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ABSTRACT 
The mining industry, over the years, has adopted and applied geostatistics for mineral 

reserve estimation. The biggest problem in geostatistics is the failure of variogram 

modelling due to the non-stationarity and normality of the drillhole data. Factors such as 

geological structure, deposition environment, type of ore and degree of mineralization 

need to be considered in addition to the spatial continuity studied in the variogram.  

It has been shown that Artificial Neural Networks (ANNs) have the ability to operate 

nonlinearly and make no assumptions about any factor or relationship regarding the 

ore's spatial variation obtained from the drillhole data. Therefore, ANNs can be used to 

learn what underlying functional relationship is present in the data based on the 

drillholeôs core samples. 

Previous research on mineral reserve estimation has been carried out using geostatistics 

and ANNs separately. The research concluded that both approaches to mineral resource 

evaluation perform equally, and in some cases, one outperforms the other. Since 

geostatistics has been the most predominantly accurate predictive tool for the mineral 

grade estimation, and ANNs have been used to learn about the underlying functional 

relationship present in the drillhole data, this research proposes combining these two 

methods for optimum mineral reserve estimation. 

This research presents the method integrating artificial neural networks and 

geostatistics, naming it Artificial Neural Networks Model with Geostatistics (ANNMG). 

The objective is to apply ANNMG to reduce the number of required drillings by using 

the model to generalize drillhole grades at un-sampled and sampled locations inside the 

mine area. 

In the research, the ANNMG model was trained, tested and validated using ore grade 

values obtained from 3D-drillhole samples. The validated ANNMG model was then 

used to generalize mineral grades in un-sampled areas within the mining area. The 

original and generalized grade values were combined and fed to geostatistics in order to 

develop the geological reserve block model, which consists of blocks with values of 

mineral grades and economic costs, used in mine design and operation scheduling. 

This dissertation consists of six chapters. 
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Chapter 1 discusses the importance of integrating ANNs with geostatistics for mineral 

reserve estimation. It introduces previous studies on ANNs, geostatistics and mine 

design, planning and operation scheduling. 

Chapter 2 details the geological characteristics of the Marampa iron deposit located in 

Sierra Leone. This deposit was used to document the case study. Sierra Leon forms part 

of the West African Craton, and about 75% of the rocks are older than 2.1 Billion years 

(G.a). The rocks have been affected by many tectonic events and the structures 

produced have been used to unravel the geological history of the country. The geology, 

like in other parts of West Africa consists of a basement complex, supracrustal rocks, 

and intrusive granites. The chapter further described the location of the project area 

which lies within the supracrustal rocks of the Marampa schist formation, which hosts a 

primary quartz-hematite schist horizon with a thickness of up to 65m. 

Chapter 3 describes analyzing the drillhole data comprising of 539 drillholes using the 

Geostatistical Software Library known as GSLIB. The GSLIB was used to study the 

spatial variation in the grade data (Fe %) from which three directional (0º, 45º and 90º) 

variograms were constructed. Based on the analysis, the inference was made about the 

grade data. It did not deviate severely from normality and stationarity, and it exhibits an 

asymmetric distribution with a negative skew. The drillhole data sampling and 

preparation process was validated with duplicate samples for analysis. The correlation 

coefficient (R
2
) of the laboratory duplicates for Fe2O3%, Al2O3%, and SiO2% were 

0.9912, 0.9882 and 0.967, respectively. These values of correlations indicate strong 

confidence in the sample analysis process. 

Chapter 4 details the application of the ANNMG model which was trained using the 

Levenberg-Marquardt backpropagation algorithm. The number of drillholes that 

contributed to the model's training, testing and validation were 269, 135 and 135 

respectively. The model's performance was assessed by two estimation errors: the mean 

squared error (MSE) and R
2
. The model's MSE values were 0.2044, 0.2090 and 0.2087, 

and the R
2 

values were 0.8925, 0.8807 and 0.8805 for training, testing and validation 

respectively. The overall R
2 

was 0.889. It was proven that the ANNMG model could 

explain 88.9% of the variability as overall. For sensitivity analysis and validation 

purposes, the impact of utilizing fewer drillholes in the training process was studied 

using 150 drillholes for training and 60 drillholes each for testing and validating the 
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model. The average grade computed by the ANNMG model using 269 drillholes for 

training was 0.44% lower than that of the 539 drillholes while using 150 drillholes for 

training was 0.65% lower.  

