, where

−H~ = −1

2

(
∆H0 − ~�2U (~w)

)
= −1

2

(
∆H0 − λU

(
w√
λ

))
in L2(H0, dw). (3.2)

Now we consider a unitary transformation of −L + Vλ. Formally, we have

dµ(w) = Ψ(w)2dw, (3.3)

where

Ψ(w) = det

(
Ã√
2�

)1/2

exp

(
−1

4
‖Ãw‖2

H0

)
. (3.4)

Also by (2.6)

E(f, f) =

∫
H0

‖�f(w)‖2
H0Ψ(w)2dw. (3.5)
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By the formal unitary transformation f → fΨ�1 from L2(H0, dw) to L2(W,dµ), −L+Vλ

is unitarily equivalent to

−∆H0 +
1

4
‖Ã2w‖2

H0 + λ : V

(
w√
λ

)
: −trÃ2. (3.6)

Note that

1

4
‖Ã2w‖2

H0 + λ : V

(
w√
λ

)
:

= λ

{
1

4

∫
I

((
w′(x)√

λ

)2

+ m2

(
w(x)√

λ

)2
)

dx +

∫
I

: P

(
w(x)√

λ

)
: g(x)dx

}

In this way, we can see that the P (�)2-Hamiltonian −L + Vλ is an infinite dimensional
Schrödinger operator. In quantum mechanics, there are many researches on the semi-
classical limit of Schrödinger operators. Now we recall the results concerning the asymp-
totic behavior of the lowest eigenvalue of the Schrödinger operator. Our main result is an
infinite dimensional analogue of this.

4 Results in �nite dimensions

Let

−Hλ,U := −∆ + λU

(
x√
λ

)
on L2(Rd, dx) (4.1)

Note that λ = 1
~2 .

The following result can be found in [24].

Theorem 4.1. Assume that
(H1) min U(x) = 0 and {x ∈ Rd | U(x) = 0} = {h1, . . . , hn}.
(H2)

Ui =
1

2

(
∂2U

∂xk∂xl

(hi)

)
> 0 for all i.

(H3) lim inf |x|→∞ U(x) > 0.
Set E0(λ) = inf �(−Hλ,U). Then

lim
λ→∞

E0(λ) = min
1≤i≤n

tr
√

Ui.

Also note that
tr
√

Ui = inf �(−∆ + (Uix, x)).
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5 Main result

Assumption 5.1. (A1) U(h) (h ∈ H1) is a non-negative function and the zero point set
of U is the finite set: N = {h1, . . . , hn}.
(A2) Suppose (A1). The Hessian 1

2
D2U(hi) ∈ L(H1, H1) is a strictly positive operator

for all 1 ≤ i ≤ n.

Lemma 5.2. Assume that U is a nonnegative function and there exists h ∈ H1 such that
U(h) = 0 . Then the following hold.
(1) h is a periodic C∞ function.
(2) The following (i), (ii) are equivalent.

(i) D2U(h) is strictly positive.

(ii) Let v(x) = 1
2
P ′′(h(x))g(x). Then inf �(m2 − ∆ + 4v) > 0.

Example 5.3. (1) Assume that g(x) ≡ 1 and set Q(x) = m2

4
x2 + P (x).

Suppose that Q(x) ≥ 0 for all x and let {Q = 0} = {q1, . . . , qn}.
Then the constant functions {q1, . . . , qn} are minimizers of U and U(qi) = 0 for all i.
We have m2 − ∆ + 4vi(x) = −∆ + 2Q′′(qi).
Thus, (A1) and (A2) is equivalent to that Q′′(qi) > 0 for all zero point qi (1 ≤ i ≤ n).

(2) Let Pa(u) = a(u2 − 1)2 and Qa(u) = m2

4
u2 + Pa(u).

Let a > m2

8
, xa =

√
1 − m2

8a
, g ≡ 1.

Then P (u) = Pa(u) − Qa(xa) satisfies the assumption of the main theorem and N =
{±xa}. When g is a non-constant function, then we can prove that U has two minimizers
{±ha} and satisfies the assumptions in main theorem for sufficiently large a. In this case,
hi is not a constant function.

Lemma 5.4. Let v be a C2-function on R with v(x) = v(x + l) for all x. Assume
inf �(m2 −∆ + 4v) > 0 and set Ãv = (m2 −∆ + 4v)1/4. Let Qv(w) =

∫
I

: w(x)2 : g(x)dx.
(1) It holds that inf �(−L + Qv) > −∞ and inf �(−L + Qv) is an eigenvalue with multi-
plicity 1.
(2) Let Mv be the multiplication operator by v in L2(I, dx). Then

inf �(−L + Qv) =
1

2
tr
(
Ã2

v − Ã2 − 2Ã�1MvÃ
�1
)

= −1

4
‖
(
Ã2

v − Ã2
)

Ã�1‖2
L(2)(H

0).

tr denotes the trace in H0 = L2(I, dx).
(3) Let Ωv be the ground state function of −L + Qv. Ωv(w)2dµ is the Gaussian measure
whose covariance operator is (m2 − ∆ + 4v)�1/2 on L2(I, dx).

Our main theorem is as follows.
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Theorem 5.5. Assume that (A1) and (A2) hold. Let E0(λ) = inf �(−L + Vλ). Then

lim
λ→∞

E0(λ) = min
1≤i≤n

Ei, (5.1)

where Ei is the lowest eigenvalue of −L + Qvi
(w), where Qvi

(w) =
∫

I
: w(x)2 : vi(x)dx

and vi(x) = 1
2
P ′′(hi(x))g(x).

Remark 5.6. (1) The expression

inf �(−L + Qv) = −1

4
‖
(
Ã2

v − Ã2
)

Ã�1‖2
L(2)(H

0).

can be found in the case of spatially cut-off P (�)2 Hamiltonians in e.g. [21, 10].
(2) Since

∫
W

Qv(w)dµ(w) = 0, it is trivial that inf �(−L + Qv) ≤ 0.
(3). Let Ev = inf �(−L + Qv). Then −L + Qv − Ev is unitarily equivalent to the second
quantization operator dΓ(

√
m2 − ∆ + 4v).

(4) We use the following result to prove the trace class property of the operator in the
lemma:

Let K(x, y) (x, y ∈ I) be a Hilbert-Schmidt kernel on L2(I, dx). Assume that for
almost all y, x → K(x, y) is absolutely continuous function and ∂xK(·, ·) ∈ L2(I×I, dxdy).
Define Tf(x) =

∫
I
K(x, y)f(y)dy. Then T is a trace class operator on L2(I, dx).

6 Proof

The proof of the inequality LHS ≤ RHS in (5.1) is easy.
Let Ωi(w) be the ground state of −L + Qvi

and set

Ω̃i(w) = Ωi(w −
√

λhi) exp

(√
λ

2
(hi, w)H − λ

4
‖hi‖2

H

)
.

Then (
(−L + Vλ)Ω̃i, Ω̃i

)
= Ei + O(

1

λ
),

which proves the estimate.

Next we consider the converse inequality. Let � ∈ C∞(R) be a non-negative function
such that {� = 1} = [−1, 1], {� = 0} = (−∞,−2] ∪ [2,∞) and 0 ≤ � ≤ 1. Let ε > 0

and set �i(w) = �

(
‖(w�

√
λhi)‖2

W

ε2λ

)
, (1 ≤ i ≤ n). �∞(w) =

√
1 −

∑n
i=1 �i(w)2. Let

f�(w) = f(w)��(w), where ∗ = i,∞ (1 ≤ i ≤ n). Then

((−L + Vλ)f, f) =
∑

{�=1,...,n,∞}

((−L + Vλ)f�, f�)

−
∑

{�=1,...,n,∞}

∫
W

‖AD��‖2
Hf(w)2dµ(w). (6.1)
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Simple calculation shows that there exists a positive constant C such that ‖AD��(w)‖2
H ≤

C
ε2λ

µ-a.s. w for all ∗. It is sufficient to prove that there exists C1 > 0 and C2 ∈ R,

lim inf
λ→∞

((−L + Vλ)fi, fi) ≥ Ei‖fi‖2
L2(µ) for all i, (6.2)

lim inf
λ→∞

((−L + Vλ)f∞, f∞) ≥ (C1λ + C2)‖f∞‖2
L2(µ), (6.3)

since
∑

�=1,...,n,∞ ‖f�‖2
L2(µ) = 1.

(6.2) is the estimate near hi. In finite dimensional cases, this is easy to prove by using
the Taylor expansion of the potential function at hi because the remainder term of the
expansion is of small order. However this does not hold in the present case because the
remainder term Rλ,i in (6.12) is not a continuous function of w. Moreover, in finite dimen-
sional case, the estimate (6.3) is proved by using the assumption (H3) in Theorem 4.1.
However we cannot use such an estimate in the present case. Instead, we use GNS bound
and large deviation estimates.

6.1 Sketch of the proof of (6.3)

We use

(i) A lower bound estimate for U outside N = {U = 0},

(ii) Large deviation estimates for Wiener chaos ([5, 18, 19, 2]),

(iii) GNS bound.

We have the following lower bound estimate. When all hi ∈ N are constant functions,
we do not need this lower bound. In fact, the rough lower bound ‖Ah‖2

H ≥ m‖h‖2
H is

sufficient for the following argument. However, minimizers of U are not constant functions
in the case of spatially cut-off P (�)2-Hamiltonian and the following type lower bound
estimate is necessary.

Lemma 6.1. Let PN be the projection onto the linear span of {ek}N
k=�N on H. We define

a trace class operator TN = PN

(
A√
m
− IH

)
.

(1) For any h ∈ D(A) and N ∈ N,

‖Ah‖2
H ≥ m‖(IH + TN)h‖2

H .

(2) For any ε > 0, there exists �(ε) > 0 and N0 ∈ N such that for all N ≥ N0,

inf
{m

4
‖(IH + TN)h‖2

H + V (h)
∣∣∣ h ∈ (∪n

i=1Bε(hi))
c ∩ H

}
≥ �(ε). (6.4)

Using GNS estimate, we can prove
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Lemma 6.2. Let Ṽ be a bounded measurable function and T be a trace class self-adjoint
operator on H with inf �(IH + T ) > 0. Then

m

∫
W

‖(IH + T )Df(w)‖2
Hdµ +

∫
W

Ṽ (w)f(w)2dµ

≥ −m

2
log I + C(m,T )‖f‖2

L2(µ), (6.5)

where I =
∫

W
exp

(
− 2

m
Ṽ (w) − (Tw,w)H − 1

2
‖Tw‖2

H

)
dµ(w) and C(m,T ) is a constant.

The proof of the following theorem can be found in [2].

Theorem 6.3 (Large deviation for Wiener chaos). Let � be a non-negative bounded con-
tinuous function on W . For w ∈ W , set

Fλ(w) = �

(
w√
λ

)
: V

(
w√
λ

)
:,

and F (h) = �(h)V (h) for h ∈ H. The image measure of µ by the measurable map Fλ

satisfies the large deviation principle with the good rate function:

IF (x) =

{
inf
{

1
2
‖h‖2

H

∣∣∣ ∃h ∈ H such that F (h) = x
}

,

+∞ @h ∈ H such that F (h) = x.

Proof of (6.3). Let � be the function which was defined before.

Let �̄i(w) = �
(

3‖w�
√

λhi‖2
W

ε2λ

)
and �̄∞(w) =

√
1 −

∑n
i=1 �̄i(w)2. �̄∞ satisfies that �̄∞(w) =

1 for w with �∞(w) 6= 0 and

{w ∈ W | �̄∞(w) 6= 0} ⊂
(
∪n

i=1Bε
√

λ
3

(√
λhi

))c

.

Let ε′ < ε√
3
. For this ε′, we choose a natural number N0 as in Lemma 6.1 and define a

trace class operator T =
(

A√
m
− IH

)
PN0 . We have

((−L + Vλ)f∞, f∞)

≥ m

∫
W

‖(IH + T )Df∞(w)‖2
Hdµ(w) +

∫
W

(
Vλ(w) − 1

2
λ�(ε′)

)
�̄∞(w)f∞(w)2dµ(w)

+

∫
W

1

2
λ�(ε′)�̄∞(w)f∞(w)2dµ(w). (6.6)

Note that ∫
W

1

2
λ�(ε′)�̄∞(w)f∞(w)2dµ(w) =

1

2
λ�(ε′)‖f∞‖2

L2(µ).
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Let Ṽλ(w) =
(
Vλ(w) − 1

2
λ�(ε′)

)
�̄∞(w). Applying Lemma 6.2,

J2(λ) = m

∫
W

‖(IH + T )Df∞(w)‖2
Hdµ(w) +

∫
W

Ṽλ(w)f∞(w)2dµ(w)

≥ −m

2
log

{∫
W

exp

(
− 2

m
Ṽλ(w) − (Tw, w)H − 1

2
‖Tw‖2

H

)
dµ(w)

}
‖f∞‖2

L2(µ)

+C(m,T )‖f∞‖2
L2(µ). (6.7)

Let

�̂∞(h) =

√√√√1 −
n∑

i=1

� (3ε�2‖h − hi‖2
W ). (6.8)

If �̂∞(h) 6= 0, h ∈
(
∪n

i=1Bε′/
√

3(hi)
)c

∩ H holds. Hence for all h ∈ H

1

2
‖(I + T )h‖2

H +
2

m

(
V (h) − 1

2
�(ε′)

)
�̂∞(h)

=
1

2
‖(I + T )h‖2

H(1 − �̂∞(h)) +

(
1

2
‖(I + T )h‖2

H +
2

m

(
V (h) − 1

2
�(ε′)

))
�̂∞(h)

≥
(

1

2
‖(I + T )h‖2

H +
2

m

(
V (h) − 1

2
�(ε′)

))
�̂∞(h) ≥ 0. (6.9)

Using the large deviation estimate, for large λ, we have for any ε′′ > 0,

J2(λ) ≥ (−ε′′λ + Cm)‖f∞‖2
L2(µ)

which proves (6.3).

6.2 Proof of (6.2)

We use

(i) Taylor expansion of Wick polynomials

(ii) Ground state transformation

(iii) Laplace method for Wick polynomials

It holds that

Vλ

(
w +

√
λhi

)
= λ

∫
I

P (hi(x))dx +
√

λ

∫
I

P ′(hi(x))w(x)g(x)dx +

∫
I

: w(x)2 : vi(x)dx

+
2N∑
k=3

λ1� k
2

∫
I

: w(x)k :
P (k)(hi(x))

k!
g(x)dx. (6.10)
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Set f̄i(w) = fi(w +
√

λhi) exp
(
−

√
λ

2
(hi, w)H − λ

4
‖hi‖2

H

)
.

By using the assumption that U(hi) = 0 and DU(hi) = 0, we have

((−L + Vλ)fi, fi) =

∫
W

‖ADf̄i(w)‖2dµ +

∫
W

Qvi
(w)f̄i(w)2dµ

+

∫
W

Rλ,i(w)f̄i(w)2dµ, (6.11)

where

Rλ,i(w) =
2N∑
k=3

λ1� k
2

∫
I

: w(x)k : gk,i(x)dx (6.12)

and gk,i(x) = P (k)(hi(x))
k!

g(x).
In order to get a lower bound estimate, we use the following lemmas. The lemma

below is also proved by using GNS bound.

Lemma 6.4. Let Ṽ be a bounded measurable function on W . Let v be a C2 function on
R with period l. We assume that m2 −∆ + 4v is a strictly positive operator on L2(I, dx).
Let cv = inf �

(√
m2 − ∆ + 4v

)
and Ev = inf �(−L + Qv). Then it holds that for any

f ∈ FC∞, (
(−L + Qv + Ṽ − Ev)f, f

)
L2(µ)

≥ −cv

2
log

(∫
W

exp

(
− 2

cv

Ṽ (w)

)
Ωv(w)2dµ(w)

)
‖f‖2

L2(µ).

Lemma 6.5 (Laplace asymptotics). Let � be a smooth non-negative function such that

{� = 1} = [−1, 1] and {� = 0} = (−∞,−2] ∪ [2,∞). Set ρλ,ε(w) = �
(

‖w‖2
W

λε

)
. Let

fk(x) (3 ≤ k ≤ 2M) be continuous functions on I such that infx f2M(x) > 0. Let

ϕλ(w) =
2M∑
k=3

∫
I

:

(
w(x)√

λ

)k

: fk(x)dx. (6.13)

Then for sufficiently small ε, we have

lim
λ→∞

∫
W

e�λϕλ(w)ρλ,ε(w)dµ(w) = 1. (6.14)

Remark 6.6. Let ϕ(h) =
∑2M

k=3 h(x)kfk(x)dx and G(h) = 1
2
‖h‖2

H +ϕ(h) for h ∈ H. Then
h = 0 is a zero point of G and is a local minimizer of G. Hence, (6.14) is nothing but the
Laplace asymptotic formula. The reader may think that the above asymptotics is trivial
since

lim
λ→∞

λϕλ(w) = 0. µ − a.s.

However, if we do not put the cut-off function ρλ,ε on the exponent, the limit may be not
1 if G has other zero points.
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model on a pseudo Riemannian manifold
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Abstract

The Nelson model describing a quantum particle interacting through a quantized scalar
Bose field on the Minkowski spacetime is extended to one on a class of pseudo Riemannian
spacetimes. In this note, we announce several results [3, 4] concerning the existence and
absence of the ground state for such a model without infrared cutoff.

