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INTRODUCTION

Forage production is indispensable to ruminant pro-
duction from the viewpoint that ruminant animals con-
vert plant fibers into milk and meat for human consump-
tion (Minson, 1990).  Basic growth analysis has been 
considered a simple method to investigate the plant growth 
(Blackman, 1919;  Watson, 1952;  Radford, 1967;  Hunt, 
1990).  There are reports of introducing viewpoints of 
mechanics into basic growth analysis (Shimojo, 2007;  
Shimojo et al., 2006, 2007a, 2007b, 2008, 2009a, 2009b, 
2009c, 2009d, 2009e), where modified differential equa-
tion for growth is taken up to investigate some aspects of 
growth phenomena.  This problem, however, requires 
reexamination with more detailed explanation and self–
criticism based on mathematics.  

The present study was designed to investigate growth 
dynamics and related problems by analyzing mathemati-
cal properties of whole solutions to modified differential 
equation for growth.  

MATHEMATICAL PROPERTIES OF MODIFIED 
DIFFERENTIAL EQUATION FOR GROWTH

Modified differential equation for growth
Differential equation for relative growth rate (RGR) 

of a forage plant is given by 

RGR = (1/W )·(dW/dt) = rt , 	 (1)

where W = weight of a forage plant,  t = time,  rt = RGR.  
Solving differential equation (1) leads to basic growth 
function (2), 

W = W0 · exp(rt · t ), 	 (2)

where W0 = W at t = 0.  
Absolute growth rate (AGR) and growth acceleration (GA) 
are given by

AGR = dW/dt = rt · W0 · exp(rt · t ),	 (3)

GA = d2W/dt2 = rt
2 · W0 · exp(rt · t ).	 (4)

Relating basic growth function (2), its first derivative (3) 
and second derivative (4) gives 

dW/dt = d2W/dt2 = rt ,	 (5)
   W        dW/dt

therefore, 

(dW/dt)2 = W · (d2W/dt2 ).	 (6)
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Differential equation for growth (6) takes a modified 
form, when compared with differential equation (1) of 
the original form.  

Extended solutions to modified differential equa-
tion for growth

The normal solution to modified differential equation 
(6) is given by

dW/dt =   W · (d2W/dt2 ), 	 (7) 

→  W = W0 · exp(rt · t ). 	 (2)

When based on mathematical rules, extracting the 
square root allows both positive and negative dW/dt to 
appear.  This is the first extension that is given by

dW/dt = ±   W · (d2W/dt2 ), 	 (8)

→  W = W0 · exp((±rt ) · t ). 	 (9)

In addition, positive and negative dW/dt seem to be 
given by other terms if given ± signs.  This is a logical 
leap, but might be expected to give some results to growth 
dynamics.  Thus, 

dW/dt = ±   W · (d2W/dt2 )

           = ±   (W0 · exp(rt · t )) · (rt
2 · W0 · exp(rt · t ))

 
           = ±   (W0 )

2 · (rt )
2 · (exp(rt · t ))2

           = (±W0 )
 · (±rt ) · (±exp((±rt ) · t )),    (10)

therefore, 

W = (±W0 )
 · (±exp((±rt ) · t )).                        (11)

Every term except t in function (11) is given ± signs, and 
function (11) includes function (9).  

Positive weight conservation related to time and 
space
Positive weight conservation related to time

The following two functions are chosen from function 
(11) to investigate positive weight conservation related 
to time.  

W = W0 · exp(rt · t  ), 	  (2)   

W = (–W0) · exp(rt · t). 	 (12)

Function (2) expresses the weight increase in a forage 
plant.  Function (12) expresses a corresponding reduc-
tion of weight, where the negative sign shows that sub-
stances are deprived from environment to be absorbed 
by the plant for its growth.  The sum of functions (2) and 
(12) gives zero, the weight conservation that makes us 
think of energy conservation.  

However, the actual weight of environmental sub-

stances is given by the positive value.  The negative weight 
problem in function (12) is avoided by the following func-
tion (Shimojo et al., 2009c), 

W = W0 · exp((– rt ) · (– t )). 	 (13)

The negative rt in function (13) has already appeared in 
functions (9) and (11).  However, going back to the past, 
which is given by negative t, appears for the first time in 
function (13).  This shows that the existence of the past 
is required to ensure the positive weight of environmen-
tal substances that are used for the plant growth.  The 
problem of time reversal in function (13) is taken up in 
the section of symmetries in time and in space. 
 
