九州大学学術情報リポジトリ Kyushu University Institutional Repository

ヒドロゲナーゼモデル錯体による水素の活性化

松本, 崇弘 九州大学工学研究院応用化学部門

https://doi.org/10.15017/1866693

出版情報:九州大学低温センターだより.9, pp.10-15, 2015-03. 九州大学低温センター バージョン: 権利関係:

ヒドロゲナーゼモデル錯体による水素の活性化

松本崇弘 工学研究院応用化学部門

1. はじめに

1930年代にヒドロゲナーゼと呼ばれる水素酸化還元酵素が発見された。ヒドロゲナーゼは水素の活性化反応(式1)を触媒し、その活性中心の金属元素に基づき、[NiFe]ヒドロゲナーゼ、[FeFe]ヒドロゲナーゼ、[FeFe]ヒドロゲナーゼ(図1a)は、水素発生反応よりも水素酸化反応を得意とする。その水素酸化過程では、水素のヘテロリティックな開裂によりヒドリドイオン(H⁻)が生成すると考えられてきたが(式1)、そのヒドリドイオンを活性中心が捉えた反応中間体は最近まで報告されていなかった。²

$H_2 \iff H^- + H^+ \iff 2e^- + 2H^+$ (1)

1995年に、[NiFe]ヒドロゲナーゼの構造が初めてX線解析によって明らかにされた(図1b)。³ これは休止状態(水素と反応する前)の構造であり、NiとFeが2つのチオレート残基と1つのX(H₂O、OH⁻、O²⁻)で架橋されている。その20年後の2015年に、活性化状態(水素と反応した後)の[NiFe] ヒドロゲナーゼの高分解能X線解析によって、NiとFeの間にヒドリドイオンが捉えられた構造が明らかにされた(図1b)。² この研究により反応中間体の構造がようやく明らかとなったが、一方でその反応メカニズムについては未だ不明な点が多い。本稿では、錯体化学・有機金属化学を基礎とするモデル研究による反応メカニズムの解明とモデル錯体の応用研究について簡単に紹介する。

図1 活性化状態の[NiFe]ヒドロゲナーゼの (a) 全体構造 (PDB コード:4U9H)、² (b) 休止状態の 活性中心構造 (X = H₂O、OH、または O²⁻、PDB コード:2FRV)、³ 及び (c) 活性化状態の活性中心 構造 (PDB コード:4U9H)²

2. ヒドロゲナーゼモデル NiRu 錯体

2007年に、[NiFe]ヒドロゲナーゼの活性中心構造を有機金属化学的にモデル化し、Feの代わりにそ の同族元素である Ru を用いて、その構造と機能を再現した NiRu 錯体を報告した(図2)。⁴⁻⁹ [NiFe] ヒドロゲナーゼの休止状態(図1b)のモデル錯体として、Ru中心上にH₂O配位子を持つ水溶性Ni^{II}Ru^{II} アクア錯体1を合成した(図2b)。図1bのX(H₂O、OH、または O^{2-})に対応する配位子として、 H₂Oを持つこの錯体1は、水中・常温・常圧で水素をヘテロリティックに開裂し、NiとRuの間にヒ ドリドイオンを捉えることができる(図2a)。Ru上に導入したH₂O配位子が塩基としてプロトンを 引き抜く役割を担うために、水素のヘテロリティックな開裂が促進されると考えられる。生成した Ni^{II}Ru^{II}ヒドリド錯体2の構造は、X線解析により決定した(図1c)。¹HNMRスペクトルのシグナル が常磁性領域に観測されることや、ESR スペクトルでシグナルが観測されることから、ヒドリド錯体 **2**の Ni^{II} 中心が高スピン (S = 1) であることが示唆された。これは反応前の平面4配位構造(錯体1 の Ni^{II} 中心)から反応後の8面体6配位構造(錯体2の Ni^{II} 中心)に変化することによって、低スピ ン Ni^{II} 中心 (S=0) から高スピン Ni^{II} 中心 (S=1) へと変化したと考えられる。[NiFe]ヒドロゲナーゼ の休止状態(図1b)と活性化状態(図1c)とそのモデルのアクア錯体1(休止状態に対応、図2b)と ヒドリド錯体(活性化状態に対応、図2c)を比較すると、その構造や反応前後の構造変化が互いに非 常に良く似ていることが視覚的によく解る。両者とも、金属間を架橋している2つのイオウ原子がフ レキシブルに動くことによって、うまくヒドリドイオンを捉えている。