Chapter 5 introduced some simulation results of open-pit mine design and scheduling 

using the Best Positive Inverted Truncated Cone (BPITC) method. The BPITC method, 

developed by Dindiwe et al. (2001), is not a mathematical formulation but rather a 

sequential approach to mine optimization involving calculations leading to optimality. It 

is purely based on the principle of the moving cone technique with excavations from 

bottom to top instead of the reverse called Best Positive Moving Cone (BPMC). The 

simulation results provided the production schedules and produced a stable life of mine 

results that minimize the deviation from ore and waste production by handling the 

uncertainty using the BPITC method. The uncertainty optimizations was achieved by 

defining a fixed ultimate pit based on a single estimated orebody model then apply the 

fixed pit limit to the simulated orebody models, and optimize the simulated orebody 

models individually. The Net Present Value (NPV) for optimizing the simulated 

orebody models individually was found to be 16% greater than the NPV for the method 

of applying the fixed pit limit to the simulated orebody models. Also, BPITC, when 

compared with the BPMC algorithm, was found to be about 10% larger regarding total 

tonnage. This difference adds approximately 7% of additional NPV to the mining. The 

differences reported between the BPITC and the BPMC methods were due to the 

different scheduling patterns.  

Chapter 6 is a summary and a conclusion of the findings of the research and future 

studies on optimizing operations from mine to refineries, incorporating the use of 

artificial intelligence technologies. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Introduction 

Mineral deposits are very complex structures to model and estimate due to the 

geological processes involved in their deposition. Before mine development, the 

reserve of any deposit must be estimated. Mineral reserve estimation has always posed 

a challenge to the mining industry. Over the years, numerous improvements have been 

made in developing accurate estimation techniques of the quantity and quality of ore. 

Of the many techniques developed to assist mining engineers accurately estimate the 

grades of a mineral deposit; geostatistics has been the most predominantly used. 

Geostatistics provides powerful tools for modelling most of the aspects of an ore 

deposit. Its efficacy and supremacy have been demonstrated in several studies. 

To date, the biggest challenge in using geostatistics lies in the failure of variogram 

modelling due to the non-stationarity and normality of the drillhole data. The most 

important factor in reserve estimation using geostatistics is the distribution of the ore 

grade which is always assumed to be a function of distance (Wu and Zhou, 1993). 

However, over the years we have learned that there are other factors such as geological 

structure, deposition environment, ore type, and degree of mineralization that also need 

to be considered in the estimation process. 

In recent times, several researchers have opted for a neural network modelling 

approach for ore grade estimation and demonstrated the utility and performance of this 

method in many practical applications. Improvements have been made in developing 

accurate predictions of the quantity and quality of ore using geostatistics and ANNs 

each with its characteristics. 

Many researchers are opting for one over the other because of their applications in 

different practical fields. However, it is worth noting that geostatistics has been the 

most effective estimation technique because it provides powerful tools for modelling 

most of the aspects of an ore deposit.  ANNs, on the other hand, are used because they 

have the ability to learn the underlying functional relationship present in the grade data. 
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Therefore, integrating these two methods of geostatistics and neural networks for 

optimum mineral reserve estimation cannot be overemphasized. 

 

1.2. Background of the Study 

In 1986 David Rumelhart, Geoffrey Hinton, and Ronald Williams wrote a paper 

describing the use of several ANNs where the backpropagation algorithm works far 

faster than previous approaches to learning, making it possible to use ANNs 

applications in many areas. 

Geostatistics and ANNs have different characteristics. In mineral estimation, while 

geostatistics utilizes information from the drillhole data only, neural networks use 

information from drillhole data and other mining data. Geostatistics is regarded as a 

statistical or mathematical estimation technique, whereas neural network mimics the 

brain. Finally, geostatistics can be used to assess grade uncertainty whereas neural 

networks cannot. Because of these different characteristics, this research presents 

integrating the two methods of geostatistics and neural networks for optimum mineral 

reserve estimation. 

In this research, ANNMG model is presented. Samples from 539 drillholes collected 

from drilling were split into training, testing and validation set. From the drillholes, the 

coordinates (Northing, Easting, and Elevation) and sample length were used as input 

variables, and location specific Fe% grade was the output variable.  

269 drillholes were used to train the model, and 135 drillholes each for testing and 

validation. The trained network had sufficient information to characterize the spatial 

variation of ore grades in the region encompassed by the drillholes. After training, 

testing and validating the ANNMG model, generalization was made within the mine 

region. The reproduced and generalized grades were combined and fed to geostatistics 

to develop geological 3-D reserve block models for Open Pit Mine Design. 

For sensitivity analysis purposes, the impact of utilizing fewer drillholes in the training 

process was studied using 150 drillholes for training and 60 drillholes each for testing 

and validating the model. Results showed that there was a risk of not producing the 

actual distribution of ore grade in the deposit when trained with less (150) drillholes. 
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Open Pit Mine Design is affected by input factors such as metal price, slope stability 

and grade uncertainty. The deposit was simulated to capture the spatial variation of the 

Fe% grade to characterize the grade uncertainty. BPITC, a heuristic optimization 

method based on the Positive Moving Cone (PMC) and the BPMC techniques was used 

for the solution of optimization under uncertainty. The simulated realizations were used 

as serial input to mine design in a stochastic method so as to eliminate the annoying 

and time-consuming task of splitting the realizations into different files.  