1 Introduction

We consider a confined quantum particle interacting through a scalar Bose field whose
Hamiltonian is given by

H = K ⊗ I + I ⊗ dΓ(ω) + φ(ω−1/2ρX). (1.1)

The particle, whose position is denoted by X, is described by a Schrödinger operator

K = −1

2

∑

1≤j,k≤3

∂

∂Xj

Ajk(X)
∂

∂Xk

+ V (X), acting in K = L2(R3; dX)

with a confining potential V : R3 → R such that K has a compact resolvent. Let

h = − 1

c(x)

∑

1≤j,k≤3

∂

∂xj

ajk(x)
∂

∂xk

1

c(x)
+ m2(x) (1.2)

with a positive function m2(x). The one-boson energy is given by

ω = h1/2, acting in h = L2(R3; dx).

The second quantization dΓ(ω) of ω acting in the boson Fock space Γ(h) over h is the free
Hamiltonian of the Bose field. The Segal field operator φ(f) (f ∈ h) is given by φ(f) =
(a(f) + a∗(f))/

√
2, where the annihilation and creation operators a(f) and a∗(f) satisfy

the canonical commutation relations (CCR): [a(f), a∗(g)] = 〈f, g〉h and [a](f), a](g)] = 0
(a] = a or a∗). The charge distribution ρ : R3 → [0,∞) is assumed to be an infinitely
differentiable function with compact support and the constant

g :=

∫
ρ(x)dx ≥ 0

is called the charge which describes the strength of the interaction. We set ρX(x) =
ρ(x−X). Then ρ introduces an ultraviolet cutoff and satisfies

sup
X∈R3

‖(ω−1/2 + ω−1)ρX‖h < ∞, (1.3)
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which yields that H is a (well-defined) bounded below self-adjoint operator.
The bottom of the spectrum of the one-boson energy

mb := inf σ(ω) ≥ 0

is viewed as the (rest) mass of the boson. The Hamiltonian H is called massless (resp.
massive) if mb = 0 (resp. mb > 0). We say that H is infrared divergent (resp. infrared
convergent) if H has no ground state (resp. if H has a ground state). As is well known,
the massive Hamiltonian H is infrared convergent since the strictly positive mass mb > 0
plays the role of an infrared cutoff. The infrared behavior is of interest only for massless
case mb = 0.

1.1 Massless Nelson model on Minkowski spacetime

When Ajk(X) = 1, ajk(x) = 1, c(x) = 1 and m(x) ≡ 0, then mb = 0 and H becomes the
Hamiltonian of the so called massless Nelson model describing a quantum particle coupled
to a massless scalar Bose field on Minkowski spacetime. Let F be the Fourier transform
and ρ̂(k) = (Fρ)(k). Then w := FωF−1 is the multiplication operator by w(k) = |k|,
which is the dispersion relation of the boson. We observe that H is unitarily transfomed
by the second quantization Γ(F ) of F into

HNelson = (−∆X + V (X))⊗ I + I ⊗ dΓ(w) + φ
(
ψ0(·, X)w−1/2ρ̂

)
,

where ψ0(k, X) = eik·X is the plane wave. By assumption, we observe that
∫

dk(w(k)−1 + w(k)−2)|ρ̂(k)|2 < ∞,

which implies (1.3) and yields that the Hamiltonian HNelson is a (well-defined) bounded
below self-adjoint operator. Lőrinczi, Minlos and Spohn [5] study the infrared behavior of
HNelson and show that HNelson is infrared divergent if the charge g = (2π)3/2ρ̂(0) is strictly
positive. Note that, if g > 0, then ρX 6∈ D(w−3/2) and

∫
dk
|ρ̂(k)|2
w(k)3

= ∞. (1.4)

As was shown in [1], if the left hand side of (1.4) is finite, then HNelson is infrared conver-
gent. But this is not the case if ρ ≥ 0 and g > 0.

1.2 Nelson model on a static spacetime

Let gµν(t, x) be a pseudo Riemannian metric on R1+3 and set |g| := |det[gµν ]| and [gµν ]
−1 =

[gµν ]. We consider the Klein-Gordon equation:

(¤g + m̃2(t, x))φ(x) = 0,

where
¤g = |g|−1/2∂µ|g|1/2gµν∂ν

and
m̃2(t, x) = m2

0 + θR(t, x)
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with a constant θ, the mass m0 ≥ 0 and the scalar curvature R. In this note, we always
assume that m̃2(x) is a positive function. If m ≡ 0 and θ = 1/6, then one obtains the
so-called conformal wave equation. We say that the metric gµν is static if the line element
is of the form

gµν(t, x)dxµdxν = λ(x)dt2 − λ(x)−1γjk(x)dxjdxk,

where λ(x) > 0 is a smooth function independent of t and γjk(x) is a Riemannian metric
on R3. If gµν is static, then m̃(t, x) = m̃(x) is independent of t and φ̃ = λ−1|γ|1/4φ satisfies

∂2
t φ̃ + hgφ̃ = 0,

where
hg = −λ|γ|−1/4∂j|γ|1/2γjk∂k|γ|−1/4λφ̃ + m̃2λ

with |γ| = | det[γjk]| and [γjk] = [γjk]
−1. hg is a typical example of h defined by (1.2)

setting c = λ−1|γ|1/4, ajk = |γ|1/2γjk and m2 = λm̃2. Thus the Nelson model on the
Minkowski spacetime is naturally extended to one on the static spacetime, which is a
typical example of the abstract Hamiltonian H defined by (1.1).

1.3 Infrared behavior

We are interested in the infrared behavior of the abstract Hamiltonian H and concentrate
on the massless case. To this end, we always assume that

lim
|x|→∞

m(x) = 0. (1.5)

As is shown in Lemma 2.2, we know that our Hamiltonian H is massless, i.e., mb = 0,
under some reasonable conditions for ajk, c and m. The main result is the infrared behavior
depends on the decay rate of the function m(x). Indeed, we show in Theorem 3.5 that H
is infrared convergent if the function m(x) satisfies

m(x) ≥ a〈x〉−1 for some a > 0.

This result is sharp with respect to the decay rate of m(x) since we show in Theorem 3.4
H is infrared divergent if m(x) satisfies

0 ≤ m(x) ≤ a〈x〉−1−ε for some a > 0 and ε > 0.

2 Definition of the Hamiltonian H

2.1 Particle Hamiltonian

For the particle Hamiltonian, we assume the following:

(K1) Ajk(X) ∈ W 1,∞(R3) satisfies

A01 ≤ [Ajk(X)] ≤ A11, X ∈ R3

with some constants A0, A1 > 0.
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Let K0 be the self-adjoint operator associated with

E0(f, g) =
1

2

∑

1≤j,k≤3

∫
dXAjk(X)

∂f̄

∂Xj

∂g

∂Xk

, f, g ∈ H1(R3).

It follows from (K1) that K0 is self-adjoint on H2(R3). We further require the following:

(K2) The potential function V ∈ L1
loc(R3) satisfies

V (X) ≥ C0|X|2q − C1, X ∈ R3

with some constants C0 > 0, C1 ≥ 0 and q > 0.

The following is standard:

Lemma 2.1. Suppose that (K1) and (K2) hold. Then:

(i) K := K0+̇V is a self-adjoint operator associated with the closure of

E(f, g) = E0(f, g) + (Ṽ 1/2f, Ṽ 1/2g) + V0(f, g),

where 0 ≤ Ṽ (x) := V (x)− V0 ∈ L1
loc(R3) and V0 := infx V (x) ≥ −C1.

(ii) K has a compact resolvent.

(iii) |X|q(K + b)−1/2 is bounded for b > C1.

2.2 One-boson Hamiltonian

For the one-boson Hamiltonian, we assume that ajk, c and m are real function safisfying:

(b1) aj,k ∈ W 1,∞(R3) satisfies

a01 ≤ [ajk(x)] ≤ a11, x ∈ R3

with some constants a0, a1 > 0.
(b2) 0 ≤ m ∈ L∞(R3) and

lim
x→∞

m(x) = 0. (2.1)

(b3) c ∈ W 2,∞(R3) satisfies
c0 ≤ c(x) ≤ c1, x ∈ R3

with some constants c0, c1 > 0.

Let

h0 := − 1

c(x)

∑

1≤j,k≤3

∂

∂xj

ajk(x)
∂

∂xk

1

c(x)
.

Then h0 is self-adjoint on H2(R3). For an operator A on h, the integral kernel is denoted
by A(x, y) (if it exists): (Af)(x) =

∫
dyA(x, y)f(y).

Lemma 2.2. Assume (b1)-(b3). Then:

(i) h := h0 + m2 is self-adjoint on H2(R3).
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(ii) mb = 0 and ker h = {0}.
(iii) For any t ≥ 0 and x, y ∈ R3,

0 ≤ (e−th)(x, y) ≤ C(ect∆)(x, y),

where

(eT∆)(x, y) := (4πT )−3/2exp

[−|x− y|2
4T

]

is the three dimensional Gaussian heat kernel.

2.3 Total Hamiltonian

Let
H = H0 + φ(ω−3/2ρX),

where
H0 = K ⊗ I + I ⊗ dΓ(ω).

The following holds:

Proposition 2.3. Suppose that (K1) - (K2) and (b1) - (b3) hold. Then H is a (well-
defined) bounded below self-adjoint operator on D(H0).

Proof. Note that, for j = 1, 2 · · · and νj := (j − 4)/4,

ω−j/2 = γj

∫ ∞

0

dte−thtνj (2.2)

with some γj > 0. By (iii) of Lemma 2.2 and (2.2), we obtain:

sup
X
‖ω−j/2ρX‖ ≤ C‖w−j/2ρ̂‖ < ∞, j = 1, 2,

which yields φ(ω−1/2ρX) is well-defined and infinitesimally small w.r.t. H0. Hence the
proposition follows from the Kato-Rellich Theorem.

3 Ground state of H

3.1 Gaussian heat kernel bounds

As was shown in (iii) of Lemma 2.2, due to the positivity of m2(x), the integral kernel
(e−th)(x, y) of the semigroup generated by h = h0 + m2 is bounded by the Gaussian heat
kernel, from which one obtains the bound for ‖ω−j/2ρX‖ for j = 1, 2. This is, however,
not the case for j = 3 since ‖w−3/2ρ̂‖ diverges (see (1.4)). To estimate ‖ω−3/2ρX‖, we
improve the bound on (e−th)(x, y) assuming the following decay conditions for m(x). We
set 〈x〉 =

√
1 + |x|2.

(QD) m ∈ L∞(R3) satisfies
0 ≤ m(x) ≤ a〈x〉−1−ε.

with some a > 0 and ε > 0.
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(SD) m ∈ L∞(R3) and
v(x) ≥ a〈x〉−1

with some a > 0.

Indeed, the following holds:

Proposition 3.1. Assume (b1) - (b2). Then:

(i) Suppose that (QD) holds. Then

(e−th)(x, y) ≥ D1(e
δ1t∆)(x, y)

with some D1, δ1 > 0.

(ii) Suppose that (SD) holds and that:

∑

jk

|∇ajk(x)| ≤ C〈x〉−1 (3.1)

with some C > 0. Then

(e−th)(x, y) ≤ D2Φα(x, t)Φα(y, t)(eδ2t∆)(x, y)

with some D2, δ2 > 0. Here the function Φα is given by

Φα(x, t) =

[ 〈x〉2
t + 〈x〉2

]α

with some α > 0.

Proof. See [4] for (i) and [3] for (ii).

Remark 3.2. If c(x) ≡ 1, then Proposition 3.1 is due to Semenov [6] and Zhang [7].

Using the proposition above and the Laplace transform (2.2) we obtain the following,
which exhibits the main difference between (QD) and (SD):

Proposition 3.3. Let ρ ≥ 0 belong to C∞
0 (R3).

(i) Suppose that (QD) holds. Then

ρX 6∈ D(ω−3/2).

(ii) Suppose that (SD) holds. Then ρX ∈ D(ω−3/2) and

‖ω−3/2ρX‖2
h ≤ C〈X〉µ,

for any µ > 3/2 with some C ≥ 0 depending only on µ.
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3.2 Absence of ground state

In the paper [4], we show the absence of ground state employing the functional integral
methods and requiring the following:

(K3) Ajk(x) belongs to C1(R3) (j, k = 1, 2, 3) and the vector-valued function
b(x) := (b1(x), b2(x), b3(x)) with bj(x) := 1

2

∑3
j=1 ∂jAjk(x) and the matrix-valued

function σ(x) := A(x)1/2 obey the Lipschitz condition:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|
for arbitrary x, y ∈ R3 with some constant D, where for a matrix σ, we denote

|σ| =
√ ∑

1≤j,k≤3

|σjk|2.

In this subsection, we assume that (K1) - (K3) hold. Then there is a unique solution
(Xx

t )t≥0 to the stochastic differential equation:

dXx
t = σ(Xx

t ) · dBt + b(Xx
t )dt,

where (Bt)t≥0 is the three dimensional Brownian motion. Furthermore we have the
Feynman-Kac type formula:

(e−tKf)(x) = EW
[
e−

R t
0 V (Xx

s )dsf(Xx
t )

]
,

where W denotes the Wiener measure. Using the above equation, one can show that K
has a unique strictly positive ground state ϕ which decays as

0 < ϕ(x) ≤ Ce−c|x|q+1

. (3.2)

We define a unitary transformation U from h to the probability space L2(R3; ϕ(x)2dx) by

U : f 7−→ ϕ−1f.

One can also construct a stochastic process (Xt)t∈R associated with the generator

U(K − inf σ(K))U−1.

Then, by a similar argument as in [5] where the Nelson model on the Minkowski spacetime
is considered, one can show that H has no ground state if

lim
T→+∞

EµT

[
exp

[
−1

2

∫ 0

−T

ds

∫ T

0

dtW (Xt, Xs, |t− s|)
]]

= 0, (3.3)

where µT is a probability measure and W is a double potential given by

W (x, y, t) =
1

2

(
ρx, ω

−1e−tωρy

)
h
.

It follows from the Gaussian heat kernel bounds (iii) of Lemma 2.2 and (i) of Propositon
3.1 that:

d1W∞(x, y, d2t) ≤ W (x, y, t) ≤ d3W∞(x, y, d4t) (3.4)
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with some d1, d2, d3 and d4 > 0. Here

W∞(x, y, t) =
1

2

(
ρ̂x, w

−1e−twρ̂y

)
h

is the double potential for the Nelson model on the Minkowski spacetime that is infrared
divergent. The estimates (3.2) and (3.4) yield the equation (3.3) by making use of a
modification of [5] (see also [2]). Thus we obtain:

Theorem 3.4. Suppose that (K1) - (K3), (b1) - (b3) and (QD) hold. Then H has no
ground state.

3.3 Existence of ground state

In this subsection, we assume that (K1), (K2) and (b1) - (b3) hold. In order to show
the existence of ground state, we introduce massive Hamiltonians Hµ by replacing ω in
(1.1) with ωµ := (h + µ)1/2. Then, by a standard argument, one can show that Hµ has
a normalized ground state Ψµ. Since the unit ball in a Hilbert space is compact for the
weak topology, there exist a sequence µj → 0 (j → ∞) and a vector Ψ0 such that Ψµj

tends weakly to Ψ0. To prove that H has a ground state, it suffices to show that Ψ0 6= 0,
which comes from the so-called boson number bound:

sup
µ
〈Ψµ, NΨµ〉 < ∞.

Indeed, the left hand side above is controlled by (iii) of Lemma 2.1 and (ii) of Proposition
3.3 if (K2) is satisfied with q > 3/2. Thus we have:

Theorem 3.5. Suppose that (K1) and (b1) - (b3) hold. Assume in addition that (3.1),
(SD) and (K2) with q > 3/2. Then H has a ground state.
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Abstract

The relativistic Pauli-Fierz model is discussed. The Feynman-Kac
type formula with cádlág path is shown and its applications are given.

In Sections 1 and 2 we review the results on the Pauli-Fierz model
and in Section 3 we are concerned with the relativistic Pauli-Fierz model.

1 The Pauli-Fierz model

1.1 Definition

We begin with reviewing results on the Pauli-Fierz model. The Pauli-Fierz

model describes the minimal interaction between electrons and a quantized

radiation field, but electrons are assumed to be low energy and to be governed

by a Schrödinger equation.

Let L2(R3) ⊗ F be the total Hilbert space describing the joint electron-

photon state vectors. Here F = F(H), H = L2(R3×{±}), denotes the Boson

Fock space over the one-photon Hilbert space H. The elements of the set

{±} account for the fact that a photon is a transversal wave perpendicular

to the direction of its propagation, thus it has two components. The Fock

vacuum in F is denoted by Ω. Let a(f) and a∗(f), f ∈ H, be the annihilation

operator and the creation operator, respectively. We also use the identification:

H ∼= L2(R3) ⊕ L2(R3) and set a](f,+) = a](f ⊕ 0) and a](f,−) = a](0 ⊕ f)

for f ∈ L2(R3). The annihilation operator and the creation operator satisfy

the canonical commutation relations:

[a(f, i), a∗(g, j)] = δij(f̄ , g), [a](f, i), a](g, j)] = 0.
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Let T be a contraction operator on H. Then

Γ(T ) =

∞⊕
n=0

T ⊗ · · · ⊗ T︸ ︷︷ ︸
n

is also contraction on F . The second quantization of a self-adjoint operator h

on H is defined by

dΓ(h) =

∞⊕
n=0

n∑
j=1

1l⊗ · · ·
j

h · · · ⊗ 1l︸ ︷︷ ︸
n

.

The quantized radiation field with a given cutoff function ϕ̂ is defined by

Aµ(x) =
1√
2

∑
j=±

∫
dk

ejµ(k)√
ω(k)

(
a∗(k, j)ϕ̂(−k)e−ik·x + a(k, j)ϕ̂(k)eik·x

)
(1.1)

for x ∈ R3, where ω(k) = |k|. The vectors e+(k) and e−(k) are polarization

vectors.

