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Abstract

Any amalgamated free product of discrete groups acts on its associated
Bass—Serre tree. In this paper, we consider an analogue of the Bass—Serre
trees for reduced amalgamated free products of C*-algebras.

In the first part of the paper, we introduce a unital C*-algebra AT (A, E)
for a given reduced amalgamated free product (A, F) = (A1, E1)*p (A2, E2),
which generalizes the crossed product of the Bowditch compactification of
the Bass—Serre tree by an amalgamated free product group. We then show
that our C*-algebra is isomorphic to an explicit Cuntz—Pimsner algebra
and has a universal property. This result allows us to show a “boundary
amenability” result for AT(A, E).

In the second part, we prove that any reduced amalgamated free prod-
uct of separable C*-algebras is K K-equivalent to the corresponding full
amalgamated free product via the canonical surjection. Our proof is based
on Julg and Valette’s geometric argument for groups acting on trees. We
also give a new proof of Fima and Germain’s six-term exact sequences of
K K-groups using the Pimsner algebra structure of AT(A, E).
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1 Introduction

The amalgamated free product is an operation to produce a new group I'y x5 I'y
from two groups I'y and I's with a common subgroup A. This is a fundamental
construction in not only combinatorial group theory, but also geometric group
theory. In fact, amalgamated free product groups admit canonical actions on
their associated Bass—Serre trees and this type of actions is one of two funda-
mental examples of group actions on trees in the Bass—Serre theory [46] (the
other arises from HNN extensions). In the study of those groups, actions on
trees are powerful tools and have been applied extensively.

In C*-algebra theory, there are two notions of amalgamated free products; the
full and the reduced amalgamated free products [I] [53]. These are analogues of
the full and the reduced group C*-algebra constructions, and have been seriously
studied so far (see e.g. [13][15][14]]44][50]). However, geometric aspects of these
constructions like the group case have never been studied seriously so far. The
purpose of the present paper is to investigate a C*-analogue of Bass—Serre trees
and apply it to the study of amalgamated free product C*-algebras themselves.

For a given amalgamated free product group I' = I'y %, I'y, the action of I' on
the associated Bass—Serre tree T = (V, E) induces two unitary representations
on ¢*(V) and ¢*(E). Our key observation is that one can construct two C*-
correspondences which are natural counterparts of these unitary representations
for general reduced amalgamated free products (Remark . This is based on
an idea in the previous paper [26], where we developed a representation theory
of C*-algebras by C*-correspondences. Based on this observation, we will inves-
tigate C*-analogues of actions on compactifications of trees, and Julg—Valette’s
work for K-theory of groups acting on trees.

For any group I' acting on a tree T (more generally, a uniformly fine hyper-
bolic graph), Bowditch [4] introduced the compactification AT and the induced
action I' ~ AT. The I'-space AT can be viewed as an analogue of the Gromov
boundary for hyperbolic groups and captures information about the original ac-
tion on T. In fact, AT (or its suitable quotient) is a [-boundary in the sense of
Furstenberg [21] and Ozawa proved that the action I' ~ AT is amenable if and
only if all the stabilizer subgroups of I' ~ T are amenable [39)].

Motived by these facts, in §3| we introduce a unital C*-algebra AT(A, E)
for a given reduced amalgamated free product (A, F) = (A, Ey) *p (A, Es).
The C*-algebra AT(A, E) includes A as a unital C*-subalgebra and generalizes
crossed products in the following sense: when (A, F) comes from the reduced
group C*-algebra C!,(I") of I' = I'y %5 I'; and T is the associated Bass—Serre
tree, one has

( :cd(r) - AT( :od<r)7E)) = ( ;kcd(r) - C<AT> Ared F)



Our main result in §3]is a structural theorem (Theorem that AT(A, E)
is isomorphic to both an explicit Cuntz—Pimsner algebra and the universal C*-
algebra generated by a unital copy of the algebraic amalgamated free product of
A; and Ay over D and projections e; and ey such that e; + e; = 1 and

eraer = Ep(a)e, for a € Ag, k=1,2.

The isomorphism with a Cuntz—Pimsner algebra is inspired by [51][37] and the
universality can be viewed as an analogue of isomorphisms between full and re-
duced crossed products for amenable actions. As a consequence, we show that
AT(A, FE) has one of the following properties nuclearity/exactness/completely
bounded approximation property (CBAP)/weak expectation property (WEP)/
local lifting property (LLP) if and only if both A; and Ay have the same prop-
erty (Corollary[3.4.4). This covers Ozawa’s result mentioned above in the case of
amalgamated free product groups acting on Bass—Serre trees. As applications,
we give simple and conceptual proofs of Dykema’s result [14] for the stability
of exactness and Dykema-Blanchard’s result [3] for embeddability of reduced
amalagamated free products and generalizes Ozawa’s result [3§] about the sta-
bility of nuclearity to CBAP, WEP and LLP. Also, we prove that local embed-
dability into the full group C*-algebra of the free group F., studied by Junge
and Pisier [30] is stable under the reduced amalgamated free product.

We next turn to the K K-theory of amalgamated free products. The study of
K-theory of amalgamated free product groups dates back to Cuntz’s paper [9
in the early 80s. In [9][10] Cuntz suggested the following strategy of computing
the K-theory of the reduced C*-algebra C¥ (") of a given discrete group I':

(1) proving that the canonical surjection A : C*(I') — C!,(I") gives a K K-
equivalence, and

(2) computing the K-theory of C*(I).

In fact, usual computations of K-groups are consequences of suitable exact se-
quences, and universal objects are easier to handle than reduced ones in K-
theory. By the strategy, Cuntz indeed gave an elegent proof of Pimsner—Voiculescu’s
result of the K-theory of C!4(F,) ([42]). Then Julg and Valette [29] achieved
part (1) of the strategy when I' acts on a tree with amenable stabilizers. In the
direction of groups acting on trees, Pimsner [40] obtained an optimal result.

It is natural to try to apply the strategy to amalgamated free products of C*-
algebras. In [22][23] Germain obtained striking results which solve both parts of
the strategy for plain free products of nuclear C*-algebras. Following Germain’s
idea in [22][24] we proved in [26] (also see [25]) the K K-equivalence between full
and reduced amalgamated free products under the assumption of “strong relative
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nuclearity”, which can be applied to amalgamated free products of nuclear C*-
algebras over finite dimensional subalgebras. However, this is still unsatisfactory,
because there are inclusions of nuclear C*-algebras which are not strongly relative
nuclear.

In § we consider part (1) of the strategy. We follow Julg—Valette’s
idea [29] unlike the previous works [22][24][26] based on the “vertex” and the
“edge” C*-correspondences mentioned above. Translating the geometric con-
struction of Fredholm modules due to Julg—Valette (and its quantum group
analogue due to Vergnioux [52]) into a C*-algebraic language, we prove the op-
timal K K-equivalence result that for any reduced amalgamated free product
(A, E) = % p(Ag, Ex) of countable family of separable C*-algebras, the canoni-
cal surjection from the full amalgamated free product % pAx onto A always gives
a K K-equivalence. We note that in [19] Fima and Germain also reached indepen-
dently the same K K-equivalence result only in the case of two free components.
However, in their paper, they also established exact sequences of K K-groups
(i.e., part (2) of the strategy) under the very weak assumption of presence of
conditional expectations.

In §§4.2) we will give a new, simpler proof of Fima and Germain’s exact
sequences based on the C*-algebra AT(A, E') and K-theory of Pimsner algebras.
In the course of our proof, we first show that the embedding A — AT(A, E) is
right invertible in K K-theory by using the analogue of Julg—Valette construction.
Then, the desired sequences will follow from the six-term exact sequences of K K-
groups ([11]) induced from the Toeplitz extension of the Cuntz—Pimsner algebra
AT(A, E). As a by-product of our approach, we show that AT(A, F) is KK-
equivalent to A @ D. In particular, this implies that the K K-class of AT(A, E)
is independent of the choice of conditional expectations.