 

1.3. Modelling Geological Uncertainty 

Geostatistics was developed in the 1960ôs from the need of a methodology to evaluate 

the recoverable reserves in mining deposit (Goovaerts, 1997). Initially, it was viewed as 

a means of describing spatial variations and estimates the value of the attribute of 

interest at unsampled locations. 

Currently, geostatistics is increasingly used to model uncertainty by generating equally 

probable realizations, then propagating that uncertainty all the way into a probabilistic 

reporting (Journel, 1996).  

 

Figure 1-1: Illustrates the risk of assigning a single value to a grade model (Francis, R. A. C. 2010) 

 

Figure 1-1 illustrates the risk of assigning only one value to a block. From the diagram, 

we know that the true value is unknown, but modelling the uncertainty will incorporate 

the unknown true value into the design and planning process. The grade value at a 
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given location is modelled as a random variable with a specific probability distribution. 

Through stochastic simulation, an alternative equally probable set of simulated grade 

values, which emulate the unknown true spatial distribution of grades is obtained 

(Journel, 1989). These set of alternative realizations provide a visual and quantitative 

measure of the uncertainty (Goovaerts, 1997) of the grade value at a given location. 

Each realization of the random variable is equiprobable and is also known as a 

simulation.  

 

1.4. Principles of Artificial Neural Networks 

The attraction of neural networks is that they are best suited for solving problems that 

are the most difficult to solve by traditional computational methods. 

The principle of the backpropagation technique is that each neuron receives a signal 

from the neurons in the previous layer, and each of those signals is multiplied by a 

separate weight value.  

The weighted inputs are summed, and, passed through a limiting function called the 

sigmoid function which scales the output to a fixed range of values. The output of the 

sigmoid function is then broadcasted to all of the neurons in the next layer. Figure 1-2 

shows the schematic representation of a neuron. 

 

Figure 1-2: The schematic representation of a neuron (Jalloh A. B et al., 2016) 

 

To use the network to solve a problem, we apply the input values to the inputs of the 

first layer, allow the signals to propagate through the network, and read the output 

values.  
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Figure 1-3: The weighting function of a neuron (Jalloh A. B et al., 2016) 

 

The propagation error is calculated using the sigma transfer function. This function is 

derived as shown in eq. (1-1). 
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Elements in the input and hidden layers of the ANNs are manipulated by a weighing 

function to generate the network output, as illustrated in eq. (1-2). 

1 1 2 2 3 3O=ů(WI +W I +W I +ɗ)                     (1-2) 

The process of determining the weights is called training, and depending upon the 

output, the network adjusts weights iteratively based on their contribution to the error. 

This process of propagating the effect of the error onto all the weights is called 

backpropagation. During the learning process, ANNs maps the patterns in the data by 

reflecting the changes in data fluctuations in the spatial coordinate.  
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1.5. Conventional Approaches to Open Pit Design 

The criterion of Open Pit Mine Design until now has been about maximization of the 

NPV of the pit, but unfortunately, after 50 years of continuing efforts, this goal could 

not be thoroughly achieved. The reason for this is owing to the many parameters 

involved in determining the ultimate pit such as geology, pit geometrical size and 

shape, estimation techniques and economic variables. 

It is important to determine the final pit shape before mining operation begins because 

mine planning, which determines the distribution of cash flow over the life of the mine 

and feasibility of the project, cannot be started until the ultimate pit has been generated. 

Once the ultimate pit has been determined, its cash value can be computed. To compute 

the cash value, we must decide on a mining sequence and then mine out the pit 

progressively accumulating the revenues and costs as we go (Whittle, 1990). If we can 

fix the block values and the slopes, then an optimal outline can be determined. But a 

problem arises in the form of deciding the blocks of an ore deposit to mine to maximize 

the total profit of the mine while obeying mining constraints on pit slope, and 

constraints that allow underlying blocks to be mined only after blocks on top of them 

have been extracted. 

This problem has been paraphrased by Whittle (1989): The pit outline with the highest 

value cannot be determined until the block values are known. The block values are not 

known until the mining sequence is determined; the mining sequence cannot be 

determined unless the pit outline is available. 

The problem is a large-scale mathematical optimization one, and cannot be solved 

using current commercial packages. The most common approach is, dividing the 

problem into sub-problems (see figure 1-4) similar to Dagdalen's approach in 2000 

(Osanloo et al., 2008). 

This approach starts with assumptions about initial production capacities and estimates 

for related costs and commodity prices. Afterward, using economic block values, each 

positive block is further checked to see whether its value can pay for the removal of 

overlying waste blocks. This analysis is based on the breakeven cut-off grade strategy. 
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The ultimate pit limit is then determined using either a graph theory-based algorithm 

(Lerchs and Grossman 1965, Zhao and Kim) or a network flow algorithm (Johnson and 

Barnes 1988, Yegulalp and Arias 1992) with the objective of maximizing cash flow. 