The Hamiltonian of one electron is given by the Schrödinger operators with

external potential V : −1
2∆ +V , where we assume that the mass of electron is

one. On the other hand the free Hamiltonian of the field is defined by dΓ(ω).

Then the decoupled Hamiltonian is

(−1

2
∆ + V )⊗ 1l + 1l⊗ dΓ(ω).

Let D = −i∇x. The Pauli-Fierz Hamiltonian is defined by the minimal cou-

pling of the decoupled Hamiltonian with the quantized radiation field:

H =
1

2
(D⊗ 1l− eA)2 + V ⊗ 1l + 1l⊗ dΓ(ω). (1.2)

Here e denotes the coupling constant. Throughout we use the following

assumptions (1) ϕ̂(−k) = ϕ̂(k), (2)
√
ωϕ̂, ϕ̂/ω ∈ L2(R3), (3) there exists

0 ≤ a < 1 and 0 ≤ b such that

‖V f‖ ≤ a‖ − 1

2
∆f‖+ b‖f‖

for f ∈ D(−1
2∆). We put DPF = D

(
−1

2∆⊗ 1l
)
∩ D(1l ⊗ dΓ(ω)). Then H is

self-adjoint on DPF and essentially self-adjoint on any core of the decoupled

Hamiltonian.

Remark 1.1 We notice that Pauli-Fierz Hamiltonians with different polariza-

tion vectors are isomorphic with each other. Then we fix polarization vectors

throughout.
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1.2 Function space

We introduce a function space (Q, µ) associated with the quantized radiation

field and reformulate the Pauli-Fierz Hamiltonian on L2(R3) ⊗ L2(Q, dµ) in-

stead of L2(R3) ⊗ F . In order to have a functional integral representation of

(F, e−tHG), F,G ∈ L2(R3)⊗F , we construct probability spaces (Qβ,Σβ, µβ),

β = 0, 1, and the Gaussian random variables Aβ(f) indexed by f = (f1, f2, f3) ∈
⊕3L2

R(R3+β) of mean zero and covariance given by

qβ(f ,g) =

{
1
2(f̂ , δ⊥ĝ)L2(R3), β = 0,
1
2(f̂ , 1l⊗ δ⊥ĝ)L2(R4), β = 1.

Note that transversal delta function δ⊥(k) = (δµν−kµkν/|k|2)1≤µ,ν≤1 depends

only on k ∈ R3. In what follows we denote

(Minkowskian) A = A0, Q = Q0,
(Euclidean) AE = A1, QE = Q1

(1.3)

using the subscript E for Euclidean objects. Let A (x) = A (⊕3ϕ̃(·−x)), where

ϕ̃ is the inverse Fourier transformation of ϕ̂/
√
ω. The Pauli-Fierz Hamiltonian

in function space is defined by

H =
1

2
(D⊗ 1l− eA (x))2 + V ⊗ 1l + 1l⊗ dΓ(ω(D)). (1.4)

Let jt : L2(R3)→ L2(R4), t ∈ R, be the family of isometries such that j∗t js =

e−|t−s|ω(D) and we define Jt : L2(Q) → L2(QE) by Jt = Γ(jt), and J∗tJs =

e−|t−s|dΓ(D) follows.

Let (Bt)t≥0 denote the three dimensional Brownian motion on the prob-

ability space (X , B(X ),W x), where X = C([0,∞);R3) endowed with the

locally uniform topology, B(X ) is the Borel σ-field on X , and W x the Wiener

measure. Write Ex[· · · ] =
∫
X · · · dW

x.

Theorem 1.2 Let F,G ∈ L2(R3)⊗ L2(QE). Then

(F, e−tHG) =

∫
dxEx

[
e−

∫ t
0 V (Bs)ds

(
J0F (B0), e−ieAE(Kt)JtG(Bt)

)
L2(QE)

]
.

(1.5)

Here Kt =
⊕3

µ=1

∫ t
0 jsϕ̃(· − Bs)dBµ

s denotes the
⊕3 L2(R4)-valued stochastic

integral.

From this functional integral representation a lot of properties of ground state

of H can be derived in the non-perturbative way.
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1.3 Translation invariant Pauli-Fierz model

We consider the translation invariant Pauli-Fierz Hamiltonian. This is ob-

tained by setting the external potential V identically zero. Put Pfµ = dΓ(kµ),

which describes the field momentum. The total momentum operator P on

L2(R3)⊗F is defined by

Pµ = Dµ ⊗ 1l + 1l⊗ Pfµ, µ = 1, 2, 3. (1.6)

We can see that [H,Pµ] = 0. This leads us to decompose H on the spectrum

of the total momentum operator P. The Pauli-Fierz Hamiltonian with a fixed

total momentum H(p) is defined by

H(p) =
1

2
(p− Pf − eA(0))2 + dΓ(ω), p ∈ R3, (1.7)

with domain D(H(p)) = D(dΓ(ω)) ∩ D(P2
f ). Here p ∈ R3 is called the total

momentum. Define the unitary operator T : L2(R3
x)⊗F → L2(R3

p)⊗F by

(T Ψ)(p) =
1√

(2π)3

∫
R3

e−ix·peix·PfΨ(x)dx.

Then H(p) is a nonnegative self-adjoint operator and

T

(∫ ⊕
R3

H(p)dp

)
T −1 = H (1.8)

holds. As in the previous section, we move to Schrödinger representation from

Fock representation to construct a functional integral representation. In that

picture H(p) becomes

H(p) =
1

2
(p− dΓ(D)− eA (0))2 + dΓ(ω(D)), p ∈ R3, (1.9)

on L2(Q). The functional integral representation of e−tH(p) can be also con-

structed as an application of that of e−tH .

Theorem 1.3 Let Ψ,Φ ∈ L2(Q). Then

(Ψ, e−tH(p)Φ) = E0

[
eip·Bt

(
J0Ψ, e−ieAE(Kt)Jte

−idΓ(ω(D))·BtΦ
)
L2(QE)

]
. (1.10)
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1.4 Effective mass

Let E(p) = inf Spec(H(p)). Introducing a cutoff function with infrared cutoff

κ > 0:

ϕ̂(k) =


0, |k| < κ,

(2π)−3/2 κ ≤ |k| ≤ Λ,
0, |k| > Λ,

we can see that E(p) is analytic in pµ for sufficiently small e. The effective

mass meff is defined by
1

meff
=

1

3
∆pE(p)

⌈
p=0

(1.11)

and we have expansion with respect to α = e2/4π:

meff = 1 +
8

3π

(∫ Λ

κ

1

r + 2
dr

)
α+ a2α

2 + · · · .

Then a1 ∼ log Λ. The conventional claim is an ∼ (log Λ)n but our model does

not satisfies this. In particular a2 ∼
√

Λ as Λ→∞ is shown in [HS05].

When the Hamiltonian includes spin 1/2, then

H(p) =
1

2
(p− Pf − eA(0))2 + dΓ(ω)− 1

2
σ ·B(0),

where σ = (σ1, σ2, σ3) is the 2× 2 Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and B(0) = ∇ × A(0) denotes the quantized magnetic field. In this case the

effective mass is also computed: meff = 1 + a1α+ a2α
2 + · · · , where

a1 =
8

3π

(∫ Λ

κ

1

r + 2
dr +

∫ Λ

κ

r2

(r + 2)3
dr

)
(1.12)

and the behavior of a2 is [HI05, HI07]

−C1 < lim
Λ→∞

a2/Λ
2 < C2.
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2 The dipole approximation

2.1 Symplectic structure

We first of all consider the perturbation of the annihilation operator and the

creation operator by c-number. Then CCR leaves invariant.

Let c(f) = a(f) + (g, f) and c∗(f) = a∗(f) + (ḡ, f). Then c(f) and c∗(f)

satisfy CCR and adjoint relation: c(f)∗ = c∗(f̄). Thus c(f) and c∗(f) satisfy

the same CCR and adjoint relation as those of a(f) and a∗(f). Moreover the

unitary operator U = e−a
∗(ḡ)+a(g) induces the unitary equivalence:

Ua](f)U−1 = c](f)

and also transforms the free Hamiltonian dΓ(ω) to

UdΓ(ω)U−1 = dΓ(ω) + a∗(ωḡ) + a(ωg) + (ωg, g).

This can be extended to more complicated transformation a(f) 7→ b(f) and

a∗(f) 7→ b∗(f) such that b(f) and b∗(f) satisfy the same CCR and adjoint

relation as those of a(f) and a∗(f).

Let B(H) denote the set of bounded operators on H. Let

J =

(
1l 0
0 −1l

)
,

where 1l denotes the identity operator onH. For S ∈ B(H) we define S̄f = Sf̄ .

Define

Sp∞ =

{
A =

(
S T̄
T S̄

)
∈ B(H)⊕B(H)

∣∣∣∣AJA∗ = A∗JA = J

}
.

Sp∞ is called the infinite dimensional symplectic group. Let A =

(
S T̄
T S̄

)
∈

Sp∞ and we set

b(f) = a(Sf) + a(Tf),

b∗(f) = a∗(S̄f) + a(T̄ f).

Since A ∈ Sp∞, {b(f), b∗(g)} satisfies CCR and b(f)∗ = b∗(f̄). We furthermore

define the subgroup of Sp∞ by

Σ2 =

{
A =

(
S T̄
T S̄

)
∈ Sp∞

∣∣∣∣T is a Hilbert Schmidt class

}
.
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It is known ([Ber66, HI03]) that there exists a projective unitary representa-

tion1 U : Σ2 7→ {unitary on F} such that2

U(A)a](f)U(A)−1 = b](f) (2.1)

for all f ∈ H. Conversely if a unitary operator U satisfies (2.1), then A ∈ Σ2.

Using this fact, one can diagonalize quadratic Hamiltonians as

U
(
dΓ(ω) + (a∗(f̄) + a(f))2

)
U−1 = dΓ(ω) + C

with some constant C under some conditions. Furthermore we can see that

there exists a unitary operator Up such that

Up

(
dΓ(ω) + (p+ a∗(f̄) + a(f))2

)
U −1
p = dΓ(ω) + Cp,

where p ∈ R is a parameter. See [Ara90].

2.2 Dipole approximation

Let us now consider the Pauli-Fierz Hamiltonian. We replace A(x) in H with

1l⊗A(0), and the mass of electron is assumed to be m. Then H turns to be

Hdip =
1

2m
(D⊗ 1l− e1l⊗A(0))2 + V ⊗ 1l + 1l⊗ dΓ(ω). (2.2)

This is called the dipole approximation. Let V = 0. In the dipole approxima-

tion the Hamiltonian without external potential is not translation invariant

but it commutes with the momentum operator of particle. Define Hdip(p) by

Hdip(p) =
1

2m
(p− eA(0))2 + dΓ(ω), p ∈ R3,

acting on F . Note that∫ ⊕
R3

Hdip(p)dp =
1

2m
(D⊗ 1l− e1l⊗A(0))2 + 1l⊗ dΓ(ω).

1U(A)U(B) = ω(A,B)U(AB) with some phase ω(A,B).
2U(A) is of the form

U(A) = det(1l−K∗1K1)1/4e−
1
2 〈a∗|K1|a∗〉 : e−

1
2 〈a∗|K2|a〉 : e−

1
2
〈a|K3|a〉,

where K1 = TS−1, K2 = 2(1l− (S−1)T ) and K3 = −S−1T̄ . See [HI07].
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Taking the dipole approximation makes the model drastically simpler. It is a

quadratic operator as mentioned in the previous section. For each p ∈ R3 it

can be indeed constructed the family of operators

{b∗(f, p), b(f, p), f ∈ H}

such that [Ara83]

(1) b∗(f, p) and b(g, p) satisfy CCR;

(2) b(g, p)∗ = b∗(ḡ, p);

(3) [Hdip(p), b(f, p)] = −b(ωf, p) and [Hdip(p), b∗(f, p)] = b∗(ωf, p).

We can also see that there exists a bounded operator S, a Hilbert-Schmidt

operator T and a function Lp such that

b(f, p) = a(Sf) + a∗(Tf) + (Lp, f),
b∗(f, p) = a(T̄ f) + a∗(S̄f) + (L̄p, f).

Then A =

(
S T̄
T S̄

)
∈ Σ2. There exists a unitary operator Sp = eiep·φ such

that

(1) φ is of the form

φ = i
∑
j=±

(a∗(F̄j , j)− a(Fj , j))

with some function Fj ,

(2) Up = SpU(A) satisfies that

Upa
](f)U−1

p = b](f), UpHdip(p)U−1
p = dΓ(ω) +

1

2meff
p2 + g,

(3) constants meff and g are given by

meff = m+
2

3
e2‖ϕ̂/ω‖2, g =

1

π

∫ ∞
−∞

e2t2‖ϕ̂/(t2 + ω2)‖2

m+ e2 2
3‖ϕ̂/

√
t2 + ω2‖2

dt. (2.3)

Let U = eieD⊗φ(1l⊗ U(A)). Then

UHdipU
−1 = − 1

2meff
∆⊗ 1l + 1l⊗ dΓ(ω) + g + V (· − eφ), (2.4)

8



In particular inf Spec(Hdip) = g follows when V = 0. Let us take a special

cutoff function

ϕ̂(k) =

{
(2π)−3/2 |k| ≤ Λ,
0, |k| > Λ.

Then g →∞ as Λ→∞. Indeed we can directly see that g has the bound:

e2 8

3

(
3

8π

1

m

)1/2 π

2
≤ lim

Λ→∞

g

Λ3/2
≤ e2 8

3

(
9

8π

1

m

)1/2 π

2
.

From (2.4) it follows that Hdip is unitary equivalent to(
− 1

2meff
∆ + V

)
⊗ 1l + 1l⊗ dΓ(ω) + g + e(V (· − eφ)− V ). (2.5)

It is seen that meff ∼ e2 and e(V (·−eφ)−V ) ∼ eφ ·∇V ∼ e when ∇·V ∈ L∞.

Hence heuristically enhanced binding may occur under some conditions, i.e.,

the existence of ground state of Hdip can be shown for sufficiently large |e|
even when we do not assume the existence of ground state of − 1

2m∆ +V . The

enhanced binding arising in Hdip is shown in [HS01].

2.3 Lorentz covariant Pauli-Fierz model

Quantization of the electromagnetic field does not cohere with normal pos-

tulates such as Lorentz covariance and existence of a positive definite metric.

Then we chose to quantize in a manner sacrificing manifest Lorentz covariance;

conversely if the electromagnetic field is quantized in a manifestly covariant

fashion, the notion of a positive definite metric must be sacrificed and the

existence of negative probability arising from the indefinite metric renders in-

valid a probabilistic interpretation of quantum field theory. One prescription

for quantization of the electromagnetic field in a Lorentz covariant manner is

the Gupta-Bleuler procedure ([Ble50, Gup50] and [KO79]).

Let us construct Aµ(f, x), x ∈ R3, µ = 0, 1, 2, 3, with test function f ∈
L2(R3) such that [Aµ(f), Aν(g)] = −igµν(f̄ , g), where

gµν =


1 µ = ν = 0,
−1, µ = ν = 1, 2, 3,
0, µ 6= ν.

Let F = F(⊕4L2(R3)). The annihilation operator and the creation oper-

ator are denoted by a(f, µ) and a∗(f, µ), respectively. Define

a†(f, µ) =

{
−a∗(f, 0), µ = 0,
a∗(f, µ), µ = 1, 2, 3.

9



Then it follows that

[a(f, µ), a†(g, ν)] = −igµν(f̄ , g).

Let ej(k) ∈ R3, k ∈ R3, j = 1, 2, 3, be unit vectors such that e3(k) = k/|k|,
and three vectors e1(k), e2(k) and e3(k) form a right-hand system for each

k ∈ R3. We fix them. The quantized radiation field, smeared by the test

function f ∈ L2(R3) at the time zero is defined by

Aµ(f, x) =
1√
2

3∑
j=1

∫
dk

ejµ(k)√
ω(k)

(
a∗(k, j)f̂(k)e−ikx + a(k, j)f̂(−k)eikx

)
,

A0(f, x) =
1√
2

∫
dk

1√
ω(k)

(
a∗(k, 0)f̂(k)e−ikx + a(k, 0)f̂(−k)eikx

)
and their conjugate momenta by

Ȧµ(g, x) =
i√
2

3∑
j=1

∫
dkejµ(k)

√
ω(k)

(
a∗(k, j)ĝ(k)e−ikx − a(k, j)ĝ(−k)eikx

)
,

Ȧ0(g, x) =
i√
2

∫
dk
√
ω(k)

(
a∗(k, 0)ĝ(k)e−ikx − a(k, 0)ĝ(−k)eikx

)
.

Set Aµ(f) = Aµ(f, 0). Note that Aµ(f), µ = 1, 2, 3, are symmetric but A0(f)

skew symmetric. We then have commutation relations between Aµ and Ȧν :

[Aµ(f), Ȧν(g)] = −igµν(f̄ , g), µ, ν = 0, 1, 2, 3,

and [Aµ(f), Aν(g)] = 0, [Ȧµ(f), Ȧν(g)] = 0. Then the Lorentz covariant Pauli-

Fierz Hamiltonian with the dipole approximation is defined by

H =
1

2
(D⊗ 1l− e1l⊗A(0))2 + 1l⊗ dΓ(ω) + e1l⊗A0(0).

Take the fiber p. Then we define

H(p) =
1

2
(p− eA(0))2 + dΓ(ω) + eA0(0).

