
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

CAP representations of inner forms of Sp(4)
with respect to Klingen parabolic subgroup

Yasuda, Takanori
Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/18725

出版情報：MI Preprint Series. 2010-36, 2010-12-08. 九州大学大学院数理学研究院
バージョン：
権利関係：



MI Preprint Series
Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

CAP representations of inner

forms of Sp(4) with respect to

Klingen parabolic subgroup

Takanori Yasuda

MI 2010-36

( Received December 8, 2010 )

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN



CAP representations of inner forms of Sp(4) with
respect to Klingen parabolic subgroup

Takanori Yasuda

Abstract

The unitary group of the hyperbolic hermitian space of dimension two
over a quaternion division algebra over a number field is a non-quasisplit
inner form of Sp(4), and does not have a parabolic subgroup corresponding to
the Klingen parabolic subgroup. However, it has CAP representations with
respect to the Klingen parabolic subgroup. We construct them by using the
theta lifting from the unitary groups of one-dimensional (-1)-hermitian spaces
and estimate their multiplicities in the discrete spectrum. In many cases, their
multiplicities become bigger than 1.

1 Introduction

The purposes of this paper are, for an inner form G of Sp(4) defined over a number
field k,

1. construction of a certain class of non-tempered automorphic representations
and evaluation (of lower bounds) of their multiplicities in the discrete spec-
trum, and

2. the description of the multiplicities expected from the evaluation using the
formulation of the Arthur’s multiplicity conjecture.

According to the Arthur’s conjecture [Art89], for any irreducible non-tempered au-
tomorphic representation π, there exists an A-parameter

ψ : Lk × SL(2,C)→ LG = SO(5,C),

where Lk is the hypothetical Langlands group of k, satisfying ψ|SL(2,C) ̸= 1 such
that π is expressed as an element of its global A-packet. When π is isomorphic to
the restricted tensor product

⊗
v πv of local irreducible representations πv, each πv

is also expressed as an element of the local A-packet of the local A-parameter ψv
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obtained by ψ. Since Sp(4) and G share the set of A-parameters there should exist
the global and local A-packets for Sp(4) associated to ψ too. At this time, at almost
all place of k, the local A-packets of Sp(4) and G coincide.

For a general reductive group, an irreducible representation appearing in the
residual spectrum is a typical example of non-tempered automorphic representation.
The residual spectrum is the subspace of the space of the L2-automorphic forms
generated by the non-cuspidal irreducible automorphic representations appearing in
the discrete spectrum. The irreducible decomposition of the residual spectrum for
Sp(4) is completely determined [Kim95]. In the case where k is totally real, part of
the irreducible representations appearing in the result of [Kim95] can be rewritten
by representations given by theta lifting [KN94]. For comparison with the case of
G we quote the latter here.

Theorem 1.1 ([KN94]). Let k be totally real. An irreducible representation appear-
ing in the residual spectrum for Sp(4) is one of the following irreducible representa-
tions.

(1) The trivial representation 1Sp(4) of Sp(4,A). Here A = Ak denotes the adele
ring of k.

(2) the theta lift R(V ) from the trivial representation of the orthogonal group O(V,A)
of a 2-dimensional non-hyperbolic quadratic space V over k.

(3) The unique irreducible quotient of Ind
Sp(4,A)
PS(A) (σ| det |1/2A ) for an irreducible self-

dual cuspidal representation σ of GL(2,A) whose standard L-functions L(s, π)
do not vanish at s = 1/2.

(4) The unique irreducible quotient of Ind
Sp(2,A)
PK(A) (ωk′/k| · |A⊗π) for a quadratic char-

acter ωk′/k, which is associated to a non-trivial quadratic extension k′ of k, and
an irreducible unitary representation π of SL(2,A) such that

σ ⊂ π(Ω)|SL(2,A)

for some character Ω of A×
k′/k

× not isomorphic to its conjugate. Here π(Ω)
is the automorphic representation of GL(2,A) given in [LL79, Prop. 6.5] and
[GJ78, p.491].

Here PS and PK are the Siegel and Klingen parabolic subgroups of Sp(4), respectively.
The respective Levi factors MS and MK satisfy that MS ≃ GL(2) and MK ≃ Gm ×
SL(2). Each irreducible representation in the above appears with multiplicity one in
the discrete spectrum.

In this paper, we treat only the case where G is expressed by the unitary group
of the 2-dimensional hyperbolic hermitian space over a quaternion division algebra
D over k. In this case, as for the irreducible decomposition of the residual spectrum
the following is obtained.
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Theorem 1.2 ([Yas07]). Let k be totally real. An irreducible representation appear-
ing in the residual spectrum for G is one of the following irreducible representations.

(1) The trivial representation 1G of G(A).

(2) The theta lift R(V ) from the trivial representation of the group U(V )(A) of adele
points of the unitary group of a (-1)-hermitian (right) D-space V of dimension
one.

(3) The unique irreducible quotient of Ind
G(A)

P ′
S(A)(σ|νD|

1/2
A ) for an irreducible self-dual

cuspidal representation σ of D×(A) whose standard L-functions L(s, π) do not
vanish at s = 1/2.

Here P ′
S is the Siegel parabolic subgroup of G, where its Levi factor M ′

S is isomorphic
to D×, and νD the reduced norm of D. In the case of (1) and (3), the multiplicity of
each representation is one. In the case of (2), the multiplicity of each representation
is 2♯SD−2 where SD is the set of places of k at which D is ramified.

When comparing the irreducible decomposition of the residual spectra of Sp(4)
and G, it is noticed that similar forms of representations appear. However there
are no representations for G corresponding to those in Theorem 1.1 (4) for Sp(4).
This is because there is no proper parabolic subgroup of G over k containing the
correspondence of the Klingen parabolic subgroup of Sp(4) by an inner twist. Never-
theless, the representations in Theorem 1.1 (4) must be expressed as elements of the
A-packets of some A-parameters, and there should exist also the A-packets for G of
these A-parameters. Therefore, if they exist, they consist of cuspidal representations
of G(A), which are expressed in the forms defined as follows.

Definition 1.3. Let π ≃
⊗

v πv be an irreducible cuspidal representation of G(A).
We say that π is a CAP representation with respect to PK if there exist an irre-
ducible cuspidal representation σ ≃

⊗
v σv of SL(2,A) and a character ω =

∏
v ωv

of A×/k× such that for almost all v, πv is isomorphic to a composition factor of

Ind
Sp(2,kv)
PK(kv)

(ωv| · |v ⊗ σv).

Remark that because G is isomorphic to Sp(4) over kv for almost all v, PK is
regarded as a subgroup over kv of G for such v, and the above definition makes
sense.

We make use of theta lifting to construct such CAP representations. The theta
correspondences from O(2) to Sp(4) become automorphic representations appearing
in Theorem 1.1 (4). Therefore, the target representations are constructed by the
theta lifting from the unitary group of a skew-hermitian space over D of dimension
one to G, which is an inner form version of the theta lifting from O(2) to Sp(4). In
fact, writing U0(V ) for the connected component of the unit of the unitary group
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U(V ) of a skew-hermitian space V over D of dimension one, a non-zero irreducible
automorphic representation θ(V, χ, S) of G can be defined for an irreducible auto-
morphic representation (character) of U0(V ) and a set S of places of k which consists
of finite elements and satisfies a certain condition (Theorem 6.1). As special cases,
the representations in Theorem 1.2 (2) (the case that χ = 1, S = ∅) and the in-
ner form version of cuspidal representations constructed in [HPS79] (the case that
χ = 1, S ̸= ∅) can be dealt with. As for the multiplicity m(θ(V, χ, S)) of θ(V, χ, S)
in the discrete spectrum, we have the following estimate.

Theorem 1.4.

m(θ(V, χ, S)) ≥

 2♯(Sχ∩SD)−1 SD ̸⊂ Sχ, SD ∩ Sχ ̸= ∅,
2♯SD−2 SD ⊂ Sχ,
1 SD ∩ Sχ = ∅,

where Sχ = {v |χ2
v = 1}.

This estimate is obtained by the failure of the Hasse’s principle for skew-hermitian
spaces over D. In view of the result of the multiplicities of representations in Theo-
rem 1.2 (2), it is expected that the above inequality sign is exchanged for the equal
one. If the equality is satisfied then the value in the right hand side should be de-
scribed by the formulation in the Arthur’s multiplicity conjecture. Therefore, under
this assumption the author inspected how local A-packets, S-groups and pairings
between them, etc. should be described in the formulation. As a consequence, it
turns out that they can be described as they satisfy some necessary conditions (§ 7).

2 Inner form G of Sp(4)

Let k be a number field, and A = Ak its adele ring. We write A∞,Af for the
infinite and finite components of A, respectively. | |A denotes the idele norm of A×.
For any place v of k, we write kv for the completion of k at v and | |v for the v-adic
norm. If v is non-archimedean, Ov denotes the maximal compact subring of kv.

k-group Sp(2) will be realized by

Sp(2) =

{
g ∈ GL(4)

∣∣∣∣ g(
12

−12

)
tg =

(
12

−12

)}
.

Fix a minimal k-parabolic subgroup P0 of Sp(4) by

P0 =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗

 ∈ Sp(4)

 ,

and a Levi factor M0 of P0 consisting of diagonal matrices. The unipotent radical
of P0 is denoted by U0. We define the Siegel parabolic subgroup PS = MSUS and
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the Klingen parabolic subgroup PK = MKUK of Sp(4) as

MS =

{(
a 0
0 ta−1

) ∣∣∣∣ a ∈ GL(2)

}
,

US =

{(
1 b
0 1

) ∣∣∣∣ b ∈ Sym(2)

}
,

and

MK =




t
a b

t−1

c d


∣∣∣∣∣∣∣∣ t ∈ Gm,

(
a b
c d

)
∈ SL(2)

 ,

UK =




1 a b c
1 c

1
−a 1


∣∣∣∣∣∣∣∣ a, b, c ∈ Ga

 .

Let R be a quaternion algebra over a local or global field F . We write νR, τR and
∗ for the reduced norm, the reduced trace and the main involution of R, respectively.
We write R− = {x ∈ R | τR(x) = 0}. When F = k, we write SR for the set of places v
of k at which R is ramified. This set has finite and even elements. M(n,A) denotes
the algebra of all n × n-matrices over a ring A. For a = (ai,j) ∈ M(n,R), write
τa = (∗aj,i). Let D be a quaternion division algebra over k. On W = D⊕2 viewed
as a left D-module, a hyperbolic (D, ∗)-hermitian form hW is defined by

hW ((x1, x2), (y1, y2)) = (x1, x2)

(
0 1
1 0

)(∗y1
∗y2

)
(∀x1, x2, y1, y2 ∈ D). (2.1)

Its unitary group G = G(W,hW ) is a k-group which associates

G(A) =

{
g ∈ GL(2, R⊗k A)

∣∣∣∣ g(
0 1
1 0

)
τg =

(
0 1
1 0

)}
to each (abelian) k-algebra A.