Within the ultimate pit, push backs are designed so that the deposit is divided into 

nested pits going from the smallest pit with the highest value per ton of ore to the 

largest pit with the lowest value per ton of ore. 

These push backs can be designed using one or more of the heuristic algorithms 

suggested by Dagdalen and Francois-Bongarcon (1982), Gershon (1987), Whittle 

(1998), Wang and Sevim (1995) or Ramazan and Dagdelen (1998). These push backs 

act as a guide during the schedule of yearly based production planning. 

 

 

Figure 1-4: Circular interaction among the Open pit variables (Dagdalen, 2000) 

 

Notwithstanding the above, many authors for the different algorithms have conceded 

that these methods are not always able to yield the true optimum pit. To overcome this 

problem, in this research a mine design scheme called Best Positive Inverted Truncated 

Cone (BPITC), based on the moving cone technique, was applied to determine 

optimum ultimate pit limit. 

 

1.6. Study Problem Formulation 

Ore body block models and their geological attributes have always been the major 

source of uncertainty and risk in open pit mine design processes.  

Start

Mining Capacity

Production cost
Production 

Scheduling

Push back design

Cut-off grade
Ultimate pit
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To minimize the risk of grade uncertainty during mine feasibility studies, the industry 

focuses on collecting so much drillhole data, and the cost of drilling is very expensive, 

in the process huge amount of dollars are spent during drilling. For the Marampa 

deposit, the cost of drilling was 100$/meter (London Mining Company, 2012). 

 

1.7. Research Objectives 

The objective of this research is to provide ways in which limited drillhole data could 

be used to influence feasibility studies and provide optimal solutions to mine design. 

Modelling the spatial distribution of the ore grade in the Marampa deposit and that of 

completing the feasibility studies required a large number of drillhole data (539 

drillholes). 

 

Figure 1-5: Drilling many drillholes vs drilling less 

 

This research used limited drillhole data instead of the many drillholes as shown in 

figure 1-5 to achieve the same feasibility result for mine design. The following two 

processes were followed to achieve the objectives. 

¶ Integrated geostatistics and artificial neural networks for optimum mineral 

reserve estimation. 

¶ Produced stable Life of Mine (LOM) results that minimize the deviation from 

ore and waste production by handling the grade uncertainty through a set of 

alternative numerical models (100 models) using conditional simulation. 
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1.8. Thesis outline 

This thesis comprises of six chapters which are summarized as follows: 

Chapter 1 introduces previous studies on ANNs, geostatistics and mine design, 

planning and operation scheduling. 

Chapter 2 details the geological characteristics of the Marampa iron deposit used to 

document the case study. This Iron Ore deposit lies within the supracrustal rocks of the 

Marampa schist formation that hosts the primary quartz-hematite schist horizon with a 

thickness of up to 65m. 

Chapter 3 describes analyzing the drillhole data using GSLIB. The drillhole data was 

validated with duplicate samples. These duplicates showed a strong correlation with the 

original. The R
2
 of the laboratory duplicates for Fe2O3%, Al2O3%, and SiO2% were 

0.9912, 0.9882 and 0.967, respectively. The correlations indicated a strong confidence 

in the sample analysis and preparation process. 

Chapter 4 details the application of the ANNMG model which was trained using the 

Levenberg-Marquardt backpropagation. The modelôs MSE values were 0.2044, 0.2090 

and 0.2087, and the R
2
 values were 0.8925, 0.8807 and 0.8805 for the training, testing 

and validation data respectively. It was proven that the ANNMG model could explain 

88.9% of the variability as overall. 

Chapter 5 introduced some simulation results of open-pit mine design using the Best 

BPITC method which is purely based on the principle of the moving cone technique 

with excavations from bottom to top instead of the reverse called BPMC. The BPITC 

algorithm, when compared with the BPMC, was found to be about 10% larger in terms 

of total tonnage. This difference adds approximately +7% of additional NPV to the 

mining. The differences reported between the BPITC and the BPMC method is due to 

the different scheduling patterns.   

Chapter 6 is a summary and a conclusion of the findings of the research and future 

studies on optimizing operations from mine to refineries incorporating the use of 

artificial intelligence technologies. 
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2. CHAPTER 2 

GENERAL GEOLOGY OF SIERRA LEONE 
 

2.1. General Information on Sierra Leone 

The Republic of Sierra Leone is a small coastal West African country bordered by 

Guinea in the North and East, Liberia in the South, and the Atlantic Ocean in the West. 

The climate is hot and humid with annual precipitation reaching more than 3,000 mm. 

The country has an area of 71,620 km
2
 and an estimated population of approximately 

6.5 million in 2007. The country was ravaged by a brutal civil war for about a decade 

from 1991 to 2002 which had catastrophic impacts on human lives, properties, the 

economy and the mining sector. 