This paper basically follows the author’s two papers [27] and [2§], but some
new results are added and some proofs are improved. One of our new results is
Theorem [3.4.3] Also, we present a simplified proof of the K K-equivalence result
(Theorem [4.1.1)), which heavily relies on the universal property of AT(A, E).

The paper is organized as follows. In §2| we fix notation and terminologies
and collect necessary facts on Hilbert C*-modules, amalgamated free products of
C*-algebras, Pimsner algebras, and K K-theory. is devoted to the compacti-
fications of Bass—Serre trees. In §§3.1] we first investigate Bass—Serre trees and
their compactifications in the group case. Before the construction and investi-
gation of the C*-algebra AT(A, F), we prepare a general theory of extensions
associated with conditional expectations in §§3.2] We then prove the structural
theorem in §§3.3] and its consequences in §§3.4, In §4 we study K K-theory, and
prove the K K-equivalence result in §§4.1 and give an alternative proof of Fima
and Germain’s result in §§4.2
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2 Preliminaries

2.1 Notations

For any Hilbert space #H, we denote by B(#) and K(#) the set of bounded linear
operators and compact operators on H, respectively. For vector spaces X and Y
over C, we denote by X ®Y the algebraic tensor product over C. When X and
Y are C*-algebras, X ® Y denotes the minimal tensor product. When X and Y
are Hilbert spaces, X ® Y is the tensor product Hilbert space. For any subset S
of a normed space X, we denote by span S the closed linear span of S.

2.2 Hilbert C*-modules
We refer the reader to Lance’s book [35] for Hilbert C*-module theory.

Definition 2.2.1. Let A be a C*-algebra. An inner product A-module is a linear
space X with a right A-action which is compatible with scalar multiplication,
e, M&a) = (A)a = &(Aa) for A € C,¢ € X,a € A and an A-valued inner
product (-,-) : X x X — A satisfying the following conditions:

(€, A+ pC) = MEn) +u(&, ¢) for §,n,¢ € X and A\, p € C,
(€,ma) = (§,na for {,n € X and a € A,

(€, m*=n,¢§) for §,;n € X,
(€,€) >0 for £ € X,
£=0

(1)
(2)
(3)
(4)
()

5 if and only if (¢,£) =0 for £ € X.

When X is complete with respect to the norm |[|&]| = ||(£,&)[|'/?, we call X
a Hilbert A-module or Hilbert C*-module over A. We say that X is full if
span{({,n) | &,n € X} = A and countably generated if there exists a count-
able subset {£,}°°, C X such that span{¢,a |a € A,n > 1} = X.

Let X and Y be Hilbert A-modules. A linear map = : X — Y is said to
be adjointable if there exists a linear map z* : Y — X satisfying (n,z§) =
(x*n, &) for all £ € X, n € Y. We denote by IL(X,Y") the set of adjointable linear
maps from X into Y and set L(X) := L(X, X). Any adjointable linear map is
automatically bounded and right A-linear, and IL(X') equipped with the operator
norm and the involution x — z* forms a unital C*-algebra.

For given vectors £, € X we define the operator 6, € L(X) by 0¢,(() =
€(n,¢). We denote by K(X) the C*-subalgebra of L(X) generated by {6, |
¢&,n € X} and call operators in K(X) compact operators. It is known that



K(X) = span{f¢, | £&,n € X} is a closed two-sided ideal of L(X). The strict
topology on IL(X) is the topology given by the family of semi-norms ¢, (z) = ||zy||
for y € K(X).

Definition 2.2.2. Let A and B be C*-algebras. An A-B C*-correspondence
is a pair (X, ¢x) consisting of a Hilbert B-module X and a *-homomorphism
¢x : A — L(X), called the left action. A-A C*-correspondences are also called
C*-correspondences over A. An A-B C*-correspondence (X, ¢x) is said to be
unital if A is unital and ¢x is a unital map, countably generated if X is countably
generated as a Hilbert B-module, and injective if ¢x is injective.

Every C*-algebra A forms a Hilbert A-module with the inner product (a,b) =
a*b. It is not hard to see that A = K(A). Let Ly : A — K(A) be the canonical
s-homomorphism given by the left multiplication. The pair (A, L,) is called the
identity C*-correspondence over A.

Another example of C*-correspondences is the GNS-representation associated
with a conditional expectation. Let D C A be a unital inclusion of C*-algebras
with conditional expectation E: A — D. We denote by L?(A, E) the Hilbert
D-module given by separation and completion of A with respect to the D-valued
inner product (z,y) = E(z*y) for z,y € A, and by ¢ : A — L(L*(A, E)) the
x-homomorphism induced from the left multiplication. The conditional expec-
tation F is said to be nondegenerate if ¢ is faithful. Let g denote the vector
in L*(A, E) corresponding to 14, and we call the triplet (L*(A, E), ¢g, &) the
GNS-representation associated with the conditional expectation E. The projec-
tion ep = ¢, ¢, is called the Jones projection.

We will use the internal and the external tensor products of Hilbert C*-
modules. Let X and Y be Hilbert C*-modules over A and B, respectively, and
¢ : A — L(Y) be a x-homomorphism. Then we can construct the Hilbert B-
module X ®, Y by separation and completion of X ©® Y with respect to the
B-valued semi-inner product ({ ® n,&' @ n') := (n, p((,&))n) for £,& € X and
n,n € Y. There are two *-homomorphisms:

LX) LX®,Y);, z—2®ly
(A NLY) > LX®,Y); y—1x®y

satisfying that (z ® 1y)({ ®n) = (z€) ®n and (1x ® y)(§ ®n) = £ @ (yn), for
£ € X and n € Y. Since these x-homomorphisms have mutually commuting
ranges, we will write 2@y = (z® 1ly)(1x ®y) = (1x ® y)(x ® 1ly). We call the
module X ®, Y the interior tensor product of X and (Y, ). When no confusion
may arise, we may also write X ®, Y = X ®, Y. Further assume that ¥ = B
and ¢ : A — B is surjective. In this case, X ®, B is called the pushout of X by
¢ and denoted by X,,. We also write z, := z ® 15 for x € L(X).
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Next, assume that X and Y be Hilbert C*-modules over C' and D, respec-
tively. Then, the external tensor product of X and Y is the Hilbert C'® D-module
X ® Y, which is the completion of X ® Y with respect to the inner product
(€1 @M1, 8 @) = (€1,82) @ (N1, m2) € CRD for §;,8 € X and ny,m2 € Y. When
(X, ¢x) and (Y, ¢y) are A-C' and B-D C*-correspondences, respectively, it is
known that there exists a natural *-homomorphism ¢x®¢y: A®B — L(X®Y).

Let A;,;7 € Z be a family of C*-algebras and X; be a Hilbert A;-module
for i € Z. Consider the direct product A = [[,.; A; and define H4,_, X; by
Dicz Xi @a, A

The next technical lemma will be used later.

Lemma 2.2.3. Let A and B be C*-algebras, X be Hilbert A-module and (Y, ¢y )
be an injective A-B C*-correspondence. For any x € L(X), ifr®1 € L(X®1Y)
18 compact, then so is x.

Proof. Take an approximate unit (e;); of K(X). Since |le;§ — £|| — 0 holds for
(e X, if x®1 is compact, then e;x ® 1 converges to £ ® 1 in norm. Since ¢y is
injective, this implies that z = lim; e;x € K(X). ]

2.3 Amalgamated free products

Let {D C Ag}rer be a family of unital inclusions of C*-algebras.

Definition 2.3.1 ([1]). The full amalgamated free product of Ay, k € I over
D is the universal C*-algebra % pAi generated by the images of injective *-
homomorphisms f;.: Ay — % pAx such that f, = f, on D for all k,l € Z. We
may omit fp and assume that A, C % pAy.

