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Abstract

Any amalgamated free product of discrete groups acts on its associated
Bass–Serre tree. In this paper, we consider an analogue of the Bass–Serre
trees for reduced amalgamated free products of C∗-algebras.

In the first part of the paper, we introduce a unital C∗-algebra ∆T(A,E)
for a given reduced amalgamated free product (A,E) = (A1, E1)?D(A2, E2),
which generalizes the crossed product of the Bowditch compactification of
the Bass–Serre tree by an amalgamated free product group. We then show
that our C∗-algebra is isomorphic to an explicit Cuntz–Pimsner algebra
and has a universal property. This result allows us to show a “boundary
amenability” result for ∆T(A,E).

In the second part, we prove that any reduced amalgamated free prod-
uct of separable C∗-algebras is KK-equivalent to the corresponding full
amalgamated free product via the canonical surjection. Our proof is based
on Julg and Valette’s geometric argument for groups acting on trees. We
also give a new proof of Fima and Germain’s six-term exact sequences of
KK-groups using the Pimsner algebra structure of ∆T(A,E).
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1 Introduction

The amalgamated free product is an operation to produce a new group Γ1 ∗Λ Γ2

from two groups Γ1 and Γ2 with a common subgroup Λ. This is a fundamental
construction in not only combinatorial group theory, but also geometric group
theory. In fact, amalgamated free product groups admit canonical actions on
their associated Bass–Serre trees and this type of actions is one of two funda-
mental examples of group actions on trees in the Bass–Serre theory [46] (the
other arises from HNN extensions). In the study of those groups, actions on
trees are powerful tools and have been applied extensively.

In C∗-algebra theory, there are two notions of amalgamated free products; the
full and the reduced amalgamated free products [1] [53]. These are analogues of
the full and the reduced group C∗-algebra constructions, and have been seriously
studied so far (see e.g. [13][15][14][44][50]). However, geometric aspects of these
constructions like the group case have never been studied seriously so far. The
purpose of the present paper is to investigate a C∗-analogue of Bass–Serre trees
and apply it to the study of amalgamated free product C∗-algebras themselves.

For a given amalgamated free product group Γ = Γ1 ∗Λ Γ2, the action of Γ on
the associated Bass–Serre tree T = (V,E) induces two unitary representations
on `2(V) and `2(E). Our key observation is that one can construct two C∗-
correspondences which are natural counterparts of these unitary representations
for general reduced amalgamated free products (Remark 3.1.2). This is based on
an idea in the previous paper [26], where we developed a representation theory
of C∗-algebras by C∗-correspondences. Based on this observation, we will inves-
tigate C∗-analogues of actions on compactifications of trees, and Julg–Valette’s
work for K-theory of groups acting on trees.

For any group Γ acting on a tree T (more generally, a uniformly fine hyper-
bolic graph), Bowditch [4] introduced the compactification ∆T and the induced
action Γ y ∆T. The Γ-space ∆T can be viewed as an analogue of the Gromov
boundary for hyperbolic groups and captures information about the original ac-
tion on T. In fact, ∆T (or its suitable quotient) is a Γ-boundary in the sense of
Furstenberg [21] and Ozawa proved that the action Γ y ∆T is amenable if and
only if all the stabilizer subgroups of Γ y T are amenable [39].

Motived by these facts, in §3 we introduce a unital C∗-algebra ∆T(A,E)
for a given reduced amalgamated free product (A,E) = (A1, E1) ?D (A2, E2).
The C∗-algebra ∆T(A,E) includes A as a unital C∗-subalgebra and generalizes
crossed products in the following sense: when (A,E) comes from the reduced
group C∗-algebra C∗red(Γ) of Γ = Γ1 ∗Λ Γ2 and T is the associated Bass–Serre
tree, one has

(C∗red(Γ) ⊂ ∆T(C∗red(Γ), E)) ∼= (C∗red(Γ) ⊂ C(∆T) ored Γ).
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Our main result in §3 is a structural theorem (Theorem 3.3.5) that ∆T(A,E)
is isomorphic to both an explicit Cuntz–Pimsner algebra and the universal C∗-
algebra generated by a unital copy of the algebraic amalgamated free product of
A1 and A2 over D and projections e1 and e2 such that e1 + e2 = 1 and

ekaek = Ek(a)ek for a ∈ Ak, k = 1, 2.

The isomorphism with a Cuntz–Pimsner algebra is inspired by [51][37] and the
universality can be viewed as an analogue of isomorphisms between full and re-
duced crossed products for amenable actions. As a consequence, we show that
∆T(A,E) has one of the following properties nuclearity/exactness/completely
bounded approximation property (CBAP)/weak expectation property (WEP)/
local lifting property (LLP) if and only if both A1 and A2 have the same prop-
erty (Corollary 3.4.4). This covers Ozawa’s result mentioned above in the case of
amalgamated free product groups acting on Bass–Serre trees. As applications,
we give simple and conceptual proofs of Dykema’s result [14] for the stability
of exactness and Dykema–Blanchard’s result [3] for embeddability of reduced
amalagamated free products and generalizes Ozawa’s result [38] about the sta-
bility of nuclearity to CBAP, WEP and LLP. Also, we prove that local embed-
dability into the full group C∗-algebra of the free group F∞ studied by Junge
and Pisier [30] is stable under the reduced amalgamated free product.

We next turn to the KK-theory of amalgamated free products. The study of
K-theory of amalgamated free product groups dates back to Cuntz’s paper [9]
in the early 80s. In [9][10] Cuntz suggested the following strategy of computing
the K-theory of the reduced C∗-algebra C∗red(Γ) of a given discrete group Γ:

(1) proving that the canonical surjection λ : C∗(Γ) → C∗red(Γ) gives a KK-
equivalence, and

(2) computing the K-theory of C∗(Γ).

In fact, usual computations of K-groups are consequences of suitable exact se-
quences, and universal objects are easier to handle than reduced ones in K-
theory. By the strategy, Cuntz indeed gave an elegent proof of Pimsner–Voiculescu’s
result of the K-theory of C∗red(Fn) ([42]). Then Julg and Valette [29] achieved
part (1) of the strategy when Γ acts on a tree with amenable stabilizers. In the
direction of groups acting on trees, Pimsner [40] obtained an optimal result.

It is natural to try to apply the strategy to amalgamated free products of C∗-
algebras. In [22][23] Germain obtained striking results which solve both parts of
the strategy for plain free products of nuclear C∗-algebras. Following Germain’s
idea in [22][24] we proved in [26] (also see [25]) the KK-equivalence between full
and reduced amalgamated free products under the assumption of “strong relative
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nuclearity”, which can be applied to amalgamated free products of nuclear C∗-
algebras over finite dimensional subalgebras. However, this is still unsatisfactory,
because there are inclusions of nuclear C∗-algebras which are not strongly relative
nuclear.

In §§4.1 we consider part (1) of the strategy. We follow Julg–Valette’s
idea [29] unlike the previous works [22][24][26] based on the “vertex” and the
“edge” C∗-correspondences mentioned above. Translating the geometric con-
struction of Fredholm modules due to Julg–Valette (and its quantum group
analogue due to Vergnioux [52]) into a C∗-algebraic language, we prove the op-
timal KK-equivalence result that for any reduced amalgamated free product
(A,E) = FD(Ak, Ek) of countable family of separable C∗-algebras, the canoni-
cal surjection from the full amalgamated free productFDAk onto A always gives
a KK-equivalence. We note that in [19] Fima and Germain also reached indepen-
dently the same KK-equivalence result only in the case of two free components.
However, in their paper, they also established exact sequences of KK-groups
(i.e., part (2) of the strategy) under the very weak assumption of presence of
conditional expectations.

In §§4.2 we will give a new, simpler proof of Fima and Germain’s exact
sequences based on the C∗-algebra ∆T(A,E) and K-theory of Pimsner algebras.
In the course of our proof, we first show that the embedding A ↪→ ∆T(A,E) is
right invertible in KK-theory by using the analogue of Julg–Valette construction.
Then, the desired sequences will follow from the six-term exact sequences of KK-
groups ([11]) induced from the Toeplitz extension of the Cuntz–Pimsner algebra
∆T(A,E). As a by-product of our approach, we show that ∆T(A,E) is KK-
equivalent to A⊕D. In particular, this implies that the KK-class of ∆T(A,E)
is independent of the choice of conditional expectations.

This paper basically follows the author’s two papers [27] and [28], but some
new results are added and some proofs are improved. One of our new results is
Theorem 3.4.3. Also, we present a simplified proof of the KK-equivalence result
(Theorem 4.1.1), which heavily relies on the universal property of ∆T(A,E).

The paper is organized as follows. In §2 we fix notation and terminologies
and collect necessary facts on Hilbert C∗-modules, amalgamated free products of
C∗-algebras, Pimsner algebras, and KK-theory. §3 is devoted to the compacti-
fications of Bass–Serre trees. In §§3.1 we first investigate Bass–Serre trees and
their compactifications in the group case. Before the construction and investi-
gation of the C∗-algebra ∆T(A,E), we prepare a general theory of extensions
associated with conditional expectations in §§3.2. We then prove the structural
theorem in §§3.3 and its consequences in §§3.4. In §4 we study KK-theory, and
prove the KK-equivalence result in §§4.1 and give an alternative proof of Fima
and Germain’s result in §§4.2.
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2 Preliminaries

2.1 Notations

For any Hilbert space H, we denote by B(H) and K(H) the set of bounded linear
operators and compact operators on H, respectively. For vector spaces X and Y
over C, we denote by X � Y the algebraic tensor product over C. When X and
Y are C∗-algebras, X ⊗ Y denotes the minimal tensor product. When X and Y
are Hilbert spaces, X ⊗ Y is the tensor product Hilbert space. For any subset S
of a normed space X, we denote by spanS the closed linear span of S.

2.2 Hilbert C∗-modules

We refer the reader to Lance’s book [35] for Hilbert C∗-module theory.

Definition 2.2.1. Let A be a C∗-algebra. An inner product A-module is a linear
space X with a right A-action which is compatible with scalar multiplication,
i.e., λ(ξa) = (λξ)a = ξ(λa) for λ ∈ C, ξ ∈ X, a ∈ A and an A-valued inner
product 〈·, ·〉 : X ×X → A satisfying the following conditions:

(1) 〈ξ, λη + µζ〉 = λ〈ξ, η〉+ µ〈ξ, ζ〉 for ξ, η, ζ ∈ X and λ, µ ∈ C,

(2) 〈ξ, ηa〉 = 〈ξ, η〉a for ξ, η ∈ X and a ∈ A,

(3) 〈ξ, η〉∗ = 〈η, ξ〉 for ξ, η ∈ X,

(4) 〈ξ, ξ〉 ≥ 0 for ξ ∈ X,

(5) ξ = 0 if and only if 〈ξ, ξ〉 = 0 for ξ ∈ X.

When X is complete with respect to the norm ‖ξ‖ = ‖〈ξ, ξ〉‖1/2, we call X
a Hilbert A-module or Hilbert C∗-module over A. We say that X is full if
span{〈ξ, η〉 | ξ, η ∈ X} = A and countably generated if there exists a count-
able subset {ξn}∞n=1 ⊂ X such that span{ξna | a ∈ A, n ≥ 1} = X.

Let X and Y be Hilbert A-modules. A linear map x : X → Y is said to
be adjointable if there exists a linear map x∗ : Y → X satisfying 〈η, xξ〉 =
〈x∗η, ξ〉 for all ξ ∈ X, η ∈ Y . We denote by L(X, Y ) the set of adjointable linear
maps from X into Y and set L(X) := L(X,X). Any adjointable linear map is
automatically bounded and right A-linear, and L(X) equipped with the operator
norm and the involution x 7→ x∗ forms a unital C∗-algebra.

For given vectors ξ, η ∈ X we define the operator θξ,η ∈ L(X) by θξ,η(ζ) =
ξ〈η, ζ〉. We denote by K(X) the C∗-subalgebra of L(X) generated by {θξ,η |
ξ, η ∈ X} and call operators in K(X) compact operators. It is known that
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K(X) = span{θξ,η | ξ, η ∈ X} is a closed two-sided ideal of L(X). The strict
topology on L(X) is the topology given by the family of semi-norms ϕy(x) = ‖xy‖
for y ∈ K(X).

Definition 2.2.2. Let A and B be C∗-algebras. An A-B C∗-correspondence
is a pair (X,φX) consisting of a Hilbert B-module X and a ∗-homomorphism
φX : A → L(X), called the left action. A-A C∗-correspondences are also called
C∗-correspondences over A. An A-B C∗-correspondence (X,φX) is said to be
unital if A is unital and φX is a unital map, countably generated if X is countably
generated as a Hilbert B-module, and injective if φX is injective.

Every C∗-algebra A forms a Hilbert A-module with the inner product 〈a, b〉 =
a∗b. It is not hard to see that A ∼= K(A). Let LA : A → K(A) be the canonical
∗-homomorphism given by the left multiplication. The pair (A,LA) is called the
identity C∗-correspondence over A.

Another example of C∗-correspondences is the GNS-representation associated
with a conditional expectation. Let D ⊂ A be a unital inclusion of C∗-algebras
with conditional expectation E : A → D. We denote by L2(A,E) the Hilbert
D-module given by separation and completion of A with respect to the D-valued
inner product 〈x, y〉 = E(x∗y) for x, y ∈ A, and by φE : A → L(L2(A,E)) the
∗-homomorphism induced from the left multiplication. The conditional expec-
tation E is said to be nondegenerate if φE is faithful. Let ξE denote the vector
in L2(A,E) corresponding to 1A, and we call the triplet (L2(A,E), φE, ξE) the
GNS-representation associated with the conditional expectation E. The projec-
tion eD = θξE ,ξE is called the Jones projection.

We will use the internal and the external tensor products of Hilbert C∗-
modules. Let X and Y be Hilbert C∗-modules over A and B, respectively, and
ϕ : A → L(Y ) be a ∗-homomorphism. Then we can construct the Hilbert B-
module X ⊗ϕ Y by separation and completion of X � Y with respect to the
B-valued semi-inner product 〈ξ ⊗ η, ξ′ ⊗ η′〉 := 〈η, ϕ(〈ξ, ξ′〉)η′〉 for ξ, ξ′ ∈ X and
η, η′ ∈ Y. There are two ∗-homomorphisms:

L(X)→ L(X ⊗ϕ Y ); x 7→ x⊗ 1Y

ϕ(A)′ ∩ L(Y )→ L(X ⊗ϕ Y ); y 7→ 1X ⊗ y

satisfying that (x ⊗ 1Y )(ξ ⊗ η) = (xξ) ⊗ η and (1X ⊗ y)(ξ ⊗ η) = ξ ⊗ (yη), for
ξ ∈ X and η ∈ Y . Since these ∗-homomorphisms have mutually commuting
ranges, we will write x⊗ y := (x⊗ 1Y )(1X ⊗ y) = (1X ⊗ y)(x⊗ 1Y ). We call the
module X ⊗ϕ Y the interior tensor product of X and (Y, ϕ). When no confusion
may arise, we may also write X ⊗A Y = X ⊗ϕ Y . Further assume that Y = B
and ϕ : A→ B is surjective. In this case, X ⊗ϕ B is called the pushout of X by
ϕ and denoted by Xϕ. We also write xϕ := x⊗ 1B for x ∈ L(X).