 

 

Figure 2-1: Map of Sierra Leone and Its Mineral Resource Distribution 

 

The country is endowed with a large resource base (Figure 2-1). Before the civil war, 

the country had established an active mining sector built upon significant exports of 

diamonds, rutile, gold, iron ore and bauxite. Although relatively modest by global 

standards, the mining sector underpinned much of the countryôs formal economic 

Gold
Iron Ore

Diamond

Rutile
Bauxite
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activity, contributing 20% of GDP, as much as 15% of fiscal revenue, and accounting 

for over 90% of exports (Jalloh et al., 2013). 

The return to political and social stability in 2002 coupled with positive global 

developments in the mining sector and the demand for minerals has now seen the 

rejuvenation of the domestic mining sector. It is believed that if the economy of this 

post conflict nation is to grow stronger, the mining industry will have to serve as an 

engine. 

 

2.2. The Geological Setting of Sierra Leone 

Based on the age occurrence, seven major structural units are recognized in Sierra 

Leone (see figure 2-2).  Majority part of the country is underlain by Precambrian rocks 

of the Man Domain. 

 

Figure 2-2: The Geological Map of Sierra Leone (Jalloh et al., 2013) 

 

The Man domain is divided into the Liberian Granite Terrain and the metamorphic 

Kasila Group Mobile Belt (Williams,1978). Other Precambrian lithologies include the 
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Marampa supracrustal sequence of possible Archean age, which was affected by the 

Paleoproterozoic Eburnean metamorphism (Wright et all, 1985). Another Geological 

unit in Sierra Leone is the 30 km wide and 225 km long Neo-Proterozoic Rockelide 

Belt with basal tilloids underlying mainly clastic sediments with small lava and 

pyroclastic intercalations. Late Mesozoic gabbros and dolerites are exposed close the 

capital of Freetown. A narrow belt of mainly marine and estuarine sediments of 

Tertiary and Quaternary age with a coastal strip of about 50km in width flanks the 

Precambrian hinterland of Sierra Leone.  

 

2.3. Major Structural Units and Mineral Occurrences 

 

2.3.1. The Granite-Greenstone Terrain 

The greenstone-greenstone terrain represents part of an ancient continental nuclei 

located on the edge of the West African Craton. Regional reconnaissance mapping 

indicate supracrustal rocks, infracrustal rocks, and basic and ultra-basic intrusions. The 

infracrustal gneisses and granitoids were formed and reworked during two major 

orogenic events; Leonean event (2950-3200 Million years, M.a) and Liberian event 

(2700 Million years, M.a). 

 

Figure 2-3: Macroscopic folding of Quartz-Mica Schist in the Greenstone Belt (Jalloh et al., 2013) 

 

Other volcano-sedimentary sequences are preserved within the granites, gneisses and 

migmatites. Highly folded greenstone belts predominate in the north and central Sierra 



13 

 

Leone (see Figure 2-3). The greenstone belts are the principal hosts of the gold 

mineralization in the country. Other associated mineral deposits include molybdenite, 

columbite-tantalite and chromite. 

2.3.2. The Kasila Group 

The Kasila group is a high grade metamorphic belt with rocks trending in the North-

North-West (NNW) direction. It comprises of a high-grade series of granulites, 

consisting of garnet, hypersthene and hornblende gneisses, quartzites and associated 

migmatites flanked by amphibolites.  

In Sierra Leone, this group bounds the main part of the West African Craton on its 

West and Southwestern margin. This group has been variously interpreted as being part 

of the Marampa Group (Pollet, 1951), and the Sula Group (Allen, 1969). However, the 

contrasts in lithology, metamorphism and structure militate against such comparisons, 

and suggest a similarity with the Limpopo Belt structure, sharing the same relationship 

with the Liberian granite-greenstone terrain as the Limpopo Belt does with the 

Rhodesian Craton in Zimbabwe (Mason, 1973). 

Where the Kasila Group is eroded, significant secondary deposition of titanium 

minerals (Rutile and Zircon) have been formed. Weathering of this Group has also 

deposited bauxite. 

2.3.3. The Marampa Group 

This group is subdivided in to two layers; a lower Matoto formation consisting of basic 

pillow lavas, serpentinites and andesites, and an upper Roktolon formation consisting 

of psamites, pelites and banded iron formations (Macfarlane et al., 1974). 

The Matoto formation consists of 750 m of lavas with pillowed horizons up to 25 m 

thick. The Roktolon formation is mainly metasedimentary and contains pebbly horizons 

showing cross laminations, with subsidiary tuffs and andesites. Quartzites in the upper 

part are frequently rich in hematite, specularite, fuchsite and are manganiferous. The 

metasediments consists of serecitic quartz schists, biotite-muscovite schists, 

garnetiferous schists, quartzites and biotite paragneiss. This group is bounded on its 

eastern margin by a tectonic contact and it is important for its Iron ore deposits. 
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2.3.4. The Rockel River Group 

The Rockel River Group comprises of Precambrian to Cambrian sedimentary and 

volcanic assemblages deposited uncomfortably on a basement complex. Deposition 

was probably in a fault-bounded basin along the Rockel-Kasila boundary following the 

formation of the tectonic zone at the end of the Liberian or during the Eburnean 

orogeny. The Rockel River Group was deformed during the Rockelide orogenic 

episode (550 M.a). Deformation increased in intensity westwards. 