There is a p, q ∈ k× such that D ≃ (p, q)k [Sch85, p.75]. Then G and Sp(4)
are isomorphic over the quadratic extension K = k(

√
p) of k and moreover G is an

inner form of Sp(4). Define a k-parabolic subgroup PS = MSUS of G as

MS =

{
m(x) :=

(
x 0
0 ∗x−1

) ∣∣∣∣ x ∈ D×
}
,

US =

{
u(y) :=

(
1 y
0 1

) ∣∣∣∣ y ∈ D−

}
.

Via an inner twist this parabolic subgroup coincides with the Siegel parabolic sub-
group of Sp(4). Therefore we use the same notation PS as the case of Sp(4). The
character MS ∋ m(x) 7→ νD(x) ∈ Gm is again denoted by νD. PS is a minimal and
maximal proper parabolic subgroup of G defined over k.
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The k-split component of the center of MS is

AS =

{(
t 0
0 t−1

) ∣∣∣∣ t ∈ Gm

}
.

LetWG denote the Weyl group ofG, which consists of two elements. A representative
of the non-trivial element of WG is chosen by

w0 =

(
0 1
1 0

)
∈ G(k).

If v ̸∈ SD, G(kv) can be identified with Sp(4, kv). For every place v of k, we fix
a maximal compact subgroup Kv of G(kv) and a Haar measure dgv such that

Kv =


Sp(4,Ov) for a non-archimedean v ̸∈ SD,
Sp(4,R) ∩O(4) ≃ U(2) for a real v ̸∈ SD,
Sp(1, 1) ∩ Sp(2) ≃ Sp(1)× Sp(1) for a real v ∈ SD,
Sp(4,C) ∩ U(4) ≃ Sp(2) for a complex v ̸∈ SD,

and the volume of Kv with respect to dgv is equal to 1 for almost all non-archimedean
v. We define a maximal compact subgroup K of G(A) by

∏
v Kv and a Haar measure

dg of G(A) by
∏

v dgv.

3 Construction of automorphic forms of G

3.1 Automorphic forms of the unitary group of a (-1)-hermitian
space

Fix a non-zero η0 ∈ D−. Define a non-degenerate (-1)-hermitian right space (V, hV )
over D as V = D and

hV (x1, x2) = ∗x1 · η0 · x2 (x1, x2 ∈ D).

G(V ) and G0(V ) denote the unitary group and the special unitary group of V
defined over k, respectively. When emphasizing V as a space of k-valued points,
it will be written by Vk. Also Vv stands for the completion of V at a place v and
VA = V ⊗k A. In particular, we will often use the notation G(Vk), G(Vv), G(VA)
instead of G(V )(k), G(V )(kv), G(V )(A), respectively. Similar notation is also used
for G0(V ). It is known that G(Vk) = G0(Vk) and G(Vv) = G0(Vv) for any v ∈ SD.
Set k′ = k(η), which is a quadratic extension of k, and define a quadratic space
(T, bT ) over k as T = k′ and bT = Nk′/k where Nk′/k is the norm of k′/k. We may
make the following identification:

G(Vv) =

{
O(Tv) v ̸∈ SD,
SO(Tv) v ∈ SD,

G0(Vv) = SO(Tv),

G(Vk) = G0(Vk) = SO(Tk).
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Here Tv is the completion of T at v and SO(Tk) = SO(T )(k). Tv is isotropic if
and only if η2(∈ k×) is a quadratic residue in kv, and in this case identify O(Tv) =
(1, 1; kv). A maximal compact subgroup Lv of G(Vv) is defined as

Lv =


O(Tv) v ̸∈ SD and Tv is anisotropic,
O(1, 1;Ov) v ̸∈ SD and Tv is isotropic,
SO(Tv) v ∈ SD,

Remark that if v ∈ SD then Tv is always anisotropic. A measure dhv on G(Vv) is
chosen by the Haar measure such that the volume of Lv is 1, and a measure dh on
G(VA) is defined by the product of dhv.

Fix a γ0 ∈ O(Tk)\SO(Tk), which always holds γ2
0 = 1. Let χ =

∏
v χv be an

unitary character of G0(Vk)\G0(VA). Consider the induced representation of G(Vv)
from χv. In the case of v ∈ SD, χv is also recognized as a representation of G(Vv)

because G(Vv) = G0(Vv). In the case of v ̸∈ SD, if χ2
v ̸= 1 then Ind

G(Vv)
G0(Vv)

χv is

irreducible, which is denoted by χ̃+
v , and if χ2

v = 1 then

Ind
G(Vv)
G0(Vv)

χv ≃ χ̃+
v ⊕ χ̃−

v . (3.1)

Here χ̃+
v , χ̃

−
v are characters of G(Vv) characterized by χ̃±

v (γ0) = ±1. Write Sχ for
the set of places v of k satisfying χ2

v = 1. If χv is unramified, f0,v ∈ χ̃+ is defined by

ϕ0,v(h) =

{
1 h ∈ Lv

0 h /∈ Lv

Let S be a subset of Sχ ∩ ScD with finite number of elements. An irreducible
representation σ(V, χ, S) of G(VA) is defined by the restricted tensor product,

(
⊗

v∈S χ̃
−
v )⊗ (

⊗
v ̸∈S χ̃

+
v )

with respect to ϕ0,v. In particular, if χ2 = 1 then σ(V, χ, S) becomes a character of
G(VA). The v-component of σ(V, χ, S) for a place v is denoted by σv(V, χ, S). Since
G(Vk) = G0(Vk), we can define an injective intertwining operator characterized by

σ(V, χ, S) ∋
⊗
v

ϕv 7→
∏
v

ϕv ∈ A(G(Vk)\G(VA)).

Here A(G(Vk)\G(VA)) is the space of automorphic forms on G(Vk)\G(VA) ([MW95]
§I.2.17). σ(V, χ, S) is identified with the image of this intertwining operator. Con-
versely, any irreducible G(VA)-subspace of A(G(Vk)\G(VA)) is expressed by the
form σ(V, χ, S) for some χ and S because the restriction of an automorphic form on
G(VA) to G0(VA) is also automorphic form.

3.2 Theta correspondence

Let ψ be a non-trivial character of A/k, and for any place v of k, the v-component
of ψ is denoted by ψv. For a vector space X over kv, S(X) denotes the space of the
Schwartz-Bruhat functions on X. The Weil representation ωψv,Vv of G(Vv)×G(kv)
with respect to ψv is defined on S(Vv) as in [Yas07]. In particular, for v ̸∈ SD,
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ωψv ,Vv is identified with the Weil representation ωψv ,TVv of O(TVv)×Sp(4, kv) defined
on S(T 2

Vv
) where TVv is the 2-dimensional quadratic space with the quadratic form

given by the symmetric matrix(
γ −α
−α −β

)
when η0 =

(
α β
γ −α

)
∈M(2, kv)−.

The explicit formula of ωψv ,Vv is described as follows: For f ∈ S(Vv), x ∈ Vv,

(1) ωψv ,Vv(h, 1)f(x) = f(h−1x), (h ∈ G(Vv)),

(2) ωψv ,Vv(1,m(a))f(x) = ζVv(ν(a))|νDv(a)|vf(xa), (a ∈ D×(kv)),

(3) ωψv ,Vv(1, u(b))f(x) = ψv(
1

4
τDv(b hV (x, x)))f(x), (b ∈ D−(kv)),

(4) ωψv ,Vv(1, w0)f(x) = (−1,− detVv)vκ(Dv)FVvf(−x).

Here (·, ·)v is the Hilbert symbol at v, ζVv the quadratic character (− detVv, · )v of
k×v , κ(Dv) = −1 if v ∈ SD and κ(Dv) = 1 otherwise, and

FVvf(x) =

∫
Vv

f(y)ψ(
1

2
τDv ◦tr(y, x)Vv)dVvy

where dVvy is the self-dual measure with respect to the bilinear form

Vv × Vv ∋ (x, y) 7→ ψ(
1

2
τDv ◦tr(y, x)Vv).

For a non-archimedean v ̸∈ SD, f0,v ∈ S(Vv) denotes the characteristic function
of M(2,Ov) ⊂M(2, kv) = Vv. S(VA) is defined by the tensor product of S(Vv) with
respect to f0,v, which is identified with a space of functions on VA. The global Weil
representation ωψ,V of G(VA)×G(A) with respecto to ψ is defined on S(VA) by the
restricted tensor product of the local Weil representations. For f ∈ S(VA), set

θ(f ;h, g) =
∑
ξ∈Vk

ωψ,V (h, g)f(ξ) (h ∈ G(VA), g ∈ G(A)),

which converges absolutely and becomes G(k)-invariant. Since G(Vk)\G(VA) is com-
pact, for ϕ ∈ σ(V, χ, S) and f ∈ S(VA), the integral

θ(f, ϕ)(g) =

∫
G(Vk)\G(VA)

θ(f ;h, g)ϕ(h)dh

is defined and converges. Then θ(f, ϕ) becomes an automorphic form on G(A).
We denote by Θ(V, χ, S) the space generated by θ(f, ϕ) for all ϕ ∈ σ(V, χ, S) and
f ∈ S(VA).

Lemma 3.1. If (χ, S) ̸= (1, ∅) then θ(f, ϕ) is cuspidal.
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Proof. The constant term θ(f, ϕ)PS of θ(f, ϕ) along to PS is calculated as follows.

θ(f, ϕ)PS(g) =

∫
US(k)\US(A)

θ(f, ϕ)(ug)du

=

∫
US(k)\US(A)

∫
G(Vk)\G(VA)

∑
ξ∈Vk

ωψ,V (h, ug)f(ξ)ϕ(h)dhdu

=

∫
G(Vk)\G(VA)

∑
ξ∈Vk

∫
US(k)\US(A)

ωψ,V (h, ug)f(ξ)ϕ(h)dudh

=

∫
G(Vk)\G(VA)

∑
ξ∈Vk

∫
US(k)\US(A)

ψ(
1

4
τD(bhV (ξ, ξ)))ωψ,V (h, g)f(ξ)ϕ(h)dbdh

=

∫
G(Vk)\G(VA)

ωψ,V (h, g)f(0)ϕ(h)dh

= ωψ,V (1, g)f(0)

∫
G(Vk)\G(VA)

ϕ(h)dh.

Since (χ, S) ̸= (1, ∅), ϕ is orthogonal to a constant function. Therefore the last term
is zero.

For η ∈ D−, the Fourier coefficient Fηf of an automorphic form f on G(A) is
defined by

Fηf(g) =

∫
US(k)\US(A)

f(ug)ψη(u)du (g ∈ G(A)),

where ψη(

(
1 b
0 1

)
) = ψ(−1

4
τD(bη)) (b ∈ D−(A)).

Lemma 3.2. Let η ∈ D−\{0}.

Fηθ(f, ϕ)(g) =

{
Fη0θ(f, ϕ)(m(α)g) η = ∗αη0α for some α ∈ D×,

0 otherwise.

Proof.