Now further assume that we have a conditional expectation E,: A — D for
keZ Forn>1wesetZ, ={:{l,---,n} =T | uk)#uk+1)fork =
L,---,n—1}. Also, we set A; = ker Ej, and a° = a — Ey(a) for a € Ag. We first
assume that Fj is nondegenerate for every k € 7.

Definition 2.3.2 ([53]). The reduced amalgamated free product of (Ay, Ex), k €
Z over D, is a pair (A, E) = % p(Ak, E)) such that A is a C*-algebra generated
by the images of x-homomorphisms j.: A, — A with j, = j; on D equipped with
a nondegenerate conditional expectation E: A — ji(Ay) satisfying the freeness
condition:

E(j.ay(a)juz(az) - jum(an)) =0
forany n > 1, ¢ € Z,, and ay EAf(k) fork=1,---,n.

See [53] for the construction. Note that the pair (A, E) satisfying the above
property is unique up to isomorphism. We denote by (X, ¢x, &) and (X, dx,, k)
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the GNS-representations associated with F and Ej, for k € Z, respectively. Then
X is identified with

D& @ @ Xy @ 0 X

m>1 1€y,

The compression map by the projection onto §D @ X = X, gives a UCP
map Ea,: A — ¢x,(Ag) such that E4 o jr = ¢x, on Ay for every k € Z.
Since Ej, is nondegenerate, ji: Ay — A is injective. Thus, omitting ji and ¢x,
we may assume that Ay C A and E4, : A — Ay is a conditional expectation.
Since F = Ej, o Ey, holds, E4, is also nondegenerate. The GNS-representation
associated with E4, will be denoted by (Y, ¢y, , k).

When FEj is “degenerate” for some k, one can still construct the pair (A, F)
satisfying the above property. However, the natural map j.: Ay — A is not
injective. In order to avoid this, we use the vertex reduced amalgamated free
product introduced by Fima and Germain [19].

Definition 2.3.3. The vertezr reduced amalgamated free product of (Ay, Ex), k €
T over D is a C*-algebra A generated by the images of injective x-homomorphisms
Je: Ax — Ak € T with j, = j; on D for k,l € Z, equipped with a family of
conditional expectations Ey, : A — ji(Ay) such that

o EAk(jL(l)(CLl)jL(Q)(aQ) e 'jL(n)(an)) =0forn>1¢t€Z, and q; € Af(l) for
I=1,...,n with «(n) # k;

e the direct sum of all the GNS-representations (Y%, ¢y, , nx) associated with
Ey, for k € 7 is faithful.

Since jp: Ap — A is injective, we may assume that A, C A for k£ € Z. Note
that £/ := EjoE,, is a conditional expectation which is independent of the choice
of £ € Z, but possibly degenerate. When all F}’s are nondegenerate, £ = Ej, o
E 4, is nondegenerate. In this case, the vertex reduced amalgamated free product
is identical to the original reduced amalgamated free product. Thus, throughout
this paper, we mean the reduced amalgamated free product by the vertex reduced
amalgamated free product and still denote it by (A, E) = % p(Ax, Ex)-

For each k € Z, we denote by P 1) and ;) the projections onto the follow-
ing submodules, respectively:

X(tk) =D @D @ Xy @p -+ @p X,

m>1 (€L,
(1) #£k

X(rk) = 6D @D P Xy @0+ @0 Xim.

m>1 €Ly,
t(m)#k
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Lemma 2.3.4 (cf. [52 Lemma 3.1]). For each k € I, there exists a unitary
Sk: X(r k) ®@p Ax — Yy, such that Syxy -+ 2,60 ® a = x1 -+ - xpnga for alln > 1
and any reduced word xy - - - x,, with x, ¢ Ay and a € Ay.

Proof. Note that if Sy has closed range, then it must be surjective. Thus, it
suffices to show that Sy is an isometry. We only have to verify that E,, (z*y) =
E(z*y) for all reduced words z = z1---x, and y = y; -y, with n,m > 1
and x,, Y, ¢ Ar. When n = m = 1, this is trivial. Assume that we have
shown Ey (z*y) = E(z*y) for n,m = 1,..., N. Take arbitrary reduced words
r=x1 -2, and y = y1 - - - Y, as above with n,m < N + 1. Suppose that n > 2
and set z = x9---x, and w := ys - - - y,. Then the induction hypothesis implies
that Ea, (2" E(ziy1)w) = E(z*E(xjy;)w), and thus we have

Eu (27y) = Ea (2" E(2x7y1)w) + Ea, (v (271 — E(ziy1))2)
= E(z"E(ziy1)w)
= E(z"E(ziy1)w) + E(y* (ziy — E(z7y1))z)
= E(z"y).

When n = 1, a similar argument shows that Ey4, (z*y) = E(z*y). Hence, the
assertion follows by induction. O

We use the following A-]],.; Ax and A-A C*-correspondences

V.oy) = Vo), (Zod2) = PV ®a, Aoy, @1), (21

kel kel

and the *-homomorphism ®;: L(Z) — L(Y) induced from the natural x-homomorphisms
L(Y:) = L(Yr ®a, A), k€ L.

The next proposition is probably well-known, but we give its proof for the
reader’s convenience.

Proposition 2.3.5. Let (A, E) = % p(Ax, Ex) be any reduced amalgamated free
product and C be any unital C*-algebra. Then, the pair (A ® C,F ® idg) is

naturally identical to the reduced amalgamated free product % pec(Ar @ C, By, ®
id).

Proof. Let ¢y : A — L(Y) be as above. Since ¢y is faithful, we have A ® C' C
LYY)® C C [[,L(Yrs ® C). It is easy to check that the GNS representation
associated with Fy, ® id: A® C — A ® C is given by (Y, ® C, ¢y, ® Lo, @
1). Thus, we only have to check the freeness condition in Definition for
{E4, ®id}. This will immediately follow once we proved that ker(Ej ® id) is
the norm closure of (ker E) ® C. Indeed, for any = € ker(Ej ® id) and any
e > 0 there exists y = Y " a; ® ¢; € A, ® C such that ||z — y|| < e. We may

11



assume that cq, ..., ¢, are linearly independent. Since ||z — (y — (Ey ®id)(y))|| <
|z —y|| + || (Ex ® id) (2 — y)|| < 2e, we may assume that (£ ®id)(y) = 0. Then,
we have " | Ejy(a;) ® ¢; = 0, implying Ej(a;) = 0 for ¢ = 1,--- ,n. Thus,
y € Ay © C. Since ¢ is arbitrary, we are done. O

2.4 Pimsner algebras

We fix notations and terminologies on Pimsner algebras following Katsura’s pa-
per [31]. Let (X, ¢x) be a C*-correspondence over a C*-algebra A. Recall that
a representation of X on a C*-algebra B is a pair (,t) such that 7: A — Bisa
s-homomorphism and ¢: X — B is a linear map satisfying ¢(£)*t(n) = 7 ((&,n))
and 7(a)t(§)m(b) = t(¢x(a)éd) for £,n € X and a,b € A. We denote by C*(r, )
the C*-subalgebra of B generated by 7(A) and ¢(X). Any representation (m,t)
induces a *-homomorphism ;: K(X) — B such that :(6¢,) = t({)t(n)*. We
define the ideal Jx of A by

o5 (K(X)) N (ker ox)t ={ac gb;{l(K(X)) | ax =0 for x € ker ¢x }

and say that (m,t) is covariant if m = 1y o ¢x holds on Jx.

A (resp. covariant) representation (m,t) is said to be wuniversal if for any
(resp. covariant) representation (7',t') of X, there exists a s*-homomorphism
p: C*(m,t) — C*(«’,t') such that pom = 7’ and pot = t'. Note that if (m,¢)
and (7',t') are universal (covariant) representations, then C*(m,t) = C*(n’,t')
canonically by universality.