2.3.5. The Saionia Scarp Group 

This group forms a small ingression into Sierra Leone in the northwest of the country, 

and is composed of horizontally bedded arkoses, grits and shales with intruded dolerite 

sills. The group belongs to that part of the Gres Horizontaux of Guinea which has been 

classified as Ordovician, based on the discovery of the graptolites monograptus 

reccartonensis in shales near Telimele. In Sierra Leone, the Saionia Scarp Group rest 

uncomfortably on the Rockel River group. 

2.3.6. Basic and Alkaline Intrusions 

Dolerite intrusions are common as dykes trending mainly East-West within the 

basement complex, and as extensive sills above the Rockel River Group. Kimberlitic 

dykes and pipes which are alkaline intrusions follow a similar pattern in the east of the 

country. These pipes and dykes are the main hosts of the diamonds in the country. 

The Freetown igneous complex is a basic layered complex that forms an intrusive body 

on the coast. It is composed of gabbro, norite, troctolite and anorthosite. Platinum 

occurs in the gravels of the streams that drain the complex. The relationship of this 

complex with other units is obscured by the coastal veneer of tertiary sediments. 

2.3.7. The Bullom Group of Sediments 

This group consists of mainly sediments and was formed as a result of the recent 

(tertiary) weathering and lateralization across a large part of the country, affecting 

mainly the greenstone belts and the dolerite intrusions. The bauxite deposits formed 

within the Kasila Group is a result of this weathering process. Fossil fishes of Eocene 

age have been described from boreholes in this lithology (Morel 1979). 

 



15 

 

2.4. Geology Characteristics of the Project Area 

The project area is located approximately 80km from the capital city Freetown and 

about 30 km from the nearest Port of Pepel in Sierra Leone, West Africa. The deposit 

lies within the schist formation of the Marampa Group, a pre-Cambrian aged complex 

structure, which hosts one primary quartz-hematite schist horizon that ranges in 

thickness up to 65m.  

The horizon is isoclinally folded and thrusted, plunges east-southeast at 45º to 85º and 

has steep contact with its quartz- mica -schist host rock. At least four stages of 

deformation have occurred at the schist. The Iron oxide minerals of hematite (Fe2O3), 

magnetite (Fe3O4) and specularite were formed due to prograde metamorphism. The 

schist hosts ultramafic and mafic units but does not include any detrital zircons of the 

Achaean period. 

The supracrustals of the Marampa Group are not part of the green- stone belt structure, 

neither have they any structural similarity with the adjacent Kasila Group. 

Stratigraphically, the Marampa Group is similar in some respects to the Sula Group 

succession. Large refolded recumbent structures, the low grade of meta- morphism, the 

high stratigraphic and structural level, and its lower thrusted contact (Allen, 1969) with 

the Liberian granitic Basement migmatites suggest that it is a nappe-like structural unit 

(klippen) derived from the adjacent Kasila Group Mobile Belt.  

 

Figure 2-4: View of the Marampa Deposit with proposed infrastructure 
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Figure 2-4 shows the  Aerial photograph of the Marampa deposit with the planned 

infrastructure. This deposit is a brownfield iron ore mine comprising of ten tailing 

deposits and five peripheral deposits of Primary Ore owned by London Mining 

Company. The project includes a 319 km
2
 exploration lease. The property was acquired 

by London Mining Company in 2006 from a local company, TESBACO limited. 

 

Figure 2-5: The four peripheral primary ore deposits of the Marampa lease (LMC, 2012) 

 

 

Figure 2-6: The geological map from surface mapping interpretation (LMC, 2012) 

 

The drillhole data comes from four peripheral deposits types of the Marampa lease 

namely, Massaboin North East, Massaboin Central, Campbell Town Ridge and 

Hospital Ridge. The location of the peripheral primary ore sites within the deposit are 

as shown figure 2-5.  Figure 2-6 shows the local geological map of the deposit with its 

four peripheral primary ore sites.  
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2.5. Mineralization 

Two types of mineralisation exist at the Marampa ore deposit; primary magnetite and 

secondary hematite/specularite mineralisation. Figure 2-7 shows the weathering profile. 

 

Figure 2-7: The weathering profile showing Ore and Waste delineation (LMC, 2012) 

 

The haematite forms a supergene iron-oxide enrichment blanket which progresses from 

magnetite to hematite to specularite, in the upper portions of the weathering profile. 

The primary ore consists of Banded Iron Formations (BIFs).  

The BIF are characterised by alternating thin layers of magnetite-silica bands contained 

within fine grained, fresh and unaltered pelitic sediments and mica quartz schist beds. 