Fηθ(f, ϕ)(g) =

∫
US(k)\US(A)

θ(ug)ψη(u)du

=

∫
US(k)\US(A)

∫
G(Vk)\G(VA)

∑
ξ∈Vk

ωψ,V (h, ug)f(ξ)ϕ(h)ψη(u)dhdu

=

∫
G(Vk)\G(VA)

∫
D−(k)\D−(A)

∑
ξ∈Vk

ωψ,V (h, g)f(ξ)ϕ(h)ψ(
1

4
τD(b(hV (ξ, ξ)− η)))dbdh

=

∫
G(Vk)\G(VA)

∑
hV (ξ,ξ)=η

ωψ,V (h, g)f(ξ)ϕ(h)dh (3.2)
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If η is not expressed by the form ∗αη0α for some α ∈ D×, (3.2) = 0. Assume
η = ∗αη0α for a α ∈ D×.

(3.2) =

∫
G(Vk)\G(VA)

∑
h′∈G(Vk)

ωψ,V (h, g)f(h′
−1
α)ϕ(h)dh

=

∫
G(Vk)\G(VA)

∑
h′∈G(Vk)

ωψ,V (h′h, g)f(α)ϕ(h′h)dh

=

∫
G(VA)

ωψ,V (h, g)f(α)ϕ(h)dh

=

∫
G(VA)

ωψ,V (h,m(α)g)f(1D)ϕ(h)dh (3.3)

In particular, if α = 1,

Fη0θ(f, ϕ)(g) =

∫
G(VA)

ωψ,V (h, g)f(1D)ϕ(h)dh.

Therefore

(3.3) = Fη0θ(f, ϕ)(m(α)g) (3.4)

U(V, χ, S) denotes the space generated by functions Fη0f on G(A) for all f ∈
Θ(V, χ, S). The right regular action r of G(A) defines a representation of G(A) on
U(V, χ, S), and

Fη0 : Θ(V, χ, S) ∋ f 7→ Fη0f ∈ U(V, χ, S)

becomes a surjective intertwining operator. From Lemma 3.1, Lemma 3.2 and the
Fourier inversion formula, Fη0 is also injective. Therefore we have the following.

Proposition 3.3. If (χ, S) ̸= (1, ∅) then Θ(V, χ, S) is isomorphic to U(V, χ, S) as
a representation of G(A).

Let v be a place and σv = χ̃ϵv for some χv and ϵ = ±1. U(Vv, σv) is defined by
the space generated by functions

λv(fv, ϕv) : G(kv) ∋ gv 7→
∫
G(Vv)

ωψv ,Vv(hv, gv)fv(1D)ϕv(hv)dhv (3.5)

for all fv ∈ S(Vv) and all ϕv ∈ χ̃ϵv. Similarly for the global case, a representation of
G(kv) on U(Vv, χ̃

ϵ) is defined by the right regular action r.

Lemma 3.4. (1) U(Vv, σv) ̸= 0 for all v.

(2) For almost all v and σv = 1̃+ = 1, λv(f0,v, ϕ0,v) is Kv-invariant and λv(f0,v, ϕ0,v)|Kv ≡
1.

10



Proof. (1) It suffices to show that there are f ′
v ∈ S(Vv) and ϕ′

v ∈ σv such that
λv(f

′
v, ϕ

′
v)(1) ̸= 0. For a non-zero ϕ′

v there is a relatively compact open subset O of
Vv such that ∫

G(Vv)

chO(h−1
v )ϕ′

v(hv)dhv ̸= 0

where chO is the characteristic function of O defined on Vv. If v is non-archimedean
we can take chO as f ′

v. If v is archimedean then fO is approximated by elements in
S(Vv), so that we can choose an apropriate f ′

v. (2) For any non-archimedean v ̸∈ SD
such that ψv is unramified and v - 2, f0,v is Kv-invariant, and so is λv(f0,v, ϕ0,v).
Since

λv(f0,v, ϕ0,v)(1) =

∫
G(Vv)

ωψv ,Vv(hv, gv)f0,v(1D)ϕ0,v(hv)dhv

=

∫
G(Vv)

ωψv ,Vv(1, 1)f0,v(h
−1
v )ϕ0,v(hv)dhv

=

∫
Lv

1dhv

= 1,

and λv(f0,v, ϕ0,v) is Kv-invariant, λv(f0,v, ϕ0,v)|Kv ≡ 1.

From the above lemma and (3.3), for f(x) =
∏

v fv(xv) ∈ S(VA) and ϕ(h) =∏
v ϕv(hv) ∈ σ(V, χ, S), we have a decomposition,

Fη0θ(f, ϕ)(g) =
∏
v

λv(fv, ϕv)(gv) (g = (gv) ∈ G(A)). (3.6)

Therefore the next proposition follows.

Proposition 3.5. Θ(V, χ, S) ̸= 0 and Θ(V, χ, S) is isomorphic to the restricted
tensor product

⊗
v U(Vv, σv(V, χ, S)) with respect to λv(f0,v, ϕ0,v).

4 Review of Shalika-Tanaka lifting

Here we review the results of [ST69]. Let (T, qT ) be a non-degenerate and non-
hyperbolic quadratic space over k of dimension 2 and χ =

∏
v χv a character of

SO(TA) invariant on SO(Tk). For a place v, the Weil representaion ω0
ψv ,Tv

of O(Tv)×
SL(2, kv) on S(Tv) is defined usually. For u ∈ Tv such that qTv(u) ̸= 0, f ∈ S(Tv),
put

(Pχvf)(u) =

∫
SO(Tv)

f(h−1u)χv(h)dh.

This integral converges absolutely and defines a continuous function on the open
subset of Tv which consists of u ∈ Tv satisfying qTv(u, u) ̸= 0. S(χv, Tv) denotes
the image of S(Tv) by Pχv , which is regarded as a representation of SL(2, kv) by

11



the transfer r of the action of the Weil representation. Fix γ0 ∈ O(Tk)\SO(Tk)
and write S±(Tv) for the space consisting of f ∈ S(Tv) such that f(γ0u) = ±f(u).

Clearly, S(Tv) = S+(Tv)⊕ S−(Tv). Elements ϕ±
v of Ind

O(Tv)
SO(Tv)

χv are defined by

· ϕ±
v (h) = χv(h) (h ∈ SO(Vv)),

· ϕ±
v (γ0) = ±1.

Then Ind
O(Tv)
SO(Tv)

χv is spaned by ϕ±
v . For any f+ ∈ S+(Tv), f− ∈ S−(Tv),∫

O(Tv)

f+(h−1u)ϕ−
v (h)dh =

∫
O(Tv)

f−(h−1u)ϕ+
v (h)dh = 0. (4.1)

And for f = f+ + f− ∈ S(Tv),

(Pχvf)(u) =

∫
SO(Tv)

f(h−1u)χv(h)dh

=
1

2

∫
O(Tv)

f+(h−1u)ϕ+
v (h)dh+

1

2

∫
O(Tv)

f−(h−1u)ϕ−
v (h)dh. (4.2)

Irreducible representations χ̃±
v which appear as subrepresentations of Ind

O(Tv)
SO(Tv)

χv are

defined as in §3.1. Fix a u0 ∈ Tv such that qTv(u0) ̸= 0. We denote by Θ0
v(Tv, χ̃

ϵ
v) (ϵ =

±1) the space of functions

SL(2, kv) ∋ g 7→
∫
O(Tv)

ωψv ,Tv(h, g)f(u0)ϕ(h)dh

for all f ∈ S(Tv) and all ϕ ∈ χ̃ϵv, which is regarded as a representation of SL(2, kv)
by the right regular action. From (4.1) and (4.2), a surjective intertwining operator,

Ψ : S(χv, Tv)→ Θ0
v(Tv, χ̃

ϵ
v)

is defined as follows. If Ind
O(Tv)
SO(Tv)

χv is irreducible then S(χv, Tv) = Θ0
v(Tv, χ̃

+
v ) and

Ψ is taken by the identity map. If Ind
O(Tv)
SO(Tv)

χv is reducible then

Ψ(f̃) =
(
SL(2, kv) ∋ g 7→ r(g)f̃(u0) + ϵ · r(g)f̃(γ0u0)

)
(for f̃ ∈ S(χv, Tv)).

From the representation theory of SL(2, kv), the results of [ST69] with respect to
S(χv, Tv), [MVW87] Chap.3 IV Th.4 and [Pau05] Th.15, the following is obtained.

Theorem 4.1. (1) Θ0
v(Tv, 1̃

−
v (= det)) = 0.

(2) Θ0
v(Tv, χ̃

ϵ
v) is non-zero and irreducible for χ̃ϵv ̸= 1̃−

v .

(3) If Tv is hyperbolic then

Θ0
v(Tv, χ̃

ϵ
v) ≃


Ind

SL(2,kv)

BSL(2)(kv)
χv χv = 1 or χ2

v ̸= 1,

an irreducible subrepresentation

of Ind
SL(2,kv)

BSL(2)(kv)
χv

χv ̸= 1 and χ2
v = 1.
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Here BSL(2) is the Borel subgroup of SL(2) consisting of upper-triangular ma-
trices and χv is also regarded as a character of the subgroup of SL(2) consisting
of diagonal matices in the natural way.

(4) If Tv is non-hyperbolic and χ̃ϵv = 1 then Θ0
v(Tv, χ̃

ϵ
v) is isomorphic to an irre-

ducible subrepresentation of Ind
SL(2,kv)

BSL(2)(kv)
ζTv where ζTv is the quadratic character

(− detTv, ·)v of k×v . Suppose Tv is non-hyperbolic and χv ̸= 1. If v is non-
archimedean, Θ0

v(Tv, χ̃
ϵ
v) is supercuspidal. If v is real, Θ0

v(Tv, χ̃
ϵ
v) is isomorphic

to the discrete series representation δ(ϵηn) with the Harich-Chandra parameter
ϵηn where ψv = exp(λ · ), λ = ϵ

√
−1|λ| ∈

√
−1R, χv = exp(2πn

√
−1 · ), n ∈ Z

and η = 1 if Tv is positive definite, −1 otherwise.

For a subset S ⊂ Sχ with finite cardinality, an irreducible representation σ(T, χ, S)
of O(TA) is defined as in § 3.1. Its component at v is denoted by χ̃ϵvv for any v. An
element of σ(T, χ, S) is identified with a function on SO(Tk)\O(TA) by the corre-
spondence,

σ(T, χ, S) ∋
⊗
v

ϕv ←→
∏
v

ϕv.

Note that for ϕ ∈ σ(T, χ, S), ϕ(h)+ϕ(γ0h) becomes an automrphic form on O(TA).
For ϕ(̸= 0) ∈ σ(T, χ, S), we define

(Pχ,ϕf)(u) =

∫
O(TA)

f(h−1u)ϕ(h)dh (f ∈ S(TA), u ∈ TA).

The image S(T, χ, S) of S(TA) by Pχ,ϕ is determined independently of choice of ϕ.
It is an irreducible representation of SL(2,A) by the right regular action r, which
is isomorphic to the restricted tensor product⊗

v

Θ0
v(T, χ̃

ϵv
v ).