8



Next, assume that X and Y be Hilbert C∗-modules over C and D, respec-
tively. Then, the external tensor product of X and Y is the Hilbert C⊗D-module
X ⊗ Y , which is the completion of X � Y with respect to the inner product
〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉⊗〈η1, η2〉 ∈ C⊗D for ξ1, ξ2 ∈ X and η1, η2 ∈ Y . When
(X,φX) and (Y, φY ) are A-C and B-D C∗-correspondences, respectively, it is
known that there exists a natural ∗-homomorphism φX⊗φY : A⊗B → L(X⊗Y ).

Let Ai, i ∈ I be a family of C∗-algebras and Xi be a Hilbert Ai-module
for i ∈ I. Consider the direct product A =

∏
i∈I Ai and define �i∈I Xi by⊕

i∈I Xi ⊗Ai
A.

The next technical lemma will be used later.

Lemma 2.2.3. Let A and B be C∗-algebras, X be Hilbert A-module and (Y, φY )
be an injective A-B C∗-correspondence. For any x ∈ L(X), if x⊗1 ∈ L(X⊗AY )
is compact, then so is x.

Proof. Take an approximate unit (ei)i of K(X). Since ‖eiξ − ξ‖ → 0 holds for
ξ ∈ X, if x⊗ 1 is compact, then eix⊗ 1 converges to x⊗ 1 in norm. Since φY is
injective, this implies that x = limi eix ∈ K(X).

2.3 Amalgamated free products

Let {D ⊂ Ak}k∈I be a family of unital inclusions of C∗-algebras.

Definition 2.3.1 ([1]). The full amalgamated free product of Ak, k ∈ I over
D is the universal C∗-algebra FDAk generated by the images of injective ∗-
homomorphisms fk : Ak → FDAk such that fk = fl on D for all k, l ∈ I. We
may omit fk and assume that Ak ⊂FDAk.

Now further assume that we have a conditional expectation Ek : Ak → D for
k ∈ I. For n ≥ 1 we set In = {ι : {1, · · · , n} → I | ι(k) 6= ι(k + 1) for k =
1, · · · , n− 1}. Also, we set A◦k = kerEk and a◦ = a−Ek(a) for a ∈ Ak. We first
assume that Ek is nondegenerate for every k ∈ I.

Definition 2.3.2 ([53]). The reduced amalgamated free product of (Ak, Ek), k ∈
I over D, is a pair (A,E) = FD(Ak, Ek) such that A is a C∗-algebra generated
by the images of ∗-homomorphisms jk : Ak → A with jk = jl on D equipped with
a nondegenerate conditional expectation E : A → jk(Ak) satisfying the freeness
condition:

E(jι(1)(a1)jι(2)(a2) · · · jι(n)(an)) = 0

for any n ≥ 1, ι ∈ In and ak ∈ A◦ι(k) for k = 1, · · · , n.

See [53] for the construction. Note that the pair (A,E) satisfying the above
property is unique up to isomorphism. We denote by (X,φX , ξ0) and (Xk, φXk

, ξk)
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the GNS-representations associated with E and Ek for k ∈ I, respectively. Then
X is identified with

ξ0D ⊕
⊕
m≥1

⊕
ι∈Im

X◦ι(1) ⊗D · · · ⊗D X◦ι(m).

The compression map by the projection onto ξ0D ⊕ X◦k
∼= Xk gives a UCP

map EAk
: A → φXk

(Ak) such that EAk
◦ jk = φXk

on Ak for every k ∈ I.
Since Ek is nondegenerate, jk : Ak → A is injective. Thus, omitting jk and φXk

we may assume that Ak ⊂ A and EAk
: A → Ak is a conditional expectation.

Since E = Ek ◦ EAk
holds, EAk

is also nondegenerate. The GNS-representation
associated with EAk

will be denoted by (Yk, φYk , ηk).

When Ek is “degenerate” for some k, one can still construct the pair (A,E)
satisfying the above property. However, the natural map jk : Ak → A is not
injective. In order to avoid this, we use the vertex reduced amalgamated free
product introduced by Fima and Germain [19].

Definition 2.3.3. The vertex reduced amalgamated free product of (Ak, Ek), k ∈
I overD is a C∗-algebra A generated by the images of injective ∗-homomorphisms
jk : Ak → A, k ∈ I with jk = jl on D for k, l ∈ I, equipped with a family of
conditional expectations EAk

: A→ jk(Ak) such that

• EAk
(jι(1)(a1)jι(2)(a2) · · · jι(n)(an)) = 0 for n ≥ 1, ι ∈ In and al ∈ A◦ι(l) for

l = 1, . . . , n with ι(n) 6= k;

• the direct sum of all the GNS-representations (Yk, φYk , ηk) associated with
EAk

for k ∈ I is faithful.

Since jk : Ak → A is injective, we may assume that Ak ⊂ A for k ∈ I. Note
that E := Ek◦EAk

is a conditional expectation which is independent of the choice
of k ∈ I, but possibly degenerate. When all Ek’s are nondegenerate, E = Ek ◦
EAk

is nondegenerate. In this case, the vertex reduced amalgamated free product
is identical to the original reduced amalgamated free product. Thus, throughout
this paper, we mean the reduced amalgamated free product by the vertex reduced
amalgamated free product and still denote it by (A,E) =FD(Ak, Ek).

For each k ∈ I, we denote by P(`,k) and P(r,k) the projections onto the follow-
ing submodules, respectively:

X(`, k) := ξ0D ⊕
⊕
m≥1

⊕
ι∈Im
ι(1)6=k

X◦ι(1) ⊗D · · · ⊗D X◦ι(m),

X(r, k) := ξ0D ⊕
⊕
m≥1

⊕
ι∈Im
ι(m)6=k

X◦ι(1) ⊗D · · · ⊗D X◦ι(m).
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Lemma 2.3.4 (cf. [52, Lemma 3.1]). For each k ∈ I, there exists a unitary
Sk : X(r, k)⊗D Ak → Yk such that Skx1 · · · xnξ0 ⊗ a = x1 · · ·xnηka for all n ≥ 1
and any reduced word x1 · · ·xn with xn /∈ Ak and a ∈ Ak.

Proof. Note that if Sk has closed range, then it must be surjective. Thus, it
suffices to show that Sk is an isometry. We only have to verify that EAk

(x∗y) =
E(x∗y) for all reduced words x = x1 · · ·xn and y = y1 · · · ym with n,m ≥ 1
and xn, ym /∈ Ak. When n = m = 1, this is trivial. Assume that we have
shown EAk

(x∗y) = E(x∗y) for n,m = 1, . . . , N . Take arbitrary reduced words
x = x1 · · ·xn and y = y1 · · · ym as above with n,m ≤ N + 1. Suppose that n ≥ 2
and set z = x2 · · ·xn and w := y2 · · · yn. Then the induction hypothesis implies
that EAk

(z∗E(x∗1y1)w) = E(z∗E(x∗1y1)w), and thus we have

EAk
(x∗y) = EAk

(z∗E(x∗1y1)w) + EAk
(y∗(x∗1y1 − E(x∗1y1))z)

= E(z∗E(x∗1y1)w)

= E(z∗E(x∗1y1)w) + E(y∗(x∗1y1 − E(x∗1y1))z)

= E(x∗y).

When n = 1, a similar argument shows that EAk
(x∗y) = E(x∗y). Hence, the

assertion follows by induction.

We use the following A-
∏

k∈I Ak and A-A C∗-correspondences

(Y, φY ) =�
k∈I

(Yk, φYk), (Z, φZ) =
⊕
k∈I

(Yk ⊗Ak
A, φYk ⊗ 1), (2.1)

and the ∗-homomorphism ΦZ : L(Z)→ L(Y ) induced from the natural ∗-homomorphisms
L(Yk)→ L(Yk ⊗Ak

A), k ∈ I.
The next proposition is probably well-known, but we give its proof for the

reader’s convenience.

Proposition 2.3.5. Let (A,E) =FD(Ak, Ek) be any reduced amalgamated free
product and C be any unital C∗-algebra. Then, the pair (A ⊗ C,E ⊗ idC) is
naturally identical to the reduced amalgamated free product FD⊗C(Ak ⊗C,Ek ⊗
id).

Proof. Let φY : A → L(Y ) be as above. Since φY is faithful, we have A ⊗ C ⊂
L(Y ) ⊗ C ⊂

∏
k L(Yk ⊗ C). It is easy to check that the GNS representation

associated with EAk
⊗ id : A⊗ C → Ak ⊗ C is given by (Yk ⊗ C, φYk ⊗ LC , ηk ⊗

1). Thus, we only have to check the freeness condition in Definition 2.3.3 for
{EAk

⊗ id}k. This will immediately follow once we proved that ker(Ek ⊗ id) is
the norm closure of (kerEk) � C. Indeed, for any x ∈ ker(Ek ⊗ id) and any
ε > 0 there exists y =

∑n
i=1 ai ⊗ ci ∈ Ak � C such that ‖x − y‖ < ε. We may
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assume that c1, . . . , cn are linearly independent. Since ‖x− (y− (Ek⊗ id)(y))‖ ≤
‖x− y‖+ ‖(Ek ⊗ id)(x− y)‖ < 2ε, we may assume that (Ek ⊗ id)(y) = 0. Then,
we have

∑n
i=1Ek(ai) ⊗ ci = 0, implying Ek(ai) = 0 for i = 1, · · · , n. Thus,

y ∈ A◦k � C. Since ε is arbitrary, we are done.

2.4 Pimsner algebras

We fix notations and terminologies on Pimsner algebras following Katsura’s pa-
per [31]. Let (X,φX) be a C∗-correspondence over a C∗-algebra A. Recall that
a representation of X on a C∗-algebra B is a pair (π, t) such that π : A→ B is a
∗-homomorphism and t : X → B is a linear map satisfying t(ξ)∗t(η) = π(〈ξ, η〉)
and π(a)t(ξ)π(b) = t(φX(a)ξb) for ξ, η ∈ X and a, b ∈ A. We denote by C∗(π, t)
the C∗-subalgebra of B generated by π(A) and t(X). Any representation (π, t)
induces a ∗-homomorphism ψt : K(X) → B such that ψt(θξ,η) = t(ξ)t(η)∗. We
define the ideal JX of A by

φ−1
X (K(X)) ∩ (kerφX)⊥ = {a ∈ φ−1

X (K(X)) | ax = 0 for x ∈ kerφX}

and say that (π, t) is covariant if π = ψt ◦ φX holds on JX .
A (resp. covariant) representation (π, t) is said to be universal if for any

(resp. covariant) representation (π′, t′) of X, there exists a ∗-homomorphism
ρ : C∗(π, t) → C∗(π′, t′) such that ρ ◦ π = π′ and ρ ◦ t = t′. Note that if (π, t)
and (π′, t′) are universal (covariant) representations, then C∗(π, t) ∼= C∗(π′, t′)
canonically by universality.

A representation (π, t) is said to admit a gauge action if there exists a con-
tinuous action γ of T = {z ∈ C | |z| = 1} on C∗(π, t) such that γz ◦ π = π
and γz(t(ξ)) = zt(ξ) for z ∈ T and ξ ∈ X. Note that any universal (covari-
ant) representation admits a gauge-action by universality. We will use the next
gauge-invariant uniqueness theorem.

Theorem 2.4.1 ([31, Theorem 6.2, Theorem 6.4]). Let (π, t) be a representation
of X. Then, (π, t) is universal if and only if (π, t) is injective and admits a gauge
action, and π(JX) ∩ ψt(K(X)) = {0}. Further assume that (π, t) is covariant.
Then (π, t) is universal if and only if π is injective and (π, t) admits a gauge
action.

We will use the following concrete universal representation, called the Fock
representation. We set (X⊗0, φX⊗0) = (A,LA) and (X⊗1, φX⊗1) = (X,φX). For
each n ≥ 2, we define the C∗-correspondence (X⊗n, φX⊗n) by

X⊗n =

n︷ ︸︸ ︷
X ⊗A X ⊗A · · · ⊗A X, φX⊗n = φX ⊗

n−1︷ ︸︸ ︷
1X ⊗ · · · ⊗ 1X .
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Then the full Fock space F(X) =
⊕

n≥0X
⊗n over X together with ϕ∞ =⊕

n≥0 φX⊗n is a C∗-correspondence over A. For each ξ, we define the creation
operator τ∞(ξ) on F(X) by τ∞(ξ)η = ξ ⊗ η for η ∈ X⊗n and n ≥ 0. Then
the pair (ϕ∞, τ∞) is a representation of X. The compression map by the pro-
jection onto X⊗0 defines a conditional expectation EX : C∗(ϕ∞, τ∞)→ A which
vanishes on span{τ∞(ξ)τ∞(η)∗ | ξ, η ∈ X} = ψτ∞(K(X)). Also, the direct sum
of the unitary representations T 3 z 7→ zn1 ∈ L(X⊗n) implements a gauge ac-
tion on C∗(ϕ∞, τ∞). Thus, by Theorem 2.4.1 (ϕ∞, τ∞) is universal and we call
T (X) := C∗(ϕ∞, τ∞) the Toeplitz–Pimsner algebra of X.

In order to construct a universal covariant representation we next consider the
ideal of T (X) generated by {ϕ∞(x)− ψτ∞(φX(x)) | x ∈ JX}, which is naturally
isomorphic to K(F(X)JX). The quotient of T (X) by K(F(X)JX) is called the
Cuntz–Pimsner algebra of X and denoted by O(X). Note that the representation
of X on O(X) given by (ϕ∞, τ∞) and the quotient map is covariant and injective.
Moreover, since K(F(X)JX) is invariant under the gauge action, this covariant
representation is universal by Theorem 2.4.1. Note that the definition of O(X)
is different from Pimsner’s original one in [41] when φX is not injective.

2.5 KK-theory

Throughout this subsection, our C∗-algebras are all assumed to be separable.
We refer the reader to [2] for KK-theory.

Definition 2.5.1. For (trivially graded) C∗-algebras A and B, a Kasparov A-
B bimodule is a triplet (X,φ, F ) such that X is a countably generated graded
Hilbert B-module, φ : A → L(X) is a ∗-homomorphism of degree 0, and F ∈
L(X) is of degree 1 and satisfies the following condition:

• [F, φ(a)] ∈ K(X) for a ∈ A,

• (F − F ∗)φ(a) ∈ K(X) for a ∈ A,

• (1− F 2)φ(a) ∈ K(X) for a ∈ A.

When [F, φ(a)] = (F −F ∗)φ(a) = (1−F 2)φ(a) = 0 holds for every a ∈ A, we say
that (X,φ, F ) is degenerate. We denote by E(A,B) and D(A,B) the corrections
of Kasparov A-B bimodules and degenerate ones, respectively.

We say that two Kasparov A-B bimodules (X,φ, F ) and (Y, ψ,G) are uni-
tarily equivalent, denoted by (X,φ, F ) ∼= (Y, ψ,G), if there exists a unitary
U ∈ L(X, Y ) of degree 0 such that ψ = AdU ◦ φ and G = UFU∗.

For any Hilbert B-module X, we set IX := C([0, 1])⊗X. In particular, we
set IB = C([0, 1]) ⊗ B. For each t ∈ [0, 1] we still denote by t the surjectiove
∗-homomorphism IB ∼= C([0, 1], B) 3 f 7→ f(t) ∈ B. Note that we have a
natural isomorphism IX ⊗t B ∼= X for every t ∈ [0, 1].
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Definition 2.5.2. Two Kasparov A-B bimodules (X0, φ0, F0) and (X1, φ1, F1)
are said to be homotopic if there exists a Kasparov A-IB bimodule (Y, ψ,G) such
that (Y ⊗tB,ψ⊗1B, G⊗1B) ∼= (Xt, φt, Ft) for t = 0, 1. TheKK-group KK(A,B)
is the set of homotopy equivalence classes of Kasparov A-B bimodules.