This Hamiltonian is not self-adjoint on F , since A0 is skew symmetric. We

introduce the indefinite scalar product on F by (F |G) = (F,Γ[g]G), where

[g] = [gµν ] : ⊕4L2(R3)→ ⊕4L2(R3). Then H(p) is symmetric with respect to

(·|·).
In [HS09] we prove the asymptotic completeness of H(p) based on the LSZ

method, and characterize the physical subspace of H(p).
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3 Relativistic Pauli-Fierz model

In quantum mechanics the relativistic Schrödinger operator is defined by

HR(a) =
√

(p− a)2 +m2 −m+ V.

In this section the analogue version of the Pauli-Fierz model is defined and its

functional integral representation is given. We would like to study the spectral

property, effective mass and enhanced binding of the relativistic Pauli-Fierz

Hamiltonian as well as the standard Pauli-Fierz Hamiltonian mentioned in the

previous section. Some spectral property of the relativistic Pauli-Fierz model

is studied in e.g., [HS10, KMS09, MS09].

In this section we overview the relativistic Pauli-Fierz Hamiltonian and

the detail [Hir10] will be published somewhere.

3.1 Definition

The so-called relativistic Pauli-Fierz Hamiltonian is defined by

HR =
√

(D⊗ 1l− eA)2 +m2 −m+ V ⊗ 1l + 1l⊗ dΓ(ω) (3.1)

on L2(R3)⊗F as a self-adjoint operator.

First of all we have to define HR. It is however not trivial to do it, since HR

has non-local operator
√

(D⊗ 1l− eA)2 +m2. Although one standard way to

define (D⊗ 1l− eA)2 +m2 as a self-adjoint operator is to take the self-adjoint

operator associated with the quadratic form:

F,G 7→ 1

2

3∑
µ=1

((D⊗ 1l− eA)µF, (D⊗ 1l− eA)µG) +m2(F,G),

we do not take it. Instead of this we will find a core of (D⊗ 1l− eA)2 +m2 by

using a functional integration. Let

Lt = ⊕3
µ=1

∫ t

0
ϕ̃(· −Bs)dBµ

s .

Then we can see that
∫
dxEx

[
(F (B0), e−ieA (Lt)G(Bt))

]
defines the semigroup

generated by a self-adjoint operator K such that

(F, e−tKG) =

∫
dxEx

[
(F (B0), e−ieA (Lt)G(Bt))

]
, (3.2)
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and see that

K ⊃ 1

2
(D⊗ 1l− eA )2dDPF

. (3.3)

Let N = 1l⊗ dΓ(1l) be the number operator and D = D(∆) ∩ ∩∞n=1D(Nn).

Lemma 3.1 Suppose that ω3/2ϕ̂ ∈ L2(R3). Then 1
2(D ⊗ 1l − eA )2dD is es-

sentially self-adjoint.

Proof: By using (3.2) we will show that e−tK leaves D invariant. First of

all it can be proven that e−tKD ⊂ D(∆). Next let us see that e−tKD ⊂
∩∞n=1D(Nn). Let z ∈ N and F,G ∈ D(Nα). We have

(NαF, e−tKG) =

∫
dxEx

[
(NαF (B0), e−ieA (Lt)G(Bt))

]
. (3.4)

Let Π(f) = i[N,A(f)]. Note that

eieA (Lt)Ne−ieA (Lt) = N − eΠ(Lt) +
e2

2
‖Lt‖2 (3.5)

and then

(NαF, e−tKG)

=

∫
dxEx

[
(F (B0), e−ieA (Lt)

(
N − eΠ(Lt) +

e2

2
‖Lt‖2

)α
G(Bt))

]
. (3.6)

By the Burkholder-Davis-Gundy type inequality,

Ex
[∥∥∥∥∫ t

0
ϕ̃(· −Bs)dBµ

s

∥∥∥∥2z
]
≤ (2z)!

2α
tα‖ϕ̂‖2z.

we can see that∫
dxEx

[∥∥∥∥(N − eΠ(Lt) +
e2

2
‖Lt‖2

)α
F (Bt)

∥∥∥∥2
]
≤ C2

α‖(N + 1)αF‖2 (3.7)

with some constant Cα. Combining (3.6) and (3.7) we have

|(NαF, e−tKG)| ≤ Cα‖F‖‖(N + 1)F‖. (3.8)

This implies e−tK ∩∞n=1D(Nn) ⊂ ∩∞n=1D(Nn) and e−tKD ⊂ D follows. Hence

K is essential self-adjoint on D . �
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We denote the self-adjoint extension of KdD by the same symbol K for

simplicity, and
√

2K +m2 by the spectral resolution of K. Let (Tt)t≥0 be the

subordinator on a probability space (T ,BT , ν) such that

E0
ν [e−uTt ] = exp

(
−t(
√

2u+m2 −m)
)
, u ≥ 0.

Since

(F, e−t(
√

2K+m2−m)G) = E0
ν [(F, e−TtKG)],

we immediately have

(F, e−t(
√

2K+m2−m)G) =

∫
dsEx,0

[
(F (B0), e−ieA (LTt )G(BTt))

]
. (3.9)

From (3.9) we directly see the diamagnetic inequality:

|(F, e−t(
√

2K+m2−m)G)| ≤ (|F |, e−t(
√
−∆+m2−m)|G|). (3.10)

From the diamagnetic inequality we have:

(1) Suppose that V is
√
−∆ +m2−m -form bounded with a relative bound

a. Then |V | is also K-form bounded with a relative bound smaller than

a.

(2) Suppose that V is relatively bounded with respect to
√
−∆ +m2 −m

with a relative bound a, then V is also relatively bounded with respect

to K with a relative bound a.

Let ω3/2ϕ̂ ∈ L2(R3). Suppose that V = V+ − V− satisfies that V− is

relatively form bounded with respect to
√
−∆ +m2−m and D(V+) ⊃ D(∆).

Then HR is defined by

HR =
√

2K +m2 −m +̇ V+ ⊗ 1l −̇ V− ⊗ 1l +̇ 1l⊗ dΓ(ω). (3.11)

3.2 Functional integration

Now we will construct the functional integral representation of e−tHR through

the Trotter product formula. We fix t > 0. Let tj = tj/2n, j = 0, ..., 2n.

Define L2(R4)-valued stochastic process Sµn on X × T by

Sµn =
2n∑
j=1

∫ Ttj

Ttj−1

jtj−1f(· −Bs)dBµ
s , (3.12)

where f ∈ L2(R3) and
∫ Ttj
Ttj−1

· · · dBµ
s =

∫ S
T · · · dB

µ
s evaluated at T = Ttj−1 and

S = Ttj .
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Lemma 3.2 {Sµn}∞n=1 is a Cauchy sequence in L2(X ×T ; W x⊗ ν)⊗L2(R4).

Proof: Set Sn for Sµn for simplicity. We can directly see that∫
dxEx,0[‖Sn+1 − Sn‖2] ≤

2n∑
j=1

∫ 2jt/2n

(2j−1)t/2n
2E0,0[‖f(· − x)‖2]

t

2n+1
.

Hence we have(∫
dxEx,0[‖Sm − Sn‖2]‖

)1/2

≤ ‖f‖
m∑

j=n+1

t

2(j+1)/2

and it follows that Sn is a Cauchy sequence. �

We define the L2(R4)-valued stochastic process
∫ Tt

0 j(T−1)sf(·−Bs)dBµ
s on

the probability space (X ×T , B(X )×BT ,W x⊗ν) by the strong limit of Sµn :∫ Tt

0
j(T−1)sf(· −Bs)dBµ

s = s− lim
n→∞

Sµn . (3.13)

Remark 3.3 We give a remark with respect to (3.13). The subordinator

[0,∞) 3 t 7→ Tt ∈ [0,∞) is monotonously increasing, but not injective. So

the inverse T−1 can not be defined. (3.13) is a formal description of the limit

of Sµn .

Theorem 3.4 Let ω3/2ϕ̂ ∈ L2(R3). Suppose that V = V+ − V− satisfies that

V− is relatively form bounded with respect to
√
−∆ +m2 −m and D(V+) ⊃

D(∆). Then

(F, e−tHRG) =

∫
dxEx,0

[
e−

∫ t
0 V (BTs )ds(J0F (B0), e−ieAE(Krel

t )JtG(BTt))
]
,

(3.14)

where Krel
t = ⊕3

µ=1

∫ Tt
0 j(T−1)sϕ̃(· −Bs)dBµ

s .

Proof: We set V = 0 for simplicity. By the Trotter product formula we have

(F, e−tHRG) = lim
n→∞

(
F,
(
e−t/2

nKe−t/2
ndΓ(ω)

)2n

G

)
.

By the Markov property of Et = J∗tJt the right hand side above is equal to

lim
n→∞

J0F,

 2n∏
j=0

e−t/2
n(
√

(D⊗1l−eAE(jtj/2n ϕ̃))2+m2−m)

 JtG

 .
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Thus we have

(F, e−tHRG) = lim
n→∞

∫
dxEx,0

[
(J0F (B0), e−ieAE(Kt(n))JtG(BTt))

]
,

where

Kt(n) =

2n∑
j=1

∫ Ttj/2n

Tt(j−1)/2n

jt(j−1)/2nϕ̃(· −Bs)dBµ
s .

By Lemma 3.2 and a limiting argument we can show the theorem for V = 0. In

the case of HR with a bounded continuous V , we can also prove the theorem

by the Trotter product formula. It can be also extended to V = V+ − V−
such that V− is relatively form bounded with respect to

√
−∆ +m2 −m and

D(V+) ⊃ D(∆) by a limiting argument. �

By using this functional integral representation we can see similar results

to those of H.

Corollary 3.5 Suppose the same assumptions as Theorem 3.4.

(1) Let E(e) = inf Spec(HR). Then

|(F, e−tHRG)| ≤ (|F |, e−t(
√
−∆+m2−m+dΓ(ω))|G|). (3.15)

In particular E(0) ≤ E(e).

(2) Let S = e−i(π/2)N . Then Se−tHRS−1 is positivity improving. In partic-

ular the ground state of HR is unique.

3.3 Translation invariant relativistic Pauli-Fierz Hamiltonian

In the case of the relativistic Pauli-Fierz Hamiltonian with V = 0, we can

also show similar results to those of H by using the functional integral rep-

resentation of e−tHR , but we omit the detail. We give only the results. The

relativistic Pauli-Fierz Hamiltonian with a fixed total momentum p, HR(p), is

defined by

HR(p) =
√

(p− Pf − eA(0))2 +m2 −m+ dΓ(ω), p ∈ R3, (3.16)

with domain D(HR(p)) = D(dΓ(ω)) ∩D(|Pf |).

Theorem 3.6 Suppose ω3/2ϕ̂ ∈ L2(R3).

(1) HR(p) is essentially self-adjoint and HR
∼=
∫ ⊕
R3 HR(p)dp.
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(2) Let Ψ,Φ ∈ Q. Then

(Ψ, e−tHR(p)Φ) = E0,0
[
eip·BTt

(
J0Ψ, e−ieAE(Krel

t )Jte
−iPf ·BTtΦ

)]
. (3.17)

From this functional integral representation we immediately have corollaries.

Let E(p) = inf Spec(HR(p)).

Corollary 3.7 (1) It follows that

|(Ψ, e−tHR(p)Φ)| ≤ (|Ψ|, e−t(
√

(p−Pf)2+m2−m+dΓ(ω))|Φ|). (3.18)

(2) S−1e−tHR(0)S is positivity improving. In particular

(a) E(0) ≤ E(p),

(b) the ground state of HR(0) is unique if it exists.

References

[Ara83] A. Arai, Rigorous theory of spectra and radiation for a model in

quantum electrodynamics, J. Math. Phys. 24 (1983), 1896–1910.

[Ara90] A.Arai, Perturbation of embedded eigenvalues: general class of ex-

actly solvable models in Fock space, Hokkaido Math.J. 19 (1990), 1–34.

[Ber66] E. A. Berezin, The method of second quantization, Academic press,

1966.

[Ble50] K. Bleuler, Eine neue methode zur Behandlung der longitudinalen und

skalaren photonen, Helv. Phys. Acta. 23 (1950), 567-586.

[Gup50] S. N. Gupta, Theory of longitudinal photon in quantum electrody-

namics, Proc. Phys. Soc. A63 (1950), 681-691.

[Hir10] F. Hiroshima, Non-local Pauli-Fierz model by path measures, in prepa-

ration.

[HI03] F. Hiroshima and K.R. Ito, Local exponent and infinitesimal generators

of proper canonical transformations on a Boson Fock space, Inf. Dim.

Anal., Quant. Prob. and Rel. Top. 7 (2004), 547-572.

[HI05] F. Hiroshima and K. R. Ito, Effective mass of nonrelativistic quantum

electrodynamics, mp-arc 05-539, preprint 2005.

16



[HI07] F. Hiroshima and K.R. Ito, Mass renormalization in nonrelativistic

quantum electrodynamics with spin 1/2, Rev. Math. Phys. 19 (2007),

405–454.

[HS10] F. Hiroshima and I. Sasaki,On the ionization energy of semi-relativistic

Pauli-Fierz model for a single particle, to appear in RIMS Kôkyûroku
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Abstract

Rigorous results on critical behavior of stochastic geometric models (self-avoiding walk,
lattice tress and animals, and percolation) in high dimensions are presented. I try to explain
why different models exhibit different upper critical dimensions. I also explain the main tool
of the analysis, lace expansion.

Contents:

1. Models and Results

2. Bubble, Triangle, Square Conditions

3. The lace expansion

4. Summary and ...

1 Models and Results: overview of critical phenomena of stochas-
tic geometric models

We begin by defining models we consider, and by reviewing known facts about their critical
behaviour. The models we consider exhibit critial behaviour which is similar to those in classical
spin systems; but we can observe model-specific properties (such as different values for critical
dimensions). We rstrict ourselves to models in high dimensions1.

1.1 About the lattice

In this article, we always consider models on the d-dimensional hypercubic lattice:
Zd = {(x1, x2, . . . , xd)

¯̄
xj ∈ Z}. An element x ∈ Zd is called a site; a pair of distinct sites are

called a bond. We denote the set of all bonds by Ω.

∗On the occasion of Professor Ito and Professor Ojima’s 60th birthdays
1Recently, our understanding of critical phenomena in two-dimensional systems has improved quite a bit, thanks

to the development of theory of SLE (stochastic Loewner evolution, or, Schramm-Loewner evolution). Although
these developments are quite important, I restrict myself to critical behaviours in high dimensional systems.
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As sets of bonds, we mainly consider two cases2 :

• Nearest-neighbour (n.n.) model: Ωnn :=
{
{x, y} |x, y ∈ Zd, |x − y| = 1

}
• Spread-out model: ΩL :=

{
{x, y} |x, y ∈ Zd, 0 < |x − y| ≤ L

}
, where L is a (large) positive

integer.

Examples are illustrated in the following figure:

n.n. bonds spread-out

bonds

2-dim lattice

1.2 Self-Avoiding Walk (SAW)

An n-step self-avoiding walk (SAW) is (see [14] for details)
• a set of ordered (n + 1) sites: ω = (ω(0), ω(1), . . . , ω(n)), with ω(j) ∈ Zd,
• where pairs of consecutive sites are bonds: {ω(j), ω(j + 1)} ∈ Ω (0 ≤ j < n)，
• and which satisfies self-avoiding constraint : ω(i) ̸= ω(j) for i ̸= j.

We denote by |ω| the number of steps of the walk ω. An example of 12-step SAW is here:

n=12

Note that the self-avoiding constraint is essential (otherwise, the problem would be trivial).

Quantities of interest. We are interested in the following quantities:

• cn(x, y) := #{ω : x → y, |ω| = n, SAW} : the number of n-step SAW’s from x to y.

• cn := #{ω : 0 → •, |ω| = n, SAW} : the number of n-step SAW’s from 0 to anywhere. Here
and in the following, I use • to denote arbitrary point on the lattice.

• ℓn :=
〈
|ω(n)|2

〉1/2

n
: mean-square displacement.

Here, 〈· · · 〉n is the expectation with respect to the uniform measure on all the n-step SAW’s
starting from the origin. So in the above, ω(n) denotes the endpoint of ω, which starts from
the origin. Therefore, the quantity is roughly the average distance between two endpoints
of n-step SAW’s.

We also consider following quantities (first two are generating functions of the above quantities).
p is a parameter, and these are defined for3 |p| < 1/µ —— µ itself is defined in the following.

2The reason why we consider these two types of bond models is the following: To our great regret, the current
technology to analyze stochastic geometic models are limited. In particular, we can obtain almost complete
information on the spread-out models, but not for the nearest-neighbour models. However, the common wisdom
strongly suggests that these two types of models belong to the same universality class. Therefore, rigorous results
on spread-out models can be considered as strog indications that similar critical behaviour would be observed for
the nearest-neighbour models as well. Of course it is quite important to keep in mind that the above indications
have not been proved rigorously.

3With a suitable care, we can extend these definitions to p = 1/µ, but we will not go into details
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• Gp(x, y) :=
∑

n

pn cn(x, y) =
∑

ω:x→y

p|ω| : two-point function from x to y

• χp :=
∑

x

Gp(0, x) =
∑

n

pn cn =
∑

ω:0→•
p|ω| : susceptibility

• ξp := − lim
n→∞

n

log Gp(0, ne1)
: correlation length

(e1 is the unit vector in the first coordinate direction)

Connective Constant. The limit µ := lim
n→∞

(cn)1/n exists and is called a connective constant.

We write pc := 1/µ.