Positive weight conservation related to space

Replacing time (t) with space (x, y, z) in function 
(13) gives the following weight–space relationships,

W = W0 · exp((– rx ) · (– x )),	 (14)

W = W0 · exp((– ry ) · (– y )),	 (15)

W = W0 · exp((– rz ) · (– z )).	 (16)

These three functions show that the existence of the 
environmental space surrounding the plant is required 
to ensure the positive weight of substances that are used 
for the plant growth.  The problem of space inversion in 
functions (14), (15) and (16) is taken up in the section 
of symmetries in time and in space.  

Symmetries in time and in space
Inserting function (13) into function (11) and apply-

ing this operation to space give 

W = (±W0) · (±exp((±rt ) · (± t ))),	 (17)

W = (±W0) · (±exp((±rx ) · (± x ))),	 (18)

W = (±W0) · (±exp((±ry ) · (± y ))),	 (19)

W = (±W0) · (±exp((±rz ) · (± z ))).	 (20)

These four functions show theoretical symmetries both 
in time and in space with respect to ± signs.  

However, symmetries actually break in both cases.  
We discuss time reversal and space inversion based on the 
following two coordinates, 

(t, x, y, z),    (21)               (– t, – x, – y, – z),    (22)

where normal time and space for (21),  time reversal and 
space inversion for (22).  
The symmetry in time actually breaks, because time passes 
from the past to the future.  This is probably due to the 
fact that the information about things surrounding us spa-
tially moves forward in time to reach us.  What we see 
now is a phenomenon that took place in the past.  Therefore, 
function (13), 
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W = W0 · exp((– rt ) · (– t )), 	 (13)

is rewritten as follows so as to ensure the passage of time 
from the past to the future, 

W = W0 · exp(rt  · ( t +τ))

     = exp(rt  ·τ) · W0 · exp(rt  · t ),	 (23)

where τ > 0,  –τ <– t <– 0.  
Comparing function (23) with function (2),

W = W0 · exp(rt · t ), 	 (2)

shows that moving along the time axis does not change 
the basic form of function.  This is related to the energy 
conservation that is one of the principles in nature.  

The space inversion gives upside down, front–back 
reversal and left–right reversal.  These conserve symme-
tries in space, if there is not the effect of gravity.  However, 
the existence of gravity determines the upper and lower 
sides, leading to a breakdown of symmetry in space.  

Mathematical expression of converting environ-
mental substances into forage plant

Functions (24) and (2) are chosen from function (17) 
to express the conversion of environmental substances 
into plant, 

W = (–W0) · (–exp(rt · t )),	 (24)

W = W0 · exp(rt · t ). 	 (2)

Function (24) shows mathematically that substances 
deprived from the environment are converted into forage 
plant, as shown by the equality with function (2) that 
expresses the plant growth.  

Hypothetic mixture of positive RGR and negative 
RGR

We take up functions (2) and (25), which are chosen 
from function (17), in order to discuss what a mixture of 
± rt might be expected to give, 

W = W0 · exp(rt · t ). 	 (2)

W = W0 · exp((–rt ) · t ).	 (25)

Function (2) expresses the increase in weight, and func-
tion (25) expresses the decrease in weight.  We set up a 
hypothesis, though it looks strange, that rt in both func-
tions is a mixture of positive rt and negative rt .  This oper-
ation is given by function (26), from which, function (2) 
and function (25) will be derived as special cases.  Thus, 

W = W0 · exp((α· rt +β· (–rt )) · t )

     = W0 · exp((α–β) · rt  · t ),	 (26)

where α > 0,  β > 0.  

Values of (α–β) implying metabolic turnover
In function (26), substituting 1 for (α–β) gives func-

tion (2), and substituting –1 for (α–β) gives function 
(25).  There is a degradation of metabolites and degraded 
metabolites are partly lost from the plant, followed by 
compensation by the synthesis.  This is metabolic turn-
over, and applying this to function (26) leads to that α 
and β imply coefficients of synthesis and degradation for 
loss, respectively.  The change in weight is, therefore, given 
by the difference between them.    There is a weight gain 
when synthesis exceeds degradation for loss, (α–β) = 
1.  In the opposite case, (α–β) = –1, there is a weight 
loss.  When (α–β) = 0, this gives a dynamic equilibrium.    
Therefore, in basic growth function, (α–β) takes values 
of (–1, 0, 1).  This suggests, boldly writing at the risk of 
making mistakes, that function (26) is associated with 
metabolic turnover.  