For f̃ ∈ S(T, χ, S), define a function Iχf̃ on SL(2,A) by

(Iχf̃)(g) =
∑

ξ∈SO(Tk)\(Tk\{0})

(r(g)f̃)(ξ) (g ∈ SL(2,A)).

The Weil representation (ω0
ψ,T ,S(TA)) of O(TA) × SL(2,A) is defined by the re-

stricted tensor product of (ω0
ψv ,Tv

,S(Tv)). For f ∈ S(TA), set

θ0(f ;h, g) =
∑

ξ∈Tk\{0}

ω0
ψ,T (h, g)f(ξ) (h ∈ O(TA), g ∈ SL(2,A)),

θ0(f, ϕ)(g) =

∫
O(Tk)\O(TA)

θ0(f ;h, g)(ϕ(h) + ϕ(γ0h))dh (ϕ ∈ σ(T, χ, S)).

Then θ0(f, ϕ) becomes a cuspidal automorphic form on SL(2,A). We denote by
Θ0(T, χ, S) the space generated by θ0(f, ϕ) for all ϕ ∈ σ(T, χ, S) and f ∈ S(TA),
which is a cuspidal representation of SL(2,A).
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Theorem 4.2 ([ST69]). (1) The follwing diagram of intertwining operators is com-
mutative.

S(TA)

Pχ,ϕ
��

θ0(·,ϕ)

''O
O
O
O
O
O
O
O
O
O
O

S(T, χ, S)
Iχ
// Θ0(T, χ, S)

In particular, if Θ0(T, χ, S) is non-zero then Θ0(T, χ, S) is isomorphic to S(T, χ, S) ≃⊗
v Θ0

v(T, χ̃
ϵv
v ) as a representation of SL(2,A).

(2) For a non-hyperbolic quadratic space T of dimension 2 and a character χ of
SO(Tk)\SO(TA), there is a subset S of Sχ with finite cardinality such that
Θ0(T, χ, S) is non-zero.

5 Local theory

5.1 Non-archimedean case

Let v be a non-archimedean place. For an irreducible admissible representation σv
of G(Vv), put

Nσv =
∩
f

Kerf,

where f runs over HomG(Vv)(ωψv,Vv , σv). Then there is an unique admissible repre-
sentation Ω(Vv, σv) of G(kv) such that

S(Vv)/Nσv ≃ σv ⊗ Ω(Vv, σv)

as a representation of G(Vv) × G(kv) ([MVW87] Chap.2 III 5, Chap.3 IV 4). Let

σv = χ̃ϵv for a character χv of SO(kv) and ϵ = ±1. Ind
O(Vv)
SO(Vv)

χv is unitarizable by an
inner product

⟨ϕ, ϕ′⟩ =

∫
G0(Vv)\G(Vv)

ϕ(h)ϕ′(h)dh (ϕ, ϕ′ ∈ Ind
O(Vv)
SO(Vv)

χv).

If ϕ1, . . . , ϕl form an orthonormal basis of χ̃ϵv with respect to this inner product,

S(Vv) ∋ fv 7→
l∑

i=1

ϕi ⊗ λv(fv, ϕi) ∈ χ̃ϵv ⊗ U(Vv, χ̃
ϵ
v)

becomes a surjective intertwining operator. This implies that U(Vv, χ̃
ϵ
v) is a quotient

representation of Ω(Vv, χ̃
ϵ
v).

Proposition 5.1. If Vv is anisotropic and either v ̸∈ SD and σv = 1̃− = det or
v ∈ SD and σv ̸= 1 then U(Vv, σv) is irreducible and supercuspidal. U(Vv, σv) will be
also denoted by θ(Vv, σv).
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Proof. Any σv is supercuspidal and the Howe correspondent Ω(Vv, σv) of σv to G(kv)
becomes the first occurrence in the Witt tower over Wv. This follows clearly in the
case of v ∈ SD and from Theorem 4.1 (1) in the case of v ̸∈ SD. From [MVW87]
Chap.3 IV Th.4 1), Ω(Vv, σv) is irreducible and supercuspidal. Since U(Vv, σv) is non-
zero and a quotient of Ω(Vv, σv), U(Vv, σv) is also irreducible and supercuspidal.

Let v ̸∈ SD and Tv = TVv . From the definition of the Weil representation, there
are ξ1, ξ2 in Tv linearly independent such that U(Vv, σv) is identified with the space
U(Tv, σv) generated by functions

λv(fv, ϕv) : Sp(4, kv) ∋ gv 7→
∫
O(Tv)

ωψv ,Tv(hv, gv)fv(ξ1, ξ2)ϕv(hv)dhv

for all fv ∈ S(T 2
v ) and all ϕv ∈ χ̃ϵv. We may assume that both qTv(ξ1) and qTv(ξ2)

are non-zero by acting of an element of MS(kv). We denote by U ′(Tv, σv) the space
generated by functions

λ′v(fv, ϕv) : Sp(4, kv) ∋ gv 7→
∫
O(Tv)

ωψv ,Tv(hv, gv)fv(0, ξ2)ϕv(hv)dhv

for all fv ∈ S(T 2
v ) and all ϕv ∈ χ̃ϵv. It is easily checked that U ′(Tv, σv) is a sub-

representation of Ind
Sp(4,kv)
PK(kv)

(ζTv | · |−1
v ⊗ Θ0

v(Tv, σv)) and if Θ0
v(Tv, σv) is non-zero

then so is U ′(Tv, σv) . From the explicit formula of the Weil representation, if
λv(fv, ϕv) is zero then so is λ′v(fv, ϕv). This induces a surjective intertwining opera-
tor Ψv;U(Tv, σv)→ U ′(Tv, σv) characterized by

Ψv(λv(fv, ϕv)) = λ′v(fv, ϕv).

For a smooth representation π of G(kv) (or G(Vv) × G(kv)) and P = P0, PS, PK ,
πP denotes the normalized Jacquet module with respect to P . If v ̸∈ SD and Tv is
anisotropic we obtain directly

(ωψv ,Tv)PK ≃ ζTv | · |−1
v ⊗ ω0

ψv ,Tv

as a O(Tv)×MK(kv)-module where ζTv |·|−1
v is a representation of the first component

of k×v × SL(2, kv) ≃MK(kv). From this isomorphism, we have

U(Tv, σv)PK ≃ ζTv | · |−1
v ⊗Θ0(Tv, σv). (5.1)

Proposition 5.2. Suppose that Tv is anisotropic.

(1) If v ̸∈ SD and σv ̸= det then U(Tv, σv) is isomorphic to the unique irreducible

quotient JK(ζVv | · | ⊗Θ0(Tv, σv)) of Ind
G(kv)
PK(kv)

(ζVv | · |v ⊗Θ0(Tv, σv)).

(2) If v ∈ SD and σv = 1 then U(Tv, σv) is isomorphic to the unique irreducible

quotient JS((ζVv | · |
1/2
v ) ◦ νDv) of Ind

G(kv)
PS(kv)

((ζVv | · |
1/2
v ) ◦ νDv).

In both cases, U(Tv, σv) is denoted by θ(Vv, σv).
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Proof. Assume σv = 1. Let R(Vv) denote the image of the map

S(Vv) ∋ f 7→ (G(kv) ∋ g 7→ ωψv ,Vvf(0)) ∈ Ind
G(kv)
PS(kv)

((ζVv | · |−1/2
v ) ◦ νDv).

Then the G(Vv)-coinvariant space S(Vv)G(Vv) of S(Vv) is isomorphic to R(Vv) as a
representation of G(kv) ([MVW87] Chap.3 IV Th.7). It is known that R(Vv) is
irreducible for all v ([KRS92] Prop.1.1, [Yas07] Prop.4.5). Since U(Vv, σv) is non-
zero and a quotient of S(Vv)G(Vv), it is isomorphic to R(Vv). If v ∈ SD, U(Vv, σv)

is isomorphic to JS((ζVv | · |
1/2
v ) ◦ νDv) by [Yas07] Prop.4.5. If v ̸∈ SD then R(Vv) is

isomorphic to an irreducible subrepresentation of Ind
Sp(4,kv)
PK(kv)

(ζTv | · |−1
v ⊗ Θ0(Tv, σv))

because Θ0(Tv, σv) is non-zero. As for Jacquet module, from (5.1) and [BZ77] § 2.12,
we have

R(Vv)PK = ζTv | · |−1
v ⊗Θ0(Tv, σv),

(Ind
Sp(4,kv)
PK(kv)

ζTv | · |−1
v ⊗Θ0(Tv, σv))PK = ζTv ⊗ Ind

SL(2,kv)

BSL(2)(kv)
ζTv | · |v

+ ζTv | · |−1
v ⊗Θ0(Tv, σv) + ζTv | · |v ⊗Θ0(Tv, σv)

in the Grothendieck group. From [ST93] Prop.5.4, Ind
Sp(4,kv)
PK(kv)

ζTv | · |−1
v ⊗ Θ0(Tv, σv)

has three irreducible constituents. More precisely, all the constituents consist of

JK(ζTv | · |v ⊗Θ0(Tv, σv)), JS(| · |1/2v ζTvStGL(2)), δ(Tv, σv).

Here,

· JS(|·|1/2v ζTvStGL(2)) is the unique irreducible quotient of Ind
Sp(4,kv)
PS(kv)

(|·|1/2v ζTvStGL(2))

where StGL(2) is the Steinberg representation ofGL(2, kv) and JS(|·|1/2v ζTvStGL(2))PK =

ζTv ⊗ Ind
SL(2,kv)

BSL(2)(kv)
ζTv | · |v,

· δ(Tv, σv) is an irreducible tempered representation with Jacquet module ζTv | ·
|v ⊗Θ0(Tv, σv),

· JK(ζTv | · |v ⊗Θ0(Tv, σv))PK ≃ ζTv | · |−1
v ⊗Θ0(Tv, σv).

Therefore, R(Vv) is isomorphic to JK(ζTv | · |v ⊗ Θ0(Tv, σv)). Next assume v ̸∈ SD,
σv ̸= 1, det. Since σv is supercuspidal, Ω(Vv, σv) is irreducible by [MVW87] Chap.3
IV Th.4 1) and so is U(Tv, σv). Since Θ0(Tv, σv) is supercuspidal, as for Jacquet
module we have

(Ind
Sp(4,kv)
PK(kv)

ζTv | · |−1
v ⊗Θ0(Tv, σv))PK = ζTv | · |−1

v ⊗Θ0(Tv, σv) + ζTv | · |v ⊗Θ0(Tv, σv)

in the Grothendieck group. Since Ind
Sp(4,kv)
PK(kv)

ζTv | · |−1
v ⊗Θ0(Tv, σv) has length at most

2, from (5.1), Ω(Vv, σv) is isomorphic to the unique irreducible subrepresentation of

Ind
Sp(4,kv)
PK(kv)

ζTv | · |−1
v ⊗Θ0(Tv, σv).