(Why the above limit exists?) If we cut an (m + n)-step SAW ω after its nth-step, we get
an n-step SAW ω1 and an m-step SAW ω2. Moreover, different ω’s yield different pairs (ω1, ω2).
Therefore cn+m ≤ cn cm holds, and taking the log of both sides, we get log cm+n ≤ log cn +log cm.

The limit lim
n→∞

log cn

n
is now seen to exist by a standard subadditivity argument.

Critical phenomena. For d > 1, it has been proven:

• The connective constant µ is positive (in fact, it is easy to see that µ ≥ d). So cn diverges
(as n ↑ ∞) like cn ≈ µn.

• For p < pc, the mass mp = 1/ξp is positive so that Gp(0, x) ≈ exp(−mp|x|). That is, the
two-point function decays exponentially in |x|.

• χp and ξp = 1/mp diverge as p ↑ pc.

Singular behavior around p ≈ pc is called critical behavior.

Expected Details of Critical Behaviour. Like spin models in statistical mechanics, it has
been expected:

• Critical exponents γ, ν, η, . . . exist and satisfy

cn ∼ Aµn nγ−1, (ℓn)2 ∼ D n2ν , (n ↑ ∞) (1.1)
χp ∼ A′(pc − p)−γ , ξp ∼ D′(pc − p)−ν , (p ↑ pc) (1.2)

Gpc(0, x) ∼ C|x|−(d−2+η) (|x| ↑ ∞) (1.3)

for some constants A,D,A′, D′, C.

• Critical exponents are universal, in the sense that they do not depend on details of the
model considered (e.g. their values are the same for the nearest-neighbour model and for
the spread-out model). µ,A,D,A′, D′, C are not expected to be universal.

• Scaling relations, such as (2 − η)ν = γ hold.

• There exists an upper critical dimension, dc, above which critical exponents take on “simple”
values (called mean-field values). It is expected that dc = 4 for SAW.

Expected values for critical exponents for SAW are summarized in the following table.
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d γ ν η

2 43
32

3
4

5
24

3 1.162 . . . 0.59 . . . 0.03 (?)

4 1 (log) 1
2 (log) 0

> 4 1 1
2 0

Now the important question is how much of the above expectations have been rigorously proven.

Rigorous results in high dimensions. Rigorous results obtained so far (in high dimensions)
can be summarized as follows. First, on its critical behaviour,

Theorem 1.1 ([3, 16, 12, 8, 7]) For n.n. SAW in d ≥ 5, and for spread-out SAW in d > 4
and L ≫ 1, we have γ = 1, ν = 1/2, η = 0. That is, there are constants µ,A,D,A′, D′, C such
that

cn ∼ Aµn, ℓn ∼
√

Dn1/2 (n ↑ ∞) (1.4)

χp ∼ A′(pc − p)−1, ξp ∼ D′(pc − p)−1/2 (p ↑ pc) (1.5)

Gpc(x) ∼ C

|x|d−2
(|x| ↑ ∞) (1.6)

Next, on its scaling (continuum) limit, we have

Theorem 1.2 ([17, 12]) For n.n. SAW in d ≥ 5, and for spread-out SAW in d > 4 and L ≫ 1,
their scaling limits are Brownian Motion. More precisely, for an n-step SAW ω which starts from
the origin, define a piecewise linear curve Xn(t) as the linear interpolation of

Xn

( j

n

)
:=

1√
n

ω(j) (j = 0, 1, 2, . . . , n). (1.7)

(Note that we scale the space by n1/2.) Then, Xn converges in distribution to a Brownian Motion
with diffusion constant D. [D appears in Theorem 1.1].

1.3 Lattice Trees and Animals

Definitions of lattice trees and animals are quite simple.

• Lattice animal (LA) is just a connected set of bonds.

• Lattice tree (LT) is a lattice animal, without cycles (i.e. LT is a tree-like object).

Examples of LT and LA are shown below:

4



a lattice tree a lattice animal

Quantities of Interest.

• an, tn: number of LA (LT)’s with n bonds, containing the origin

• ℓn: radius of gyration of LA or LT of size n.

• Gp(x, y) :=
∑

T∋x,y

p|T |: two-point function, where |T | denotes the number of bonds in T .

As for SAW, by subadditivity argument, there exists a constant λ such that lim
n→∞

(tn)1/n = λ.
Expected critical behaviour is:

tn ∼ A′λn nγ−2, ℓn ∼ D′nν (n ↑ ∞)

with critical exponents γ, ν.
Rigorous results can be summarized as follows. First, on its critical behaviour, we have

Theorem 1.3 ([10, 11]) For n.n. LTLA in d ≫ 1, and for spread-out LTLA in d > 8 and
L ≫ 1, we have γ = 1/2, ν = 1/4

Next, on its scaling (continuum) limit,

Theorem 1.4 ([6, 5]) Distribution of scaled LT converges to that of Integrated Super-Brownian
Excursion (ISE). Here scaling means shrinking a LT by (size)1/4 in space.

1.4 Percolation

Assign independent identically distributed (i.i.d.) random variable nb on each bond b, according
to (p ∈ [0, 1] is a parameter)

nb =

{
1 with probability p (bond occupied)
0 with probability 1 − p (bond vacant)

Given a bond configuration, we say x ←→ y (x and y are connected), if there exists a path of
occupied bonds connecting x and y. We denote by C(x) the connected cluster of x (= the set of
sites connected to x).

red = occupied bonds

5



Quantities of interest:

• Gp(x, y) = P[x ←→ y]: two-point function

• χp :=
∑

y

Gp(0, y) = 〈|C(0)|〉p: susceptibility

• ξp := − lim
n→∞

n

log Gp(0, ne1)
: correlation length. Gp(0, x) ≈ const e−|x|/ξp

• θp := P[|C(0)| = ∞]: percolation density

Critical Phenomena. It has been proven that there exists pc > 0, the critical point, such
that4

• For p < pc, the model is in its subcritical phase. χp < ∞ and ξp < ∞, and θp = 0.

• For p > pc, the model is in its supercritical phase. χp = ξp = ∞, and θp > 0.

Crossover of these two occur at the critical point, pc. In particular, χp and ξp diverge as p ↑ pc.
Moreover, we expect power laws (as for SAW):

χp ≈ (pc − p)−γ , ξp ≈ (pc − p)−ν ,
〈|C(0)|2〉p
〈|C(0)|〉p

≈ (pc − p)−∆ (p ↑ pc)

θp ≈ (p − pc)β (p ↓ pc)

Gpc(x) ≈ |x|−(d−2+η) (p = pc, |x| ↑ ∞)

P [ |C(0)| = n ] ≈ n−1−1/δ (p = pc, n ↑ ∞)

And, we expect similar properties (universality, existence of upper critical dimension, scaling,
etc) for percolation as we do for SAW. Expected critical behaviour is summarized schematically
in the following figure5.

0 pc

χ

ξ

p

θ

Rigorous results in high dimensions. Rigorous results in high dimensions can be summa-
rized as follows. First, as for its critical behaviour,

Theorem 1.5 ([9, 2, 8, 7]) For n.n. percolation in d ≫ 1, and for spread-out percolation in
d > 6 and L ≫ 1, we have γ = 1, ν = 1/2, β = 1, η = 0, δ = ∆ = 2.

The above result should be contrasted with the following result.

4The existence of two phases can be proved easily. More precisely, it is not difficult to prove that χp, ξp < ∞
for 0 ≤ p ≪ 1, and that θp > 0 for p ≈ 1. However, proving the absence of an intermediate phase (that is, proving
that θp becomes positive as soon as χp and ξp becomes infinite) is quite nontrivial, and has been first proven in [1]
and [15]

5Whether θp is continuous in p at p = pc or not (in low dimensions) is a long-standing open problem
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Theorem 1.6 ([4, 18]) For percolations in d < 6 dimensions, it is impossible for all the critical
exponents to take on their mean-field values. So, dc ≥ 6.

Theorem 1.5 and theorem 1.6 strongly suggest that the upper critical dimension for percolation
is six. (These theorems estabilish dc = 6 for spread-out percolation. For nearest-neighbour
percolation, we do not have a complete proof yet.)

To our regret, scaling limit of critical percolation clusters has not been identified rigorously.
However, we expect:

Conjecture 1.7 Consider the connected cluster of the origin C(0) at p = pc. Scale it by
|C(0)|1/4. Then, the scaling limit of C(0) will be ISE, as for lattice trees.

Currently, we have only partial results towards the above conjecture.

Proposition 1.8 ([13]) First and second moments of scaled connected cluster at p = pc is the
same as those of ISE.

An important open problem. Currently, there are almost NO rigorous results on two-point
functions in the super-critical phase, even in high dimensions.

1.5 q-Lattice Animals

Connected clusters of percolation are lattice animals, but the weight is different.

a lattice animal

each bond = p

vacant bond = 1− p

a percolation cluster

each bond = p

vacant bond = 1

each bond = p

a q-lattice animal

vacant bond = q

It would be natural to try to interpolate these two models, so assign the weight q on each
vacant bond (1 − p < q < 1). Fix q and change p, and investigate the critical behavior.

Theorem 1.9 (H-Tamenaga ’10) N.n. q-lattice animals in d ≫ 1, and spread-out q-lattice
animals in d > 8 and L ≫ 1, exhibit the same critical behavior as that for high dimensional
LTLA.

The above theorem, and its proof, strongly suggests that the q-lattice animals and LTLA belong
to the same universality class.

Remark: Very important (and often earlier) analysis of Ising models by many people are abun-
dant. Also, oriented percolation and contact processes have been well analyzed. In this article, I
do not go into these subjects further.

7



2 Intermezzo: bubble, triangle, square

We have seen that different models exhibit different upper critical dimensions. Part of the reason
can be understood from the following theorem.

Theorem 2.1 (various people) Sufficient conditions for mean-field values of γ are:

SAW:
∑

x

Gpc(0, x) Gpc(x, 0) < ∞

Percolation: 　
∑
x,y

Gpc(0, x) Gpc(x, y) Gpc(y, 0) < ∞

LTLA:
∑
x,y,z

Gpc(0, x) Gpc(x, y) Gpc(y, z) Gpc(z, 0) < ∞

Note that the above theorem refers to quantities expressed as sums of critical two-point
functions. If we represent the two-point function G(x, y) by a line x —— y, the above summands
are represented as

0

x y

0

x

z0

x y

So they are called (resp.) bubble, triangle, square conditions.

Above conditions provide hints on the values of upper critical dimensions. Suppose d > dc.
Above the upper critical dimension, two-point function would behave as (η = 0)

Gpc(0, x) ≈ |x|2−d (|x| ↑ ∞) (2.1)

If we assume the above, it is easy to see that

• the bubble condition is satisfied if d > 4.

• the triangle condition is satisfied if d > 6.

• the square condition is satisfied if d > 8.

Let’s move on to understand why bubble, triangle, and square conditions arise. Let me begin
with the bubble condition.

2.1 How to understand the bubble condition for SAW

We first explain how to derive γ ≥ 1, which holds in all dimensions. We begin by differentiating
the susceptibility for SAW:

p
∂

∂p
χp = p

∂

∂p

∑
x

Gp(0, x) = p
∂

∂p

∑
x

∑
ω:0→x

p|ω| =
∑

x

∑
ω:0→x

p|ω| |ω|.

Because the number of sites on ω is |ω|+1, and because we’re interested in the limit of very large
|ω|, we can approximate |ω| ≈

∑
y∈ω 1 to get

≈
∑
x,y

∑
ω:0→x

p|ω| I[y ∈ ω] =
∑
x,y

0 x

y
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Now split the walk ω at y into ω1 and ω2, and rewrite the sum over ω as sums over ω1 and ω2.
In so doing, don’t forget the fact that ω1 and ω2 were originally a single SAW —— that is, ω1

and ω2 should avoid each other

=
∑
x,y

∑
ω1:0→x
ω2:0→y

p|ω1| p|ω2| I[ω1 ∩ ω2 = {0}] =

0

avoid

(2.2)

Now bound the indicator (which indicates that ω1 and ω2 should avoid each other) by 1 to get:

p
∂

∂p
χp ≤

∑
ω1:0→•
ω2:0→••

p|ω1| p|ω2| = (χp)2 (2.3)

where in the above, a dot • and double dots •• means that walks can end anywhere. This can
be rewritten as ¯̄̄

p
∂

∂p
(χp)−1

¯̄̄
≤ 1 (2.4)

which can be integrated to yield
(χp)−1 ≤ (pc − p) (2.5)

which would imply γ ≥ 1, if the exponent exists.
To prove γ ≥ 1 under the bubble condition, we need an inequality in the opposite direction.

I first prove γ ≤ 1 under the condition that the bubble is less than one. For this purpose, let’s
use inclusion-exclusion to get

p
∂

∂p
χp = (χp)2 −

∑
ω1:0→•
ω2:0→••

p|ω1| p|ω2| I[ω1 ∩ ω2 % {0}] =

0 0

− (2.6)

≥ (χp)2 −
∑
z ̸=0

G(0, z)2 (χp)2 = (χp)2
[
1 −

∑
z ̸=0

G(0, z)2
]

(2.7)

γ = 1 now follows if
∑

x ̸=0 Gpc(0, x)2 < 1.
To prove γ ≤ 1 under the condition

∑
x ̸=0 Gpc(0, x)2 < ∞, we have to try a bit more. Consider

the second term of (2.6). As indicated in the above figure, ω1 and ω2 do intersect (at least) at
one point. Let’s call the intersection point z (if there are more than one intersection points, pick
up the last intersection along ω1 in the direction from 0 to •). Cut ω1 into ω11 and ω12 at z, and
cut ω2 into ω21 and ω22 at z, and rewrite the second term of (2.6). The result is∑

ω1:0→•
ω2:0→••

p|ω1| p|ω2| I[ω1 ∩ ω2 % {0}] =
∑

z

∑
ω11:0→z
ω12:z→•

p|ω11| p|ω12| I[ω11 ∩ ω12 = {z}]

×
∑

ω21:0→z
ω22:z→••

p|ω21| p|ω22| I[ω21 ∩ ω22 = {z}] × I[ω12 ∩ ω21 = {0, z}, ω12 ∩ ω22 = {z}] (2.8)

(The indicator I[ω11 ∩ ω12 = {z}] takes care of the fact that ω11 and ω12 were originally a single
SAW, and the indicator I[ω21 ∩ω22 = {z}] takes care of the fact that ω21 and ω22 were originally
a single SAW. The indicator I[ω12 ∩ ω21 = {0, z}, ω12 ∩ ω22 = {z}] takes care of the fact that z
is the last (seen from ω1, in the direction of 0 → •) intersection point between ω1 and ω2.) Now
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discard most of the indicators to get an upper bound as∑
ω1:0→•
ω2:0→••

p|ω1| p|ω2| I[ω1 ∩ ω2 % {0}]

≤
∑

z

∑
ω11:0→z
ω12:z→•

p|ω11| p|ω12|
∑

ω21:0→z
ω22:z→••

p|ω21| p|ω22| I[ω12 ∩ ω22 = {z}]

=
∑

z

∑
ω11:0→z
ω21:0→z

p|ω11|+|ω21|
∑

ω12:z→•
ω22:z→••

p|ω12|+|ω22|I[ω12 ∩ ω22 = {z}] (2.9)

Now if we recall (2.2), we see that the last sum over ω12 and ω22 is nothing but6 p
∂χp

∂p
. Therefore,

we have ∑
ω1:0→•
ω2:0→••

p|ω1| p|ω2| I[ω1 ∩ ω2 % {0}] ≤
∑

z

∑
ω11:0→z
ω21:0→z

p|ω11|+|ω21| × p
∂χp

∂p
(2.10)

Or, recalling (2.6), we get

p
∂χp

∂p
≥ (χp)2 −

∑
z ̸=0

G(0, z)2 × p
∂χp

∂p
=⇒ p

∂χp

∂p
≥ (χp)2

1 +
∑

z ̸=0 G(0, z)2
(2.11)

This immediately implies γ ≤ 1 if
∑
z ̸=0

G(0, z)2 is uniformly finite for p < pc.

The intuitive reason for dc = 4: Two SAW’s, whose Hausdorff dimension will be 2, must avoid
each other in d > dc. For this, we need d > 2 + 2 = 4. So we can interpret 4 as 4 = 2 + 2.

2.2 How about LTLA?

Again, we start from the expression of its susceptibility.

p
∂χp

∂p
= p

∂

∂p

∑
x

∑
T∋0,x

p|T | =
∑

x

∑
T∋0,x

|T |p|T | (2.12)

=
∑
x,y

∑
T∋0,x,y

p|T | =

0

x

y∑

x,y

(2.13)

Now, if three points 0, x, and y are on the same lattice tree, we can always find a point z on
that tree, and three distinct branches which connect z and 0, z and x, and z and y. These three
branches must not intersect, but if we relax this condition, we can get an upper bound as

≤
∑

x,y,z
x

0

y

z ≤ (χp)3 (2.14)

This implies γ ≥ 1/2 if the exponent exists.
6Rigorously sepaking, we are here ignoring a small term which can be neglected in the limit of χp ↑ ∞
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In the opposite direction, we again use inclusion-exclusion to get

≥
0

− 3 0
square! (2.15)

This leads to γ = 1 if the square is less than 1/3.

The intuitive reason for dc = 8: Two lattice trees, whose Haussdorf dimension will be 4, must
avoid each other in d > dc. For this, we need d > 4 + 4 = 8. So we can interpret dc = 8 as 8 =
4 + 4.