A representation (m,t) is said to admit a gauge action if there exists a con-
tinuous action 7 of T = {z € C | |z| = 1} on C*(m,t) such that y, om = 7
and 7, (t(§)) = 2t(§) for z € T and £ € X. Note that any universal (covari-
ant) representation admits a gauge-action by universality. We will use the next
gauge-invariant uniqueness theorem.

Theorem 2.4.1 ([31, Theorem 6.2, Theorem 6.4]). Let (m,t) be a representation
of X. Then, (m,t) is universal if and only if (7,t) is injective and admits a gauge
action, and 7(Jx) N (K(X)) = {0}. Further assume that (m,t) is covariant.
Then (m,t) is uniwversal if and only if m is injective and (m,t) admits a gauge
action.

We will use the following concrete universal representation, called the Fock
representation. We set (X®° ¢xs0) = (A4, L4) and (X®', ¢pxer) = (X, ¢x). For
each n > 2, we define the C*-correspondence (X®" ¢yan) by

n n—1

P A ~ f_/\*
X®n:X®AX®A"'®AX7 ¢X®n:¢X®1X®'“®1X'

12



Then the full Fock space F(X) = @,-, X®" over X together with ¢, =
D,>o dxen is a C*-correspondence over A. For each ¢, we define the creation
operator 7o (£) on F(X) by 7o(é)n = € ® n for n € X®* and n > 0. Then
the pair (ps, 7o) is a representation of X. The compression map by the pro-
jection onto X®° defines a conditional expectation Ex: C*(¢oo, Too) — A which
vanishes on span{7.(§)7(n)* | £&,m € X} = ¢, (K(X)). Also, the direct sum
of the unitary representations T 3 z +— 2"1 € L(X®") implements a gauge ac-
tion on C*(@oo, Too). Thus, by Theorem [2.4.1] (¢oo, Too) is universal and we call
T(X) := C* (Yoo, Too) the Toeplitz—Pimsner algebra of X.

In order to construct a universal covariant representation we next consider the
ideal of 7(X) generated by {po(x) — ¢r(¢x(x)) | € Jx}, which is naturally
isomorphic to K(F(X)Jx). The quotient of T (X) by K(F(X)Jx) is called the
Cuntz—Pimsner algebra of X and denoted by O(X). Note that the representation
of X on O(X) given by (o, Too) and the quotient map is covariant and injective.
Moreover, since K(F(X)Jx) is invariant under the gauge action, this covariant
representation is universal by Theorem Note that the definition of O(X)
is different from Pimsner’s original one in [41] when ¢x is not injective.

2.5 KK-theory

Throughout this subsection, our C*-algebras are all assumed to be separable.
We refer the reader to [2] for K K-theory.

Definition 2.5.1. For (trivially graded) C*-algebras A and B, a Kasparov A-
B bimodule is a triplet (X, ¢, F') such that X is a countably generated graded
Hilbert B-module, ¢ : A — L(X) is a *-homomorphism of degree 0, and F €
L(X) is of degree 1 and satisfies the following condition:

o [F,¢(a)] € K(X) for a € A,
o (F'—F*)¢p(a) € K(X) for a € A,
e (1-F?)¢(a) e K(X) for a € A.

When [F, ¢(a)] = (F — F*)¢(a) = (1— F*)¢(a) = 0 holds for every a € A, we say
that (X, ¢, F) is degenerate. We denote by E(A, B) and D(A, B) the corrections
of Kasparov A-B bimodules and degenerate ones, respectively.

We say that two Kasparov A-B bimodules (X, ¢, F') and (Y,,G) are uni-
tarily equivalent, denoted by (X, ¢, F) = (Y,v,G), if there exists a unitary
U € L(X,Y) of degree 0 such that 1) = AdU o ¢ and G = UFU*.

For any Hilbert B-module X, we set IX := C([0,1]) ® X. In particular, we
set IB = C([0,1]) ® B. For each t € [0,1] we still denote by t the surjectiove
s-homomorphism /B = C([0,1],B) > f — f(t) € B. Note that we have a
natural isomorphism IX ®; B = X for every t € [0, 1].
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Definition 2.5.2. Two Kasparov A-B bimodules (X, ¢o, Fy) and (X1, ¢1, F1)
are said to be homotopic if there exists a Kasparov A-I B bimodule (Y, ¢, G) such
that (Y®;B,v®1p, GR1p) = (X;, ¢, Fy) fort = 0,1. The K K-group KK (A, B)
is the set of homotopy equivalence classes of Kasparov A-B bimodules.

The next technical lemma will be used later.

Lemma 2.5.3. Let P,Q and R be separable C*-algebras and let (X,v;, F) €
E(Q, R) be given fori = 0,1. Suppose that there exist a surjective x-homomorphism
7 P — Q and a family of Kasparov P-R bimodules (X, ¢y, F') for t € [0,1] sat-
18fying

(i) the function [0,1] >t — ¢1(a) is strictly continuous for each a € P;

(ii) the functions sending t to [F,¢i(a)], (F — F*)¢i(a) and (1 — F?)¢:(a) are
norm continuous for each a € P;

(iii) ¢y factors through m: P — Q for every t € [0,1];
(iv) ¢; =1; om holds fori=0,1.
Then, (X,vo, F) and (X,1, F') are homotopic.

Proof. By assumption, there exists a *-homomorphism ¢ : P — L(IX) such
that (IX,¢,F ® lepa)) € E(P,IR) and (X, ¢) is the push out of (/X,¢) by
t: C[0,1] — C for t € [0, 1]. Since one has ||¢(a)|| = supg<;<; ||¢:(a)|| < ||7(a)]l
for a € P, there exists 1 : Q — L(IX) such that ¢ = 1) o 7. We then have
(IX, 9, F ®leqoa)) € E(Q, IR) and the evaluations of this Kasparov bimodule
at endpoints are exactly (X, v, F), i =0, 1. ]

The K K-group becomes an additive group in the following way: For a, 8 €
KK(A, B) implemented by (X, ¢, F), (Y, 4, G), respectively, a+ (3 is the element
implemented by (X @Y, ¢ ® ¢, F & G). All degenerate Kasparov bimodules are
homotopic to the trivial bimodule 0 = (0,0,0) and define the zero element in
KK(A, B). Let X, and X be the even and odd parts of X so that X = Xo® X;
and let —X be the graded Hilbert B-module with the even part X; and the
odd part Xy. The inverse of « is implemented by (=X, AdU o ¢, UFU*), where
U : X — —X is the natural unitary.

For any *-homomorphism ¢ : A — B, we have (B @ 0,¢ @ 0,0) € E(A, B)
and still denote by ¢ the corresponding element in KK (A, B).

For « € KK(A,B) and v € KK(B, (), the Kasparov product of o and 7 is
denoted by a ®p . When one of o and 3 comes from a x-homomorphism, the
construction of the Kasparov product is very simple. Indeed, if v comes from a *-
homomorphism 7 : B — C with [y(B)C] = C and « is implemented by (X, ¢, F),
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then the Kasparov producta ®p 7 is implemented by (X ®, C, ¢ ® 1¢, F ® 1¢).
Similarly, when « is a *-homomorphism from A into B and -~y is implemented by
(Y, 4, G) with [¢(B)Y] =Y, the Kasparov product o ®p «y is implemented by
(Y, oa,G).

Definition 2.5.4. An element o € KK (A, B) is said to be a K K-equivalence if

there exists § € KK (B, A) such that idy = a ®p v and idg = f ®4 «. In this
case, A and B are said to be K K -equivalent.

Note that K K-equivalence between A and B implies K K(A,C) = KK(B,C)
and KK(C,A) = KK(C, B) for any separable C*-algebra C'.

Definition 2.5.5 ([10]). A countable discrete group I is said to be K-amenable
if the canonical surjection from the full group C*-algebra C*(I") onto the reduced
one C (') gives a K K-equivalence.