The next technical lemma will be used later.

Lemma 2.5.3. Let P,Q and R be separable C∗-algebras and let (X,ψi, F ) ∈
E(Q,R) be given for i = 0, 1. Suppose that there exist a surjective ∗-homomorphism
π : P → Q and a family of Kasparov P -R bimodules (X,φt, F ) for t ∈ [0, 1] sat-
isfying

(i) the function [0, 1] 3 t 7→ φt(a) is strictly continuous for each a ∈ P ;

(ii) the functions sending t to [F, φt(a)], (F − F ∗)φt(a) and (1 − F 2)φt(a) are
norm continuous for each a ∈ P ;

(iii) φt factors through π : P → Q for every t ∈ [0, 1];

(iv) φi = ψi ◦ π holds for i = 0, 1.

Then, (X,ψ0, F ) and (X,ψ1, F ) are homotopic.

Proof. By assumption, there exists a ∗-homomorphism φ : P → L(IX) such
that (IX, φ, F ⊗ 1C[0,1]) ∈ E(P, IR) and (X,φt) is the push out of (IX, φ) by
t : C[0, 1] → C for t ∈ [0, 1]. Since one has ‖φ(a)‖ = sup0≤t≤1 ‖φt(a)‖ ≤ ‖π(a)‖
for a ∈ P , there exists ψ : Q → L(IX) such that φ = ψ ◦ π. We then have
(IX, ψ, F ⊗ 1C([0,1])) ∈ E(Q, IR) and the evaluations of this Kasparov bimodule
at endpoints are exactly (X,ψi, F ), i = 0, 1.

The KK-group becomes an additive group in the following way: For α, β ∈
KK(A,B) implemented by (X,φ, F ), (Y, ψ,G), respectively, α+β is the element
implemented by (X ⊕ Y, φ⊕ ψ, F ⊕G). All degenerate Kasparov bimodules are
homotopic to the trivial bimodule 0 = (0, 0, 0) and define the zero element in
KK(A,B). Let X0 and X1 be the even and odd parts of X so that X = X0⊕X1

and let −X be the graded Hilbert B-module with the even part X1 and the
odd part X0. The inverse of α is implemented by (−X,AdU ◦ φ, UFU∗), where
U : X → −X is the natural unitary.

For any ∗-homomorphism φ : A → B, we have (B ⊕ 0, φ ⊕ 0, 0) ∈ E(A,B)
and still denote by φ the corresponding element in KK(A,B).

For α ∈ KK(A,B) and γ ∈ KK(B,C), the Kasparov product of α and γ is
denoted by α ⊗B γ. When one of α and β comes from a ∗-homomorphism, the
construction of the Kasparov product is very simple. Indeed, if γ comes from a ∗-
homomorphism γ : B → C with [γ(B)C] = C and α is implemented by (X,φ, F ),
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then the Kasparov productα⊗B γ is implemented by (X ⊗γ C, φ⊗ 1C , F ⊗ 1C).
Similarly, when α is a ∗-homomorphism from A into B and γ is implemented by
(Y, ψ,G) with [ψ(B)Y ] = Y , the Kasparov product α ⊗B γ is implemented by
(Y, ψ ◦ α,G).

Definition 2.5.4. An element α ∈ KK(A,B) is said to be a KK-equivalence if
there exists β ∈ KK(B,A) such that idA = α ⊗B γ and idB = β ⊗A α. In this
case, A and B are said to be KK-equivalent.

Note that KK-equivalence between A and B implies KK(A,C) ∼= KK(B,C)
and KK(C,A) ∼= KK(C,B) for any separable C∗-algebra C.

Definition 2.5.5 ([10]). A countable discrete group Γ is said to be K-amenable
if the canonical surjection from the full group C∗-algebra C∗(Γ) onto the reduced
one C∗red(Γ) gives a KK-equivalence.

All countable amenable groups are K-amenable, but there are many non-
amenable, K-amenable groups. Indeed, by Pimsner’s result [40] K-amenability is
stable under the amalgamated free product. Motivated by Cuntz’sK-amenability,
in [48] Skandalis introduced the notion of K-nucleariry for C∗-algebras. One of
merits of being K-nuclear is that if A is K-nuclear, then the functor KK(A, ·)
is half-exact, that is, for any exact sequence of C∗-algebras 0 −→ J −→ B −→
C −→ 0, the induced sequence

KK(A, J) −→ KK(A,B) −→ KK(A,C)

is exact in the middle.

Theorem 2.5.6 ([48, Theoreme 1.5]). Let A and B be separable C∗-algebras and
let π : A→ B(H) be a faithful and essential representation on a separable Hilbert
space H. For a given A-B C∗-correspondence (X, σ) with X countably generated,
the following are equivalent:

(i) For any unit vector ξ ∈ X the CCP map A 3 a 7→ 〈ξ, σ(a)ξ〉 ∈ B is
nuclear.

(ii) For any x ∈ K(X) of norm 1, the CCP map A 3 a 7→ x∗σ(a)x ∈ K(X) is
nuclear.

(iii) There exists a sequence of isometries Vn ∈ L(X,H ⊗ B) such that σ(a)−
V ∗n (π(a) ⊗ 1A)Vn ∈ K(X) and limn→∞ ‖σ(a) − V ∗n (π(a) ⊗ 1A)Vn‖ = 0 for
all a ∈ A.

When any of these three conditions holds, we say that (X, σ) is nuclear.

Definition 2.5.7. A separable C∗-algebra A is said to be K-nuclear if idA in
KK(A,A) is implemented by a Kasparov bimodule (X,φ, F ) such that (X,φ) is
nuclear.
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3 Compactifications of Bass–Serre trees

In this section, we study the reduced crossed product of the compactification of
the Bass–Serre tree associated with an amalgamated free product group, and its
analogue for general reduced amalgamated free products.

3.1 Bass–Serre trees and compactifications

Let Γ = Γ1 ∗Λ Γ2 be an amalgamated free product of discrete groups and put
I = {1, 2}. The Bass–Serre tree associated with Γ is the graph T = (V,E), of
which the vertex set is V = Γ/Γ1 t Γ/Γ2 and the edge set is E = Γ/Λ such that
the edge gΛ relates gΓ1 and gΓ2 (see [46]). Note that Γ acts on V and E by left
multiplication, which are compatible with the graph structure of T. Notice that
the unitary representation induced from Γ y E is nothing but the quasi-regular
representation λΓ/Λ. Also, the unitary representation (`2(V), π) induced from
Γ y V is unitarily equivalent to λΓ/Γ1 ⊕ λΓ/Γ2 .

We next consider the compactification ∆T of T introduced by Bowditch [4]
(see [6, §§5.2] for details). For any x, y ∈ V we denote the graph distance of x
and y by d(x, y). A sequence (x(n))∞n=1 in V is called a geodesic path if there
exists N ∈ N ∪ {∞} such that d(x(n), x(m)) = |n −m| for any n,m < N and
x(n) = x(N) for n ≥ N . When N is finite (resp. infinite), we call (x(n))∞n=1

a finite (resp. infinite) geodesic path. We denote by ∆T the set of equivalence
classes of geodesic paths. The set ∂T of all equivalence classes of infinite geodesic
paths is called the ideal boundary of T. Note that Γ acts on ∆T by g[(x(n))n] =
[(gx(n))n].

Let Ω be the set of all finite or infinite geodesic path starting at eΓ1. We can
identify V with the finite geodesic paths in Ω in such a way that each vertex
x ∈ V corresponds to the unique finite geodesic path from eΓ1 to x. Since the
canonical map from Ω onto ∆T is bijective, we also identify Ω with ∆T so that
∆T = V t ∂T. For each x, y ∈ ∆T there exists a unique bi-infinite sequence
(z(n))∞n=−∞ such that (z(n))∞n=0 and (z(−n))∞n=0 are geodesic paths representing
x and y, respectively. We set [x, y] := {z(n) | n ∈ Z} ∪ {x, y} ⊂ Ω = ∆T. For
each x ∈ ∆T and each finite subset F of V , we set

U(x, F ) := {x} ∪ {y ∈ ∆T | [x, y] ∩ F = ∅}.

Then, {U(x, F ) | F ⊂ V finite}x∈∆T forms an open neighborhood system for a
topology on ∆T. It is known that ∆T equipped with this topology is compact
and Hausdorff and the action Γ y ∆T defined above is continuous. Let α : Γ y
C(∆T) be the induced action given by αg(f)(x) = f(g−1x) for g ∈ Γ, f ∈
C(∆T), x ∈ ∆T. Since V is dense in ∆T, we have natural inclusions C(∆T) ⊂
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`∞(V) ⊂ B(`2(V)). Observe that α is implemented by the unitary representation
π : Γ y `2(V). Thus, the reduced crossed product of C(∆T) by α is given by

C(∆T) ored Γ ∼= C∗{C(∆T)⊗ 1 ∪ (π ⊗ λ)(Γ)} ⊂ B(`2(V)⊗ `2(Γ)). (3.1)

We observe that for any x ∈ V, the one point set {x} is open in ∆T if and
only if x has finite degree. Also, it is easy to see that ∂T is closed if and
only if T is locally finite, equivalently Λ is a finite index subgroup of Γk for
k = 1, 2. This is the reason why we work on not the ideal boundary but the
whole compactification.

Our next goal is to give a C∗-algebraic description of the reduced crossed
product C(∆T) ored Γ. Our key machinery is the next elementary proposition.
This is a C∗-algebraic analogue of so-called Connes’s viewpoint [12], asserting
that bimodules over von Neumann algebras could play a role of unitary repre-
sentations of groups (see also [26]).

Let Γ be a discrete group, u : Γ y H be either the left regular represen-
tation or the universal representation, and A be the corresponding group C∗-
algebra C∗(u(Γ)). For a unitary representation π : Γ y Hπ, consider the C∗-
correspondence (Xπ, φπ) over A defined by

Xπ = Hπ ⊗ A, φπ : λ(g) 7→ π(g)⊗ LA(u(g)).

Here the well-definedness of φπ follows from Fell’s absorption principle.

Proposition 3.1.1. Let Γ and A be as above. The following hold true:

(i) For the trivial representation 1Γ : Γ→ C, one has (X1Γ
, φ1Γ

) = (A,LA).

(ii) For the left regular representation λ : Γ y `2(Γ), one has (Xλ, φλ) ∼=
(`2(Γ)⊗ A, λ⊗ 1).

(iii) Let Λ ≤ Γ be a subgroup and E be the canonical conditional expecta-
tion from A onto D = C∗(u(Λ)). For the quasi-regular representation
λΓ/Λ : Γ y `2(Γ/Λ), one has (XλΓ/Λ

, φλΓ/Λ
) ∼= (L2(A,E)⊗D A, φE ⊗ 1).

Proof. Since (i) and (ii) are particular cases of (iii), we prove only (ii). Define
an operator U : `2(Γ/Λ)⊗A→ L2(A,E)⊗D A by U(δgΛ⊗ a) = u(g)ξE ⊗ u(g)∗a
for g ∈ Γ and a ∈ A. Then, U is well-defined and gives the desired unitary
equivalence. Indeed, for any g, h ∈ Γ and a, b ∈ A we have

〈U(δgΛ ⊗ a), U(δhΛ ⊗ b)〉 = 〈u(g)ξE ⊗ u(g)∗a, u(h)ξE ⊗ u(h)∗b〉
= 〈u(g)∗a,E(u(g∗h))u(h)∗b〉
= δgΛ,hΛa

∗b

= 〈δgΛ ⊗ a, δhΛ ⊗ b〉

and also U(δghΛ ⊗ u(g)a) = u(g)ξE ⊗ a = φE(u(g))U(δhΓ ⊗ a).

17



Remark 3.1.2. Let Γ = Γ1∗ΛΓ2 be an amalgamated free product group. Denote
by A,Ak (k = 1, 2) and D be the reduced group C∗-algebras of Γ,Γk (k = 1, 2)
and Λ, respectively, and by E : A → D, Ek : Ak → D and EAk

: A → Ak the
canonical conditional expectations. Then, it follows that (A,E) ∼= (A1, E1) ?D
(A2, E2). The previous proposition implies that the C∗-correspondences corre-
sponding to the vertex and the edge sets are given by⊕

k=1,2

(Yk ⊗Ak
A, φYk ⊗ 1) and (X ⊗D A, φX ⊗ 1), (3.2)

respectively. Notice that these C∗-correspondences can be defined for arbitrary
reduced amalgamated free products. In fact, in §§ 4.1 we will see that they
indeed play a role of Bass–Serre trees (see Remark 4.1.3). For related topics, we
refer the reader to [18, 20] in which C∗-algebraic analogues of graph of groups,
called graph of C∗-algebras are studied.

We set Ω1 := U(eΓ1, {eΓ2}) = {(x(n))∞n=1 ∈ Ω | x(2) 6= eΓ2} and Ω2 :=
U(eΓ2, {eΓ1}) = {(x(n))∞n=1 ∈ Ω | x(2) = eΓ2}. Since Ω1 t Ω2 = ∆T, Ω1 and Ω2

are clopen subsets of ∆T.
Let Y = Y1�Y2 and φY : A ↪→ L(Y ) be as in Eq. (2.1) and Sk be as in Lemma

2.3.4. Let Pk ∈ L(Y ) be the projection onto the closed submodule generated by
the set

{a1a2 · · · anηj | n ≥ 1, a1a2 · · · an reduced word with a1 ∈ A◦k, j = 1, 2}

In other words, we set

P ◦k :=
∑
j=1,2

Sj(P
⊥
(`,k)P(r,j) ⊗ 1)S∗j , Pk := eAk

+ P ◦k , (3.3)

where eAk
= θηk,ηk ∈ K(Yk) ⊂ K(Y ) is the Jones projection of EAk

.

Proposition 3.1.3. There exists a ∗-isomorphism from C(∆T) ored Γ onto
C∗(φY (A), P1, P2) sending χΩk

⊗ 1 to Pk for k = 1, 2 and π ⊗ λ(g) to φY (λ(g))
for g ∈ Γ, respectively.

Proof. Let C(∆T) ored Γ ⊂ B(`2(V) ⊗ `2(Γ)) be the faithful representation as
in Eq. (3.1). Since the map L(`2(V) ⊗ A) → B(`2(V) ⊗ `2(Γ)) induced from
A ↪→ B(`2(Γ)) is injective, we may assume that C(∆T) ored Γ = C∗({π(g) ⊗
LA ◦ λ(g)}g∈Γ ∪ C(∆T) ⊗ 1). We claim that C(∆T) ored Γ is generated by
{π(g) ⊗ LA ◦ λ(g)}g∈Γ and {χΩk

⊗ 1}k=1,2. For this, it suffices to show that the
Γ-orbits of χΩk

, k = 1, 2 generate C(∆T). Take g ∈ Γ \ Λ arbitrarily and let
g = g1 · · · gn be in reduced form. If gn /∈ Γk, we have αg(χΩk

) = χgΩk
= χΩ(gΓk),

where
Ω(x) := {(y(n))∞n=1 ∈ Ω | y(d(eΓ1, x)) = x} for x ∈ V
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under the identification ∆T = Ω. Now let x = (x(n))∞n=1, y = (y(n))∞n=1 ∈ Ω be
distinct elements. Take the minimal N ≥ 1 such that x(n) 6= y(n) for n ≥ N .
Without loss of generality we may assume that y(N) /∈ {x(n) | n ≥ 1}. Then,
we have y ∈ Ω(y(N)) and x /∈ Ω(y(N)). Therefore, the claim follows from the
Stone–Weiertstarss theorem.