If v ̸∈ SD and Tv is isotropic, there is a smooth subrepresentation F of the
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Jacquet module (ωψv ,Tv)PK as a representation of O(1, 1; kv)×MK(kv) such that

(ωψv ,Tv)PK/F ≃ | · |−1
v ⊗ ω0

ψv ,Tv ,

F ≃ (Ind
O(1,1;kv)×Gm(kv)
SO(1,1;kv)×Gm(kv)

τv)⊗ 1SL(2)

where | · |−1
v is a representation of the first component of Gm(kv) × SL(2, kv) ≃

MK(kv) and τv is the representation of SO(1, 1; kv)×Gm(kv) ≃ k×v × k×v defined on
S(GL(1, kv)) by

τv(c, a)ϕ(y) = ϕ(c−1ya) (c, a, y ∈ k×v , ϕ ∈ S(GL(1, kv)))

(See [MVW87] Chap.3 IV or [Kud86] Th.2.8). Note that

Ind
O(1,1;kv)×Gm(kv)
SO(1,1;kv)×Gm(kv)

τv ≃ S(O(1, 1; kv))

where a representation on S(O(1, 1; kv)) is given by the left and right regular action
of O(1, 1; kv)×Gm(kv) (or O(1, 1; kv)×O(1, 1; kv)).

Lemma 5.3.

U(Tv, σv)PK =σv|Gm(kv) ⊗ 1SL(2) + | · |−1
v ⊗Θ0(Tv, σv)

+ | · |−1
v ⊗ (a supercuspidal representation of SL(2, kv)),

in the Grothendieck group.

Remark 5.4. The supercuspidal representation appearing in the lemma may be zero.

Proof. For a smooth representation ρ of O(1, 1; kv)×MK(kv), N (ρ, σv) denotes the
intersection of the kernels of f which belong to HomO(1,1;kv)(ρ, σv). Then ρσv :=
ρ/N (ρ, σv) becomes the maximal σv-isotypic quotient of ρ, which is isomorphic to
σv⊗π(τ, σv) where π(τ, σv) is a smooth representation of MK(kv) ([MVW87] Chap.2
III). In general, for an exact sequence of smooth representations of O(1, 1; kv) ×
MK(kv),

0→ ρ1 → ρ2 → ρ3 → 0,

a following exact sequence is obtained.

ρ1,σv → ρ2,σv → ρ3,σv → 0.

This implies that there is an exact sequence,

π(ρ1, σv)
ι−→ π(ρ2, σv)→ π(ρ3, σv)→ 0.

Now let us set ρ1 = F , ρ2 = (ωψv ,Tv)PK , ρ3 = (ωψv ,Tv)PK/F . For ϕv( ̸= 0) ∈ σv, a
surjective map

ωψv,Tv ∋ fv 7→ λ′v(fv, ϕv) ∈ U(Tv, σv)

can be reduced to

λϕv : (ωψv ,Tv)PK → U(Tv, σv)PK
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by definition. For ξ ∈ Tv such that qTv(ξ) ̸= 0, put

λ1
ϕv(fv)(a) =

∫
O(1,1;kv)

fv(ha)ϕv(h)dh (fv ∈ S(O(1, 1; kv)), a ∈ k×v ),

λ3
ϕv(f

′
v)(g) =

∫
O(1,1;kv)

ω0
ψv ,Tv(h, g)f

′
v(ξ)ϕv(h)dh (f ′

v ∈ S(Tv), g ∈ SL(2, kv)),

where these integral converge absolutely. U1
K(Tv, σv) (resp. U3

K(Tv, σv)) denotes
the space generated by functions λ1

ϕv
(fv) for all fv ∈ S(O(1, 1; kv)) (resp. λ3

ϕv
(f ′
v)

for all f ′
v ∈ S(Tv)). ρ1 and ρ3 provide U1

K(Tv, σv) and U3
K(Tv, σv) with structure

of representations of MK(kv). Then U3
K(Tv, σv), which is isomorphic to | · |−1

v ⊗
Θ0(Tv, σv), is a quotient of U(Tv, σv)PK and the following diagram is commutative;

0 // ρ1 //

λ1
ϕv
��

ρ2

λϕv
��

0 // U1
K(Tv, σv) // U(Tv, σv)PK .

(5.2)

Similarly to the observation before Proposition 5.1, there are surjective homomor-
phisms π(ρi, σv) → U iK(Tv, σv) (i = 1, 3) and π(ρ2, σv) → U(Tv, σv)PK . From (5.2),
we have the following commutative diagram;

π(ρ1, σv) //

��

π(ρ2, σv)

��

0 // U1
K(Tv, σv) // U(Tv, σv)PK .

Since

dimC HomO(1,1;kv)×O(1,1;kv)(τv, σ
∨
v ⊗ πv) =

{
1 πv ≃ σv,
0 otherwise,

and λ1
ϕv

is non-zero, one concludes that ι is injective and

ι(π(ρ1, σv)) ≃ π(ρ1, σv) ≃ U1
K(Tv, σv) ≃ σv|Gm(kv) ⊗ 1SL(2).

Since (ω0
ψv ,Tv

)BSL(2) = 1⊗ 1 + τv (See [MVW87] Chap.3 IV or [Kud86] Th.2.8) ,

π((ω0
ψv,Tv)BSL(2) , σv) = Θ0(Tv, σv)BSL(2) =

{
1 + 1 σv = 1,
σv|Gm(kv) σv ̸= 1,

in the Grothendieck group. Since Θ0(Tv, σv) is a quotient of π(ω0
ψv ,Tv

, σv),

π(ω0
ψv ,Tv , σv) = Θ0(Tv, σv)⊕ (a supercuspidal representation)

by (an analogy for SL(2) of) [BZ76] Th.4.17. Consequently,

π((ωψv ,Tv)PK , σv) =σv|Gm(kv) ⊗ 1SL(2) + | · |−1
v ⊗Θ0(Tv, σv)

+ | · |−1
v ⊗ (a supercuspidal representation of SL(2, kv))

in the Grothendieck group. Since U(Tv, σv)PK is a quotient of π((ωψv ,Tv)PK , σv) and
U1
K(Tv, σv),U3

K(Tv, σv) are subquotients of U(Tv, σv)PK , the proposition is obtained.
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For a quasi-character µv of k×v and a smooth representation τv of SL(2, kv),

(Ind
Sp(4,kv)
PK(kv)

(µv ⊗ τv))PK = µv ⊗ τv + µ∨
v ⊗ τv + τv BSL(2) ⊗ (Ind

SL(2,kv)

BSL(2)(kv)
µv)

in the Grothendieck group ([BZ77] § 2.12).

Proposition 5.5. Let v ̸∈ SD and Tv is isotropic. Then U(Tv, σv) has an irreducible
quotient isomorphic to

θ(Tv, σv) :=


JK(| · |v ⊗ Ind

SL(2,kv)

BSL(2)(kv)χv) σv = Ind
O(1,1;kv)
SO(1,1;kv)

χv, χ
2
v ̸= 1,

JK(| · |v ⊗ Ind
SL(2,kv)

BSL(2)(kv)1) σv = 1,
JK(| · |v ⊗Θ0(Tv, σv)) σv = χ̃ϵv, χ

2
v = 1, χv ̸= 1, ϵ = ±1,

JS(| · |1/2v StGL(2)) σv = det,

where StGL(2) is the Steinberg representation of GL(2, kv) and JK(τ) (resp. JS(τ))

denotes the Langlands quotient of Ind
Sp(4,kv)
PK(kv)

τ (resp. Ind
G(kv)
PS(kv)

τ).

Proof. By Lemma 5.3 and [BZ76] Th.4.17, U(Vv, σv)PK has a quotient equal to{
| · |−1

v ⊗Θ0(Vv, σv) + χv ⊗ 1SL(2) + χ−1
v ⊗ 1SL(2) (χ2

v ̸= 1),
| · |−1

v ⊗Θ0(Vv, σv) + χv ⊗ 1SL(2) (χ2
v = 1)

in the Grothendieck group. If χ2
v ̸= 1, Ind

Sp(4,kv)
PK(kv)

χv⊗1SL(2) is irreducible from [ST93]

Th.5.4 (ii), and JK(| · |v ⊗ Ind
SL(2,kv)

BSL(2)(kv)
χv) is isomorphic to Ind

Sp(4,kv)
PK(kv)

χv ⊗ 1SL(2).

Therefore, in the Grothendieck group

JK(| · |v ⊗ Ind
SL(2,kv)

BSL(2)(kv)
χv)PK = (Ind

Sp(4,kv)
PK(kv)

χv ⊗ 1SL(2))PK

= | · |−1
v ⊗ Ind

SL(2,kv)

BSL(2)(kv)
χv + χv ⊗ 1SL(2) + χ−1

v ⊗ 1SL(2) (χ2
v ̸= 1).

If χ2
v = 1, χv ̸= 1, in the Grothendieck group

Ind
Sp(4,kv)
P0(kv)

(| · |v ⊗ χv) = Ind
Sp(4,kv)
P0(kv)

(| · |v ⊗ δ(χv,+)) + Ind
Sp(4,kv)
P0(kv)

(| · |v ⊗ δ(χv,−))

= Ind
Sp(4,kv)
P0(kv)

(χv ⊗ 1SL(2)) + Ind
Sp(4,kv)
P0(kv)

(χv ⊗ StSL(2))

where δ(χv,±) is irreducible representations of SL(2, kv) such that

Ind
SL(2,kv)

BSL(2)(kv)
χv ≃ δ(χv,+)⊕ δ(χv,−)

and StSL(2) is the Steinberg representation of SL(2, kv). The length of Ind
Sp(4,kv)
P0(kv)

(| ·
|v⊗χv) is 4 from [ST93] Th.5.4. By comparison of Jacquet modules, we see that the
semisimplification of JK(| · |v ⊗ δ(χv,±))PK coinsides with the common composition

factor of (Ind
Sp(4,kv)
P0(kv)

| · |v ⊗ δ(χv,±))PK and (Ind
Sp(4,kv)
P0(kv)

χv ⊗ 1SL(2))PK . Therefore,

JK(| · |v ⊗ δ(χv,±))PK = | · |−1
v ⊗ δ(χv,±) + χv ⊗ 1SL(2) (χ2

v = 1, χv ̸= 1)

in the Grothendieck group. If σv ̸= det, a non-zero quotient of U(Tv, σv) is isomor-

phic to a subrepresentation of Ind
Sp(4,kv)
PK(kv)

(| · |−1
v ⊗Θ0(Tv, σv)) because Θ0(Tv, σv) ̸= 0.