All countable amenable groups are K-amenable, but there are many non-
amenable, K-amenable groups. Indeed, by Pimsner’s result [40] K -amenability is
stable under the amalgamated free product. Motivated by Cuntz’s K-amenability,
in [48] Skandalis introduced the notion of K-nucleariry for C*-algebras. One of
merits of being K-nuclear is that if A is K-nuclear, then the functor KK (A, -)
is half-exact, that is, for any exact sequence of C*-algebras 0 — J — B —
C — 0, the induced sequence

KK(A,J) — KK(A,B) — KK(A,C)
is exact in the middle.

Theorem 2.5.6 ([48, Theoreme 1.5]). Let A and B be separable C*-algebras and
let m: A — B(H) be a faithful and essential representation on a separable Hilbert
space H. For a given A-B C*-correspondence (X, o) with X countably generated,
the following are equivalent:

(i) For any unit vector & € X the CCP map A > a — (£,0(a)f) € B is
nuclear.

(ii) For any v € K(X) of norm 1, the CCP map A > a — x*c(a)x € K(X) is
nuclear.

(i1i) There exists a sequence of isometries V,, € (X, H ® B) such that o(a) —
V¥(m(a) ® 14)V,, € K(X) and lim,, . ||o(a) — V. (7(a) ® 14)V,|| = 0 for
all a € A.

When any of these three conditions holds, we say that (X, o) is nuclear.

Definition 2.5.7. A separable C*-algebra A is said to be K-nuclear if idy in
KK(A, A) is implemented by a Kasparov bimodule (X, ¢, F') such that (X, ¢) is
nuclear.
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3 Compactifications of Bass—Serre trees

In this section, we study the reduced crossed product of the compactification of
the Bass—Serre tree associated with an amalgamated free product group, and its
analogue for general reduced amalgamated free products.

3.1 Bass—Serre trees and compactifications

Let I' = I'y %5 'y be an amalgamated free product of discrete groups and put
Z = {1,2}. The Bass—Serre tree associated with I" is the graph T = (V,E), of
which the vertex set is V = T'/T'; UT'/I'y and the edge set is E = I'/A such that
the edge gA relates gI'; and gI'y (see [46]). Note that I" acts on V and E by left
multiplication, which are compatible with the graph structure of T. Notice that
the unitary representation induced from I' ~ E is nothing but the quasi-regular
representation Ar/x. Also, the unitary representation (¢2(V),7) induced from
I' ~ V is unitarily equivalent to Ar/r, @ Arr,.

We next consider the compactification AT of T introduced by Bowditch [4]
(see [0, §85.2] for details). For any x,y € V we denote the graph distance of x
and y by d(z,y). A sequence (z(n)):2, in V is called a geodesic path if there
exists N € NU {oo} such that d(z(n),z(m)) = |n — m/| for any n,m < N and
z(n) = x(N) for n > N. When N is finite (resp. infinite), we call (z(n))22,
a finite (resp. infinite) geodesic path. We denote by AT the set of equivalence
classes of geodesic paths. The set T of all equivalence classes of infinite geodesic
paths is called the ideal boundary of T. Note that I acts on AT by g[(z(n)),] =
[(g(n))n-

Let € be the set of all finite or infinite geodesic path starting at el';. We can
identify V with the finite geodesic paths in ) in such a way that each vertex
x € V corresponds to the unique finite geodesic path from el'y to x. Since the
canonical map from 2 onto AT is bijective, we also identify €2 with AT so that
AT = V UQOT. For each x,y € AT there exists a unique bi-infinite sequence
(z(n))se_, such that (2(n))s, and (z(—n))Se, are geodesic paths representing
x and y, respectively. We set [z,y] := {z(n) | n € Z} U{z,y} C Q = AT. For
each x € AT and each finite subset F' of V| we set

Ulx,F):={2}U{y € AT | [z,y]| N F = 0}.

Then, {U(z, F) | F C V finite},ear forms an open neighborhood system for a
topology on AT. It is known that AT equipped with this topology is compact
and Hausdorff and the action I' ~ AT defined above is continuous. Let ao: I' ~
C(AT) be the induced action given by a,(f)(z) = f(¢7'x) for g € T, f €
C(AT),z € AT. Since V is dense in AT, we have natural inclusions C(AT) C
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(>=°(V) C B(£*(V)). Observe that « is implemented by the unitary representation
7: '~ (2(V). Thus, the reduced crossed product of C(AT) by « is given by

C(AT) ¥, T 2 CH{CO(AT) @ 1U (1 @ A\)(I)} C B((V) @ (). (3.1)

We observe that for any = € V, the one point set {z} is open in AT if and
only if = has finite degree. Also, it is easy to see that OT is closed if and
only if T is locally finite, equivalently A is a finite index subgroup of I'y for
k = 1,2. This is the reason why we work on not the ideal boundary but the
whole compactification.

Our next goal is to give a C*-algebraic description of the reduced crossed
product C'(AT) X,eq I'. Our key machinery is the next elementary proposition.
This is a C*-algebraic analogue of so-called Connes’s viewpoint [12], asserting
that bimodules over von Neumann algebras could play a role of unitary repre-
sentations of groups (see also [20]).

Let I' be a discrete group, u: I' ~ H be either the left regular represen-
tation or the universal representation, and A be the corresponding group C*-
algebra C*(u(I")). For a unitary representation 7: I' ~ H,, consider the C*-
correspondence (X, ¢,) over A defined by

Xe=Hr® A, ¢r: Ag) = 7(g) ® La(u(g)).
Here the well-definedness of ¢, follows from Fell’s absorption principle.
Proposition 3.1.1. Let I and A be as above. The following hold true:
(i) For the trivial representation 1p: I' — C, one has (X1, ¢1,.) = (A, La).

(11) For the left reqular representation A\: T ~ (*(T), one has (Xy, ¢y) =
(PT)® A A®1).

(iii) Let A < T be a subgroup and E be the canonical conditional expecta-
tion from A onto D = C*(u(A)). For the quasi-reqular representation
Arja: T 2(T/A), one has (X, dap,,) = (LP(A E) @p A, 6 @ 1).

Proof. Since (i) and (ii) are particular cases of (iii), we prove only (ii). Define
an operator U: (2(T'/A) ® A — L*(A, E) ®p A by U(d,a ® a) = u(9)ée ® u(g)*a
for g € ' and @ € A. Then, U is well-defined and gives the desired unitary
equivalence. Indeed, for any g,h € I' and a,b € A we have

(U(0ga ® a), U(dpa @ b)) = (u(9)ée @ u(g) a, u(h)ép @ u(h)"b)
= (u(g)"a, E(u(g*h))u(h)"b)
= Oga,naQb
= <59A ® a, dpa @ b)

and also U(dzna ®@ u(g)a) = u(9)ér @ a = ¢p(u(g9))U(onr ® a). O
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Remark 3.1.2. Let I' = I'; x5 'y be an amalgamated free product group. Denote
by A, Ay (k= 1,2) and D be the reduced group C*-algebras of I', Ty (k = 1,2)
and A, respectively, and by E: A — D, Ey: Ay — D and Ey4,: A — A the
canonical conditional expectations. Then, it follows that (A, E) = (Ay, E1) *p
(Ag, E). The previous proposition implies that the C*-correspondences corre-
sponding to the vertex and the edge sets are given by

D (Vi ®a, Ay, ®1) and (X ®p A ¢x @ 1), (3.2)
k=1,2

respectively. Notice that these C*-correspondences can be defined for arbitrary
reduced amalgamated free products. In fact, in §§ we will see that they
indeed play a role of Bass—Serre trees (see Remark . For related topics, we
refer the reader to [I8, 20] in which C*-algebraic analogues of graph of groups,
called graph of C*-algebras are studied.