NiRu モデル錯体は、[NiFe]ヒドロゲナーゼと同様に触媒的に水素からの電子抽出を可能とする(図2a)。Ni^{II}Ru^{II}アクア錯体1は水素をヘテロリティックに開裂し、Ni^{II}Ru^{II}ヒドリド錯体2が生成する。 錯体2はもう1分子の水素と反応して、ジヒドリド種Aとなり、水素の還元的脱離によって低原子価 Ni^IRu^I錯体3が得られる。この低原子価種が真の還元活性種であり、Cu²⁺をCu⁰に還元し、元のアク ア錯体1に戻る。このように、水素のヘテロリティックな開裂に伴い、ヒドリド種を経由する触媒的 電子抽出反応は、本系が初めてである。後述するが、この水素からの電子抽出サイクルを利用して、 本モデル触媒を燃料電池のアノードへと応用展開した。

図 2 (a) ヒドロゲナーゼモデル NiRu 錯体による水素の触媒的酸化反応メカニズム、(b) Ni^{II}Ru^{II} アクア錯体 1 の X 線構造、(c) Ni^{II}Ru^{II}ヒドリド錯体 2 の X 線構造⁴⁹

3. ヒドロゲナーゼモデル NiFe 錯体

前述した NiRu モデル錯体の Ru を Fe に置換した[NiFe]ヒドロゲナーゼモデル錯体を 2013 年に報告 した (図3)。¹⁰ これは、[NiFe]ヒドロゲナーゼの活性中心構造とその機能を完全に再現したモデルで ある。[NiFe]ヒドロゲナーゼの休止状態 (図1b)のモデル錯体として、Fe 原子上にアセトニトリル配 位子を持つ Ni^{II}Fe^{II} 錯体 4 を合成した (図3b)。錯体 4 をメタノール/アセトニトリル混合溶媒中で、 ナトリウムメトキサイドを塩基として加え、1 気圧の水素を反応させると、容易に Ni^{II}Fe^{II}ヒドリド錯 体5が生成する (図3a)。ヒドリド錯体5の構造は、X 線解析によって決定し、NiとFe の間にヒド リドイオンが捕捉されたスナップショットを捉えた (図3c)。NiRu モデル錯体の時と同様に、2つの 架橋イオウ原子の高い自由度によって、ヒドリドイオンを捉えることが可能となったと考えられる。 この Ni^{II}Fe^{II} ヒドリド錯体5 は、Ni^{II}Ru^{II} ヒドリド錯体2 とは異なり、Ni^{II} 中心の平面性が高く、低スピ ン状態 (*S*=0) であるため、ESR スペクトルはサイレントである。そのため、このヒドリドイオンは ^IH NMR 分光法によっても同定でき、-3 から-4 ppm にヒドリドイオンに特徴的な領域にシグナルが観 測される (図4)。ヒドリドイオンは Fe 中心に配位している3つのリン原子の 1/2 の核スピンの影響 を受けて分裂する。具体的には、等しい距離にある2つのリン原子とより遠い距離にある1つのリン 原子からの相互作用によって、ダブルトリプレットに分裂する。また、ヒドリド錯体 5 の IR スペク トルでは、1687 cm⁻¹ に Fe-H に特徴的な伸縮振動が観測される。

Ni^{II}Fe^{II} ヒドリド錯体 5 は、[NiFe]ヒドロゲナーゼと同じ反応性を示し、同様の基質を還元すること が可能である(図3a)。[NiFe]ヒドロゲナーゼは、基質によって電子還元とヒドリド還元の両方を触 媒することができる。Ni^{II}Fe^{II} ヒドリド錯体 5 も同様に、メチルビオロゲンの酸化体(MV²⁺)の電子還 元や、10-メチルアクリジニウムイオン(AcrH⁺)のヒドリド還元が可能である。また、ヒドリド錯体 5 によるプロトンのヒドリド還元では水素を発生し、この反応は、式1の左方向の反応である。すな わち、本研究によって開発した NiFe モデル錯体は、[NiFe]ヒドロゲナーゼの活性中心構造とその機能 を完全に再現することに成功した。