If χv ̸= 1, from the Jacquet module of Ind
Sp(4,kv)
PK(kv)

(| · |−1
v ⊗ Θ0(Tv, σv)) and the de-

scription of the above Jacquet modules , we have that JK(| · |v ⊗ Θ0(Tv, σv)) is a
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quotient of U(Tv, σv). Assume σv = 1. Ind
Sp(4,kv)
PK(kv)

(1⊗ 1SL(2)) is a subrepresentation

of Ind
Sp(4,kv)
PK(kv)

(| · |−1
v ⊗ Ind

SL(2,kv)

BSL(2)(kv)
1). From the comparison of Jacquet modules, there

is a non-zero inetertwining operator from U(Tv, σv) to Ind
Sp(4,kv)
PK(kv)

(1⊗ 1SL(2)). From

[ST93] Lem.3.8 and [Tad94] Lem.6.2,

Ind
Sp(4,kv)
PK(kv)

(1⊗ 1SL(2)) ≃ JK(| · |v ⊗ Ind
SL(2,kv)

BSL(2)(kv)
1)⊕ JS(| · |1/2v StGL(2)). (5.3)

Since the Jacquet module of the image of U(Tv, σv) does not contain JS(|·|1/2v StGL(2))PK ,

JK(| · |v⊗ Ind
SL(2,kv)

BSL(2)(kv)
1) is a quotient of U(Tv, σv). Finally, consider σv = det. Since

U(Tv, σv)PK has a quotient isomorphic to 1⊗1SL(2), there is a non-zero intertwining

operator from U(Tv, σv) to Ind
Sp(4,kv)
PK(kv)

(1 ⊗ 1SL(2)) by the Frobenius reciprocity. It

is seen that JK(| · |v ⊗ Ind
SL(2,kv)

BSL(2)(kv)
1) is not an irreducible constituent of the image

of U(Tv, σv) from the Jacquet modules. Therefore, by (5.3) one concludes that a

quotient of U(Tv, σv) is isomorphic to JS(| · |1/2v StGL(2)).

5.2 Archimedean case

Let v be an archimedean place. g(Vv) and gv denote the complexifications of Lie
algebras of G(Vv) and G(kv). Let S(Vv) ⊂ S(Vv) be the space of Schwartz functions
which correspond to polynomials in the Fock model of ωψv,Vv . For an irreducible
admissible (g(Vv),Lv)-module σv, let Nσv be the intersection of all subspaces N ⊂
S(Vv) such that S(Vv)/N ≃ σv. Then there exists an admissible (gv,Kv)-module
ρ(σv) such that

S(Vv)/Nσv ≃ σv ⊗ ρ(σv)
as a (g(Vv) ⊕ gv,Lv × Kv)-module. Furthermore, if ρv is non-zero, ρ(σv) has a
unique irreducible (gv,Kv)-quotient θ(Vv, σv) ([How89] Th.2.1). For σv = χ̃ϵv for a
character χv and ϵ = ±1, U(Vv, σv) is defined by the space generated by λv(fv, ϕv)
for all fv ∈ S(Vv) and all ϕv ∈ χ̃ϵv. Similarly to the non-arhimedean case, U(Vv, σv)
is a quotient of ρ(σv). Therefore θ(Vv, σv) is a quotient of U(Vv, σv).

Proposition 5.6. If v ̸∈ SD and σv ̸= det then θ(Vv, σv) is isomorphic to the unique

irreducible quotient JK(| · |v ⊗ Θ0(Tv, σv)) of Ind
Sp(4,kv)
PK(kv)

(ζTv | · |v ⊗ Θ0(Tv, σv)) where
Tv = TVv .

This proposition is obtained by [Pau05] Th.38 if v is real and [AB95] Prop.21, Th.2.8
if v is complex.

Proposition 5.7 ([LZ97] Cor.3.2 and [AB95] Prop.2.1). If v ̸∈ SD is real, TVv is
isotypic and σv = det then θ(Vv, σv) is isomorphic to an irreducible consituent of

Ind
Sp(4,R)
PS(R) (sgn| · |1/2) ◦ det where sgn is the sign character of R×. If v is complex

and σv = det then θ(Vv, σv) is isomorphic to the unique irreducible constituent of

Ind
Sp(4,C)
P0(C) (| · |1/2C ⊗ | · |−1/2

C ) containing the lowest Kv-type of the induction.
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When v ̸∈ SD and v is real we choose a Cartan subgroup T of G(kv) = Sp(4,R)
with Lie algebra tv,0 and complexification tv as follows:

tv,0 = tv ∩M(4,R) ⊂ sp(4,R),

tv =

t(a1, a2) =


a1

a2

−a1

−a2


∣∣∣∣∣∣∣∣ a1, a2 ∈ C

 .

When writing ei : tv ∋ t(a1, a2) 7→ ai ∈ C (i = 1, 2), the roots of tv in gv = sp(4,C)
are

∆(gv, tv) = {±e1 ± e2,±2e1,±2e2}.
Ψ+ (resp. Ψ−)⊂ ∆(gv, tv) denotes the set of positive roots defined by simple roots
e1 − e2, 2e2 (resp. e1 − e2,−2e1). If λ ∈

√
−1t∗v,0 is dominant with respect to Ψ±,

the limit of discrete series defined by λ and Ψ± is denoted by δ(λ,Ψ±). If v ∈ SD,
G(R) is realized by

Sp(1, 1) = {g ∈ Sp(4,C) | gI1,1 tg = I1,1
}
, I1,1 = diag(1,−1, 1,−1).

We choose a Cartan subgroup T of G(kv) with Lie algebra tv,0 and complexification
tv as follows:

tv,0 = tv ∩
√
−1M(4,R) ⊂ gv,

tv =

t(a1, a2) =


a1

a2

−a1

−a2


∣∣∣∣∣∣∣∣ a1, a2 ∈ C

 .

the roots of tv in gv are

∆(gv, tv) = {±e1 ± e2,±2e1,±2e2}
where ei : tv ∋ t(a1, a2) 7→ ai ∈ C (i = 1, 2). Ψ+ (resp. Ψ−) ⊂ ∆(gv, tv) denotes
the set of positive roots defined by simple roots e1 − e2, 2e2 (resp. −e1 + e2, 2e1). If
λ ∈
√
−1t∗0 is dominant with respect to Ψ±, the limit of discrete series defined by λ

and Ψ± is denoted by δ(λ,Ψ±). If v ∈ SD, G(Vv) is isomorphic to O∗(2) ≃ C1, so
that a character of G(Vv) is identified with that of C1.

Proposition 5.8. Let ψv = exp(λ · ) for λ = ϵ
√
−1|λ| ∈

√
−1R ϵ = ±1.

(1) If v ̸∈ SD, v is real and Tv = TVv is anisotropic then

θ(Vv, det) ≃
{
δ((1, 0),Ψ+) ϵη > 0,
δ((0,−1),Ψ−) ϵη < 0.

where η = 1 if Tv is positive definite, −1 otherwise.

(2) Assume v ∈ SD and v is real. If σv = 1 then θ(Vv, σv) ≃ Ind
G(R)
PS(R)(|νDv |

1/2
R ). If
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σv = exp(2π
√
−1n · ) (n ∈ Z\{0}) then

θ(Vv, σv) ≃
{
δ((|n|, 1),Ψ+) ϵn > 0,
δ((1, |n|),Ψ−) ϵn < 0.

In particular, if |n| > 1, θ(Vv, σv) is in the discrete series.

To prove this proposition we recall the Fock model. For n ∈ N, we define the
Fock space

F =

{
F : Cn → C, entire

∣∣∣∣∣ ||F ||2c :=

∫
Cn

|F (z)|2e−
1
2
|z|2dcz < +∞

}
where dcz is the self-dual measure with respect to Cn×Cn ∋ (z1, z2) 7→ e

√
−1Re(z1· z2) ∈

C1. Then F is a Hilbert space by the inner product given by || · ||c. For f ∈ L2(Rn),
put

Bf(z) =

∫
Rn

f(x)B(x, z) dψx (z ∈ Cn),

B(x, z) = 2
n
4 · exp

(
−1

2
|λ|x2 + |λ|

1
2x·z − 1

4
z2

)
(x ∈ Rn, z ∈ Cn)

where dψx is the self-dual measure with respect to X ×X ∋ (x, y) 7→ ψ(x · ty). The
L2-norm || · ||L2 on L2(Rn) is defined by dψx. Then B becomes an isomorphism from
(L(Rn), || · ||L2) to (F , || · ||c) ([Fol89] Chap.1 § 6). The Weil representation ωψv of
the metaplectic cover of Sp(2n,R) is defined on L(Rn) as a unitary representation.
By the transfer by B, the Weil representation can be also realized on F , which
is denoted by ω̂ψv . The Harish-Chandra module of ω̂ψv is C[z1, . . . , zn] ⊂ F and
the explicit formula of ω̂ψv is described as a (sp(2n,C)⊕C, U(n)×C1)-module as
follows:

(1) ω̂ψv((0, t)) = t · IdC[z1,...,zn] (t ∈ C),

(2) ω̂ψv(
1

2

(
Ei,j−Ej,i −ϵ

√
−1(Ei,j+Ej,i)

ϵ
√
−1(Ei,j+Ej,i) Ei,j−Ej,i

)
) = zi

∂

∂zj
+

1

2
δi,j (1 ≤ i, j ≤

n) ,

(3) ω̂ψv(
1

2

(
−ϵ
√
−1(Ei,j+Ej,i) Ei,j+Ej,i
Ei,j+Ej,i ϵ

√
−1(Ei,j+Ej,i)

)
) = ϵ

√
−1 zizj (1 ≤ i, j ≤

n),

(4) ω̂ψv(
1

2

(
ϵ
√
−1(Ei,j+Ej,i) Ei,j+Ej,i
Ei,j+Ej,i −ϵ

√
−1(Ei,j+Ej,i)

)
) = ϵ

√
−1

∂2

∂zi∂zj
(1 ≤ i, j ≤

n),

(5) ω̂ψv(

(
a b
−b a

)
, η)f(z) = ηf(z(a+ϵ

√
−1b))

(
(

(
a b
−b a

)
, η) ∈ U(n) × C1, f ∈

C[z1, ..., zn]
)
.
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Here Ei,j = (δi,kδj,l)k,l and (2), (3), (4) are the actions with respect to a basis to

k =

{(
A B
−B A

) ∣∣∣∣∣A ∈ Alt(n,C), B ∈ Sym(n,C)

}
,

p+ =

{(
−ϵ
√
−1B B
B ϵ

√
−1B

) ∣∣∣∣∣B ∈ Sym(n,C)

}
,

p− =

{(
ϵ
√
−1B B
B −ϵ

√
−1B

) ∣∣∣∣∣B ∈ Sym(n,C)

}
,

where sp(2n,C) = p− ⊕ k⊕ p+ and k is the complexification of the Lie algebra of a
maximal compact subgroup of Sp(2n,R).

In our case, n = 8 and the transfer ω̂ψv ,Vv on C[z1, . . . , z4] of ωψv ,Vv as a (g(Vv)⊕
gv,Lv ×Kv)-module coincides with the composition of ω̂ψv and the splitting,

· dι : g(Vv)⊕ gv → sp(8,R),

· Lv ×Kv ∋ (l, k) 7→ (ι(l, k), 1) ∈ U(4)×C1,

where ι : G(Vv)×G(kv)→ Sp(8,R) is the natural homomorphism, dι its differential,
and U(4) is identified with the maximal compact subgroup of Sp(8,R).