We set Q = Ulel';,{el's}) = {(z(n))22, € Q | x(2) # e[y} and Qy =
U(el's, {el'1}) = {(x(n))52, € Q] 2(2) = el's}. Since 2y U Qy = AT, Oy and €2
are clopen subsets of AT.

Let Y = Y1HY; and ¢y : A — L(Y) be as in Eq. and S; be as in Lemma
. Let P, € L(Y) be the projection onto the closed submodule generated by

the set
{aiaz---ann; | n>1,a1as - - a, reduced word with a; € Ay, j = 1,2}
In other words, we set

Py =Y Si(PiyPey ®1)S;,  Pui=ea, + P, (3.3)

j=12
where ey, = 0,, », € K(Y;) C K(Y) is the Jones projection of Eg, .

Proposition 3.1.3. There exists a *-isomorphism from C(AT) X,q I' onto
C*(¢y (A), P1, P) sending xq, ® 1 to Py, for k= 1,2 and m ® A(g) to ¢y (A(g))
for g € ', respectively.

Proof. Let C(AT) Xq I' C B(£*(V) ® (*(T')) be the faithful representation as
in Eq. (3.1). Since the map L(2(V) ® A) — B(3(V) @ ¢*(I')) induced from
A — B(£*(T)) is injective, we may assume that C(AT) X,.q I' = C*({7(9) ®
Ly o Ag)}tger UC(AT) ® 1). We claim that C(AT) Xyeq I' is generated by
{m(g9) ® Lo A(g)}ser and {xq, ® 1}r=12. For this, it suffices to show that the
[-orbits of xq,,k = 1,2 generate C'(AT). Take g € I' \ A arbitrarily and let
g = g1+ gn be in reduced form. If g, ¢ I'y, we have ay(xa,) = Xg0, = Xa(grs):
where

Qz) = {(y(n));Zy € Q[ y(d(el'y, 7)) =z} for zeV
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under the identification AT = Q. Now let 2 = (2(n))%,,y = (y(n))s>, € Q be
distinct elements. Take the minimal N > 1 such that z(n) # y(n) for n > N.
Without loss of generality we may assume that y(N) ¢ {z(n) | n > 1}. Then,
we have y € Q(y(N)) and = ¢ Q(y(N)). Therefore, the claim follows from the
Stone—Weiertstarss theorem.

Let Uy: 3(T/Ty) ® A — Y; ®4, A be the unitary given by Proposition
and set U := Uy ® Up: (V) @ A = @_1, Ve ®a, A Let (Z,67) =
D12V ®a, A, ¢y, ® 1) and &z: L(Y) — L(Z) be as in Eq. so that
®, 0 gy = ¢z. Then, Proposition implies that U(m @ A(9))U* = ¢z(A(g))
for g € I'. Also, it follows from the definitions of €2 and P that

By the first paragraph of the proof, we conclude that ®,'oAd U gives the desired
isomorphism. O

Remark 3.1.4. Here is another representation of C(AT) X,eq " on £2(T) & ¢*(T).
Let Py € B(¢*(T")) be the projection onto ¢*(A) and g be the projection onto

the closed span of the vectors J, such that g is a reduced word beginning with
an element in T'y. Define Q, Q2 € B(¢*(T') & ¢*(T")) by

Qi=(Pr+q)®q, Qr=q@®(Pr+q).

Then, C(AT) Xeq I' is isomorphic to C*(Q1,Q2, A @ A(I')). To see this, we
first observe that the unitary representation ¢y, (A\(-)) ® 1: T ~ Y}, ®4, (3(T'y) is
unitarily equivalent to A\: I' ~ ¢*(T"). Then, the composition

L(Y) =L(Y1) ®L(Y2) = B(Y; ®4, £(T1)) & B(Y1 ®4, (*(I'1))
=~ B(£*(I)) & B(¢*('))
— B(¢*(I') @ ¢*(I))

sends ¢y o A(g) to A @ A(g) and Py to Qy for g € I" and k = 1,2.

3.2 Extensions associated with conditional expectations

Let D C A be a unital inclusion of C*-algebras with conditional expectation
E: A — D. we define the split extension associated with (D C A, E) to be the
universal unital C*-algebra ((A, E')) generated by A and a projection e such that
eae = E(a)e for a € A and 14e = el4 = e. Note that e commutes with D since
(1 —e)de =de — E(d)e =0 for d € D.

Lemma 3.2.1. If a unital x-representation p: {(A, E)) — B(H) satisfies that the
restrictions p|a and p|pe are faithful and p(A) Nspan p(AeA) = {0}, then p is
faithful.
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Proof. Since A + span AeA is norm dense in (A, F)), it suffices to show that
la + K|| < 3||p(a + K)|| for all a € A and K € span AeA. By assumption,
span p(AeA) is a non-trivial closed ideal of p({(A, E))) and the corresponding
quotient is isomorphic to A. This implies that ||a|| < ||p(a + K)||. Also, for any
Yo, azebf € span AeA it follows from the proof of [6, Proposition 4.6.3] that

I3 plaiet?) | = lp(E(a}as)e) iy (B b)) |

= (B (aaye)lif (Bl = 1D aeb]l

Thus, we have ||p(K)|| = ||K]|. Therefore, we obtain |la + K| < ||p(a)| +
HP)(”K)H < llpla+ K)|| +llpla + K) = pla)|| < 2[p(a + K)[| + [lp(a)]| < 3lp(a +
K)|. [

Let (X, ¢x, &) be the GNS representation associated with E and ep = ¢, ¢, €
K(X) be the Jones projection. Since eppx(a)ep = ¢px(E(a))ep holds for a € A,
thanks to the above lemma, we may use the following identification

(A E) =C"{0@eptU{a®¢x(a)|ac A}) C A L(X).

Note that the ideal span AeA of (A, F)) is isomorphic to K(X) and the quotient
by this ideal is isomorphic to A. Also we remark that (A, F)) is not isomorphic
to C*(¢px(A),ep) C L(X) in general. For example, if A is a crossed product of
D by a finite group and FE' is the canonical one, then we have C*(¢x(A),ep) =
K(X) =L(X).

Proposition 3.2.2. The corner et (A, EYet of (A, E)) is a semisplit extension
of A by K(X°) with UCP cross section U: a + etaet. Moreover, the image of
U generates et (A, E)et.

Proof. Via the above representation (A, E)) C A®L(X), the corner et (A, E))e*
is faithfully represented in AGIL(X°) and the ideal et (span AeA)e' is isomorphic
to 0 @ K(X°). Let p: et (A, EYet — (A, E)) /et (5pan AeA)et be the quotient
map. We claim that p o W is a bijective x-homomorphism. The injectivity
follows from the above representation. To see the multiplicativity, take a,b € A°
arbitrarily. Then, we have

p(U(ab*) — W(a)W(b)*) = pletab* et — etaetb*er) = p(etaeb*e’) = 0.

The surjectivity follows from the fact that every element in et (A, E)et is of
the form W(a) + K for some a € A and K € spanetAeAet. Finally, the above
computation show that C*(¥(A)) contains K(X°), and thus equals e (A, E)et.

[l
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By the proposition, we have the following commuting diagram

0 —K(X) (A E) zﬂl 0

| |

0—K(X°) — e (A, E)er —A—0

such that the upper exact sequence is split and the lower one is semisplit with the
UCP cross section W. We call (e+((A, E)et, ¥) the semisplit extension associated
with (D C A, E) and may assume that et (A, E))e! is a C*-subalgebra of A @
L(X°).

Lemma 3.2.3. The kernel of the left action ¢xo: e((A, E)et — L(X°) given
by the projection A®L(X®) — L(X°) is {a®0 | ¢x(a) € K(X)} = o3 (K(X)).