Let Uk : `2(Γ/Γk) ⊗ A → Yk ⊗Ak
A be the unitary given by Proposition

3.1.1 and set U := U1 ⊕ U2 : `2(V) ⊗ A →
⊕

k=1,2 Yk ⊗Ak
A. Let (Z, φZ) :=⊕

k=1,2(Yk ⊗Ak
A, φYk ⊗ 1) and ΦZ : L(Y ) → L(Z) be as in Eq. (2.1) so that

ΦZ ◦ φY = φZ . Then, Proposition 3.1.1 implies that U(π ⊗ λ(g))U∗ = φZ(λ(g))
for g ∈ Γ. Also, it follows from the definitions of Ωk and Pk that

ΦZ(Pk) = U(χΩk
⊗ 1)U∗ for k = 1, 2.

By the first paragraph of the proof, we conclude that Φ−1
Z ◦AdU gives the desired

isomorphism.

Remark 3.1.4. Here is another representation of C(∆T)ored Γ on `2(Γ)⊕`2(Γ).
Let PΛ ∈ B(`2(Γ)) be the projection onto `2(Λ) and qk be the projection onto
the closed span of the vectors δg such that g is a reduced word beginning with
an element in Γk. Define Q1, Q2 ∈ B(`2(Γ)⊕ `2(Γ)) by

Q1 = (PΛ + q1)⊕ q1, Q2 = q2 ⊕ (PΛ + q2).

Then, C(∆T) ored Γ is isomorphic to C∗(Q1, Q2, λ ⊕ λ(Γ)). To see this, we
first observe that the unitary representation φYk(λ(·))⊗ 1: Γ y Yk ⊗Ak

`2(Γk) is
unitarily equivalent to λ : Γ y `2(Γ). Then, the composition

L(Y ) = L(Y1)⊕ L(Y2)→ B(Y1 ⊗A1 `
2(Γ1))⊕ B(Y1 ⊗A1 `

2(Γ1))
∼= B(`2(Γ))⊕ B(`2(Γ))

↪→ B(`2(Γ)⊕ `2(Γ))

sends φY ◦ λ(g) to λ⊕ λ(g) and Pk to Qk for g ∈ Γ and k = 1, 2.

3.2 Extensions associated with conditional expectations

Let D ⊂ A be a unital inclusion of C∗-algebras with conditional expectation
E : A → D. we define the split extension associated with (D ⊂ A,E) to be the
universal unital C∗-algebra 〈〈A,E〉〉 generated by A and a projection e such that
eae = E(a)e for a ∈ A and 1Ae = e1A = e. Note that e commutes with D since
(1− e)de = de− E(d)e = 0 for d ∈ D.

Lemma 3.2.1. If a unital ∗-representation ρ : 〈〈A,E〉〉 → B(H) satisfies that the
restrictions ρ|A and ρ|De are faithful and ρ(A) ∩ span ρ(AeA) = {0}, then ρ is
faithful.
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Proof. Since A + spanAeA is norm dense in 〈〈A,E〉〉, it suffices to show that
‖a + K‖ ≤ 3‖ρ(a + K)‖ for all a ∈ A and K ∈ spanAeA. By assumption,
span ρ(AeA) is a non-trivial closed ideal of ρ(〈〈A,E〉〉) and the corresponding
quotient is isomorphic to A. This implies that ‖a‖ ≤ ‖ρ(a+K)‖. Also, for any∑n

i=1 aieb
∗
i ∈ spanAeA it follows from the proof of [6, Proposition 4.6.3] that

‖
n∑
i=1

ρ(aieb
∗
i )‖ = ‖[ρ(E(a∗i aj)e)]

1/2
i,j [ρ(E(b∗i bj)e)]

1/2
i,j ‖

= ‖[(E(a∗i aj)e)]
1/2
i,j [(E(b∗i bj)e)]

1/2
i,j ‖ = ‖

n∑
i=1

aieb
∗
i ‖.

Thus, we have ‖ρ(K)‖ = ‖K‖. Therefore, we obtain ‖a + K‖ ≤ ‖ρ(a)‖ +
‖ρ(K)‖ ≤ ‖ρ(a + K)‖ + ‖ρ(a + K)− ρ(a)‖ ≤ 2‖ρ(a + K)‖ + ‖ρ(a)‖ ≤ 3‖ρ(a +
K)‖.

Let (X,φX , ξ0) be the GNS representation associated with E and eD = θξ0,ξ0 ∈
K(X) be the Jones projection. Since eDφX(a)eD = φX(E(a))eD holds for a ∈ A,
thanks to the above lemma, we may use the following identification

〈〈A,E〉〉 = C∗({0⊕ eD} ∪ {a⊕ φX(a) | a ∈ A}) ⊂ A⊕ L(X).

Note that the ideal spanAeA of 〈〈A,E〉〉 is isomorphic to K(X) and the quotient
by this ideal is isomorphic to A. Also we remark that 〈〈A,E〉〉 is not isomorphic
to C∗(φX(A), eD) ⊂ L(X) in general. For example, if A is a crossed product of
D by a finite group and E is the canonical one, then we have C∗(φX(A), eD) =
K(X) = L(X).

Proposition 3.2.2. The corner e⊥〈〈A,E〉〉e⊥ of 〈〈A,E〉〉 is a semisplit extension
of A by K(X◦) with UCP cross section Ψ: a 7→ e⊥ae⊥. Moreover, the image of
Ψ generates e⊥〈〈A,E〉〉e⊥.

Proof. Via the above representation 〈〈A,E〉〉 ⊂ A⊕L(X), the corner e⊥〈〈A,E〉〉e⊥
is faithfully represented in A⊕L(X◦) and the ideal e⊥(spanAeA)e⊥ is isomorphic
to 0 ⊕ K(X◦). Let ρ : e⊥〈〈A,E〉〉e⊥ → 〈〈A,E〉〉/e⊥(spanAeA)e⊥ be the quotient
map. We claim that ρ ◦ Ψ is a bijective ∗-homomorphism. The injectivity
follows from the above representation. To see the multiplicativity, take a, b ∈ A◦
arbitrarily. Then, we have

ρ(Ψ(ab∗)−Ψ(a)Ψ(b)∗) = ρ(e⊥ab∗e⊥ − e⊥ae⊥b∗e⊥) = ρ(e⊥aeb∗e⊥) = 0.

The surjectivity follows from the fact that every element in e⊥〈〈A,E〉〉e⊥ is of
the form Ψ(a) + K for some a ∈ A and K ∈ span e⊥AeAe⊥. Finally, the above
computation show that C∗(Ψ(A)) contains K(X◦), and thus equals e⊥〈〈A,E〉〉e⊥.
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By the proposition, we have the following commuting diagram

0 // K(X) // 〈〈A,E〉〉 // A // 0

0 // K(X◦)

OO

// e⊥〈〈A,E〉〉e⊥

OO

// A // 0

such that the upper exact sequence is split and the lower one is semisplit with the
UCP cross section Ψ. We call (e⊥〈〈A,E〉〉e⊥,Ψ) the semisplit extension associated
with (D ⊂ A,E) and may assume that e⊥〈〈A,E〉〉e⊥ is a C∗-subalgebra of A ⊕
L(X◦).

Lemma 3.2.3. The kernel of the left action φX◦ : e⊥〈〈A,E〉〉e⊥ → L(X◦) given
by the projection A⊕L(X◦)→ L(X◦) is {a⊕ 0 | φX(a) ∈ K(X)} ∼= φ−1

X (K(X)).

Proof. Note that every element x in e⊥〈〈A,E〉〉e⊥ is of the form a⊕(e⊥DφX(a)e⊥D+
K) for some a ∈ A and K ∈ K(X◦). Then, x is in kerφX◦ if and only if
e⊥DφX(a)e⊥D = −K if and only if x = a⊕ 0 and a ∈ φ−1

X (K(X)).

The following lemma easily follows from the definition of 〈〈A,E〉〉:

Lemma 3.2.4. There exists an isometric bijective linear map t◦ : X◦ → e⊥〈〈A,E〉〉e
such that

• t◦(aξ0) = ae = (1− e)ae for a ∈ A◦;

• t◦(ξ)∗t◦(η) = 〈ξ, η〉e for ξ, η ∈ X◦;

• t◦(φX◦(b)ξd) = bt◦(ξ)d for b ∈ e⊥〈〈A,E〉〉e⊥, ξ ∈ X◦ and d ∈ D.

This lemma says that the inclusion K(X) ⊂ 〈〈A,E〉〉 has the following matrix
representation: [

K(X◦) X◦

(X◦)∗ De

]
⊂

[
e⊥〈〈A,E〉〉e⊥ X◦

(X◦)∗ De

]
.

Remark 3.2.5. Assume that (D ⊂ A,E) comes from the reduced group C∗-
algebras of discrete groups Λ ≤ Γ. Then, [Λ : Γ] =∞ if and only if φ−1

X (K(X)) =
{0}. Indeed, if [Λ : Γ] < ∞, then one has A = K(X). Note that this the case
when 〈〈A,E〉〉 = A ⊕ K(X) and e⊥〈〈A,E〉〉e⊥ = A ⊕ K(X◦). Conversely, if
x ∈ φ−1

X (K(X)) is nonzero, then x ⊗ 1 ∈ K(X ⊗D A) is also nonzero. By the
natural isomorphism K(X ⊗D A) ∼= c0(Γ/Λ) ored Γ, we have (1 ⊗ C∗red(Γ)) ∩
(c0(Γ/Λ)ored Γ) 6= {0}. This implies that c0(Γ/Λ) is unital, so we have [Γ : Λ] <
∞. Note that when φX(A) ∩K(X) = {0}, we have 〈〈A,E〉〉 ∼= C∗(φX(A), eD) ∼=
(C1 + c0(Γ/Λ)) ored Γ.
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3.3 Construction and Cuntz–Pimsner algebras

Let (A,E) = FD(Ak, Ek) be the reduced amalgamated free product of {(D ⊂
Ak, Ek)}k∈I and (Y, φY ) =�k∈I(Yk, φYk) be as in Eq. (2.1). Also, let Sk : X(r, k)⊗D
Ak → Yk be as in Lemma 2.3.4. As in the group case, we define the projection
Pk ∈ L(Y ) by

P ◦k :=
∑
j∈I

Sj(P
⊥
(`,k)P(r,k) ⊗ 1)S∗j , Pk := eAk

+ P ◦k , (3.4)

which is the projection onto the closed submodule

span{a1a2 · · · anηj | n ≥ 1, a1a2 · · · an reduced word with a1 ∈ A◦k, j ∈ I}.

Note that the projections Pk, k ∈ I are mutually orthogonal and satisfies that∑
k∈I Pk = 1.

Definition 3.3.1. For any reduced amalgamated free product (A,E) =FD(Ak, Ek)
we define ∆T(A,E) by the C∗-algebra generated by φY (A) and {Pk}k∈I inside
L(Y ).

We may identify A with φY (A) so that A ⊂ ∆T(A,E).

Remark 3.3.2 (cf. Remark 3.1.4). We will use the following representation of
∆T(A,E). For each k ∈ I, we consider the ∆T(A,E)-D C∗-correspondence
X(k) = Yk ⊗Ak

Xk
∼= X with the left action σk defined by the composition of the

quotient map L(Y ) ∼=
∏

i∈I L(Yi)→ L(Yk) and the map L(Yk)→ L(Yk ⊗Ak
Xk)

induced from the interior tensor product. Note that for each k, j ∈ I with k 6= j
one has

σk|A = φX , σk(Pk) = eD + P⊥(`,k), σj(Pk) = P⊥(`,k), (3.5)

and that
⊕

k(X
(k), σk) is faithful if Ek is nondegenerate for all k ∈ I.

By Proposition 3.1.3, when (A,E) comes from the reduced group C∗-algebra
of Γ = Γ1 ∗Λ Γ2, we have ∆T(A,E) ∼= C(∆T) ored Γ. Thus, for general re-
duced amalgamated free products, one can view ∆T(A,E) as an analogue of
the “crossed product algebra of C(∆T) by (A,E)”, but we do not have any
counterparts of the Cartan subalgebra C(∆T) in general.

Proposition 3.3.3. The following hold true:

(i) The projections Pk, k ∈ I commute with D.

(ii) Any element a ∈ Ak enjoys P⊥k aP
⊥
k = E(a)P⊥k and (a − Ek(a))P⊥k =

P ◦k aP
⊥
k .
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(iii) The compression L(Y ) → L(ηkAk) ∼= Ak by eAk
defines a conditional ex-

pectation from ∆T(A,E) onto Ak extending EAk
.

(iv) For any unital C∗-algebra C and the reduced amalgamated free product
(A ⊗ C,E ⊗ C) = FD⊗C(Ak ⊗ C,Ek ⊗ id) (cf. 2.3.5), one has ∆T(A ⊗
C,E ⊗ id) = ∆T(A,E)⊗ C.

Proof. Since (i), (ii) and (iii) are obvious, we prove only (iv). Let φY : A→ L(Y )
be as above and assume that A ⊗ C ⊂ L(Y ) ⊗ C ⊂

∏
k L(Yk ⊗ C). Note that

the left action of A ⊗ C on Yk ⊗ C is the GNS representation associated with
EAk
⊗ id for k ∈ I. Then, by definition, Pk ⊗ 1 is nothing but the projection for

FD⊗C(Ak ⊗C,Ek ⊗ id) given by Eq. (3.3). Thus, the assertion follows from the
definition of ∆T(A,E).

We next prove that ∆T(A,E) is identified with a Cuntz–Pimsner algebra. Let
〈〈Ak, Ek〉〉 and (Bk,Ψk) be the split and semisplit extension associated with (D ⊂
Ak, Ek) as in §§3.2. We consider the unital embedding Ψ: D →

∏
k∈I Bk; d 7→

(Ψk(d))k∈I , and the C∗-algebra B :=
⊕

k∈I Bk + Ψ(D). We denote the support
projection of Bk in B by 1Bk

and set B⊥k = 1⊥Bk
B. Define the C∗-correspondence

(X, φX) by ⊕
k∈I

X◦k ⊗D B⊥k , φX =
⊕
k∈I

φX◦k ⊗ 1,

where the interior tensor product Xk ⊗D B⊥k is with respect to D 3 d 7→
Ψ(d)1⊥Bk

∈ B⊥k and φX◦k ⊗ 1 is given by

Bk ↪→ Ak ⊕ L(X◦k)→ L(X◦k)→ L(X◦k ⊗D B⊥k ).

In the case when I = {1, 2}, we have much simpler descriptions: B = B1 ⊕ B2

and X = (X◦1 ⊗D B2)� (X◦2 ⊗D B1).
We set ξkk := ξk⊗1⊥Bk

∈ X. Recall that φ−1
Xk

(K(Xk))⊕0 ⊂ Bk (Lemma 3.2.3).
We may use the identification K(X◦k) ∼= 0⊕K(X◦k) ⊂ Bk.

Lemma 3.3.4. The kernel of φX includes
⊕

k∈I φ
−1
Xk

(K(Xk)) ⊕ 0 and we have
JX =

⊕
k∈I K(X◦k).