Let us prove Proposition 5.8. If v ∈ SD and σv = 1, the statement has already
been shown by [Yas07] Prop.4.7. In the other case, we will prove only the case of
v ∈ SD. For the case of v ̸∈ SD is similarly proven to the case of v ∈ SD and
σv = exp(±2π

√
−1 · ). (And it is proven for ϵ > 0, η > 0 in [Ada04] Th.4.1.) Since

for

Yt =

(
−t

t

)
∈ LieO∗(2) (t ∈ R),

ω̂ψv ,Vv(Yt) =
√
−1ϵηt(z1

∂

∂z1

+ z2
∂

∂z2

− z3
∂

∂z3

− z4
∂

∂z4

),

we have an isotypic decomposition of C[z1, . . . , z4] as g(Vv)-modules,

C[z1, . . . , z4] = ⊕k∈Z Pk,

Pk =
⊕

k1−k2=ϵηk

C[z1, z2]
(k1) ⊗C[z3, z4]

(k2),

where Pk is the isotypic space of a character exp(2π
√
−1k · ) of G(Vv) ≃ C1 and

C[zi, zj]
(l) denotes the set of homogenuous polynomials of degree l. The actions of

a basis of gv is described as follows:

(1) ω̂ψv,Vv(

(
1

0
−1

0

)
) = z1

∂

∂z1

− z2
∂

∂z2

,

(2) ω̂ψv,Vv(

(
0

1
0
−1

)
) = z3

∂

∂z3

− z4
∂

∂z4

,
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(3) ω̂ψv,Vv(

(
2

0
0

0

)
) = 2ϵη

√
−1z1

∂

∂z2

,

(4) ω̂ψv,Vv(

(
0

2
0

0

)
) = 2ϵη

√
−1z3

∂

∂z4

,

(5) ω̂ψv,Vv(

(
0

0
2

0

)
) = −2ϵη

√
−1z2

∂

∂z1

,

(6) ω̂ψv,Vv(

(
0

0
0

2

)
) = −2ϵη

√
−1z4

∂

∂z3

,

(7) ω̂ψv,Vv(

(
0 1
0 0

0 0
−1 0

)
) = −1

2
(z1z4 − 4

∂2

∂z2∂z3

),

(8) ω̂ψv,Vv(

(
0 0
1 0

0 −1
0 0

)
) = −1

2
(z2z3 − 4

∂2

∂z1∂z4

),

(9) ω̂ψv,Vv(

(
0 1
1 0

0 0
0 0

)
) =

1

2
ϵη
√
−1(z3z4 + 4

∂2

∂z1∂z2

),

(10) ω̂ψv,Vv(

(
0 0
0 0

0 1
1 0

)
) =

1

2
ϵη
√
−1(z1z2 + 4

∂2

∂z3∂z4

).

Using this description one can demonstrate the following:

• Every Pk is irreducible as a gv-module.

• The set of Kv-types in Pk is{
{(ϵηk + l, l) | l ∈ Z≥0} ϵηk > 0,
{(l,−ϵηk + l) | l ∈ Z≥0} ϵηk < 0.

The multiplicity of each Kv-type is one.

• The infinitesimal character of Pk is associated to{
(ϵηk, 1) ∈ t∗ ϵηk > 0,
(1,−ϵηk) ∈ t∗ ϵηk < 0.

by the Harish-Chandra isomorphism.

In particular, if |k| > 1, Pk is the discrete series representation with the Harish-
Chandra parameter (ϵηk, 1) if ϵηk > 0 and (1,−ϵηk) otherwise. If ϵηk = ±1,
δ((1, 1),Ω±) and Pk are irreducible highest weight modules with the same highest
weight. Therefore, they are isomorphic.
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6 Main theorem

Let V, χ, S be as in § 3.

Theorem 6.1. There is an irreducible G(A)-subspace Θ1(V, χ, S) of Θ(V, χ, S) such
that

Θ1(V, χ, S) ≃
⊗
v

θ(Vv, σv(V, χ, S)).

Proof. From § 5, Θ(V, σ, S) has a quotient isomorphic to⊗
v

θ(Vv, σv(V, χ, S)).

Since Θ(V, σ, S) is completely reducible, it must contain a subspace isomorphic to
this representation.

Theorem 6.2. Θ1(V, χ, S) is a CAP representation with respect to PK. More con-
cretely, there is a set S ′ of places of k with finite cadinarity such that

1. Θ0(T, χ, S ′) is non-zero and irreducible cuspidal representation of SL(2,A),

2. For almost all v, θ(Vv, σv(V, χ, S)) is isomorphic to the unique irreducible quotient

of Ind
G(kv)
PK(kv)

ζVv | · |v ⊗Θ0
v(Tv, σv(V, χ, S

′)).

where T is the quadratic space on k(η) defined by the norm form.

Proof. We can choose S ′ satisfying the first condition by Theorem 4.2. For almost
all v ̸∈ SD, Tv is isometric to TVv because both the quadratic spaces have the same
determinant and the Hasse invariant 1. From this and results of § 5, the second
condition follows.

We write m(Θ1(V, χ, S)) for the multiplicity of Θ1(V, χ, S) in the discrete spec-
trum of L2(G(k)\G(A)).

Theorem 6.3.

m(Θ1(V, χ, S)) ≥

 2♯(Sχ∩SD)−1 SD ̸⊂ Sχ, SD ∩ Sχ ̸= ∅
2♯SD−2 SD ⊂ Sχ,
1 SD ∩ Sχ = ∅.

To show this theorem, we make use of the failure of the Hasse’s principle for
(-1)-hermitian spaces over a quaternion division algebra. For η ∈ D−\{0} let k×D,η =
{c ∈ k× | (η2, c)v = 1 for all v ̸∈ SD}. A group homomorphism λ is defined by

k×D,η ∋ c 7→ {(η
2, c)v}v∈SD ∈ {±1}♯SD .

Let {±1} be regarded as the subgroup of {±1}♯SD via the diagonal embedding. Note
that the number of elements of k×D,η/λ

−1({±1}) is 2♯SD−2.
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Proposition 6.4. [Sch85, Theorem 10.4.6, Remark 10.4.6] Let ⟨η⟩ be a (-1)-hermitian
right D-space of dimension 1 defined by η ∈ D−\{0}. Then for any c ∈ k×D,η, ⟨cη⟩
is locally isometric to ⟨η⟩. For any a ∈ λ−1({±1}), ⟨aη⟩ is globally isometric to ⟨η⟩.
{⟨aη⟩ | a ∈ k×D,η/λ−1({±1})} is the set of classes locally isometric to ⟨η⟩, so that this

set contains 2♯SD−2 elements.

In the case of v ∈ SD, the Weil representation ωψv ,Vv of G(Vv) × G(kv) is de-
termined by not the isometry class of Vv but the choice of a basis of Vv. In fact,
if x1 and x2 are elements in Vv not equal to each other, x1 and x2 define different
Weil representations and the Howe correspondents of an irreducible representation
of G(Vv) with respect to these Weil representations do not need to be isomorphic.
Here if ηv = hVv(x, x) for x ∈ Vv, we write ωψv ,ηv for the Weil representation defined
by v instead of ωψv ,Vv . Also write λv(ηv, fv, ϕv) instead of λv(fv, ϕv) of (3.5), and
θ(ηv, χv) instead of θ(⟨ηv⟩, χv).

Lemma 6.5. Let v ∈ SD and Vv ≃ ⟨ηv⟩. For c ∈ k×v , fv ∈ S(Vv) and a unitary
character χv of G(Vv), there exists f ′

v ∈ S(Vv) such that

λv(ηv, fv, χv) = λv(cηv, f
′
v, χ

c
v)

where

χcv =

{
χv (η2

v , c)v = 1,
χv (η2

v , c)v = −1.

In particular, θ(ηv, χv) ≃ θ(cηv, χ
c
v).

Proof. If (c, η2
v) = 1, there is a ξ ∈ k(η) ⊂ D such that ∗ξ ξ = c. If (c, η2

v) = −1,
there is a ξ ∈ D− such that ξ2 = c and ξη = −ηξ. In both cases, (ξ, ξ)Vv = cηv, so
that ξ defines the Weil representation ωψv ,cηv of G(Vv)×G(kv). It is easily checked
that ωψv ,cηv is realized on S(Vv) by

ωψv ,cηv(h, g) = ωψv ,ηv(ξ
−1hξ, g) (h ∈ G(Vv), g ∈ G(kv)).

Therefore for g ∈ G(kv),

λ(ηv, fv, χv)(g) =

∫
G(Vv)

ωψv ,ηv(h, g)f(1Dv)χv(h)dh

=

∫
G(Vv)

ωψv ,ηv(ξ
−1h′ξ, g)fv(1Dv)χv(ξ

−1h′ξ)dh′

=

∫
G(Vv)

ωψv ,aηv(h
′, g)fv(1Dv)χ

c
v(h

′)dh′

= λ(aηv, fv, χ
c
v)(g).

Proof of Theorem 6.3.
If v ∈ SD and χ2

v = 1, θ(η0, χv) ≃ θ(cη0, χv) for any c ∈ k× from Lemma 6.5. There-
fore, if a ∈ k×D,η0 holds (a, η2

0)v = 1 for all v ∈ SD\Sχ, Θ1(V, χ, S) ≃ Θ1(aV, χ, S).
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From Lemma 3.2, if V1, . . . , Vn are (-1)-hermitian spaces over D of dimension 1 not
isometric to each other, in the space of automorphic space of G(A)

Θ1(V1, χ, S) + · · ·+ Θ1(Vn, χ, S) = Θ1(V1, χ, S)⊕ · · · ⊕Θ1(Vn, χ, S).

The image into k×D,η/λ
−1({±1}) of the set of a ∈ k×D,η0 holding (a, η2

0)v = 1 for all
v ∈ SD\Sχ is isomorphic to{

{a ∈ k×D,η/kerλ | (a, η2)v = 1 for v ∈ SD\Sχ} SD ̸⊂ Sχ,
k×D,η/λ

−1({±1}) SD ⊂ Sχ.

The cardinality of this set is equal to the number in the right hand side of inequality
in the theorem.

7 Multiplicity conjecture

7.1 Arthur’s conjecture

In this section we attempt to explain expected value of the multiplicity appearing in
Theorem 6.3 in view of the Arthur’s multiplicity conjecture. Therefore, the argument
in this section supposes some conjectures.

Let F be a local field of characteristic 0 and Γ = Gal(F/F ). The quasisplit inner
form of G is G∗ = Sp(4). We have the following bijection [PR91].

{inner forms of G∗}/∼ ≈ H1(F,G∗
ad)

∈ ∈

G′ ←→ uG′ : Γ ∋ γ 7→ η−1
G′ ◦γηG′

Here ∼ means isomorphic equivalence and ηG′ : G∗(F ) → G′(F ) is an inner twist.
In addition, if F is non-archimedean then from [Kot84] Prop.6.4

H1(F,G∗
ad) ≈ π0(Z(Ĝ∗

sc)
Γ)D

∈ ∈

uG′ ←→ ζ̂G′ .