2.3 How about Percolation?

Percolation is more subtle. Although connected clusters of percolation are just lattice animals,
their weights are different. (Because of this difference, percolation allows for probabilistic inter-
pretation.) Due to this, the avoidance condition now is: One connected cluster (4-dimensional,
left) should avoid the backbone (2-dimensional, thick right) of another connected cluster. There-
fore, 6 = 4+2.

∂χp

∂p
=

∑

x

∑

(u,v)

0

x

u v

connect v and x without using black bonds

3 The lace expansion

Almost all the results concerning high-dimensional critical behavior have been obtained by lace
expansion, first introduced by Brydges and Spencer [3]. The lace expansion have the following
characteristics:

• The lace expansion gives a self-consistent equation for two-point functions (even if we do
not know explicit values of pc).

• The number of nth order terms of the expansion grows as (const)n. This is in a striking
contrast with usual expansions, which typically yield n! terms. Because the number of
terms grows only exponentially, there is a hope that the expansion is absolutely convergent.

In this section, we briefly explain basic ideas of the lace expansion (mainly for SAW).

3.1 Derivation of the expansion (for n.n. SAW)

Start from G(x) (x ̸= 0), and cut at its first step, e. Call the second part as ω′.

G(x) =
∑

ω:0→x

p|ω| =
∑
|e|=1

0 e

avoid

x

(3.1)
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The second part ω′ should avoid the first part. I.e. it should not come back to the origin. Now
use inclusion-exclusion to write this avoidance condition as:

I[(0, e) ◦ ω′ is SAW] = I[0 ̸∈ω′] = 1 − I[0 ∈ ω′], (3.2)

and plug it into (3.1). The result looks as:

G(x) =
∑
|e|=1

[ −
0 e

x

0 e

avoid

x

]
. (3.3)

Then cut ω′ at its first visit at 0, and use inclusion-exclusion again and again:

= e0
x

e0
x

−e0
x

= e0
x

+e0
x

e0
x

−

In the above figures, solid lines represent a SAW which has no constraint, while dashed lines of
the same color must avoid each other.

Continuing this way, we get

G(x) = δ0,x + p
∑
|e|=1

G(x − e) +
∑

y

Π(y) G(x − y), (3.4)

where (each line ≈ G)

Π(y) ≈ +− δ
0, x

− +
y

0

−
y

y

0 0 0

+
y

0

(3.5)

Taking the Fourier transform of the above, we get

Ĝ(k) =
1

1 − {2dpD̂(k) + Π̂(k)}
(3.6)

— A closed from equation for the two-point function, although Πp(x) itself is quite complicated.
We now proceed to get info on Πp in terms of Gp.

3.2 How to bound these diagrams?

Use (for f, g ≥ 0) the following elementary inequalities∑
x

f(x)g(x) ≤
[
sup

x
f(x)

] [∑
x

g(x)
]

= ∥f∥∞ ∥g∥1

12



repeatedly, to break diagrams into basic units. E.g., (all vertices with degree ≥ 2 are summed
over)

¢
¢
¢

A
A

A

¢
¢
¢

0

=
∑
y,z

[
¢
¢
¢

A
A

A

0

y

z

] [
¢
¢
¢

y

z

]
≤
[∑

y,z ¢
¢
¢

A
A

A

0

y

z

] [
sup
y,z ¢

¢
¢

y

z

]

≤
¢
¢
¢

A
A

A

0
¢
¢
¢ ≤

¢
¢
¢

0
A

A
A

¢
¢
¢ ≤ (B)3.

where
G

(α) := sup
x ̸=0

|x|αG(x), B := sup
a

[∑
x ̸=0

G(x) G(x − a)
]

Similarly,

¢
¢
¢

A
A

A

¢
¢
¢

A
A

A

¢
¢
¢

0

x

≤
¢
¢
¢

0
A

A
A

¢
¢
¢

A
A

A

¢
¢
¢ ≤ (B)5 G

(0)
.

So we can bound various terms of Πp in terms of two quantities G
(α) and B.

3.3 How to prove convergence?

To control the expansion and prove its convergence, we proceed as follows.

• Start from good bounds on G
(2)

, B

• As explained in Section 3.2, derive good bounds on
∑

x Π(x) and
∑

x |x|2Π(x)

• From the expression (3.6), derive good bounds on Ĝ(k) and its second derivative

• Use Fourier analysis to get good bounds on G
(2)

, B; in fact, we derive bounds which are
better than what we had started.

Schematically,

G
(2)

, B
Diagrammatic estimates−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

Fourier analysis

∑
x

|x|2|Π(x)|

In high dimensions, the above procedure makes a nice closed loop — the following is true.

If G
(2)

, B ≤ 4/d, then in fact G
(2)

, B < 3/d.

Now, note that G and B are continuous functions of p for p < pc. This is because for p < pc,
(1) the two-point function Gp(0, x) is an absolutely convergent power series in p, and this is
continuous, (2) Gp(0, x) decays exponentially in |x|, and thus essentially finite number of x’s are
relevant to G and B.

Also, G and B are 0 at p = 0.
So increasing p from 0 to pc, G and B can never exceed 4/d, as shown in the figure. Dominated

convergence guarantees they are so, even at p = pc.
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p
pc

0

4/d

3/d

These bounds on G and B now guarantee the convergence of the lace expansion, and lead to
good bounds on Ĝ(k) and Π̂(k).

3.4 Summary for SAW lace expansion

Results of k-space analysis of the lace expansion up to ’92 can be summarized as:

Lemma 3.1 For n.n. SAW in d ≥ 5,

Ĝ(k) =
1

1 − 2dpcD̂(k) − Π̂(k)
(3.7)

with ∑
x

|Π(x)| = O(d−1),
∑

x

|x|2|Π(x)| = O(d−1). (3.8)

G
(2) = O(d−1), B = O(d−1). (3.9)

3.5 Other models

Lace expansion for other models are derived in a similar manner. Their diagrams are schematically
as follows:

0
x

∑

x

(SAW)

0

x

∑

x

x0

∑

x

≤

≤

≤

(perc)

(LTLA)

bubbles

triangles

squares
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Note that bubble, triangles, squares (respectively) appear for SAW, percolation, LTLA (respec-
tively); a further suggestion for the upper critical dimension dc = 4, 6, 8.

4 Summary and ...

• Rigorous results on the critical behavior of stochastic geometric models (SAW, percolation,
lattice trees and animals) have been reviewed.

• Some attempts were made to explain why these models exhibit different upper critical
dimensions.

• The lace expansion, one of the main tools of the analysis, was explained.

We now have some understanding of critical behavior of these models in high dimensions. HOW-
EVER, even for high dimensions, our understanding is far from complete. In particular:

• Current proof of mean-field critical behavior for SAW in d ≥ 5 is unnatural, in the sense
that it requires the bubble to be “small.” A natural proof would only require the bubble
condition. Also, the proof of mean-field critical behavior for nearest-neighbour percolation
in d > 6 and LTLA in d > 8 are missing, for the same reason.

• For percolation, there are almost no rigorous quantitative results on its two-point function
in the supercritical phase.

And, needless to say, lower dimensions are wide open. Several important open problems:

• In the first place, do critical exponents exist?

• How about universality?

• How about scaling and hyperscaling?

• What happens if there is randomness involved?

• ...

I hope we will see substantial progress in (one or more of) these open problems in the near future.
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Stochastic ranking process and web ranking numbers

Tetsuya Hattori (Keio University)1

1 Introduction.

This is a summary of a series of our studies [13, 14, 15, 16, 12] on stochastic ranking
process, with its applications on ranking numbers found on the web, such as sales
ranks at an online bookstore amazon.co.jp, and thread title listings of an online
collected bulletin board 2ch.net. This is a joint work with K. Hattori, Y. Hariya,
Y. Nagahata, Y. Takeshima, and T. Kobayashi.

In Section 2, we consider mathematical aspects of stochastic ranking process.
We define the stochastic ranking process with the jump times of the particles deter-
mined by Poisson random measures, and state that the joint empirical distribution
of scaled position and intensity measure converges almost surely in the infinite par-
ticle limit. We give an explicit formula for the limit distribution, which can be
characterized as a unique global classical solution to an initial value problem for
the inviscid Burgers system of non-linear partial differential equations with time
dependent coefficients and with evaporation terms. This characterization is in ac-
cord with the hydrodynamic limit theories, where a macroscopic time development
of collective microscopic random motion of particles is smooth, so that it satisfies a
system of partial differential equations.

In Section 3, we show ranking data collected from actual websites at the Amazon
online bookstore and at an online collected bulletin board 2ch.net, and show how
they are explained by the properties of stochastic ranking process given in Section 2.
It is a new social phenomena to have a large number of items aligned dynamically in
an order of popularity, and real time values of ranks of thousands can be observed.
By performing a statistical fit of the data to the formulas from the stochastic ranking
process, one can analyze a ‘long tail’ structure of social activities at these websites.
We conclude that the best hit or top sales items dominate the activities both at
Amazon.co.jp and 2ch.net, so that, in particular, Amazon.co.jp, perhaps in contrast
to its fame, is not an example of a long tail business.

2 Stochastic ranking process.

The latest version of stochastic ranking process, which extends the original model
[13] to the case of time dependent intensities, is defined as follows [12]. Let M(R+)
be the space of Radon measures ρ on the Borel σ-algebra B(R+) of non-negative

reals R+. Let N be a positive integer, and let ν
(N)
i , i = 1, 2, · · · , N , be independent

Poisson random measures (Poisson point processes) on R+ , defined on a probability

space (P,F , Ω). For each i, denote the intensity measure of ν
(N)
i by ρ

(N)
i ;

E[ ν
(N)
i (A) ] = ρ

(N)
i (A), A ∈ B(R+). (1)

We assume that ρ
(N)
i ∈ M(R+) and that ρ

(N)
i is continuous (i.e., ρ

(N)
i ({t}) = 0,

t � 0) for all N and i. Let x
(N)
1 , x

(N)
2 , · · · , x(N)

N be a permutation of 1, 2, · · · , N , and

1More materials available at http://web.econ.keio.ac.jp/staff/hattori/amazone.htm
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define a process X(N) = (X
(N)
1 , · · · , X(N)

N ) by

X
(N)
i (t)

= x
(N)
i +

N∑
k=1

∫ t

0
1X

(N)
k (s−0)>X

(N)
i (s−0)

ν
(N)
k (ds) +

∫ t

0

(1 − X
(N)
i (s − 0)) ν

(N)
i (ds),

i = 1, 2, · · · , N, t � 0 ,
(2)

where, 1A is the indicator function of an event A. We call the process X(N) defined
by (2), a stochastic ranking process, after [13, 14, 15].

Denote the unit measure concentrated on c by δc . With probability 1 we can
write

ν
(N)
i =

∞∑
j=1

δ
τ
(N)
i,j

, i = 1, 2, · · · , N, (3)

where, with probability 1, τ
(N)
i,j ’s are random variables satisfying 0 < τ

(N)
i,1 < τ

(N)
i,2 <

· · ·, i = 1, 2, · · · , N , and τ
(N)
i,j �= τ

(N)
i′,j′ if (i, j) �= (i′, j′). In the following, we work

on the event that these inequalities hold. X
(N)
i (t) has an explicit expression using

τ
(N)
i,j ’s:

X
(N)
i (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(N)
i +

∑
i′; x

(N)

i′ >x
(N)
i

1τ
(N)

i′,1 �t
0 � t < τ

(N)
i,1 ,

1 +

N∑
i′=1

1∃j′∈�; τ
(N)
i,j <τ

(N)

i′,j′�t
τ

(N)
i,j � t < τ

(N)
i,j+1, j = 1, 2, 3, · · · ,

(4)

for i = 1, · · · , N .
In the time homogeneous case, namely, the case where there exists positive con-

stants w
(N)
i such that ρ

(N)
i ((0, t]) = w

(N)
i t for t � 0, a discrete time version of the

process (4) has been known for a long time [26, 23, 17, 6, 22, 21] and is called
move-to-front (MTF) rules. The process has, in particular, been extensively studied
as a model of least-recently-used (LRU) caching in the field of information theory
[24, 8, 4, 7, 5, 25, 9, 11, 10, 18, 19, 20], and also is noted as a time-reversed process
of top-to-random shuffling.

Put

X
(N)
C (t) =

N∑
i=1

1τ
(N)
i,1 �t

, t � 0. (5)

X
(N)
C (t) is a random variable which denotes the position of the boundary between

the top side x � X
(N)
C (t) and the tail side x > X

(N)
C (t), where each particle in the

top side (i.e., i which satisfies X
(N)
i (t) � X

(N)
C (t)) has experienced jump to the top

by time t (i.e., τ
(N)
i,1 � t), and the particles in the tail side are those particles which

have not jumped to the top by time t.

Proposition 1 ([13, Prop. 2],[12, Prop. 1.1, Cor. 1.2]) Let t � 0. Assume

that a sequence of distributions {λ(N)
t | N ∈ N} on R+ defined by

λ
(N)
t =

1

N

N∑
i=1

δ
ρ
(N)
i ((0,t])

(6)
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converges weakly as N → ∞ to a probability distribution λt . Then the scaled position
of the boundary

Y
(N)
C (t) =

1

N
X

(N)
C (t) =

1

N

N∑
i=1

1τ
(N)
i,1 �t

(7)

converges almost surely as N → ∞ to

yC(t) = 1 −
∫ ∞

0

e−sλt(ds). (8)

Assume furthermore that λt is continuous in t with respect to the topology of weak
convergence. Then for almost all sample ω ∈ Ω, Y

(N)
C (·, ω) : R+ → [0, 1) defined by

(7) converges pointwise in t as N → ∞ to a deterministic function yC : R+ → [0, 1)
defined by (8). �

Consider a joint empirical distribution µ(N) of intensity measure ρ
(N)
i and scaled

position

Y
(N)
i (t) =

1

N
(X

(N)
i (t) − 1), (9)

defined by

µ
(N)
t =

1

N

N∑
i=1

δ
(ρ

(N)
i ,Y

(N)
i (t))

, t � 0. (10)

µ
(N)
t , N ∈ N, are random variables whose samples are distributions on the product

space M(R+)×[0, 1) of space of Radon measures M(R+) and an interval [0, 1) ⊂ R+.
We consider the standard vague topology on M(R+). Since R+ is a Polish space,
i.e., complete and separable metric space, so is M(R+) [2, Theorem 31.5], and
consequently, M(R+) × [0, 1) is also a Polish space [2, Example 26.2].

Assume that a sequence of initial configurations

µ
(N)
0 =

1

N

N∑
i=1

δ
(ρ

(N)
i ,N−1(x

(N)
i −1))

, N = 1, 2, · · · ,

converges weakly as N → ∞ to a probability distribution µ0 on M(R+) × [0, 1).
Then, in particular,

Λ(N)(dρ) := µ
(N)
0 (dρ × [0, 1)) =

1

N

N∑
i=1

δ
ρ
(N)
i

(dρ) → Λ(dρ) := µ0(dρ × [0, 1)),

weakly, as N → ∞.
(11)

Define, for 0 � s � t,

λ
(N)
s,t =

∫
M(�+)

δρ((s,t])Λ
(N)(dρ). (12)

Note that λ
(N)
t = λ

(N)
0,t in (6).

Theorem 2 ([13, Thm. 1.5], [12, Thm. 1.3]) Assume that µ
(N)
0 → µ0 weakly as

N → ∞ for a probability distribution µ0 on M(R+) × [0, 1). Assume that for each
(s, t) satisfying t � s � 0,

λ
(N)
s,t → λs,t :=

∫
M(�+)

δρ((s,t])Λ(dρ), weakly as N → ∞, (13)
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where Λ is as in (11). Then for any t > 0, and for almost all sample ω ∈ Ω, the

distribution µ
(N)
t (ω) converges weakly to a non-random probability distribution µt on

M(R+) × [0, 1).
µt has a following expression in terms of U(dρ, y, t) := µt(dρ × [y, 1)).

U(dρ, y, t) := µt(dρ × [y, 1)) =

{
e−ρ((t−t0(y,t),t]) Λ(dρ) 0 � y � yC(t),

e−ρ((0,t]) U(dρ, ŷ(y, t), 0) yC(t) � y < 1.
(14)

Here, t0(y, t) is the inverse function with respect to t0 of

yA(t0, t) = 1 −
∫
M(�+)

e−ρ((t−t0,t]) Λ(dρ), 0 � t0 � t, (15)

and ŷ(y, t) is the inverse function with respect to y of

yB(y, t) = 1 −
∫
M(�+)

e−ρ((0,t]) µ0(dρ × [y, 1)), t � 0, 0 � y < 1. (16)

�

Note that yC(t) = yA(t, t) = yB(0, t).
If we impose additional conditions, we may go further for Theorem 2 and prove

almost sure convergence as a sequences of processes µ(N) → µ, on a finite time
interval [0, T ]. See [12, §4].

The structure of the explicit limit formula (14), in particular, the appearance
of the inverse functions t0 of yA and ŷ of yB , can mathematically be understood
through a system of partial differential equations. Consider the case that the limit

distribution Λ is supported on a discrete set: Λ =
∑

α

rαδρα . Then (14) implies, for

Uα(y, t) := µt({ρα} × [y, 1)),

Uα(y, t) =

{
rα e−ρα((t−t0(y,t),t]) 0 � y � yC(t),

Uα(ŷ(y, t), 0) e−ρ((0,t]) yC(t) � y < 1,
(17)

where t0 and ŷ are inverse functions, respectively, of yA(t0, t) = 1−
∑

α

rαe−ρα((t−t0,t]),

and yB(y, t) = 1 −
∑

α

Uα(y, 0)e−ρα((0,t]).