Proof. The first assertion follows from Lemma 3.2.3. Take x ∈ JX arbitrarily.
Then there exist ak ∈ Ak and Kk ∈ K(X◦k) such that x = (Ψk(ak) + Kk)k∈I .
For each k ∈ I, it follows from Lemma 2.2.3 that φXk

(ak) ∈ K(Xk), and so
ak ∈ φ−1

Xk
(K(Xk)). Thus, we obtain (Ψk(ak) +Kk)(ak ⊕ 0) = 0, implying ak = 0.

Since k ∈ I is arbitrary, we have x = (Kk)k ∈
⊕

kK(X◦k). The opposite inclusion
follows from that φX(θaξk,bξk) = θaξkk,bξkk for a, b ∈ A◦k and k ∈ I.
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Let {δk}k∈I be the canonical minimal projections in c0(I) and c0(I)∼ :=
c0(I) + C1 be the unitization so that c0(I)∼ = c0(I) when I is a finite set.
Let C be the universal C∗-algebra generated by unital copies of algebraic (or full)
amalgamated free product of Ai’s over D and c0(I)∼ such that (1−δk)a(1−δk) =
Ek(a)(1− δk) for k ∈ I and a ∈ Ak. More precisely, consider the collection F of
all cyclic representations π : (FDAk) ? c0(I)∼ → B(H) satisfying

π((1− δk)a(1− δk)) = π(Ek(a)(1− δk)) for k ∈ I, a ∈ Ak.

Then, C is the image of (FDAk) ? c0(I)∼ under the representation
⊕

(π,H)∈F π.

Theorem 3.3.5. Let (πX, tX) be a universal covariant representation of X so that
C∗(πX, tX) = O(X). Then, there exist bijective ∗-isomorphisms ρ : O(X)→ C and
ρ′ : C → ∆T(A,E) such that ρ(πX(Ψk(a))) = δkaδk and ρ(tX(bξkk)) = b(1 − δk),
and ρ′(a) = a and ρ′(δk) = Pk for a ∈ Ak, b ∈ A◦k and k ∈ I.

Proof. By Proposition 3.3.3 there exists a surjective ∗-homomorphism ρ′ : C →
∆T(A,E) such that ρ′(a) = a and ρ′(δk) = Pk for k ∈ I and a ∈ Ak.

We next construct a covariant representation (π, t) of X on C such that (ρ′ ◦
π, ρ′◦t) is universal. For each k ∈ I, by the universality of 〈〈Ak, Ek〉〉, there exists
a surjective ∗-homomorphism ρk : 〈〈Ak, Ek〉〉 → C sending ek to 1− δk and being
identical on Ak. We observe that eAk

Ak(1−Pk)AkeAk
= {0}, implying that Ak∩

spanAk(1− Pk)Ak = {0}. Thus, Lemma 3.2.1 implies that ρ′ ◦ ρk : 〈〈Ak, Ek〉〉 →
∆T(A,E) is injective. Therefore, π =

⊕
k∈I ρk|Bk

: B → C and ρ′ ◦ π : B →
∆T(A,E) are unital injective ∗-homomorphisms.

Let t◦k : X◦k → e⊥k 〈〈Ak, Ek〉〉ek be as in Lemma 3.2.4 and define t : X → C by
t(ξ ⊗ x) = ρk(t

◦
k(ξ))π(x) for ξ ∈ X◦k and x ∈ B⊥k . For any ξ ∈ X◦k , η ∈ X◦j , x ∈

B⊥k , y ∈ B⊥j , by Lemma 3.2.4 and the fact that ρk(ek) = 1− δk = 1− π(1Bk
) we

have

t(ξ ⊗ π(x))∗t(η ⊗ π(y)) = π(x∗)ρk(t
◦
k(ξ))

∗ρj(t
◦
j(η))π(y)

= δk,jπ(x∗)ρk(t
◦
k(ξ)

∗t◦k(η))π(y)

= δk,jπ(x∗)ρk(〈ξ, η〉ek)π(y)

= δk,jπ(x∗〈ξ, η〉1⊥Bk
y)

= π(〈ξ ⊗ π(x), η ⊗ π(y)〉).

Also, for any z ∈ Bk we have

t(φX(z)ξ ⊗ x) = ρk(t
◦
k(φX◦k (zξ)))π(x) = ρk(zt

◦
k(ξ))π(x)

= π(z)ρk(t
◦
k(ξ))π(x) = π(z)t(ξ ⊗ x).

Therefore, (π, t) is a representation of X. We claim that (π, t) is covariant.
By Lemma 3.3.4 it is sufficient to show that π(K) = ψt ◦ φX(K) for all K ∈
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⊕
k∈I K(X◦k). We may assume that K = θξ,η for some ξ, η ∈ X◦k and k ∈ I.

Then it follows from Lemma 3.2.4 that

π(θξ,η) = ρk(θξ,η) = ρk(t
◦
k(ξ)t

◦
k(η)∗) = t(ξ ⊗ 1B⊥k )t(η ⊗ 1B⊥k )∗ = ψt(φX(θξ,η)).

To see the universality, it suffices to show that (ρ′◦π, ρ′◦t) admits a gauge action
thanks to Theorem 2.4.1. For each n ∈ I, let Qn be the projection in L(Y ) onto
the closed submodule generated by all vectors of the form a1 · · · anηk for some k ∈
I and some reduced word a1 · · · an with an /∈ Ak, and set Q0 =

∑
k∈I eAk

. Letting
Uz :=

⊕
n≥0 z

nQn for z ∈ C with |z| = 1 we have AdUz(ρ
′ ◦ π(x)) = ρ′ ◦ π(x)

for x ∈ B and AdUz(ρ
′ ◦ t(ξ)) = zρ′ ◦ t(ξ) for ξ ∈ X. Finally, the surjectivity of

ρ′ follows from the decomposition a = PkaPk + Pka
◦P⊥k + P⊥k a

◦Pk +E(a)P⊥k for
a ∈ Ak.

We next show that the Toeplitz extension

0 −→ K(F(X)JX) −→ T (X) −→ O(X) −→ 0

is semisplit. Let (π, t) be as in the proof of Theorem 3.3.5. We may identify
∆T(A,E) with C so that ∆T(A,E) = C∗(π, t). Let σk : ∆T(A,E) → L(X(k))
be as in Eq. (3.5) and set (XI , σ) :=�k∈I(X

(k), σk). We denote the GNS vector

in X(k) by ξ
(k)
0 . We fix a fixed-point free bijection τ on I. To simplify the

notation, we will write τ(k) = k+ 1 for k ∈ I. Let Q ∈ L(XI) be the projection
onto�k∈I P

⊥
(r,k)X

(k+1). Note that P⊥(r,k)X
(k+1) ∼= X(r, k)⊗D X◦k contains a copy

of X◦k , denoted by X
◦(k+1)
k . Since QXI is invariant under σ ◦ π(B) and σ ◦ t(X),

the pair (π′, t′) := (σ ◦ π(·)Q, σ ◦ t(·)Q) is a representation of X on L(QXI).
Notice that Q does not commute with σ ◦ t(X).

Proposition 3.3.6. The representation (Π, T ) := (π⊕π′, t⊕t′) of X is universal.

Proof. Since (π, t) is injective, so is (Π, T ). Consider the unitary representation
U ′ : T y XI such that U ′z acts on the space of reduced words of length n by zn.
Then, {U ′z}z commute with Q and AdU ′z(·)Q defines a gauge action for (π′, t′).
Thus, we only have to check that Π(JX) ∩ ψT (K(X)) = {0} by Theorem 2.4.1.
Assume that x ∈ K(X◦k) satisfies Π(x) ∈ ψT (K(X)). Observe that t′(ξ)t′(η)∗ =⊕

j∈I σj+1(t(ξ))P⊥(r,j)σj+1(t(η))∗ vanishes on �j∈I X
◦(j+1)
j for all ξ, η ∈ X, and

hence so does π′(x). On the other hand, the restriction of π′(x) to X
◦(k+1)
k is

unitarily equivalent to x itself on X◦k . Thus, x must be zero.

Since (Π, T ) is universal, there is a surjective ∗-homomorphism p : C∗(Π, T )→
C∗(π, t) such that p◦Π = π and p◦T = t. Note that the kernel of p is generated
by {Π(θaξk,bξk)− ψT (φX(θaξk,bξk)) | k ∈ I, a, b ∈ A◦k} by Lemma 3.3.4. We denote
by θ the compression map L(XI)→ L(QXI) by Q.
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Theorem 3.3.7. The UCP map Θ := id⊕(θ ◦ σ) : ∆T(A,E) → ∆T(A,E) ⊕
L(QXI) maps into C∗(Π, T ) and satisfies that p ◦Θ = id.

Proof. Since DPk sits in the multiplicative domain of Θ and Θ(c) = Π(Ψk(c)) +
T (c◦ξkk) + T (c∗◦ξkk)

∗ + Π(Ψ(E(c))1⊥Bk
) ∈ C∗(Π, T ) for c ∈ Ak and k ∈ I, it

suffices to show that Θ(ab∗) − Θ(a)Θ(b∗) ∈ ker p for a, b ∈ A◦k and k ∈ I and
Θ(a1a2 · · · an+1) = Θ(a1a2 · · · an)Θ(an+1) for all reduced words a1 · · · an with n ≥
1. Indeed, it follows from the above decomposition of Θ(c) that

Θ(ab∗)−Θ(a)Θ(b∗) = Π(Ψk(ab
∗))− Π(Ψk(a)Ψk(b

∗))− T (aξkk)T (bξkk)
∗

= Π(θaξk,bξk)− ψT (φX(θaξk,bξk)),

which belongs to ker p. We next show the multiplicativity on reduced words.
Take k ∈ I and a reduced word a1 · · · an with an ∈ A◦k arbitrarily. Since
π(Ψk(Ak)) and t(X) sit in the right multiplicative domain of Θ, we have

Θ(a1 · · · an)−Θ(a1 · · · an−1)Θ(an)

= Θ(a1 · · · an−1t(a
∗
nξkk)

∗)−Θ(a1 · · · an−1)T (a∗nξkk)
∗

= 0⊕Qσ(a1 · · · an−1)(1−Q)σ ◦ t(a∗nξkk)∗Q.

Note that (1 − Q)σ ◦ t(a∗nξkk)∗Q is supported on X
(k+1)◦
k . For any x ∈ A◦k,

since σ = φX on A, we have Qσ(a1 · · · an−1)(1 − Q)σ ◦ t(a∗nξkk)∗Qxξ
(k+1)
0 =

Qa1 · · · an−1ξ
(k+1)
0 E(anx) = 0.

Remark 3.3.8. The above proof shows that C∗(Θ(Ak)) is a semisplit exten-
sion of Ak by K(X◦k). The restriction of EX(·)1Bk

: C∗(Π, T ) ∼= T (X) → Bk

to C∗(Θ(Ak)) is a ∗-isomorphism onto Bk such that EX(Θ(a))1Bk
= Ψk(a) for

a ∈ Ak.

3.4 Consequences

We note that the definition of the universal C∗-algebra C does not involve the
reduced amalgamated free product. Thus, the isomorphism between C and
∆T(A,E) implies the following:

Corollary 3.4.1. Let (A,E) = FD(Ak, Ek) be any reduced amalgamated free
product of {(D ⊂ Ak, Ek)}k∈I and FDAk be the corresponding full one. For
any unital C∗-algebra B and any unital ∗-homomorphism φ : FDAk → B, the
following hold true:

(i) Assume that I is infinite and there exists a family of mutually orthogonal
projections {pk}k∈I in B such that (1− pk)φ(a)(1− pk) = φ(Ek(a))(1− pk)
for a ∈ Ak and k ∈ I, then φ factors through the canonical surjection
FDAk → A.
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(ii) Assume that I is finite and there exists a family of mutually orthogonal
projections {pk}k∈I in B such that

∑
k∈I pk = 1 and (1− pk)φ(a)(1− pk) =

φ(Ek(a))(1−pk) for a ∈ Ak and k ∈ I, then φ factors through the canonical
surjection FDAk → A.

When I = {1, 2}, we have P1 = 1 − P2. We next show that, in this case
∆T(A,E) also has a full/reduced amalgamated free product structure. De-
fine the conditional expectation Ek : 〈〈Ak, Ek〉〉 → D(1 − ek) ⊕ Dek by Ek(x) =
Ek(πk(a))(1− ek) + ekxek, where πk denotes the quotient map 〈〈Ak, Ek〉〉 → Ak.

Corollary 3.4.2. Let (A,E) = (A1, E1) ?D (A2, E2) be a reduced amalgamated
free product and Ek : 〈〈Ak, Ek〉〉 → D(1− ek)⊕Dek be as above. Then, ∆T(A,E)
is isomorphic to the reduced amalgamated free product of (〈〈A1, E1〉〉, E1) and
(〈〈A2, E2〉〉, E2) over D⊕D, where e1 is identified with 1−e2. Moreover, the canon-
ical surjection from the full amalgamated free product of 〈〈A1, E1〉〉?D⊕D 〈〈A2, E2〉〉
onto ∆T(A,E) is a ∗-isomorphism.

Proof. By the previous corollary, 〈〈A1, E1〉〉?D⊕D〈〈A2, E2〉〉 is isomorphic to ∆T(A,E)
naturally. Thus it suffices to show that this isomorphism factors through the re-
duced amalgamated free product. We may identify 〈〈Ak, Ek〉〉 with C∗(Ak, 1 −
Pk). Let σk : ∆T(A,E) → L(X(k)) be as in Eq. (3.5) and set θ := id ⊕ σ1 ⊕
σ2 : ∆T(A,E) → L(Y � X(1) � X(2)). Define the projection f1 ∈ L(Y �
X(1) � X(2)) by P2 ⊕ (eD + P⊥(`,2)) ⊕ P⊥(`,2) and put f2 = 1 − f1. We prove

that f1θ(x)f1 = θ(E1(x))f1 for x ∈ 〈〈A1, E1〉〉. For any x ∈ 〈〈A1, E1〉〉, it is clear
that P2xP2 = E1(x)P2. By Eq. (3.5), we have

(eD + P⊥(`,2))σ1(x)(eD + P⊥(`,2))

= eDσ1(x)eD + eDσ1(x)P⊥(`,2) + P⊥(`,2)σ1(x)eD + P⊥(`,2)σ1(x)P⊥(`,2)

= eDσ1(P1xP1)eD + eDσ1(P1xP2) + σ1(P2xP1)eD + σ1(P2xP2)

= σ1(E1(x))eD + σ1(E1(x))P⊥(`,2)

= σ1(E1(x))(eD + P⊥(`,2)).

Here in the third equality we used that eDσ1(P1xP2) = σ1(P2xP1)eD = 0. This
follows from the fact that σ1(P1xP2) is a norm limit of “creation operators”
P⊥(`,1)anP

⊥
(`,2) with an ∈ A◦1. Similarly, one has P⊥(`,2)σ2(x)P⊥(`,2) = σ2(E1(x))P⊥(`,2).

Combing these we obtain that f1θ(x)f1 = θ(E1(x))f1. By the same argument,
we have f2θ(y)f2 = θ(E2(y))f2 for y ∈ 〈〈A2, E2〉〉. Thus, the previous corollary
implies that θ factors through the reduced amalgamated free product. Since θ is
injective, we are done.

Our next goal is to characterize when ∆T(A,E) is nuclear or exact. We say
that a linear map from the algebraic tensor product of two C∗-algebras into a
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C∗-algebra is min-bounded if it is bounded with respect to the minimal tensor
norm.