図3 (a) ヒドロゲナーゼモデル NiFe 錯体による水素の酸化メカニズム、(b) Ni^{II}Fe^{II}アセトニトリル錯体 4 の X 線構造、(c) Ni^{II}Fe^{II}ヒドリド錯体 5 の X 線構造^{4,6,10}

図4 $Ni^{II}Fe^{II}$ ヒドリド錯体5の $^{1}HNMR$ スペクトル¹⁰

4. ヒドロゲナーゼモデル NiRu 錯体による触媒的水素発生

緒言で述べたように、[NiFe]ヒドロゲナーゼは通常、水素酸化反応を得意とするが、プロトンの電 子還元による水素発生も触媒することができる(式1)。水素は次世代のエネルギーキャリアーとして 期待されているが、貯蔵や運搬について問題を抱えており、そのため貯蔵や運搬が容易なギ酸は水素 貯蔵材料として期待されている。本研究では、Ni^{II}Ru^{II}ヒドリド錯体2を用いて、ギ酸から水素を取り 出す触媒反応の構築を行った(図5)。¹¹ Ni^{II}Ru^{II}ヒドリド錯体2に水中でギ酸を加えると、H₂O 配位 子と置換して、Ni^{II}Ru^{II}ヒドリド・ギ酸錯体6が生成する(図5a)。この構造はX線解析により決定し た(図5b)。Ni や Ru 周りの配位構造は、Ni^{II}Ru^{II}ヒドリド錯体2とほぼ同じである。¹H NMR スペク トルのシグナルが常磁性領域に観測されることや、ESR スペクトルでシグナルが観測されることから、 ヒドリド・ギ酸錯体6のNi^{II}中心が高スピン(S=1)であることが示唆された。

図5 (a) ヒドロゲナーゼモデル NiRu 錯体による触媒的水素発生サイクル、(b) Ni^{II}Ru^{II} ヒドリド・ ギ酸錯体 **6** の X 線構造¹¹

Ni^{II}Ru^{II} ヒドリド・ギ酸錯体 6 は触媒的にギ酸から水素と二酸化炭素を発生し、至適 pH 3.3 で、1 時間あたりの触媒回転頻度が 857 回という高い値を示した。図 5 a に示す反応メカニズムは、水素の代わりにギ酸を使用すること以外は、図 2 a に示したメカニズムの $2 \rightarrow A \rightarrow 3 \rightarrow 2 \cdots$ のサイクルと同じである。すなわち、本研究では、本来 NiRu 錯体に備わっている水素発生能力をギ酸を用いることによって引き出すことに成功した。

5. ヒドロゲナーゼモデル NiRu 錯体の燃料電池への応用

水素から触媒的に電子抽出が可能なヒドロゲナーゼモデル NiRu 錯体は、燃料電池のアノード触媒 への応用が可能である。¹²⁻¹⁵ 現在、燃料電池の電極触媒には白金が用いられているが、白金は高価な うえ枯渇資源であることから、その代替触媒の開発が必要である。本研究では脱白金アノード触媒と して、NiRu 触媒を燃料電池へと応用した。Ni^{II}Ru^{II} ヒドリド錯体をカーボンブラックに担持し、カー ボンクロスに塗布し、水素極の電極を作成した。酸素極の電極には白金/カーボンを使用した。Ni^{II}Ru^{II} ヒドリド触媒電極をアノード側に、白金触媒電極をカソード側にし、それらの電極でナフィオン膜を 挟み込み、膜-電極接合体 (MEA)を作成した。その MEA を用いて、固体高分子形燃料電池を作成 した (図6)。燃料電池評価実験を行うと、起電力は 0.78 V で、最大電力密度は 49 μ W cm⁻²であった。 得られた電力はまだ低いが、本研究で開発した分子燃料電池は分子触媒を電極触媒に用いた初めての 燃料電池である。