Theorem 3 ([14, Thm. 1], [12, Thm. 1.4]) Let k be a positive integer, and for
each α = 1, 2, · · · , k, let rα be a positive constant, wα : R+ → R+ a measurable
function satisfying wα(t) > 0, t � 0, and uα : [0, 1) → R+ a non-negative smooth
strictly decreasing function, satisfying

k∑
β=1

rβ = 1,
k∑

β=1

rβwβ(t) < ∞, t � 0, and
k∑

β=1

uβ(y) = 1 − y, 0 � y < 1. (18)

Then an initial value problem for a system of first order non-linear partial differential
equations (inviscid Burgers equations with a term representing evaporation)

∂ Uα

∂t
(y, t) +

k∑
β=1

wβ(t) Uβ(y, t)
∂ Uα

∂y
(y, t) = −wα(t)Uα(y, t),

(y, t) ∈ [0, 1) × R+, α = 1, 2, · · · , k,

(19)



5

with a boundary condition

Uα(0, t) = rα, t � 0, α = 1, 2, · · · , k, (20)

and initial data
Uα(·, 0) = uα, α = 1, 2, · · · , k, (21)

has a unique time global classical solution, whose formula is given by (17) with

ρα((s, t]) =

∫ t

s

wα(u) du and Uα(y, 0) = uα(y). (22)

�

The system (19) of partial differential equations is solved by a method of charac-
teristic curves, and yA, yB, and yC turn out to be the characteristic curves for (19),
which mathematically explains how the inverse functions of these functions appear
in the solutions. Theorem 3 indicates that the limit in Theorem 2 has an interpre-
tation that a collective random motion of particles is macroscopically observed as a
smooth time development explained by a system of partial differential equations, as
in the theory of hydrodynamic limit.

3 Web rankings.

With great advance in the internet technologies, a new application of the process
appeared [14, 15, 12]. The mathematical results on the stochastic ranking process
have successfully been applied to statistical explanation of practical ranking data,
such as the ranking numbers of books found in the web pages of an online bookstore
Amazon.co.jp [15, 14], or the order of the subject titles in the title listing pages of a
collected web bulletin board 2ch.net [14, 12]. A ranking of a book at Amazon.co.jp
jumps close to top of the ranking whenever the book is sold at Amazon.co.jp [15],
and a subject title in the web page for the list of 2ch.net jumps to the top whenever
a comment (a ‘response’) concerning the subject is submitted [14]. It turned out
that the time developments of the ordering of items on these online systems are
found to follow the predictions of the model.

One may wonder why such a simple model as introduced in Section 2 could be
observed in actual social activities. An explanation is that the ranking numbers
on the web (such as those representing the books, in the case of online bookstores)
usually seek to align the web pages in the order of current popularity of the pages.
A social impact of the development of web-based activities is that it has become
possible to catalog a huge amount of unpopular items [1]. In fact, a majority of
books catalogued on an online bookstore are sold less than one copy a month. For
such books, any reasonable order reflecting the current popularity would be equal
to the order of the time of most recent sales, because the second recent sale of
such book would be long ago, hence would not reflect current popularity. Thus the
move-to-front rule will provide a simple but universal model in the rankings on the
web.

Note that (2) implies the Markov property

X
(N)
i (t + u) = X

(N)
i (u) +

N∑
k=1

∫ t

0
1X

(N)
k (s+u−0)>X

(N)
i (s+u−0)

ν̃
(N)
k (ds)

+

∫ t

0

(1 − X
(N)
i (s + u − 0)) ν̃

(N)
i (ds),
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where we put ν̃
(N)
i (A) = ν

(N)
i (A+u). In practical application, this property enables

us to shift the time origin t = 0 to the time that a particle we observe jumps to
the top, namely, we may set X

(N)
i (0) = x

(N)
i = 1, by adjusting the ‘clock’ for the

intensity measure accordingly. (See Fig. 5 and Fig. 7, as well as [14, 15].)

Note also that if x
(N)
i = 1, then up to the first jump of i to the top, namely, for

t < τ
(N)
i,1 , comparison of (4) and (5) leads to

X
(N)
i (t) = X

(N)
C (t) + 1,

Therefore, in practical application in Section 3.2, we may proceed with observing
a trajectory (time development) of a single particle, putting the time of its first
jump to top as t = 0 and observing until its next jump to top, and then apply
Proposition 1.

Concerning the explicit time dependence of intensity measures for the Poisson
random measures, one should note that data from an online bookstore and from a
collected web bulletin board arise as results of social activities, which are expected
to contain day-night difference in the intensity. In Section 3.1, we summarize a
simple method of [12, §A, §5], to factorize the time dependence and the distribu-
tion of relative jump rates among different particles. Then we show the data from
amazon.co.jp in Section 3.2, and the data from 2ch.net in Section 3.3, together with
statistical applications of the theoretical results.

3.1 Intensities with common time dependence.

In practical situation, intensity measures ρ
(N)
i are usually unknown quantities to

be determined statistically from observed data. This is usually a difficult task if
intensity measures have time dependence, because then we have to consider both
particle dependence and time dependence at once in the statistical analysis. Explicit

0 24 48 72 96 120 144 168 192

250000

Fig 1:

time dependence, reflecting day-night difference of social activities, are observed in
actual data. Fig. 1 is an 8 days plot of Amazon.co.jp rankings for a book. (See [15]
for basic fact about Amazon.co.jp ranking and its relation to the stochastic ranking
process.) The vertical axis stands for the ranking number, and the horizontal axis
is the time axis labelled in the unit of hour. The large discontinuous drops near
to the top ranking correspond to the point of sales of the book. Note the 24 hours
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periodic time dependence. Without explicit time dependence of activities (i.e., the
homogeneous case), (28) implies that the curve in Fig. 1 should be concave,

y′′
C(t) < 0. (23)

However, the curve in Fig. 1 actually has convex intervals every 24 hours, proving
explicit time dependence, which naturally can be interpreted as day-night difference
in social activities.

A simplest way to take day-night-difference of social activity into account, is
to assume a common time dependence. Assume that there exist ã ∈ L1

loc(R+) and

positive constants w
(N)
i > 0, i = 1, 2, · · · , N, N = 1, 2, · · · , such that the intensity

measure (1) is given by

ρ
(N)
i ((s, t]) = w

(N)
i

∫ t

s

ã(u) du, i = 1, 2, · · · , N, N = 1, 2, · · · . (24)

Proposition 4 Let ã ∈ L1
loc(R+). If there exists a probability distribution λ on R+

such that

λ(N) :=
1

N

N∑
i=1

δ
w

(N)
i

→ λ, weakly, as N → ∞, (25)

then Proposition 1 holds with (24), and yC(t) of (8) is given by

yC(t) = 1 −
∫
�+

e−w A(t) λ(dw), (26)

where

A(t) =

∫ t

0

ã(u) du. (27)

�

The formula (26) is to be compared with the case of the (homogeneous) Poisson
process in [13, Proposition 2], where we have

yC(t) = 1 −
∫
�+

e−wtλ(dw). (28)

3.2 Factorization of day-night social activity difference, and
sales ranks of Amazon.co.jp .

We can show that under the common time dependence assumption (24), periodic
time dependence of ã can be factorized, and that the use of (28) is justified in
obtaining λ statistically from data. Assume that there exists a positive constant
T such that ã(t + T ) = ã(t), t � 0. We may normalize w

(N)
i ’s in (24) so that

1

T

∫ T

0

ã(u) du = 1 holds. Then Ap(t) := A(t) − t =

∫ t

0

(ã(u) − 1) du is a periodic

function with period T , and (26) is

yC(t) = 1 −
∫
�+

e−w (t+Ap(t)) λ(dw). (29)
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If we collect data at each fixed time of the day, at tn = t0 +n T , n = 0, 1, 2, · · ·, then
(29) implies

yC(tn) = 1 −
∫
�+

e−w(nT+t0+Ap(t0)) λ(dw). (30)

Hence the effect of day-night difference in ã is absorbed in the translation of origin
of time t0 �→ t0 + Ap(t0), and the use of formula (28) is justified.

Jun’07 Sep’07 Dec’07 Mar’08 date

500,000

ranking

Fig 2:

Fig. 2 is a plot of Amazon.co.jp rankings for a book over a year [15]. The data
was taken manually for a year starting in May 2007, at 21:00 each day. As seen
in Fig. 2, for a relatively unpopular book, a book which sells less than a copy per
week, ranking fall (increase in number) steadily and smoothly at several hundred
thousands for much of the time, but once in a while they make sudden jumps to
numbers around ten thousand. These occasional large discontinuous jumps near to
the top ranking correspond to the point of sales of the book [15].

To apply (28) or (30) to the data, we need to specify λ. A standard choice in
social and economic studies seems to be the Zipf’s law, defined by

w
(N)
i = a

(
N

i

)1/b

, i = 1, 2, · · · , N, (31)

for positive constants a and b. The corresponding N → ∞ weak limit is the (gener-
alized) Pareto distribution, defined by

λ([w,∞)) =

{ ( a

w

)b

w � a,

1 w < a.
(32)

Substituting (32) in (28), we have

yC(t) = 1 − e−at + (at)bΓ(1 − b, at). (33)

where Γ is the incomplete Gamma function defined by Γ(z, p) =

∫ ∞

p

e−xxz−1dx.

Using the data {xi | i = 1, 2, · · · , nd} of size nd = 77 at the leftmost arc in Fig. 2,
taken between May, 2007 and August, 2007, at 21:00 each day, and choosing to
minimize

E = E(N, a, b) =

nd∑
i=1

(xi − N yC(ti))
2

xi
, (34)
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we obtained the best fit for the parameter set

(N∗, a∗, b∗) = (8.15 × 105, 5.30 × 10−4, 0.767), (35)

with Emin = E(N∗, a∗, b∗) = 4.17 × 104. In particular, we have b∗ < 1, which
implies that amazon.co.jp earns dominantly from a small number of best hit books
[15], rather than the majority of books in the long tail, in contrast to the Amazon
bookstores fame as a successful long tail business model [1].

4.8 5 5.2 5.4 5.6 5.8

0.7

0.725

0.75

0.775

0.8

0.825

0.85

8 8.05 8.1 8.15 8.2 8.25 8.3 8.35

0.72

0.74

0.76

0.78

0.8

0.82

7.8 8 8.2 8.4 8.6

4.75

5

5.25

5.5

5.75

6

Fig 3:

Fig. 3 shows contour plots of E in (34), representing error estimates (confidence

intervals) for the parameters in (35): E(N, a, b) =
κ

nd

Emin , with κ defined (as usual)

by p = P[ χ2
nd

� κ ], where χ2
nd

is a random variable with chi-square distribution of
degree of freedom nd. The curves in the graphs correspond to the confidence level
of 90% , namely, p = 0.9. The three figures are cross sections of N = N∗, a = a∗,
b = b∗, respectively, in the 3-dimensional parameter space (N, a, b). Horizontal and
vertical axes are respectively a × 104 and b for the first figure, N × 10−5 and b for
the second figure, and N × 10−5 and a × 104 for the third figure. The dot in the
center of each figure is the best fit (35). Fig. 3 supports b < 1, a standard best hit
business model, rather than a long tail business model.

To see the stability of the parameters, a similar fit by adding to above mentioned
data of size 77 a data of size 21 at the rightmost arc in Fig. 2, taken between
November, 2007 and March, 2008, at 21:00 on every Saturday. The best fit is

(N∗, a∗, b∗) = (7.97 × 105, 5.93 × 10−4, 0.809). (36)

The solid curve in Fig. 2 shows the theoretical curve N yC(t) with yC(t) as in (33)
with parameters (36).

We have less data for amazon.com, the original Amazon online bookstore in USA.
Fig. 4 shows a data from Amazon.com, which obviously shows a similar behavior as
amazon.co.jp data Fig. 2.

3.3 Time change according to intensity measure, and title
listings of 2ch.net .

Fig. 5 shows a data from a web page for a list of subject titles at a collected bulletin
board 2ch.net. Each curve corresponds to the position of the title of a subject
(‘thread’) in the page of list of titles. See [14] for a description of how the order of
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Jan’10 May’10 Sep’10 date

1x106

2x106
ranking

Fig 4:

12:00 18:00 00:00 06:00 12:00

400

0 6 12 18 24

400

Fig 5:

the list of subject titles is organized at 2ch.net. In short, a thread title jumps to the
top of the list if and only if someone writes on the thread (a ‘response’), and the
jump occurs instantaneously. If one assumes that responses are independent and
random, then the time dependence of the thread list is a sample of the stochastic
ranking process. The data is taken by Y. Takeshima for 24 hours starting on Oct. 18,
2008, 12:00 JST, using his original data collection program (master thesis, [12]). The
vertical axis stands for the position in the list (the horizontal axis at the bottom
stands for the top of the list), and the horizontal axis is the time axis labelled in the
unit of hour. For clarity of the figure, 24 threads are chosen out of 697 threads, and
for each thread, shown is the part from the last jump of the thread until the end
of data collection. The second figure is a plot of same data as the first figure, but
each curve is shifted in the horizontal direction, so that all the curves starts from
the origin (0, 0).

If the jump rate of threads are constant, then the formula (28) for the homo-
geneous case should be applicable, and the curves, when shifted in the horizontal
direction so that the curves start from the origin (0, 0), should follow a single curve
defined by (28). As seen from the second figure in Fig. 5, the time dependence
of position of threads do not follow a single curve. Also, the first figure in Fig. 5
clearly indicates a violation of convexity (23) at around 21:00 and 00:00. We may
interpret the result as internet activities at 2ch.net being more active at night before
midnight, compared to deep in the night until early in the morning.
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Let us consider the factorization assumption of (24). Since the assumption is
neither of logical consequence of the model nor the established social fact, such
assumption should be tested by actual application of the formula to the data. Since
2ch.net is very ‘transparent’, concerning basic facts such as the number of threads
in a board or the records of response (jump) times, it is a useful website to test (24),
or any other possible practical assumptions.

For t � 0, let

S(N)(t) =

N∑
i=1

ν
(N)
i ((0, t]) (37)

and denote its right continuous inverse by

s(N)(t) = inf{s � 0 | S(N)(s) > t}. (38)

Let ã ∈ L1
loc(R+). For simplicity, assume further that

ã(t) > 0, t � 0. (39)

Then A(t) of (27) is strictly increasing, and the inverse function A−1 is continuous.

Theorem 5 ([12, Thm 5.3, Lem. 5.4]) Let ã ∈ L1
loc(R+), and assume (39). Put

Z(N) =
N∑

i=1

w
(N)
i (40)

and assume lim
N→∞

Z(N) = ∞. If, as in Proposition 4, there exists a probability

distribution λ on R+ such that (25) holds, then for each t � 0,

1

Z(N)
S(N)(t) → A(t), and s(N)(Z(N) t) → A−1(t), in probability, as N → ∞,

(41)
and

Y
(N)
C (s(N)(Z(N) t)) → yC(A−1(t)) = 1 −

∫
�+

e−w tλ(dw), (42)

in probability, as N → ∞, where Y
(N)
C is defined in (7). �

Fig. 6 shows the cumulative total number of jumps S(N)(t) in (37) up to time
t, for N = 697 threads at 2ch.net. The data is from the same board at same time
as the data for Fig. 5, collected by Y. Takeshima, and Fig. 6 is accumulated by
T. Kobayashi (master thesis, [12]). The dashed line denotes the hypothetical case
of constant jump rates. The data is consistent with the observation made for Fig. 5
that the activities (responses) are high at night before midnight, and low between
deep in the night to early in the morning.

Fig. 7 is a plot of the same data as Fig. 5, except that the horizontal axis
is measured by S(N)(t) of Fig. 6. Fig. 7 is a revised plot of the original one by
T. Kobayashi (master thesis, [12]). Compared with the second figure in Fig. 5, the
second figure in Fig. 7 is apparently closer to a single curve, which supports an
approximate validity of the common time dependence assumption (24).
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Using (41) in (26), with the Pareto distribution (32) for λ,

xC(t) = NyC(t) + 1 � N − N

∫
�+

e−w S(N)(t)/Z(N) λ(dw) =

N − Ne−S(N)(t)/(N1/bζN (1/b)) + (
S(N)(t)

ζN(1/b)
)b Γ(1 − b,

S(N)(t)

N1/bζN(1/b)
) =: x

(N)
b (S(N)(t)),

(43)

where ζN(z) =
N∑

i=1

1

iz
. Denote the data of size nd = 70140 given in Fig. 7 by (si, xi),

i = 1, 2, · · · , nd . We performed a statistical fit of the data to (43), by minimizing

E =

nd∑
i=1

(xi − x
(N)
b (si))

2

x
(N)
b (si)

, with N = 697, and obtained b = 0.872± 0.002 (90% CL).

Apparently, we have a good single parameter fit to the data, which suggests that
the practical assumption (24) is good.

We note that a smaller value of b was obtained for 2ch.net in [14] (with a different
set of data). The data used in [14] was small in size, because the data was collected
manually in those times, and also, to avoid influence of day-night activity difference,
the data was for a short time period, hence the result in [14] is less reliable compared
to the present result.

We also note that we have b < 1, consistently with observation for Amazon.co.jp,
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where we obtained b = 0.809. This shows that, as in Amazon.co.jp, the popularity
of subjects is concentrated on a small number of threads in 2ch.net.
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Abstract

Statistical learning theory and statistical mechanics have common mathematical structure,
where the log likelihood ratio function corresponds to the random Hamiltonian. However, the
log likelihood function has singularities which can not be approximated by any quadratic form,
resulting that it has been difficult to analyze its partition function. In this paper, we show
a singular limit theorem in statistical learning theory by using algebraic geometrical method
and introduce its application to a regression problem. In the main theorem we prove that the
asymptotic behaviors of generalization and training errors are determined by the two birational
invariants, the log canonical threshold and the singular fluctuation. In an application, we show
that the log canonical threshold can be obtained by recursive blow-ups and that the singular
fluctuation can be estimated by the empirical samples.