Theorem 3.4.3. Let (A,E) =FD(Ak, Ek) be a reduced amalgamated free prod-
uct, P,Q be any unital C∗-algebras, and ϕ : ∆T(A,E) → P be any unital ∗-
homomorphism. If (ϕ|Ak

⊗ id) : Ak � Q → P ⊗max Q is min-bounded for each
k ∈ I, then ϕ⊗ id : ∆T(A,E)�Q→ P ⊗max Q is min-bounded.

Proof. Thanks to Proposition 3.3.3 (iv) it suffices to construct a suitable ∗-
homomorphism from ∆T(A ⊗ Q,E ⊗ id) to P ⊗max Q. For each k ∈ I, let
ψk : Ak⊗Q→ P ⊗maxQ be the bounded extension of (ϕ|Ak

)⊗ id. Then, we have
(ϕ(1− Pk)⊗ 1)ψk(x)(ϕ(1− Pk)⊗ 1) = ψk(Ek ⊗ id(x)) for k ∈ I. Thus, thanks
to Corollary 3.4.1 ψk’s extend to a ∗-homomorphism from ∆T(A⊗Q,E⊗ id) to
P ⊗max Q.

Corollary 3.4.4. Let (?) be one of the following properties: nuclearity, exact-
ness, WEP, and LLP. If Ak has the property (?) for every k ∈ I, then so does
∆T(A,E).

Proof. For the nuclearity, set P = ∆T(A,E) and φ = id. If Ak is nuclear for
every k ∈ I, then the embedding Ak � Q → ∆T(A,E) ⊗max Q is min-bounded
for any C∗-algebra Q. The previous theorem then implies that ∆T(A,E)⊗Q =
∆T(A,E)⊗max Q. Since Q is arbitrary, ∆T(A,E) is nuclear.

The assertion for the exactness can be shown in the same manner by using
some faithful representation ϕ : ∆T(A,E)→ P := B(H). By Kirchberg’s result
[32] (see also [43]), ∆T(A,E) has WEP (resp. LLP) if and only if ∆T(A,E) ⊗
C∗(F∞) = ∆T(A,E) ⊗max C∗(F∞) (resp. ∆T(A,E) ⊗ B(`2) = ∆T(A,E) ⊗max

B(`2)). Thus, the proof for nuclearity works as well.

Since exactness passes to subalgebras, the next result due to Dykema [14] (see
[16, 44] for alternative proofs) is an immediate consequence of Corollary 3.4.4.
Note that our proof also says that any reduced amalgamated free product of
nuclear C∗-algebras is a subalgebra of a nuclear C∗-algebra. Also, our result does
not relay on the facts that exactness and nuclearity pass to quotients [8, 33, 34].

Corollary 3.4.5 (Dykema [14]). Reduced amalgamated free products of exact
C∗-algebras are exact.

Recall that a C∗-algebra A is said to have the completely bounded approxi-
mation property (CBAP) if there exist a constant C > 0 and a net of finite rank
CB maps ϕi on A such that ‖ϕi‖cb ≤ C and limi ‖ϕi(x) − x‖ = 0 for x ∈ A.
The Haagerup constant Λcb(A) is the infimum of those C for which (ϕi)i exists.
When A does not have the CBAP, we set Λcb(A) =∞.
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Lemma 3.4.6. Let D ⊂ A be a unital inclusion with conditional expectation
E : A → D and (X,φX , ξ0) be the associated GNS-representation. Consider the
embedding maps K(X◦) ↪→ K(X) and D ↪→ DeD ⊂ K(X) into corners. Then,
we have Λcb(K(X◦)) ≤ Λcb(D).

Proof. Since K(X◦) is a hereditary subalgebra of K(X), we have Λcb(K(X◦)) ≤
Λcb(K(X)). Take an approximate unit (ai⊗ pi) of K(X)⊗K. It suffices to show
that for any i and any ε > 0, there exist CP contractions ϕi : K(X)⊗K→ D⊗K
and ψi : D⊗K→ K(X)⊗K such that ‖(ai ⊗ pi)x(ai ⊗ pi)− ψi ◦ ϕi(x)‖ < ε‖x‖
for x ∈ K(X) ⊗ K. For each i, by [31, Lemma B.2] we find a separable closed
subspace Xi ⊂ X with ξ0 ∈ Xi which naturally forms a Hilbert C∗-module over
a separable C∗-subalgebra Di ⊂ D such that ai ∈ K(Xi). Since DieD ⊗ K is
a full corner of K(Xi) ⊗ K, it follows from [45, Lemma 2.5] that there exists
di ∈ K(Xi)⊗K such that ‖d∗i di − ai ⊗ pi‖ < ε and did

∗
i ∈ DeD ⊗K. Then, CP

contractions ϕi(x) = dixd
∗
i and ψi(x) = d∗ixdi are the desired ones.

Corollary 3.4.7. It follows that Λcb(∆T(A,E)) = supk{Λcb(Ak) | k ∈ I}.

Proof. Since D is the range of the conditional expectation E1, we have Λcb(D) ≤
Λcb(Ak). By [17] and Lemma 3.4.6, we obtain Λcb(Bk) = Λcb(Ak). When I is
finite, B =

⊕
k∈I Bk; otherwise B is a split extension of D by

⊕
k Bk. Therefore,

Λcb(T (X)) = supk Λcb(Ak) by [17] again. Since ∆T(A,E) ∼= O(X) is a quotient
of T (X) with UCP cross section, we obtain Λcb(∆T(A,E)) ≤ supk Λcb(Ak). The
opposite implication follows from Proposition 3.3.3 (iii).

The following generalizes Ozawa’s result [38] for nuclearity.

Theorem 3.4.8. Let (A,E) = (A1, E1) ?D (A2, E2) be a reduced amalgamated
free product and assume that E1 and E2 are nondegenerate and the image of the
GNS representation of E1 contains the Jones projection. Then, the following
hold true:

(i) Let (?) be as in Corollary 3.4.4. Then, A has the property (?) if and only
if so do both A1 and A2.

(ii) One has Λcb(A) = max{Λcb(A1),Λcb(A2)}.

Proof. Let p ∈ A1 be a projection such that φX1(p) is the Jones projection
of E1. A direct computation shows that p = peA1 + P2 in ∆T(A,E). Set
I1 := φ−1

X1
(K(X1)). Then, K(Y1I1) is the ideal of ∆T(A,E) generated by I1eA1 .

Since E1 and E2 are nondegenerate, the restriction of σ2 : ∆T(A,E) → X(2) to
A is faithful. Thus, we have K(Y1I1) ∩ A = {0} because I1eA1 ⊂ kerσ2 (see
Remark 3.3.2). Since P2 ∈ A + K(Y1I1), we have ∆T(A,E) = A + K(Y1I1) and
the split exact sequence

0 −→ K(Y1I1) −→ A+ K(Y1I1) −→ A −→ 0.
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Thus, the assertion follows from Corollary 3.4.4 and Corollary 3.4.7.

Recall that the cb distance of two finite dimensional operator spaces E and
F is defined by

dcb(E,F ) = inf{‖ϕ‖cb‖ϕ−1‖cb | ϕ : E → F linear bijection}.

When E and F are not isomorphic, we set dcb(E,F ) = ∞. For any finite
dimensional operator space E, Junge and Pisier introduced in [30] the following
quantity

df (E) := inf{dcb(E,F ) | F ⊂ C∗(F∞)}.
If A is a C∗-algebra, we define df (A) by the supremum of df (E) taken over all
finite dimensional operator subspaces E of A.

Theorem 3.4.9. For any reduced amalgamated free product (A,E) =FD(Ak, Ek),
if df (Ak) = 1 holds for all k ∈ I, then we have df (∆T(A,E)) = df (A) = 1.

Proof. Let F ⊂ ∆T(A,E) be any finite dimensional operator subspace. Take a
unital faithful representation ∆T(A,E) ⊂ B(H). Then, it was shown by Junge
and Pisier [30] that

df (F ) = sup

{
‖x‖B(H)⊗maxB(`2)

‖x‖min

| x ∈ F � B(`2)

}
.

Thus, it suffices to show that for any unital ∗-homomorphism π × ρ : B(H) �
B(`2)→ B(K), the restriction π|∆T(A,E) × ρ : ∆T(A,E)� B(H)→ B(K) is min-
bounded. Since df (Ak) = 1 holds, π|Ak

× ρ : Ak �B(`2)→ B(K) is min-bounded
for each k ∈ I. Denote its bounded extension by π̃k. Then π̃k’s induce a ∗-
representation of the full amalgamated free product FD⊗B(H)(Ak ⊗ B(H)), and
the projections π(Pk)’s satisfy the assumption of Corollary 3.4.1. Hence, the
assertion follows from the isomorphism ∆T(A,E)⊗B(H) ∼= ∆T(A⊗B(H), E⊗
id).

Theorem 3.4.10 (Blanchard–Dykema [3]). Let (A,E) =FD(Ak, Ek) and (A, E) =
FD(Ak, Ek) be reduced amalgamated free products.

(i) For any unital ∗-homomorphisms πk : Ak → Ak, k ∈ I such that Ek ◦
πk = πk ◦ Ek there exists a unique ∗-homomorphism π : A → A of which
restriction to Ak equals πk for every k ∈ I. Moreover, if πk is injective for
every k ∈ I, then so is π.

(ii) Assume that D = D and Ek and Ek are nondegenerate for k ∈ I. For any
UCP maps ϕk : Ak → Ak such that ϕk|D = id, there exists a unique UCP
map ϕ : A→ A such that

ϕ(a1a2 · · · an) = ϕι(1)(a1)ϕι(2)(a2) · · ·ϕι(n)(an)

for any reduced word a1 · · · an with aj ∈ A◦ι(j) and ι ∈ In.
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Proof. We prove (i): By Corollary 3.4.1 the ∗-homomorphisms πk, k ∈ I induce
ρ : ∆T(A,E)→ ∆T(A, E). The covariant representation of X corresponding to
ρ admits a gauge action since ∆T(A, E) admits a gauge action, and is injective
whenever πk is injective for k ∈ I. The restriction of ρ to A is the desired one.

We prove (ii): The argument here is essentially same as the proof of [7,
Proposition 2.1]. Thus, we give only a sketch of the proof. Let (Xk, φXk

, ξ′k)
and (X , φX , ξ′0) be the GNS representation of Ek and E , respectively. For each
k ∈ I, by the Stinespring construction, there exists an Ak-D C∗-correspondence
(Zk, πk) and an isometry wk : Xk → Zk such that w∗kπk(φXk

(a))wk = φXk
(ϕk(a))

for a ∈ Ak. Let E ′k : L(Zk) → D be the conditional expectation given by the
compression onto wkξ

′
k. Consider the reduce amalgamated free product (L, E ′) =

FD(L(Zk), E
′
k) and denote the GNS Hilbert C∗-module associated with E ′ by

X ′. Then, there exists an isometry w : X → X ′ such that

w(ζ1⊗· · ·⊗ζn) = wι(1)ζ1⊗· · ·⊗wι(n)ζn for n ≥ 1, ι ∈ In, ζk ∈ X◦ι(k) (1 ≤ k ≤ n).

By (i) there exists a ∗-homomorphism π : A→ L induced from πk, k ∈ I. Then,
a direct computation shows that the UCP ϕ : A 3 a 7→ w∗π(a)w ∈ L(X ) is the
desired one.
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4 KK-theory of amalgamated free products

4.1 KK-equivalences

Theorem 4.1.1. Let {(D ⊂ Ak, Ek)}k∈I be any countable family of unital in-
clusions of separable C∗-algebras with conditional expectations and (A,E) =
FD(Ak, Ek) and A :=FDAk be the reduced and full amalgamated free products.
Then, the canonical surjection λ : A→ A is a KK-equivalence.

We first deal with the case when I = {1, 2}. Consider twoA-A C∗-correspondences
(Z0, π0) :=

⊕2
i=1(Yi ⊗Ai

A, φYi ⊗ 1) and (Z1, π1) := (X ⊗D A, φX ⊗ 1). Let
Sk : X(r, k)⊗D Ak → Yk be as in Lemma 2.3.4 and define the isometry S : Z1 →
Z0 by {

S1 ⊗ 1 : X(r, 1)⊗D A→ Y1 ⊗A1 A;

S2 ⊗ 1 : X(r, 2)◦ ⊗D A→ Y ◦2 ⊗A2 A.
(4.1)

We set η̃k := ηk ⊗ 1A ∈ Yk ⊗Ak
A ⊂ Z0 for k = 1, 2.

Lemma 4.1.2 (cf. [52, Theorem 3.3 (2)]). The operator S satisfies that kerS∗ =
η̃1A and π0(a)S − Sπ1(a) is compact for all a ∈ A. Consequently, the triplet
(Z0 ⊕ Z1, π0 ⊕ π1, [ 0 S∗

S 0 ]) is a Kasparov A-A bimodule.

Proof. The first assertion is obvious. Thus, it suffices to show π0(x)S−Sπ1(x) is
compact for all x ∈ A1∪A2. In fact, since each x ∈ A2 enjoys xX(r, 1) ⊂ X(r, 1)
and xX(r, 2)◦ ⊂ X(r, 2)◦, one has π0(x)S = Sπ1(x) for x ∈ A2. If we define
S ′ : Z0 → Z1 by S ′ξ0 ⊗ a = η̃2a for a ∈ A and by S on X◦ ⊗D A, then S ′

intertwines the actions of A1 by the above argument. Since S is a compact
perturbation of S ′, we are done.

Remark 4.1.3. The construction of the above Kasparov bimodule is based on
Julg and Valette’s work [29] and its quantum analogue by Vergnioux [52]. Let
us explain a “geometric” meaning of the operator S.

Let Γ be a locally compact second countable group action on a tree T and fix
a base point x0 ∈ V. For any x ∈ V\{x0} we denote by β(x) the unique edge in
E relating x and some vertex in [x0, x]. We define the co-isometry V : `2(V) →
`2(E) by V δx0 = 0 and V δx = δβ(x) for x 6= x0. Julg and Valette proved in
[29] that the triplet (`2(V), `2(E), V ) implements the K-homology class of the
trivial character. Now assume that Γ is discrete and all the stabilizer subgroups
of the action Γ y T are amenable. Since the unitary representations of Γ on
`2(V) and `2(E) are weakly contained in the regular representation, the above
triplet defines an element γ in K1(C∗red(Γ)) = KK(C∗red(Γ),C). Let d : C∗red(Γ)→
C∗red(Γ)⊗C∗(Γ) be the ∗-homomorphism given by d(λ(g)) = λ(g)⊗u(g), where u
denotes the universal representation of Γ. Then, the Kasparov product of d and
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γ ⊗ id ∈ KK(C∗red(Γ)⊗C∗(Γ),C∗(Γ)) gives the inverse of the canonical quotient
C∗(Γ)→ C∗red(Γ) (see [10] for details).

If Γ is an amalgamated free product of amenable groups Γ1 and Γ2 over Λ and
the base point x0 is eΓ1, then one can check that the Kasparov bimodule repre-
senting this inverse element coincides with that we constructed in the previous
lemma.

Theorem 4.1.4. With the notation above, let α be the element in KK(A,A)
implemented by (Z0 ⊕ Z1, π0 ⊕ π1, [ 0 S∗

S 0 ]). Then, we have λ ⊗A α = idA and
α⊗A λ = idA.