6. 結論

自然には[NiFe]ヒドロゲナーゼのような高活性でかつ環境調和型の水素酸化還元酵素が存在する。¹⁶ そのようなお手本となる触媒から学び、その構造や機能からヒントを得て人工的に新しい触媒の開発 を行うことは、環境調和型触媒システムの構築に有効な方法の1つである。本研究では、錯体化学・ 有機金属化学の知識と技術を用いて、[NiFe]ヒドロゲナーゼの活性中心構造を単純な分子構造で再現 し、最終的に開発したモデル触媒を応用化学の分野にまで展開させることができた。今後も、自然に 学び、応用展開できる触媒開発を目指していく。

- 7. 引用文献
- 1. Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114(8), 4081-4148.
- 2. Ogata, H.; Nishikawa, K.; Lubitz, W. Hydrogens Detected by Subatomic Resolution Protein Crystallography in a [NiFe] Hydrogenase. *Nature* 2015, in press (10.1038/nature14110).
- Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Crystal Structure of the Nickel–Iron Hydrogenase from *Desulfovibrio Gigas. Nature* 1995, 373(6515), 580–587.
- 4. Ogo, S. H₂ and O₂ Activation—A Remarkable Insight into Hydrogenase. *Chem. Rec.* 2014, 14(3), 397–409.
- 5. Ogo, S. Electrons from Hydrogen. Chem. Commun. 2009, (23), 3317–3325.
- 6. 松本崇弘,小江誠司,化学,新しい水素活性化触媒ー[NiFe]ヒドロゲナーゼに学ぶ水素からの電子抽出, 2013, 68(8), 12–16.
- Ogo, S.; Kabe, R.; Uehara, K.; Kure, B.; Nishimura, T.; Menon, S. C.; Harada, R.; Fukuzumi, S.; Higuchi, Y.; Ohhara, T.; Tamada, T.; Kuroki, R. A Dinuclear Ni(µ-H)Ru Complex Derived from H₂. Science 2007, 316(5824), 585–587.
- Kure, B.; Matsumoto, T.; Ichikawa, K.; Fukuzumi, S.; Higuchi, Y.; Yagi, T.; Ogo, S. pH-Dependent Isotope Exchange and Hydrogenation Catalysed by Water-soluble NiRu Complexes as Functional Models for [NiFe]hydrogenases. *Dalton Trans.* 2008, (35), 4747–4755.
- Matsumoto, T.; Kure, B.; Ogo, S. Extraction of Electrons from H₂ with a Ni¹Ru¹ Catalyst. Chem. Lett. 2008, 37(9), 970–971.
- Ogo, S.; Ichikawa, K.; Kishima, T.; Matsumoto, T.; Nakai, H.; Kusaka, K.; Ohhara, T. A Functional [NiFe]Hydrogenase Mimic That Catalyzes Electron and Hydride Transfer from H₂. Science 2013, 339(6120), 682–684.
- Nguyen, N. T.; Mori, Y.; Matsumoto, T.; Yatabe, T.; Kabe, R.; Nakai, H.; Yoon, K.-S.; Ogo, S. A [NiFe]hydrogenase Model That Catalyses the Release of Hydrogen from Formic Acid. *Chem. Commun.* 2014, 50(87), 13385–13387.
- 12. Matsumoto, T.; Kim, K.; Ogo, S. Molecular Catalysis in a Fuel Cell. Angew. Chem. Int. Ed. 2011, 50(47), 11202–11205.
- Matsumoto, T.; Kim, K.; Nakai, H.; Hibino, T.; Ogo, S. Organometallic Catalysts for Use in a Fuel Cell. *ChemCatChem* 2013, 5(6), 1368–1373.
- 14. 松本崇弘,小江誠司,化学と工業,分子燃料電池,2013,66(2),114-116.
- 15. 松本崇弘,小江誠司,現代化学,水素が好き?酸素が好き?ー酵素の基礎研究から分子燃料電池の開 発へー,2013,68(8),52–57.
- Matsumoto, T.; Eguchi, S.; Nakai, H.; Hibino, T.; Yoon, K.-S.; Ogo, S. [NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H₂ Oxidation Reaction. Angew. Chem. Int. Ed. 2014, 53(34), 8895–8898.