Proof. Note that every element z in e+ (A, E))et is of the form a® (e5¢x (a)ep +
K) for some a € A and K € K(X°). Then, z is in ker ¢x. if and only if
ebox(a)e; = —K if and only if z = a ® 0 and a € ¢ (K(X)). O

The following lemma easily follows from the definition of (A, E)):

Lemma 3.2.4. There exists an isometric bijective linear map t°: X° — et (A, E))e
such that

o °(aly) = ae = (1 —e)ae fora € A°;

o 1°(8)"t°(n) = (& m)e for & n € X°;
o 1°(dxo(D)Ed) = bt°(€)d for b € e {(A, EYet & € X° andd € D.

This lemma says that the inclusion K(X) C (A, £)) has the following matrix
representation:

[ 5] < G 5)

Remark 3.2.5. Assume that (D C A, E) comes from the reduced group C*-
algebras of discrete groups A < T'. Then, [A : I'] = oo if and only if ¢ (K(X)) =
{0}. Indeed, if [A : T'] < oo, then one has A = K(X). Note that this the case
when (A, E) = A ® K(X) and et (4, E))et = A @ K(X°). Conversely, if
r € ¢ (K(X)) is nonzero, then * ® 1 € K(X ®p A) is also nonzero. By the
natural isomorphism K(X ®p A) = ¢o(I'/A) Xpea I', we have (1 @ C: (') N
(co(T'/A) Xyea I') # {0}. This implies that ¢o(I'/A) is unital, so we have [I" : A] <
oo. Note that when ¢x(A) NK(X) = {0}, we have (A, E) = C*(¢px(A),ep) =
(C1+ co(T'/A)) Xyeq T
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3.3 Construction and Cuntz—Pimsner algebras

Let (A, E) = % p(Ag, Ex) be the reduced amalgamated free product of {(D C

Ay, Ey)Yeer and (Y, ¢y) = HHcz (Y, ¢v,) be asin Eq. (2.1]). Also, let Si.: X(r, k)®p
Ar — Yy be as in Lemma [2.3.4] As in the group case, we define the projection

Py = Si(PyyPery ®1)S;,  Pui=ea, + P, (3.4)
JET
which is the projection onto the closed submodule

span{aias - - - apn; | n > 1,a1as - - - ay, reduced word with a; € Ay, j € T}.

Note that the projections Py, k € Z are mutually orthogonal and satisfies that
Y orer P =1

Definition 3.3.1. For any reduced amalgamated free product (A, E) = % p(Ag, Ex)
we define AT(A, E) by the C*-algebra generated by ¢y (A) and { Py }rer inside
L(Y).

We may identify A with ¢y (A) so that A C AT(A, E).
Remark 3.3.2 (cf. Remark [3.1.4]). We will use the following representation of
AT(A, E). For each k € Z, we consider the AT(A, E)-D C*-correspondence
X® =Y, ® 4, X = X with the left action oy, defined by the composition of the
quotient map L(Y') = [[..7 L(Y;) — L(Y}%) and the map L(Y;) — L(Y; ®.4, Xi)
induced from the interior tensor product. Note that for each k,j € Z with k # j
one has

okla = ¢x, ow(Pi) =ep+ Py, 0;(Pe) = Py, (3.5)
and that @, (X", o) is faithful if Ej is nondegenerate for all k € Z.

By Proposition , when (A, E') comes from the reduced group C*-algebra
of ' = I'y %4 'y, we have AT(A, E) = C(AT) Xyeq I'. Thus, for general re-
duced amalgamated free products, one can view AT(A, E) as an analogue of
the “crossed product algebra of C(AT) by (A, E)”, but we do not have any
counterparts of the Cartan subalgebra C'(AT) in general.

Proposition 3.3.3. The following hold true:
(i) The projections Py, k € T commute with D.
(ii) Any element a € Ay enjoys PiraPt = E(a)Pf and (a — Ex(a))PH =
PRaPi.
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(i1i) The compression L(Y) — L(ngAr) = Ax by ea, defines a conditional ex-
pectation from AT (A, E) onto Ay extending Eg, .

(iv) For any unital C*-algebra C' and the reduced amalgamated free product
(A® C,E ® C) = %pgc(Ar @ C, By ®1d) (cf. [2.3.5), one has AT(A ®
C,E®id) = AT(A F)® C.

Proof. Since (i), (ii) and (iii) are obvious, we prove only (iv). Let ¢y : A — L(Y)
be as above and assume that A ® C C L(Y) ® C C [[, L(Yy ® C). Note that
the left action of A ® C on Y, ® C' is the GNS representation associated with
E4, ®id for k € Z. Then, by definition, P, ® 1 is nothing but the projection for
* poc(Ar ® C, B, ® id) given by Eq. . Thus, the assertion follows from the
definition of AT(A, E). O

We next prove that AT(A, E) is identified with a Cuntz—Pimsner algebra. Let
((Ag, Ex)) and (Bg, W) be the split and semisplit extension associated with (D C
A, Ey) as in § We consider the unital embedding V: D — [], .7 Bi;d —
(Vi(d))rez, and the C*-algebra B := @, B + V(D). We denote the support
projection of By in B by 1p, and set Bjr = 13, B. Define the C*-correspondence

PxiepBr,  x=Pox: 1,
keT keT

where the interior tensor product X; ®p Bi is with respect to D > d —
\I/(d)lf_% € Bit and ¢xp ® 1 is given by

By, — A, @ L(X}) — L(X?) — L(X; ®@p B).

In the case when Z = {1,2}, we have much simpler descriptions: B = B; & Bs
and X = (Xf (5995) Bg) H (X; Xp Bl)

We set &5 1= §:® 15, € X. Recall that ¢! (K(X})) &0 C By (Lemma[3.2.3).
We may use the identification K(X?) = 0 @ K(X}) C By.

Lemma 3.3.4. The kernel of ¢x includes @, 7 ¢x. (K(Xy)) & 0 and we have
Jx = @kGIK(Xl?)'

Proof. The first assertion follows from Lemma [3.2.3] Take x € Jy arbitrarily.
Then there exist ap € Ay and K € K(X7) such that x = (VUi(ag) + Ki)rez-
For each k € Z, it follows from Lemma that ¢x, (ax) € K(X}), and so
ay € ¢, (K(Xy)). Thus, we obtain (¥ (ax) + K)(ar @ 0) = 0, implying a;, = 0.
Since k € T is arbitrary, we have x = (K}), € @, K(X}). The opposite inclusion
follows from that ¢x(0ag, pe,) = Oug,pe,; for a,b € Ay and k € T. O
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Let {0x}rer be the canonical minimal projections in ¢y(Z) and ¢o(Z)~ :=
co(Z) + C1 be the unitization so that ¢o(Z)~ = co(Z) when Z is a finite set.
Let C be the universal C*-algebra generated by unital copies of algebraic (or full)
amalgamated free product of A;’s over D and ¢y(Z)™~ such that (1—6;)a(1—0dx) =
Er(a)(1 — ) for k € Z and a € A,. More precisely, consider the collection F of
all cyclic representations 7: (Y pAg) * co(Z)~ — B(H) satisfying

7((1 = dp)a(l — 0x)) = w(Ex(a)(1 —0x)) for k€I ac€ A
Then, C is the image of (JpAx) * co(Z)~ under the representation P, ) 7

Theorem 3.3.5. Let (7x, tx) be a universal covariant representation of X so that
C*(mx, tx) = O(X). Then, there exist bijective x-isomorphisms p: O(X) — C and
p':C— AT(A, E) such that p(mx(Vi(a))) = 0rad, and p(tx(bz)) = b(1 — o),
and p'(a) = a and p'(0r) = Py for a € Ax,be€ A and k € T.

Proof. By Proposition there exists a surjective *-homomorphism p': C —
AT(A, E) such that p'(a) = a and p/(d;) = Py for k € Z and a € A.