Here Ĝ∗
sc is the simply connected cover of Ĝ∗ = Ĝ = SO(5,C) so that Ĝ∗

sc =

Sp(4,C) and ( )D means Pontrjagin dual. Write jsc : Ĝ∗
sc → Ĝ∗ for the covering

map. The local Langlands group LF is defined by

LF =

{
WF × SU(2,R) F : non-archimedean,

WF F : archimedean,

where WF is the Weil group of F . By a (local) A-parameter is meant a continuous

homomorphism ϕ : LF × SL(2,C)→ LG = Ĝ×WF such that

(i) writing pF : LF → WF for the conjectural homomorphism and p2 : LG→ WF

the projection to the second component, p2 ◦ ϕ = pF ,

(ii) its restriction to LF is a Langlands parameter with bounded image [Bor79],
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and

(iii) its restriction to SL(2,C) is analytic.

We write Cψ for the centralizer of the image of ψ in Ĝ. For a local A-parameter ψ and
an inner form G′ of G∗ suppose the existence of local A-packet ΠG′

ψ [Art89], which
becomes a finite set of irreducible admissible representations of G′(F ). For a global
or local A-parameter ψ, Sψ denotes j−1

sc (Cψ). Sψ is defined by π0(Sψ) = Sψ/S
0
ψ. For

an inner form G′ of G∗ the following condition is called the relevance condition for
(G′, ψ):

Ker ζ̂G′ ⊃ Z(Ĝ∗
sc)

Γ ∩ S0
ψ.

Since

ZΓ
ψ := Im(Z(Ĝ∗

sc)
Γ → Sψ) ≃ Z(Ĝ∗

sc)
Γ/(Z(Ĝ∗

sc)
Γ ∩ S0

ψ),

if (G′, ψ) satisfies the relevance condition then ζ̂G′ can be regarded as a character of
ZΓ
ψ .

Conjecture 7.1 ([Art06] § 3). Let F be non-archimedean. For a local A-parameter
ψ : LF × SL(2,C)→ LG∗ there exists a pairing

⟨ , ⟩F : Sψ × (
⨿

G′∈H1(F,G∗
ad)

ΠG′

ψ )→ C

which satisfies the following condition:
For any inner form G′ of G∗, if (G′, ψ) does not satisfiy relevance condition,

ΠG′

ψ = ∅ and otherwise there exists

ρ : ΠG′

ψ → Π(Sψ, ζ̂G′) = {irred. repre.σ of Sψ
∣∣ σ|ZΓ

ψ
= ζ̂G′}/∼

∈ ∈

π 7→ ρπ

such that ⟨s, π⟩F = Tr ρπ(s) for all s ∈ Sψ.

If F is non-archimedean then the set of inner forms of G∗ consists of Gs
F = Sp(4)

and non-split group Gns
F . If F is real it consists of Gs

F , Gns
F = Sp(1, 1) and the

compact group Sp(4), and if F is complex it consists of only Gs
F . In any case put

Πs
ψ = Π

GsF
ψ , Πns

ψ = Π
GnsF
ψ (Πns

ψ = ∅ if F is complex). Since we do not treat the case
that G coincides with the compact Sp(4) at a real place, we will not consider the
A-packet in the case.

Next consider the global case. Assume existence of the hypothetical Langlands
group Lk of k. A global A-parameter is defined similarly to the local one. Two A-
parameters are equivalent if they are Ĝ-conjugate. An A-parameter ψ is said to be
elliptic if the centralizer Cψ of the image of ψ into Ĝ is contained in the center Z(Ĝ)

of Ĝ. The set of equivalence classes of elliptic A-parameters is denoted by Ψ0(G).
For an elliptic A-parameter ψ, the associated local A-parameter ψv is given for any
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place v by the hypothetical homomorphism Lkv → Lk. Sψ is defined similarly to
the local one. Then a homomorphism Sψ → Sψv is given. Assume that the pairing
⟨ , ⟩v : Sψv × (Πs

ψv
⊔ Πns

ψv
) → C satisfying Conjecture 7.1 is given for any v . Then

the global pairing ⟨ , ⟩ =
∏

v⟨ , ⟩v : Sψ × ΠG
ψ → C is defined if the product exist.

Let ϵψ : Sψ → {±1} be the character defined in [Art89]. ΠG
ψ is defined by the set of

π = ⊗πv such that πv ∈ Π
G(kv)
ψv

and πv is unramified for almost all v. For π ∈ ΠG
ψ

set

mψ(π) =
1

|Sψ|
∑
s∈Sψ

ϵψ(s)⟨s, π⟩.

The Arthur’s multiplicity conjecture is described as follows.

Conjecture 7.2 ([Art89] Conj.8.1). The multiplicity of π in the discrete spectrum
of L2(G(k)\G(A)) is equal to

∑
ψ∈Ψ0(G)mψ(π).

7.2 Multiplicity of Klingen CAP representation

From the Adams’ conjecture ([Ada89] § 4, I), it is expected that Θ1(V, χ, S) belongs
to the global A-packet associated to the A-parameter ψ = ψk′,χ : Wk × SL(2,C)→
SO(5,C)×Wk defined by

ψk′,χ =
(
IndWk

Wk′
µ(χ)⊗ 1SL(2,C)

)
⊕

(
ωk′/k ⊗ Sym2

)
× IdWk

.

Here, k′ is the quadratic extension k(η) of k with discriminant δ, Wk,Wk′ the Weil
groups of k, k′, ωk′/k the quadratic character associated to the quadratic extension
k′/k, Sym2 the second symmetric power of the standard representation of SL(2,C)

and µ(χ) : Wk′ → C× the image of the element of H1(Wk, Ûk′/k(1)) associated to

χ by the Langlands’ class field theory via the restriction map H1(Wk, Ûk′/k(1)) →
H1(Wk′ , Ûk′/k(1)).

We need description of local and global A-packets, S-groups and pairings to
describe the conjectural multiplicity. To obtain local and global A-packets, we set
an assumption (c.f. [Ada89] § 4.5 Conj.B).

Assumption Let F be a local field of a form kv for some v, DF the quaternion
algebra D(F ) and K a quadratic algebra of F with descriminant δK . For a
unitary character χK of the group of norm 1 of K×, set an A-parameter ψK,χK
for G(F ) by

ψK,χK =
(
IndWF

WK
µ(χK)⊗ 1SL(2,C)

)
⊕

(
ωK/F ⊗ Sym2

)
× IdWF

where µ(χK) is defined as before. Then the A-packet Π
G(F )
ψK,χK

associated to

ψK,χK coincides with

{θ(VF , σ) |VF , σ}
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where VF runs over non-degenerate (-1)-hermitian right spaces over DF with
dimension 1 and determinant −δK , and σ is in the L-packet ΠVF

χK
associated to

a L-parameter ϕVFχK defined by the composition of the embedding LG0(VF )→
LG(VF ) and the L-parameter LF → LG0(VF ) associated to χK .

By the equivalent relation of L-parameters for G(Vv) ([Ada89] § 3.4), we obtain

ΠVv
χv =

{
{irreducible constituents of Ind

G(Vv)
G0(Vv)

χv} v ̸∈ SD,
{χv, χ−1

v } v ∈ SD.

From our assumption, Π
G(kv)
ψv

is described as follows:
(1) The case of v ̸∈ SD

Πs
ψv =


{θ(V ±

v , χ̃
+
v )} χ2

v ̸= 1 and δ ̸∈ (k×v )2,
{θ(Hv, χ̃

+
v )} χ2

v ̸= 1 and δ ∈ (k×v )2,
{θ(V ±

v , χ̃
±
v )} χ2

v = 1 and δ ̸∈ (k×v )2,
{θ(Hv, χ̃

±
v )} χ2

v = 1 and δ ∈ (k×v )2.

Here V ±
v is the two-dimensional quadratic space over kv with determinant −δ and

Hasse invariant ±1, Hv is the 2-dimensional hyperbolic space over kv. Note that
θ(Vv, σv) appearing in the above packets is of the form of an irreducible quotient of

Ind
Sp(2,kv)
PK(kv)

(ωk′v/kv | · |v ⊗ τv) for some irreducible representation τv of SL(2, kv) and

the character ωk′v/kv associated to the extension k′v/kv except for σv = det.
(2) The case of v ∈ SD

Πns
ψv =

{
{θ(Vv, χv), θ(Vv, χ−1

v )} χ2
v ̸= 1,

{θ(Vv, χv)} χ2
v = 1,

where Vv is the 1-dimensional (-1)-hermitian space over Dv with determinant −δ.
Note that elements of Πns

ψv
are supercuspidal except for χv = 1.

Next describe global and local S-groups for ψ.

Sψ ≃
{

2Z/4Z× Z/2Z χ2 ̸= 1,
D4 χ2 = 1,

where D4 is the dihedral group with 8 elements. If k′v is a quadratic extension of kv
then

Sψv ≃
{

2Z/4Z× Z/2Z χ2
v ̸= 1,

D4 χ2
v = 1,

and if k′v ≃ kv ⊕ kv then

Sψv ≃
{
{1} × {1} χ2

v ̸= 1,
Z/2Z× {1} χ2

v = 1.

The homomorphism Sψ → Sψv is determined by the above description of S-groups
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and the following diagram:

D4 = Z/4Z o Z/2Z
κ−→ Z/2Z× Z/2Z → Z/2Z× {1}

⊂ ⊂ ⊂

2Z/4Z× Z/2Z → {1} × Z/2Z → {1} × {1}
Finally, define a pairing ⟨ , ⟩v as follows. If v ∈ SD and χ2

v = 1,

⟨s, θ(Vv, χv)⟩v =

{
±2 s = ±1
0 otherwise,

if v ∈ SD and χ2
v ̸= 1,

⟨ · , θ(Vv, χϵv)⟩v = sgn(ϵ−1)/2 ⊗ 1,

and otherwise

⟨ · , θ(V η
v , χ̃

ϵ
v)⟩v = sgn(ϵ−1)/2 ⊗ sgn(η−1)/2,

where −1 = (2, 0) ∈ Z/4Z o Z/2Z, we regard Hv = V +
v and if Sψv ≃ D4 it is

reduced to Z/2Z×Z/2Z via κ. Remark that our definition of local pairings satisfies
Conjecture 7.1.

We calculate ϵψ = 1 by definition. Therefore, for an irreducible automorphic rep-
resentation π = Θ1(V.χ, S) ∈ ΠG

ψ for some V, S, the Arthur’s conjectural multiplicity
is described by

mψ(π) =

 2♯(Sχ∩SD)−1 χ2 ̸= 1, SD ∩ Sχ ̸= ∅,
2♯SD−2 χ2 = 1, SD ∩ Sχ ̸= ∅
1 SD ∩ Sχ = ∅.
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