The magnetite silica bands are layered parallel to the bedding. Thin beds of non-

mineralised to weakly magnetic granite and light to dark grey mafic tuffs appear to be 

conformably interbedded with the pelitic and mica schist beds.  

The lateritic duricrust covers the weathered and primary BIF mineralisation and varies 

up to 65 m in thickness. Between the laterite and the underlying magnetite, the 

weathered oxidised BIF retains the primary textural fabrics and the mineral assemblage 

is characterised as being hematite-magnetite-goethite-limonite-silica plus clay minerals. 
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3. CHAPTER 3 

DRILLHOLE DATA ANALYSIS, VALIDATION AND 

SPATIAL MODELLING  
 

3.1. Introduction 

The drillhole data used in this study consists of 14982 composite samples from 539 

drillholes. The grade data analyzed included sample co-ordinates (easting, northing, 

and elevation), length of sample, and ore grade (Fe %). Statistical analysis conducted 

displayed a significantly large grade variation, with a mean and standard deviation of 

23.057 % and 15.205% respectively. Visual observation of the histogram plot reveals 

that the drilling data is composed of a large proportion of medium to high-grades and a 

minimal proportion of extremely low-grades. 

The drillhole data was verified using standards, duplicates and blanks. Two sets of 

duplicates were used to verify the sample preparation and analysis process. These are 

laboratory duplicates and sample duplicates. The R
2
 for the laboratory duplicates for 

Fe2O3%, Al2O3% and SiO2% were 0.9912, 0.9882 and 0.967 respectively. Additionally, 

R
2
 for the sample duplicates for Fe2O3%, Al2O3% and SiO2% were 0.9212, 0.91 and 

0.9462 respectively. These correlations validated the sample analysis and preparation 

process. 

 

3.2. GSLIB for Geostatistical Analysis 

Geostatistical analysis acts as a stepping stone towards building numerical and 

probabilistic models for uncertainty in spatial prediction. Such analyses are aimed at 

characterizing any unsampled data value z  as a random variable ( RV ), and its 

distribution that characterizes the uncertainty about the data value (Goovaerts, 1997). 

Even though the random variable is not location dependent, its probability distribution 

function (pdf) is both location and information-dependent, which means, when more 

data about the unsampled value become available the probability distribution function 

changes. 
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In this research, statistical analysis such as coordinate transformation, probability 

distribution weighting, data transformation and smoothing and variogram modelling are 

implemented using the Geostatistical Software Library (GSLIB). This is because 

GSLIB source codes are flexible and machine independent. They adhere to standard 

AINSI FORTRAN 77 programming language without dynamic memory allocation 

(Deutsch, 1993). 

Because of the dynamic memory allocation limitation, each program was compiled 

with some modifications. These modifications included the specification of array 

dimensioning which limits the maximum number of input data, the maximum grid size 

and number of nested structures to an allowable maximum number in the ". "include  

file of all the tools used to avoid run-time error message issued because of insufficient 

array dimensioning.  

 

Figure 3-1: Array dimensioning modification in the óINCLUDEô file for the 3D kriging tool 

 

These parameters are referred to as user adjustable parameters in the ñ.incò files. 

Figure 3-1 shows the modification of the user adjustable parameters for the 3-D kriging 

tool in the KT3D.INC file. 
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This section describes the executables, parameter input and data file format needed in 

GSLIB to perform the different analyses. 

3.2.1. Executables 

All the necessary programs for this research are compiled and executables built. All the 

executables are named after their program tools, and they are as follows: Addcoord.exe, 

Declus.exe, Nscore.exe, Backtr.exe, Gamv.exe, Vargplt.exe, Vmodel.exe, Kt3d.exe, 

Sgsim.exe, Histplt.exe, Probplt.exe, Scatplt.exe, Qpplt.exe, Locmap.exe, Pixelplt.exe, 

and Average.exe. 

ADDCOORD adds 3-Dimensional coordinates to gridded data points to the output file 

generated by kriging or simulation. DECLUS assigns declustering weights to give 

values in areas with more data, less weight, than those in sparsely sampled areas. 

NSCORE calculates the normal scores for the data from arbitrary histogram. BACKTR 

transforms normal scores values according to a look up table.  

GAMV calculate the experimental semivariogram with the available data. VMODEL 

creates the theoretical semivariogram model which is overlain on the experimental 

points to provide a utility check to the definition of the semivariogram of the deposit 

itself. 

KT3D provides advanced 3-D kriging algorithm for data points by Simple Kriging 

(SK), Ordinary Kriging (OK) or kriging with a trend. SGSIM is the Sequential 

Gaussian Simulation algorithm to generate equally probable realizations. AVERAGE 

averages the number of geostatistical simulation models to one block model. 

HISTPLT, PROBPLT, SCATPLT, QPPLT, LOCMAP, and PIXELPLT are plotting 

tools used to generate histograms, probability plots, Scatter plots, Q-Q or P-P plots, 2D 

data location maps and 2D pixel maps of gridded data respectively. 