Proof. We first prove that λ⊗A α = idA following the proof of [52, Theorem 3.3
(3)]. Set ρ0 := π0 ◦ λ and ρ1 := π1 ◦ λ. Define the unitary U : Z1 ⊕ A→ Z0 by
S on Z1 and by U(0⊕ a) := η̃2a for a ∈ A. Since S is a compact perturbation of
U , λ⊗A α− idA is implemented by

(Z0 ⊕ (Z1 ⊕ A), ρ0 ⊕ (ρ1 ⊕ LA), [ 0 U∗
U 0 ])

(see §§2.5). Take a norm continuous path (vt)0≤t≤1 of unitaries in M2(C) such
that v0 = 1 and v1 = [ 0 1

1 0 ]. With the natural identification M2(C) ⊂M2(C)⊗A =
L(η̃1A ⊕ η̃2A) we define the unitary ut ∈ L(Z1) by vt on η̃1A ⊕ η̃2A and by the
identity operator on Z1	(η̃1A⊕η̃2A). Since the restriction of π0(D) to η̃1A⊕η̃2A
is just C1⊗D ⊂ M2(C)⊗ A with the above identification, the family (ut)0≤t≤1

forms a norm continuous path of unitaries in π0(D)′ ∩ (C1 + K(Z0)) satisfying
that u0 = 1 and u1 switches η̃1a and η̃2a for each a ∈ A. Let jk : Ak ↪→ A be
the inclusion map for k = 1, 2. Since Adut ◦ π0 ◦ j1 agrees with π0 ◦ j2 on D, we
have the natural ∗-homomorphism φt := (Adut ◦ π0 ◦ j1) ? (π0 ◦ j2) : A→ L(Z0)
thanks to the universality of A. Then, the Kasparov bimodules(

Z0 ⊕ (Z1 ⊕ A), φt ⊕ (ρ1 ⊕ LA), [ 0 U∗
U 0 ]

)
, t ∈ [0, 1]

satisfy conditions (i), (ii) and (iii) in Lemma 2.5.3 (with P = Q = A), and
its evaluation at t = 0 implements λ ⊗A α − idA. Thus, we need to show that
(Z0 ⊕ (Z1 ⊕ A), φ1 ⊕ (ρ1 ⊕ LA), [ 0 U∗

U 0 ]) is degenerate, that is,

φ1(x)U = U(ρ1(x)⊕ LA(x)) for x ∈ A. (4.2)

Since U is unitary, we may assume that x is in A◦1 ∪ A2. When x is in A2,
the above equation is trivial because S intertwines π1(x) and π0(x). Let S ′ be
as in the proof of the previous lemma. Then, we have u1U = S ′ on Z0 and
u1U(0 ⊕ a) = η̃1a for a ∈ A. Since S ′ intertwines the actions of A1, we have
U(π1(x) ⊕ LA(x)) = u1π

0(x)u∗1U for every x ∈ A1. Thus we obtain equation
(4.2), and hence Lemma 2.5.3 shows λ⊗A α = idA.
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We next prove that α ⊗A λ = idA in KK(A,A). Note that α ⊗A λ − idA is
implemented by the Kasparov A-A bimodule(

(Z0 ⊗λ A)⊕ (Z1 ⊗λ A⊕ A), (π0 ⊗ 1A)⊕ (π1 ⊗ 1A ⊕ LA),
[

0 U∗⊗1
U⊗1 0

])
(see §§2.5). We observe that the family of Kasparov A-A bimodules(
(Z0 ⊗λ A)⊕ (Z1 ⊗λ A⊕ A), (ρ0 ⊗ 1A)⊕ (φt ⊗ 1A ⊕ λ)

[
0 U∗⊗1

U⊗1 0

])
, t ∈ [0, 1]

satisfies the conditions (i), (ii) and (iii) in Lemma 2.5.3 (with P = A and Q = A)
and its evaluations at endpoints implement (α ⊗A λ − idA) ◦ λ and 0. Thus,
by Lemma 2.5.3 and the fact that φY : A → L(Y ) is faithful, it suffices to
show that φt ⊗ 1 : A → L(Z0 ⊗φY ◦λ Y ) factors through λ : A → A for every
t ∈ [0, 1]. We observe that Z0 ⊗φY ◦λ Y ∼= Y ⊗A Y . Thus, if we set φ′ :=
φY ⊗ 1 : A→ L(Y ⊗A Y ) and wt := ut ⊗ 1 ∈ L(Y ⊗A Y ), then φt ⊗ 1Y coincides
with ψt := (Adwt ◦ φ′ ◦ ι1) ? (φ′ ◦ ι2). Based on the decomposition Y ⊗A Y =⊕

k=1,2 ηkAk ⊗Ak
Y ⊕

⊕
l=1,2 Y

◦
l ⊗Al

Y, we define the projection R1 ∈ L(Y ⊗A Y )
by

R1(Y ⊗A Y ) =
⊕
k=1,2

ηk ⊗ P1Y ⊕
⊕
l=1,2

P1Y
◦
l ⊗Al

Y

and set R2 := 1− R1. We observe that w commutes with R1. Indeed, it follows
from the definition of wt = ut ⊗ 1 that wt(ηk ⊗ P1ξ) is a linear combination of
η1⊗P1ξ and η2⊗P1ξ for ξ ∈ Y and wt is identical on

⊕
l=1,2 P1Y

◦
l ⊗Al

Y . Thus,

by Corollary 3.4.1 it suffices to show that R⊥k φ
′(a)R⊥k = φ′(Ek(a))R⊥k for a ∈ Ak

and k = 1, 2. By symmetry, we may assume that k = 2 and a ∈ A2. Since R1

commutes with φ′(D), we also assume that a ∈ A◦2. Then, for any ζj, ζ
′′
j ∈ Y and

ζ ′j ∈ Y ◦j we have

R1φ
′(a) ((η1 ⊗ P1ζ1)⊕ (η2 ⊗ P1ζ2)⊕ (P1ζ

′
1 ⊗ ζ ′′1 )⊕ (P1ζ

′
2 ⊗ ζ ′′2 ))

= R1 (0⊕ (η2 ⊗ aP1ζ2)⊕ (aη1 ⊗ P1ζ1 + aP1ζ
′
1 ⊗ ζ ′′1 )⊕ (aP1ζ

′
2 ⊗ ζ ′′2 ))

= 0⊕ (η2 ⊗ P1aP1ζ2)⊕ (P1aη1 ⊗ P1ζ1 + P1aP1ζ
′
1 ⊗ ζ ′′1 )⊕ (P1aP1ζ

′
2 ⊗ ζ ′′2 )

= 0

by Proposition 3.3.3.

Let I be a general countable set and let A =FDAk and (A,E) =FD(Ak, Ek)
be as in Theorem 4.1.1. We set c0 := c0(I) and K := K(`2(I)).

Let {ekl}k,l∈I be the system of matrix units for the canonical basis {δk}k∈I
of `2(I), and set fk := ekk. We realize

∑
k Ak and c0 ⊗D inside K ⊗ A as∑

k

Ak = C∗{fk ⊗ a | k ∈ I, a ∈ Ak} and c0⊗D = C∗{fk ⊗ d | k ∈ I, d ∈ D}.
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Consider two conditional expectations
∑

k Ek :
∑

k Ak → c0⊗D and Ec0 ⊗ idD :
K⊗D → c0⊗D defined by (

∑
k Ek)(fl⊗a) = fl⊗El(a) and (Ec0⊗idD)(ekl⊗d) =

δk,lfk ⊗ d for k, l ∈ I, a ∈ Ak and d ∈ D. Set C := (
∑

n≥1An) ?c0⊗D (K ⊗ D)
and (C,EC) := (

∑
k Ak,

∑
k Ek) ?c0⊗D (K ⊗ D,Ec0 ⊗ idD) and denote by Λ :

C → C the canonical surjection. Here, when I is infinite, we define (C,EC) by
the C∗-subalgebras of the reduced amalgamated free product (C + C1, E∼C ) of
(
∑

k Ak + C1, (
∑

nEn)∼) and (K ⊗D + C1, E∼c0) over c0 ⊗D + C1.

Proposition 4.1.5. With the notation above, there exist isomorphisms π : C→
K⊗ A and πred : C → K⊗ A such that the following diagram

C
π−−−→ K⊗ A

Λ

y yidK⊗λ

C
πred−−−→ K⊗ A

commutes.

Proof. If I is finite, we assume that I = {1, 2, . . . , |I|}; otherwise we set I =
N. The inclusion maps

∑
k Ak ↪→ K ⊗ A and K ⊗ D ↪→ K ⊗ A induce a ∗-

homomorphism π : C → K ⊗ A. For any k, i, j ∈ I, a ∈ Ak, one has eij ⊗ a =
π(eik⊗1)π(fk⊗a)π(ekj⊗1) ∈ π(C). Hence, π is surjective. Define σk : Ak → C by
σk(a) = (e1k⊗1)(fk⊗a)(ek1⊗1) for a ∈ Ak. We then obtain σ =Fk∈Iσk : A→ C.
Define σ̃ : K ⊗ A→ C by σ̃(eij ⊗ a) = (ei1 ⊗ 1)σ(a)(e1j ⊗ 1) for a ∈ A. Then, it
is easy to see that σ̃ ◦ π = idC, and hence π is bijective.

We next show that (idK⊗λ) ◦ π factors through Λ : C → C. By adding
infinitely many copies of (A1, E1) to {(Ak, Ek)}k∈I we may assume that I = N.
Take a unital faithful representation ∆T(A,E) ⊂ B(H). We may assume that
K⊗A ⊂ K⊗∆T(A,E) ⊂ B(`2(I)⊗H). and setQΣ :=

∑
k ekk⊗Pk ∈ B(`2(I)⊗H)

and QK = 1−QΣ. For any ekk ⊗ a ∈ Cekk ⊗ Ak we have

(1−QΣ)(ekk ⊗ a)(1−QΣ)

= (ekk ⊗ a)−QΣ(ekk ⊗ a)− (ekk ⊗ a)QΣ +QΣ(ekk ⊗ a)QΣ

= (ekk ⊗ a)− (ekk ⊗ Pka)− (ekk ⊗ aPk) + (ekk ⊗ PkaPk)
= ekk ⊗ (1− Pk)a(1− Pk) = ekk ⊗ Ek(a).

Also, for any eij ⊗ d ∈ K⊗D we have (1−QK)(eij ⊗ d)(1−QK) = eij ⊗PidPj =
δi,j(eii ⊗ dPi). Hence, applying Corollary 3.4.1 to the unitizations of

∑
k Ak and

K ⊗D, we conclude that (idK⊗λ) ◦ π factors through Λ : C→ C.
Finally, we show that Λ ◦ σ̃ factors through idK⊗λ : K ⊗ A → K ⊗ A. It is

enough to show that Λ ◦ σ factors through λ. We assume that C ⊂ ∆T(C +
C1, E∼C ) = C∗(1, C, PΣ, PK). Set e = e11 ⊗ 1 and pk = (e1k ⊗ 1)PΣ(ek1 ⊗ 1) in
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e∆T(C + C1, E∼C )e. We then have pkpl = δk,lpk and e − pk = (e1k ⊗ 1)(1 −
PΣ)(ek1 ⊗ 1). Hence, for any a ∈ Ak we have

(e− pk)σk(a)(e− pk) = (e1k ⊗ 1)(fk ⊗ (1− PΣ)a(1− PΣ))(ek1 ⊗ 1)

= (e1k ⊗ 1)(fk ⊗ Ek(a)(1− PΣ))(ek1 ⊗ 1)

= σk(Ek(a))(e− pk).

Thus, Λ ◦ σ factors through λ by Corollary 3.4.1.

The following general fact is well-known (see, e.g. [2, Proposition 17.8.7]).

Proposition 4.1.6. Let K be as above and let ι : K ↪→ B(`2(I)) be the inclusion
map. Fix a minimal projection e ∈ K. For any separable C∗-algebras A and B,
the mapping E(A,B) 3 (X,φ, F ) 7→ (K⊗X,LK⊗φ, 1K⊗F ) ∈ E(K⊗A,K⊗B)
induces an isomorphism τ : KK(A,B) → KK(K ⊗ A,K ⊗ B). The inverse of
τ is given by the mapping E(K ⊗ A,K ⊗ B) 3 (Y, ψ,G) 7→ (Y ⊗ι⊗LB (`2(I) ⊗
B), (ψ ⊗ι⊗LB 1) ◦ σ,G⊗ι⊗LB 1) ∈ E(A,B), where σ(a) = e⊗ a for a ∈ A.

We are now ready to prove Theorem 4.1.1 .

Proof of Theorem 4.1.1. We use the notation in the proof of Proposition 4.1.5.
Applying Theorem 4.1.4 to the unitizations C + C1 and C + C1 together with
Proposition 4.1.5, there exists β ∈ KK(K⊗A,K⊗A) such that (idK⊗λ)⊗K⊗A
β = idK⊗A and β ⊗K⊗A (idK⊗λ) = idK⊗A. Let τ be as in Proposition 4.1.6.
We then have idA = τ−1(idK⊗A) = τ−1((idK⊗λ) ⊗K⊗A β) = λ ⊗A τ−1(β) and
idA = τ−1(idK⊗A) = τ−1(β ⊗K⊗A (idK⊗λ)) = τ−1(β) ⊗A λ. Thus, λ gives a
KK-equivalence.

4.2 Six-term exact sequences

In this subsection, we give a new proof of the next theorem due to Fima and
Germain [19]. Key ingredients of our proof are the right invertibility of the
embedding A ↪→ ∆T(A,E) in KK-theory and exact sequences of KK-groups
for Cuntz–Pimsner algebras [41].

Theorem 4.2.1 (Fima–Germain). Let (A,E) = (A1, E1)?D(A2, E2) be a reduced
amalgamated free product of unital separable C∗-algebras and ik : D ↪→ Ak and
jk : Ak ↪→ A be inclusion maps for k = 1, 2. Then, there are two cyclic exact
sequences for any separable C∗-algebra P :

KK(P,D)
(i1∗,i2∗)−−−−→ KK(P,A1)⊕KK(P,A2)

j1∗−j2∗−−−−→ KK(P,A)x y
KK1(P,A)

j1∗−j2∗←−−−− KK1(P,A1)⊕KK1(P,A2)
(i1∗,i2∗)←−−−− KK1(P,D)
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and

KK(D,P )
i∗1−i∗2←−−− KK(A1, P )⊕KK(A2, P )

(j∗1 ,j
∗
2 )

←−−−− KK(A,P )y x
KK1(A,P )

(j∗1 ,j
∗
2 )

−−−−→ KK1(A1, P )⊕KK1(A2, P )
i∗1−i∗2−−−→ KK1(D,P ).

Let φ = φY : A ↪→ ∆T(A,E) be the inclusion map and set ρk := π ◦
Ψk|D : D ↪→ DPk ⊂ ∆T(A,E). For each k ∈ {1, 2}, we denote by k the
unique element in {1, 2} \ {k}. We first show the right invertibility of φ ∈
KK(A,∆T(A,E)).

Lemma 4.2.2. There exist β ∈ KK(∆T(A,E), A) and δ ∈ KK(∆T(A,E), D)
such that (φ⊕ ρ1)⊗∆T(A,E) (β ⊕ δ) = idA⊕ idD.