Extended values of (α–β) implying compensatory 
growth and homeostasis

We hypothesize in function (26) that (α–β) is 
extended to take the following values, 

(α–β)<1,    therefore,  (α–β) · rt < rt ,             (27)

1<(α–β),    therefore,  rt <(α–β) · rt .              (28)

When there occurs a shift from (2) to (27), this may be 
caused by reduced activities of photosynthesis and nutri-
ents uptake by the plant, 

(α–β) · rt = rt ,    (2)    →    (α–β) · rt < rt .       (27)

If there is a shift from (27) to (28), this may be a compen-
satory growth that is caused by increased growth activi-
ties higher than (2), 

(α–β) · rt < rt ,   (27)   →   rt <(α–β) · rt .        (28)

When there occurs a shift from (29) to (30), this may be 
caused by homeostasis that tries to maintain a stable con-
dition of the plant, 

(α–β) · rt < 0 ,   (29)    →   (α–β) · rt = 0 .        (30)

Suggested analogies between growth dynamics and 
laws of motion
Suggested analogy to Newton’s equation of motion

Modified differential equation for growth (6) looks 
like Newton’s equation of motion (31), 

dp/dt = m · (d2r /dt2),	 (31)

where p = momentum,  t = time,  m = mass of an object,  
r= position,  dp/dt = force, d2r /dt2 = acceleration of 
motion, 

(dW/dt)2 = W · (d2W/dt2 ),	 (6)

where W = weight of a forage plant,  t = time,  dW/dt = 
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AGR (absolute growth rate),  d2W/dt2 = GA (growth accel-
eration).  

There seems to be an analogy in appearance between 
function (31) for motion and function (6) for growth, a 
term–to–term correspondence that is suggested between 
the two functions.  Since dp/dt is a force of motion, (dW/
dt)2 may be a force of growth.  

 
Suggested analogy to Newton’s law of universal gravi-
tation

We choose functions (32) and (33) from function 
(10), 

dW/dt  = W0 · rt · exp(rt · t),                                 (32)

dW/dt  = (–W0) · rt · exp(rt · t).                           (33)

The product of functions (32) and (33) gives 

(dW/dt)2 = (W0 · rt · exp(rt · t)) · ((–W0) · rt · exp(rt · t))

                = (– rt
2

 ) · (W0 · exp(rt · t)) · (W0 · exp(rt · t)).

(34)
 

Function (34) may be interpreted as follows.  (a) There 
are two terms of W0·exp(rt · t); if the first one is animal 
body weight, then the second one corresponds to the feed 
weight that is expressed in terms of animal body weight.  
(b) The value of (rt)

2 is constant, because rt is calculated 
as a constant value so as to give functions (32) and (33).  
(c) (dW/dt)2 is regarded as a force, as shown in the sub-
section of suggested analogy to Newton’s equation of 
motion.  

Newton’s law of universal gravitation (F) is given by 

F = (– G · M· m)/d2,                                              (35)

where G = gravitational constant,  M and m = mass of the 
two objects,  d = distance between the two objects.  

Comparing equation (34) with equation (35) sug-
gests that there is a virtual force of attracting that might 
operate between the animal and the feed without the 
effect of distance.  This interpretation is, boldly writing at 
the risk of making mistakes, based on an analogy that is 
suggested between function (34) and the numerator of 
function (35).  When both the animal (A) and the feed (F) 
are transported from some other places, inserting dis-
tances that they are transported (dA and dF) into function 
(34) leads to 

(dW/dt)2 = (– rt
2

 ) · (W0 · exp(rt · t) · dA) 

                                 ·  (W0 · exp(rt · t) · dF) / (dA · dF).             (36)

Function (36) suggests three things.  (i) The higher the 
weight and relative growth rate of the animal are, the 
stronger the virtual attracting force operating between the 
animal and the feed is.  (ii) The content in round brackets 
in the right–hand side shows something like food–mileage 
that is given by the product of weight and distance.  (iii) 

Distances can be reduced between the numerator and 
the denominator in the right–hand side, being capable of 
inserting an arbitrary distance that allows both self–suffi-
ciency and dependence on imports to occur in animal 
agriculture.  

Conclusions
It is suggested from the present study that growth 

dynamics and related problems result from conservation, 
symmetry and analogy in whole solutions to modified dif-
ferential equation for growth.  
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