3.2.2. Parameter Files 

The default program of the compiled executable reads the name of a parameter file 

from standard input. For ease of execution, the parameter file is named after the 

executable program with a ñ.parò extension.  
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Figure 3-2 shows an example parameter file for executing the variogram program, 

GAMV. The program upon keying a carriage return will look for ñgamv.parò to model 

the experimental variogram based on the input parameters. 

 

Figure 3-2: Parameter file for variogram program Gamv 

 

3.2.3. Data File Format 

The data file is formatted using simplified Geo-EAS format. Figure 3-3 shows the 

composited data file. The following conventions are used by GSLIB and the data file 

should obey the following: 

¶ The first line is taken as a title 

¶ The second line should be an integer nvar, specifying the number of variables. 

In our file we have 20 variables. 

¶ The next nvar lines contain character identification labels and additional text 

that describes each variable in the file. For example from XCOLLAR to FeO%. 

¶ The lines following from nvar+20 until the end of the file are considered data 

points and must have numerical values per line with missing values having 

large negative to positive number (for example from -999 to +999) for trimming 

purposes. 
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The compiled programs read numerical values only. However, alphanumeric variables 

may also be used by transforming them to integers or have the source code modified 

and re-compiled again. 

 

Figure 3-3: Example of the composited drillhole data file in Geo-EAS 

 

3.3. Exploration Drilling 

After the deposit is located and the geological map produced, the next stage was to map 

the deposit in more detail to evaluate the grade distribution and tonnage of the mineral 

occurrence. The Mineral Resource reported here comprises of haematite, magnetite and 

specularite mineralisation as explained in the mineralization section.  

The orebody is genetically similar to the Algoma-Type iron formations as found 

elsewhere in the world. Algoma Type orebodies are typically 10ôs to 100ôs of metres 

thick with strike extensions of several kilometres and typically range in size from 10ôs 

to 1,000ôs of million tonnes (Mt) and have iron (Fe) grades of between 17-60%. 

Marampa ore is a good example of this example.  

Algoma deposits are typically associated with clastic-chemical and tuffaceous rocks 

and mixed acid to intermediate volcanic sequences. The primary mineralisation takes 

the form of bands of magnetite and, in surface proximal zones, this alters to hematite. 
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The zone of supergene iron-oxide enrichment that overlies the primary magnetite 

mineralisation is a common feature of Algoma type deposits and at Marampa hosts 

lenses of leached iron-oxides. 

3.3.1. Drilling Sequence 

This deposit was drilled using diamond core drills to investigate and sample the 

mineralization depth. The density of the drilling was determined by the wanted level of 

geologic confidence and project economics. About 539 drillholes were drilled and 

sampled for Fe% grade concentrations. Figure 3-4 shows the positioning of the drilling 

rig and figure 3-5 shows the drilling sequence from 1 to 5.  

 

Figure 3-4: Exploration drilling Sequence 

 

 
Figure 3-5: Drilling Sequence 
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Sampling was done at regular and irregular intervals with a 3-meter downhole sampling 

interval. In addition to Fe%, concentrations of thirteen other metal oxides such as 

Al2O3%, CaO%, Cr2O3%, Fe2O3%, K2O%, MgO%, MnO%, Na2O%, P2O5%, SiO2%, 

TiO2%, S% and FeO% were measured at each drillhole. Figure 3-6 shows the diamond 

core drills obtained logged in core boxes and transported to the core shed for cutting. 

 

 

Figure 3-6: Location map of the drillhole data for Fe % metal concentration 

 

3.4. Drillhole Data Analysis 

Equations 3-1, 3-2 and 3-3 show the important features of statistics such as mean, 

variance and covariance used in the statistical analysis of the grade data. Assuming 

( ),     1....z na a =  is the measurement of grade concentration attribute z on the n   

individuals and ignoring the location vectors; 
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The covariance and its standardized form, the correlation coefficient is the most 

commonly used statistics to measure the relationship between two variables and it is 

denoted as shown in equation 3-4: 
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      (3-4)  

Where is the covariance of the joint variation between variables  and  

measured around their means  and .The covariance could be computed using 

equation 3-3. If = , the covariance will then become the variance of the distribution. 

This allows for the computation of the correlation coefficient,  which is easier to 

interpret than it covariance counterpart with  and  been the standard deviations of 

the two variables. 

 

Figure 3-7: Location map of the drillhole data for Fe % grade 

 

For statistical analysis, the grade data was declustered to find the representative 

distribution of the iron ore grades thereby reducing the effect of clustered samples. 

Figure 3-7 shows the location map of the drillholes and table 3-1 shows the summary 

statistics. Figure 3-8 shows an equal-weighted histogram plot of Fe% grade. 

 From the summary statistics and graphical plots, we can infer that the grade data does 

not deviate too severely from normality and stationarity, and it exhibits an asymmetric 

distribution with a negative skew. 
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