1 Introduction

It is well known that statistical learning theory and statistical mechanics have the

common mathematical structure, where the log likelihood function corresponds

to random Hamiltonian. However, there are two main differences between them.

Firstly, Hamiltonian in statistical learning theory is not a function but a random

process. Hence the partition function is a random variable. Secondly, the ground

state of the average Hamiltonian in statistical learning theory is not a single point

but an analytic set with singularities. By these mathematical differences, the behav-

iors of the random variables in statistical learning theory have been left unknown

[8, 19].

Recently, we proposed that several problems in statistical learning theory can

be resolved using algebraic geometrical method [20, 22]. It was difficult to study

the Boltzmann distribution in the original parameter space, however, resolution of

singularities [9, 4] enables us to construct statistical mechanics in the resolution

space.

In this paper, we show a singular limit theorem and its application to a concrete

regression problem. In the singular limit theorem, it is proved that asymptotic

behaviors of the generalization and training errors are determined by two birational

invariants. In an application, we show that the concrete value of the log canonical

threshold is obtained by recursive blow-ups and that the singular fluctuation can be

estimated from random samples.
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2 Statistical Learning Theory

Let X be an RN valued random variable which is subject to the probability distribu-

tion q(x)dx. Assume that Dn = (X1, X2, ..., Xn) is a set of random variables which

are independently subject to the same probability distribution as X. A statistical

model p(x|w) is defined as a probability density function of x ∈ RN for a given

parameter w ∈ W ⊂ Rd. Let ϕ(w) be a probability density function on an open set

W with compact support. The posterior distribution for 0 < β < ∞ is defined by

p(w|Dn)dw =
1

Z
exp(−βnHn(w)) ϕ(w) dw,

where Hn(w) is a random Hamiltonian

Hn(w) = − 1

n

n∑
i=1

log p(Xi|w),

and Z is a normalizing constant. Let Ew[ ] be the expectation value using

p(w|Dn)dw. The generalization error G and the training error T are respectively

defined by

G = −EX

[
log Ew[p(X|w)]

]
, (1)

T = − 1

n

n∑
i=1

log Ew[p(Xi|w)]. (2)

Since Ew[ ] is an expectation operator using random samples Dn, both G and T

are random variables. The functional variance is defined by

V =
n∑

i=1

{
Ew[(log p(Xi|w))2]− Ew[log p(Xi|w)]2

}
. (3)

In this paper, we show that G, T and V are asymptotically determined by two

birational invariants. Let

f(x,w) = log(q(x)/p(x|w)).

Also let

S = −EX [log q(X)],

Sn = − 1

n

n∑
i=1

log q(Xi).

Then the relative entropy

K(w) =

∫
q(x)f(x,w)dx

is a nonnegative function and

K(w) = 0 ⇐⇒ q(x) = p(x|w).

2



Moreover, the generalization and training errors are given by

G = S − EX

[
log Ew[exp(−f(X,w))]

]
, (4)

T = Sn − 1

n

n∑
i=1

log Ew[exp(−f(Xi, w))]. (5)

The functional variance is also rewritten as

V =
n∑

i=1

{
Ew[f(Xi, w)2]− Ew[f(Xi, w)]2

}
. (6)

Therefore asymptotic behaviors of G, T , and V are given by the statistical me-

chanical structure determined by f(x,w). In this paper, we assume that the set

{w ∈ W ; K(w) = 0} is a nonempty analytic set with singularities, resulting that

exp(−βnHn(w)) cannot be approximated by any gaussian distribution in general.

3 Two Birational Invariants

Let Ls(q) (s ≥ 2) be a real Banach space

Ls(q) = {f(x) ;

∫
|f(x)|sq(x)dx < ∞}.

Assume that w 7→ f(x,w) is an Ls(q)-valued analytic function on W . Then K(w)

is a nonnegative analytic function. By using resolution of singularities [9, 4], there

exist both a manifold M and a real analytic map g : M → W such that, in each

local coordinate of M,

K(g(u)) = u2k ≡ u2k1
1 u2k2

2 · · · u2kd
d , (7)

ϕ(g(u))|g′(u)| = uhb(u) ≡ uh1
1 uh2

2 · · ·uhd
d b(u), (8)

where k = (k1, k2, ..., kd) and h = (h1, h2, ..., hd) are sets of nonnegative integers,

|g′(u)| is the Jacobian determinant of w = g(u), and b(u) > 0. Let {α} be a set of

all local coordinates of M. The log canonical threshold λ is defined by

λ = min
α

d

min
j=1

(hj + 1

2kj

)
, (9)

where we put (hj +1)/kj = ∞ for kj = 0. Let {α∗} be the set of all local coordinates

in which the above minimum is attained. By using

K(g(u)) =

∫
S(x, g(u)) q(x)dx,

S(x, g(u)) ≡ e−f(x,g(u)) + f(x, g(u))− 1 ≥ 0,

and f(x, g(u)) is an analytic function of u, f(x, g(u))2 can be divided by u2k. In

other words, there exists a function-valued analytic function a(x, u) such that

f(x, g(u)) = a(x, u)uk.

3



Moreover, from K(w) = EX [f(X, w)], we have EX [a(X, u)] = uk. Let ξ(u) be a

gaussian random process on M which is uniquely determined by its expectation

and covariance,

Eξ[ξ(u)] = 0,

Eξ[ξ(u)ξ(v)] = EX [a(X, u)a(X, v)]− EX [a(X, u)]EX [a(X, v)].

The singular fluctuation ν is defined by

ν =
β

2
EξEX

[
〈a(X, u)2t〉 − 〈a(X, u)

√
t〉2

]
,

where 〈 〉 shows the expetation value over a renormalized posterior distribution,

〈F (u, t)〉 =

∑
α∗

∫
dt

∫
du∗ F (u, t) tλ−1 exp(−βt− β

√
tξ(u))∑

α∗
∫

dt
∫

du∗ tλ−1 exp(−βt− β
√

tξ(u))
,

where du∗ is a measure whose support is contained in the set {u ∈M; K(g(u)) = 0}.
Note that neither λ nor ν depends on the choice of desingularization (M, g), hence

they are birational invariants.

4 Main Theorem

The following is the main theorem of this paper and its short proof. The mathe-

matically rigorous proof is shown in [23, 22].

Theorem 1 The following asymptotic expansions hold as n →∞,

E[G] = S +
(λ− ν

β
+ ν

) 1

n
+ o(

1

n
),

E[T ] = S +
(λ− ν

β
− ν

) 1

n
+ o(

1

n
),

E[V ] =
2ν

β
+ o(1).

where o(n−α) shows a function of n which satisfies

lim
n→∞

sup n o(n−α) < ∞.

(Short Proof) Let us introduce a generating function,

Fn(α) = E
[
− log

∫
exp(−αf(X, w)− βnHn(w))ϕ(w)dw

]
,

where E[ ] shows the expectation value over X1, X2, .., Xn and X. Then, by using

eqs.(4),(5),(6), it immediately follows that

E[G] = S + Fn(1)− Fn(0), (10)

E[T ] = S + Fn−1(1 + β)− Fn−1(β), (11)

E[V ] = −nF ′′
n−1(β). (12)
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Therefore, there exist 0 < α∗, α∗∗, α∗∗∗ < 1 + β such that

E[G] = S + F ′
n(0) +

1

2
F ′′

n (0) +
1

6
F (3)(α∗), (13)

E[T ] = S + F ′
n−1(0) +

2β + 1

2
F ′′

n−1(0)

+
1

6

(
(1 + β)3F

(3)
n−1(α

∗∗)− β3F
(3)
n−1(α

∗∗∗)
)
. (14)

Since K(w) is an analytic function, we can apply resolution of singularities [9, 4] to

K(w), and obtain eq.(7),(8).

Let us define an empirical process on M,

ξn(u) =
1√
n

n∑
i=1

{a(Xi, u)− uk}.

Then the probability distribution of ξn(u) converges to that of the gaussian process

ξ(u) by using Prohorov’s theorem [16]. The gaussian process ξ(u) can be represented

by

ξ(u) =
∞∑

j=1

cj(u)gj

where {gj} are independent random variables and each gj is subject to the standard

normal distribution. Then

Eξ[ξ(u)ξ(u′)] =
∞∑

j=1

cj(u)cj(u
′).

The random Hamiltonian on the manifold M is represented by

nHn(g(u)) = nu2k −√nukξn(u).

To study the generatining function Fn(α), we need the asymptotic behavior of

Zn(s) =

∫
f(x,w)s exp(−βnHn(w))ϕ(w)dw,

where s ≥ 0 is a real value. For example,

F ′
n(0) = E

[Zn(1)

Zn(0)

]
, (15)

F ′′
n (0) = −E

[Zn(2)

Zn(0)

]
+ E

[Zn(1)

Zn(0)

]2

. (16)

Then by using the function w = g(u),

Zn(s) =
∑

α

∫
du a(x, u)susk+h exp(−βnu2k + β

√
nukξn(u))bα(u)

=
∑

α

∫ ∞

0

dt

∫
du

1

n
δ
( t

n
− u2k

)
a(x, u)susk+h

exp(−βt + β
√

tξn(u))bα(u),

5



where
∑

α shows the sum over all local coordinates and bα(u) ≥ 0 satisfies
∑

α bα(u) =

b(u). By using the asymptotic expansion of the Schwartz distribution δ(t/n − u2k)

for n → ∞ [20, 22, 23, 7, 10, 14, 15], there exists a Schwartz distribution Dα(u)

such that
∑

α

1

n
δ
( t

n
− u2k

)
usk+h bα(u) ∼= (log n)m−1

nλ+s/2
tλ−1+s/2

(∑
α∗

Dα∗(u)
)
,

where λ > 0 is the log canonical threshold and m is the maximum number of j which

attains the minimum in eq.(9). Also
∑

α∗ shows the sum over all local coordinates

that attain the above minimum and the support of Dα∗(u) ≡ du∗ is contained in

the set {u ∈M; K(g(u)) = 0}. Hence

Zn(s) ∼= (log n)m−1

nλ+s/2

(∫
D(u, t)ts/2 exp(β

√
tξ(u))

)
.

where
∫ D(u, t) is defined by the integration over the manifold,

∫
D(u, t) =

∑
α∗

∫ ∞

0

dt

∫
duDα∗(u) tλ−1 exp(−βt).

Let us define

Ẑ(q, r, s) =

∫
D(u, t) ξ(u)q tr/2 a(x, u)s exp(β

√
tξ(u)).

Then

Zn(s) ∼= (log n)m−1

nλ+s/2
Ẑ(0, s, s). (17)

Firstly, since EX [a(X, u)] = uk,

EX [Ẑ(0, 1, 1)] = Ẑ(0, 2, 0).

Secondly, by using the partial integration of t∫ ∞

0

dt tλe−βt+β
√

tξ(u) =
λ

β

∫ ∞

0

dt tλ−1e−βt+β
√

tξ(u)

+
1

2

∫ ∞

0

dt tλ−1/2ξ(u)e−βt+β
√

tξ(u),

it follows that

Ẑ(0, 2, 0) =
λ

β
Ẑ(0, 0, 0) +

1

2
Ẑ(1, 1, 0).

And lastly, by using the partial integration over the gaussian process ξ(u),

Eξ

[Ẑ(1, 1, 0)

Ẑ(0, 0, 0)

]
= Eξ

[∫
D(u, t)

( ∞∑
j=1

cj(u)gj

) t1/2 exp(β
√

tξ(u))∫ D(u′, t′) exp(β
√

t′ξ(u′))

]

= Eξ

[∫
D(u, t)

( ∞∑
j=1

cj(u)
∂

∂gj

) t1/2 exp(β
√

tξ(u))∫ D(u′, t′) exp(β
√

t′ξ(u′))

]

= βEXEξ

[Ẑ(0, 2, 2)

Ẑ(0, 0, 0)

]
− βEXEξ

[Ẑ(0, 1, 1)

Ẑ(0, 0, 0)

]2

(18)

= 2ν, (19)
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where we used Eξ[ξ(u)ξ(u′)] = EX [a(X, u)a(X, u′)] on the set {u; K(g(u)) = 0}.
Then by using eqs.(15),(16),(17), we can show

F ′
n(0) ∼= (

λ

β
+ ν) · 1

n
,

F ′′
n (0) ∼= −2ν

β
· 1

n
,

|F ′′′
n (α)| ∼= 1

n3/2
.

Therefore, we obtain

E[G] = S + (
λ− ν

β
+ ν)

1

n
+ o(

1

n
), (20)

E[T ] = S + (
λ− ν

β
− ν)

1

n
+ o(

1

n
), (21)

E[V ] =
2ν

β
+ o(1), (22)

which completes the proof (Q.E.D.)

5 Application to Statistical Learning Theory

5.1 Log Canonical Threshold

Let us study an application to statistical learning theory. A statistical model of

x = (x1, y1) for a parameter w = (a, b, c, d) is defined by

p(x|w) =
q0(x1)√

2π
exp(−1

2
(y1 − F (x1, w))2),

where q0(x1) is a probability density function of x1 which satisfies
∫

xn
1q0(x1)dx1 < ∞ (n = 0, 1, 2, 3, · · · ).

and

F (x1, w) = aσ(bx) + cσ(dx),

where

σ(x) = ex − 1.

Assume that the true distribution is given by

q(x) = p(x|0, 0, 0, 0).

Then it is easy to show that there exist c1, c2 > 0 such that

c1K0(w) ≤ K(w) ≤ c2K0(w),

where

K0(w) = (ab + cd)2 + (ab2 + cd2)2.

7



Therefore the log canonical threshold of K(w) is equal to that of K0(w). Resolution

of singularities can be found as follows.

(1) Firstly a blow-up with center V(b, d) ⊂ V(K0) is tried. By b = b1d,

K0(w) = d2{(ab1 + c)2 + d2(ab2
1 + c)2}.

Since K0 is symmetric for (b, d), we need not try d = bd1. The transform c1 = ab1+c

is an analytic isomorphim and its Jacobian determinant is equal to one.

K0(w) = d2{c2
1 + d2(ab2

1 + c1 − ab1)
2}.

(3) The second step is the blow-up with center V(c1, d) ⊂ V(K0). In the first local

coordinate, by d = c1d1, it follows that

K0(w) = c4
1d

2
1{1 + d2

1(ab2
1 + c1 − ab1)

2},
which is normal crossing. In the second local coordinate, by c1 = c2d, it follows that

K0(w) = d4{c2
2 + (ab2

1 + c2d− ab1)
2},

which is not normal crossing.

(4) The third step is the blow-up with center V(a, c2) ⊂ V(K0). By a = c2a1, K0 is

made normal crossing. By c2 = ac3, it follows that

K0(w) = d4a2{c2
3 + (b2

1 + c3d− b1)
2}

which is not yet normal crossing.

(5) The fourth step is the blow-up with center V(b1, c3) ⊂ V(K0). By b1 = c3b2, K0

is made normal crossing. By c3 = b1c4, it follows that

K0(w) = a2b2
1d

4{c2
4 + (b1 + c4d− 1)2}, (23)

which is not yet normal crossing.

(6) The last step is the blow-up with V(b1 − 1, c4) ⊂ V(K0). b1 − 1 = c4b2 makes

KL0 normal crossing. Also c4 = c5(b1 − 1) results in

K0(w) = d4a2b2
1(b1 − 1)2{c2

5 + (1 + c5d)2},
which is normal crossing. The last coordinate is given by

a = a,

b = b1d,

c = a(b1 − 1)b1c5d− ab1,

d = d,

whose Jacobian determinant is given by

|g′| = |ab1(b1 − 1)d2|.
Therefore the log canonical threshold is λ = 3/4.

8



5.2 Application to statistics

Unfortunately, the singular fluctuation of the general still can not be calculated.

However, it can be estimated from random samples from V . Hence we can estimate

E[G] from E[T ] and E[V ] without any knowledge of q(x) by equation of state in

statistical learning,

E[G] = E[T ] +
β

n
E[V ] + o(

1

n
).

This equation holds for an arbitrary (q(x), p(x|w), ϕ(w)), which can be understood

as the equation of state for Boltzmann distribution p(w|Dn) in statistical learning

theory. The equation of state in ideal gas is useful in many sciences, whereas the

equation of state in learning theory is useful in statistical sciences.

6 Conclusion

In this paper, a singular limit theorem in statistical learning theory was proved and

an application to a concrete regression model was introduced.

References

[1] H. Akaike. A new look at the statistical model identification. IEEE Trans. on Automatic Control,
Vol.19, pp.716-723, 1974.

[2] S. Amari, A universal theorem on learning curves, Neural Networks, Vol. 6, No.2, pp.161-166, 1993.

[3] M.Aoyagi, S.Watanabe. Stochastic complexities of reduced rank regression in Bayesian estimation.
Neural Networks, Vol.18, No.7, pp.924-933, 2005.

[4] M.F. Atiyah. Resolution of singularities and division of distributions. Communications of Pure and
Applied Mathematics, Vol.13, pp.145-150. 1970.

[5] H. Cramer. Mathematical methods of statistics. Princeton University Press, 1949.

[6] M.Drton, B. Sturmfels, and S. Sullivant, Lecures on Algebraic Statistics. Birkhäuser, Berlin, 2009.
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