Proof. Let (Z, φZ) and ΦZ : ∆T(A,E)→ L(Z) be as in Eq. (2.1). Let S : X ⊗D
A→ Z be as in Eq. (4.1). It follows from Lemma 4.1.2 that S(φX(a)⊗1)−φZ(a)S
is compact for a ∈ A. Since ΦZ(P1)S = S(σ1(P1)⊗ 1) holds, the triplet

(Z ⊕ (X ⊗D A),ΦZ ⊕ (σ1 ⊗ 1), [ 0 S
S∗ 0 ])

is a ∆T(A,E)-AKasparov bimodule and defines an element β ∈ KK(∆T(A,E), A).
Since φ⊗∆T(A,E) β is implemented by the A-A Kasparov bimodule

(Z ⊕ (X ⊗D A), φZ ⊕ (φX ⊗ 1), [ 0 S
S∗ 0 ]),

we have φ ⊗∆T(A,E) β = idA ∈ KK(A,A) by Theorem 4.1.1. Since ΦZ(P1) =
S(σ1(P1)⊗1)S∗ holds, we have ρ1⊗∆T(A,E) β = 0. Let σk : ∆T(A,E)→ L(X(k))
be as in Remark 3.3.2. Since σ1 = σ2 = φX on A and σ1(P1)−σ2(P1) = eD hold,
the triplet (X(1) ⊕X(2), σ1 ⊕ σ2, [ 0 1

1 0 ]) is a ∆T(A,E)-D Kasparov bimodule and
the corresponding element δ ∈ KK(∆T(A,E), D) satisfies that ρ1 ⊗∆T(A,E) δ =
idD and φ⊗∆T(A,E) δ = 0.

To compute the K-theory of ∆T(A,E) ∼= O(X), we need to compute the
K-theory of JX. Thanks to the next technical lemma, we can assume that X◦1
and X◦2 are full, i.e., span{E(a∗b) | a, b ∈ A◦k} = D holds for each k = 1, 2. Note
that X◦k is full whenever D is simple (e.g. D = C).

Lemma 4.2.3. Let ϕ be a nondegenerate state on D and set ϕk := ϕ ◦ Ek for
k = 1, 2, (T , ω) be the Toeplitz algebra with the vacuum state, and (Ak, ϕ̃k) =
(Ak, ϕk) ? (T , ω) be the reduced free product. Denote by Fk : Ak → D the compo-
sition of the canonical conditional expectation Ak → Ak and Ek : Ak → D and by
Xk the GNS Hilbert C∗-module of Fk. Set (A, F ) = (A1, F1)?D(A2, F2). Then X ◦k
is full and the embedding maps Ak ↪→ Ak and A ↪→ A induce KK-equivalences.
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Proof. Let s be the unilateral shift generating T . Then, one has Fk(s) = 0 and
Fk(s

∗s) = 1, and thus X ◦k is full. Let Hk and H be the C∗-correspondences over
Ak and A associated with the UCP maps ϕk(·)1 and ϕ(·)1 on Ak and A (see
e.g. [6, Example 4.6.11]), respectively. It follows from [47, Theorem 2.3] that
(T (Hk), ϕk ◦ EHk

) ∼= (Ak, ϕk) ? (T , ω) (this can be shown for degenerate condi-
tional expectations). Thus, the embedding Ak ↪→ Ak induces a KK-equivalence
by [41]. Similarly, by a result due to Speicher [50], we have

(A, ϕ ◦ F ) ∼= (A,ϕ ◦ E) ? (T , ω) ? (T , ω)
∼= (T (H), EH) ?A (T (H), EH)
∼= (T (H⊕H), EH⊕H),

and thus A ↪→ A gives a KK-equivalence by [41] again.

We may identify 〈〈Ak, Ek〉〉 with C∗(Ak, Pk). If X◦1 and X◦2 are full, then
K(X◦k) ⊂ K(Xk) and Bk ⊂ 〈〈Ak, Ek〉〉 are full corners, and thus all the horizontal
embedding maps in the next commuting diagram induce KK-equivalences by
[5].

K(X◦k) �
� κk //

� _

��

K(Xk)� _

��

D? _
εkoo

ρk
{{

Bk
� � // 〈〈Ak, Ek〉〉

(4.3)

Here the embedding εk : D ↪→ K(Xk) is given by d 7→ deD. We set (X◦k) :=
κk⊗K(Xk) (εk)

−1 ∈ KK(K(X◦k), D). Since the inclusion map µk : Ak ↪→ 〈〈Ak, Ek〉〉
gives a cross section of of the split extension 0 −→ K(Xk) −→ 〈〈Ak, Ek〉〉 −→
Ak −→ 0 (see §§3.2), the above commuting diagram implies that µk ⊕ ρk ∈
KK(Ak ⊕D, 〈〈Ak, Ek〉〉) is a KK-equivalence.

By Theorem 3.3.5 and Theorem 3.3.6 we may use the identifications ∆T(A,E) =
O(X) and C∗(Π, T ) = T (X). Recall that the kernel of the quotient map p : T (X)→
O(X) is isomorphic to K(F(X)JX), and that Π: B → T (X) and ιΩ := (Π −
ψT ◦ φX)|JX : JX → K(F(X)JX) induce KK-equivalences (see [41, 31]). By these
KK-equivalences, one can rewrite the six-term exact sequence induced from the
Toeplitz extension as

KK(P, JX) −−−→
ι∗−[X]

KK(P,B) −−−→
π∗

KK(P,O(X))x y
KK1(P,O(X))

π∗←−−− KK1(P,B)
ι∗−[X]←−−− KK1(P, JX)

(4.4)

for any separable C∗-algebra P (see [41, 31]). Here ι is the inclusion map JX ↪→ B
and [X] is induced from [(X, φX|JX , 0)] ∈ KK(JX, B). Let δp be the element
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corresponding in KK1(O(X),K(F(X)JX)) to the Toeplitz extension (see [48,
§1]). Then, the connecting map KK(P,O(X)) → KK1(P, JX) in the above
exact sequence is given by δp ⊗K(F(X)JX) (ιΩ)−1 ∈ KK1(O(X), JX). Note that
(X◦1 )⊕ (X◦2 ) ∈ KK(JX, D ⊕D) is a KK-equivalence.

Lemma 4.2.4. Assume that X◦1 and X◦2 are full. Then there is a cyclic exact
sequence

KK(P,D ⊕D) −−−→
ξ

KK(P,A1 ⊕ A2 ⊕D ⊕D) −−−→
η

KK(P,O(X))x∂ ∂

y
KK1(P,O(X))

η←−−− KK1(P,A1 ⊕ A2 ⊕D ⊕D)
ξ←−−− KK1(P,D ⊕D),

where ξ(x, y) = (−i1∗(y),−i2∗(x), x + y, x + y) and η = φ∗ ◦ j1∗ + φ∗ ◦ j2∗ +
ρ1∗ + ρ2∗. The map ∂ is induced from δp ⊗K(F(X)JX) (ιΩ)−1 ⊗JX ((X◦1 ) ⊕ (X◦2 )) ∈
KK1(O(X), D ⊕D).

Proof. The proof proceeds by rewriting the exact sequence in Eq. (4.4). Since
X◦k is full, Bk is a full corner of 〈〈Ak, Ek〉〉, and thus the inclusion Bk ↪→ 〈〈Ak, Ek〉〉
induces a KK-equivalence. Then, the next diagram commutes and all vertical
arrows are isomorphisms:

KKp(P,K(X◦k))

(κk)∗

��

ι∗
// KKp(P,Bk)

��

π∗
// KKp(P,O(X))

KKp(P,K(Xk)) // KKp(P, 〈〈Ak, Ek〉〉) // KKp(P,O(X))

KKp(P,D)

(εk)∗

OO

(0,1) // KKp(P,Ak ⊕D)

(µk)∗+(ρk)∗

OO

φ∗◦jk∗+ρk∗ // KKp(P,O(X)).

We next observe that [X] is the direct sum of two maps (Ψk ◦ ik)∗ ◦ (X◦k)∗ from
KKp(P,K(X◦k)) to KKp(P,Bk), k = 1, 2. Thus, the assertion follows from next
commuting diagram:

KKp(P,K(X◦k))

(X◦k )∗

��

(Ψk◦ik)∗◦(X◦k )∗ // KKp(P,Bk)

��
KKp(P,D)

(Ψk◦ik)∗

44

(ik̄∗, −(·))
// KKp(P,Ak ⊕D).

(4.5)
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We are now ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. We first show the exactness at KKp(P,A1 ⊕ A2). By
the previous lemma, we have Im ∂ ◦ φ∗ ⊂ ker ξ = {(x,−x) | x ∈ ker(i1∗, i2∗)}.
Via the isomorphism ker ξ 3 (x,−x) 7→ x ∈ ker(i1∗, i2∗) ⊂ KKp(P,D), we
obtain a connecting map ∂′ : KKp(P,A) → KKp+1(P,D). By Lemma 4.2.2,
φ∗ : KK

p(P,A) → KKp(P,O(X)) is injective. Thus, j1∗(x) − j2∗(y) = 0 if and
only if η(x,−y, 0, 0) = 0 if and only if (x,−y, 0, 0) = (i1∗(z),−i2∗(z)) for some
z ∈ KKp(P,D), and hence we obtain Im(i1∗, i2∗) = ker(j1∗− j2∗). Also, since φ∗
is injective, we have ker ∂′ = ker ∂ ◦ φ∗ = Im(j1∗ + j2∗), and thus the exactness
at KKp(P,A) holds.

To see Im ∂′ = ker(i1∗, i2∗), it is enough to see Im ∂ ◦ φ∗ ⊃ ker ξ = {(x,−x) |
x ∈ ker(i1∗, i2∗)}. By the definition of ∂, this is equivalent to Im(φ ⊗O(X) δp)∗
contains (ιΩ)∗ ◦ ((X◦1 ) ⊕ (X◦2 ))−1

∗ (x,−x) for x ∈ ker(i1∗, i2∗). Let Θ: O(X) →
T (X) be as in Theorem 3.3.7 and put A := C∗(Θ(A)) + K(F(X)JX). The next
commuting diagram

0 // K(F(X)JX) // T (X) p
// O(X) // 0

0 // K(F(X)JX) ν // A
?�

OO

q // A

φ

OO

// 0

and [48, Lemma 1.5] imply that φ⊗O(X) δp ∈ KK1(A,K(F(X)JX)) is the element
corresponding to the semisplit extension A of A. Hence it follows from the six-
term exact sequence for A that Im(φ ⊗O(X) δp)∗ = ker ν∗. Therefore, it suffices
to show that ν∗ ◦ (ιΩ)∗ ◦ ((X◦1 ) ⊕ (X◦2 ))−1

∗ (x,−x) = 0 for x ∈ ker(i1∗, i2∗). Let
θk : Bk → C∗(Θk(Ak)) be the inverse of the isomorphism in Remark 3.3.8. Note
that ιΩ⊗K(F(X)JX)ν = ι⊗B (θ1 +θ2) in KK(JX,A). Also, it follows from the proof
of the previous lemma that ((X◦1 )⊕ (X◦2 ))−1

∗ (x,−x) ∈ ((X◦1 )⊕ (X◦2 ))−1
∗ (ker ξ) =

ker(ι∗ − [X]). Since θ1 ◦Ψ1 ◦ i1 = θ2 ◦Ψ2 ◦ i2, we have

ν∗ ◦ (ιΩ)∗ ◦ ((X◦1 )⊕ (X◦2 ))−1
∗ (x,−x)

= (θ1 + θ2)∗ ◦ ι∗ ◦ ((X◦1 )⊕ (X◦2 ))−1
∗ (x,−x)

= (θ1 + θ2)∗ ◦ (−[X]) ◦ ((X◦1 )⊕ (X◦2 ))−1
∗ (x,−x)

= (θ1 + θ2)∗ ◦ (Ψ1 ◦ i1,Ψ2 ◦ i2)∗(−x, x)

= −(θ1 ◦Ψ1 ◦ i1)∗(x) + (θ2 ◦Ψ2 ◦ i2)∗(x)

= 0.

Here the third equality follows from the commuting diagram (4.5). Thus, we
obtain the exact sequence for KKp(P,−).

For the exact sequence for KKp(−P ), it is enough to show that φ ⊕ ρ1 is a
KK-equivalnce. Let η be as in Lemma 4.2.4. Since ρ1 + ρ2 = j1 ◦ i1 holds in
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KK(D,O(X)), a simple diagram chasing shows that φ∗ + ρ1∗ : KK(O(X), A ⊕
D)→ KK(O(X),O(X)) is surjective. We show that φ+ ρ1 is a KK-equivalence
by the following trick from [40]: Take γ ∈ KK(O(X), A⊕D) such that 1O(X) −
(β⊕δ)⊗A⊕D (φ⊕ρ1) = γ⊗A⊕D (φ⊕ρ1). Since the left hand side is an idempotent
in the ring KK(O(X),O(X)), it follows from Lemma 4.2.2 that

γ ⊗A⊕D (φ⊕ ρ1)

= γ ⊗A⊕D (φ⊕ ρ1)− γ ⊗A⊕D (φ⊕ ρ1)⊗O(X) (β ⊕ δ)⊗A⊕D (φ⊕ ρ1)

= γ ⊗A⊕D (φ⊕ ρ1)− γ ⊗A⊕D (φ⊕ ρ1) = 0.

Remark 4.2.5. Our proof shows that if X◦1 and X◦2 are full, then the com-
position of the connecting map ∂′ : KK(P,A) → KK1(P,D), the diagonal
embedding D → D ⊕ D, and the KK-equivalence (X◦1 ⊕ X◦2 )−1 ⊗JX ιΩ ∈
KK(D ⊕D,K(F(X)JX)) is given by the semisplit extension

0 −→ K(F(X)JX) −→ C∗(Θ(A)) + K(F(X)JX) −→ A −→ 0.

In the original proof in [19], it was shown that a natural embedding of the
mapping cone Ci of the diagonal embedding D → A1 ⊕ A2 into the suspension
SA has an inverse x ∈ KK(SA,Ci). Then, the connecting map is given by the
Kasparov product of x and the evaluation map Ci → D. It might be interesting
to compare these two maps.

As a by-product, we obtain the following theorem:

Theorem 4.2.6. The element φ⊕ρ1 : KK(A⊕D,∆T(A,E)) is a KK-equivalence.
Therefore, the KK-class of ∆T(A,E) does not depend on the choice of condi-
tional expectations Ek, k = 1, 2.

Proof. When X◦1 and X◦2 are full, the assertion follows from the last paragraph of
the proof of Theorem 4.2.1. In the general case, one can check the surjectivity of
φ∗+ρ1∗ by applying Theorem 4.2.1 to the reduced amalgamated free products A
and ∆T(A,E) (cf. Corollary 3.4.2). The second assertion follows from Theorem
4.1.1.

We close this paper by the following corollary about K-nuclearity introduced
by Skandalis [49]. Note that this corollary also follows from the original proof
in [19] since the mapping cone of the diagonal embedding i : D → A1 ⊕ A2 is a
semisplit extension of D by SA1 ⊕ SA2.

Corollary 4.2.7. Reduced amalgamated free products of K-nuclear C∗-algebras
are K-nuclear.
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Proof. Assume that A1, A2 and D are K-nuclear. We may assume that X◦1 and
X◦2 are full by Lemma 4.2.3. Then, K(X◦k) and D are KK-equivalent, and thus
K(X◦k), JX and K(F(X)JX) are K-nuclear. It follows from [49, Proposition 3.8]
that Bk has the same property. Since Π induces a KK-equivalence, T (X) is
K-nuclear, and thus so is ∆T(A,E) ∼= O(X) by [49, Proposition 3.8]. Therefore,
φ⊗∆T(A,E) β is implemented by some nuclear Kasparov bimodule, and hence the
K-nuclearity of A follows from Lemma 4.2.2.
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