We next construct a covariant representation (,t) of X on C such that (p' o
7, plot) is universal. For each k € Z, by the universality of (A, Ex)), there exists
a surjective x-homomorphism py: (A, Ex)) — C sending e to 1 — §; and being
identical on A;. We observe that e, Ax(1— Py)Agea, = {0}, implying that AxN
span Ay (1 — P,) Ay, = {0}. Thus, Lemma [3.2.1) implies that p’ o py: (Ax, Ex)) —
AT(A, E) is injective. Therefore, 7 = @, 7 pilp,: B — C and p'om: B —
AT(A, E) are unital injective x-homomorphisms.

Let t5: X7 — e ((Ax, Ex)er, be as in Lemma and define t: X — C by
tE@x) = pp(t3(E))m(z) for € € XP and = € By For any £ € Xp,n € X5,z €
B,y € By, by Lemma and the fact that pk(ek) =1—-0,=1—7(1p,) we
have

tE@m(x)tn@m(y) = m(z")px(ti(§)) p;(t;(n)7(y)
(&)t ()7 (y)

(€. mer)m(y)

Y15,9)

N @T(Y)))-

|
=2
-
<
=
8
*
s
T3 /-\/-\

Also, for any z € By we have

Hpx(2)€ @ x) = pr(ti(Pxp(26)))m(x) = (2t (§))m(x)
= m(2)pk(t5(E))m(2) = 7(2)H(§ © ).

Therefore, (m,t) is a representation of X. We claim that (m,t) is covariant.
By Lemma it is sufficient to show that 7(K) = 1, o ¢x(K) for all K €
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P K(X}). We may assume that K = 6, for some §,n € X and k € .
Then it follows from Lemma [3.2.4] that

T(0cn) = pr(0c) = pr(tp()Eh(0)") = UE® 1)t ® 151)" = Vu(Px(Ocy))-

To see the universality, it suffices to show that (p'om, p’ot) admits a gauge action
thanks to Theorem For each n € Z, let @,, be the projection in L(Y") onto
the closed submodule generated by all vectors of the form a; - - - a,,n for some k €
T and some reduced word a; - - - a, with a,, ¢ Ay, and set Qo = Y, .7 €ea,. Letting
U, == P,-02"Qy for z € C with |z| = 1 we have AdU.(p o w(z)) = p' o w(x)
for x € B and AdU,(p' o t(€)) = zp’ o t(€) for £ € X. Finally, the surjectivity of
o' follows from the decomposition a = PyaPy + Pra® Pt + Pra® Py + E(a) P for
a < Ak ]

We next show that the Toeplitz extension
0 — K(F(X)Jx) — T(X) — O(X) — 0

is semisplit. Let (m,¢) be as in the proof of Theorem . We may identify
AT(A, E) with C so that AT(A, E) = C*(r,t). Let op: AT(A, E) — L(X®)
be as in Eq. and set (X%, 0) := HH,.,(X™, 01). We denote the GNS vector
in X® by Sék). We fix a fixed-point free bijection 7 on Z. To simplify the
notation, we will write 7(k) = k+1 for k € Z. Let Q € L(X?) be the projection
onto Fyer Py X **. Note that Py X*+D = X (r, k) @p X} contains a copy
of X7, denoted by X,:(k+1). Since QX7 is invariant under o o 7(B) and o o t(X),
the pair (7/,t') := (0 o 7(-)Q,0 o t(-)Q) is a representation of X on L(QX?).
Notice that @) does not commute with o o #(X).

Proposition 3.3.6. The representation (11, T) := (n@®n’, tdt") of X is universal.

Proof. Since (m,t) is injective, so is (II, 7). Consider the unitary representation
U': T ~ X7 such that U’ acts on the space of reduced words of length n by 2".
Then, {U.}, commute with @ and AdU.(-)Q defines a gauge action for (7/,¢).
Thus, we only have to check that II(Jx) N ¢ (K(X)) = {0} by Theorem [2.4.1]
Assume that z € K(X}) satisfies II(z) € ¢r(K(X)). Observe that ¢'(£)t'(n)* =

Djer 0j+1(t(§))P(J;’j)ajﬂ(t(n))* vanishes on FH,c; X;(jﬂ) for all £,n € X, and
hence so does 7'(z). On the other hand, the restriction of 7'(z) to X,:(HD is
unitarily equivalent to x itself on X}. Thus, x must be zero. O

Since (II, T') is universal, there is a surjective x-homomorphism p: C*(I, T') —
C*(m,t) such that poll = 7w and poT = t. Note that the kernel of p is generated

by {H(Qafk,bgk) — wT(gﬁf(eagk,bgk)) ’ kel abe AZ} by Lemma . We denote
by 6 the compression map L(X%) — L(QX7) by Q.
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Theorem 3.3.7. The UCP map © :=id@®(foo): AT(AE) - AT(AE) &
L(QX?T) maps into C*(I1,T) and satisfies that po © = id.

Proof. Since D Py sits in the multiplicative domain of © and O(c) = II(Vx(c)) +
(&) + T(c&g)" + (¥ (E(c)1p,) € C*(ILT) for ¢ € A, and k € T, it
suffices to show that O(ab*) — O(a)O(b*) € kerp for a,b € Aj and k € Z and
O(aias -+ apy1) = O(aras - - - a,)O(an,11) for all reduced words a; - - - a,, with n >
1. Indeed, it follows from the above decomposition of O(c) that

O(ab”) — O(a)O(b") = TL(Wx(ad®)) — (W (a)W(b*)) — T(ay) T (b47)"
= (Oag pe,) — Vr(Dx(Oag, ber )

which belongs to kerp. We next show the multiplicativity on reduced words.
Take £k € Z and a reduced word a;---a, with a, € A} arbitrarily. Since
(Vi (Ag)) and ¢(X) sit in the right multiplicative domain of ©, we have

O(ay---a,) —O(ay- - a,-1)0(ay)
= 0(a1 - an1t(ap 7)) — Olar - an1)T(a;5)"
=08 Qo(ar---an-1)(1 — Q)o o t(a,§5)" Q-

Note that (1 — Q)o o t(a:&z)*@ is supported on X,gkﬂ)o. For any » € Aj,

since 0 = ¢x on A, we have Qo(a;---a,1)(1 — Q)o o t(@fﬁkg)*@x&gk“) _
Qaq - - an_lf(()k+1)E(anx) = 0. =

Remark 3.3.8. The above proof shows that C*(©(A)) is a semisplit exten-
sion of Ay by K(X7). The restriction of Ex(-)1p,: C*(II,T) = T(X) — By
to C*(©(Ag)) is a *-isomorphism onto By such that Fx(©(a))lp, = VYi(a) for
a < Ak

3.4 Consequences

We note that the definition of the universal C*-algebra C does not involve the
reduced amalgamated free product. Thus, the isomorphism between C and
AT(A, E) implies the following:

Corollary 3.4.1. Let (A, E) = Y p(Ax, Ex) be any reduced amalgamated free
product of {(D C Ay, Ex)}rer and % pAy be the corresponding full one. For
any unital C*-algebra B and any unital x-homomorphism ¢: % pAr — B, the
following hold true:

(i) Assume that T is infinite and there exists a family of mutually orthogonal

projections {p }rez in B such that (1 —pg)p(a)(1 —pr) = ¢(Fr(a))(1 — pg)
for a € Ay and k € I, then ¢ factors through the canonical surjection

*DAk — A.
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(ii) Assume that T is finite and there exists a family of mutually orthogonal
projections {py}rez in B such that Y, ;pr =1 and (1 —pi)o(a)(1 —pi) =
O(Ex(a))(1—pg) fora € Ay and k € Z, then ¢ factors through the canonical
surjection % pAr — A.

When Z = {1,2}, we have P, = 1 — P,. We next show that, in this case
AT(A, E) also has a full/reduced amalgamated free product structure. De-
fine the conditional expectation &;: (Ag, Ex) — D(1 — ex) @ Dey, by Ex(x) =
Erx(me(a))(1 — ex) + exxer, where 7, denotes the quotient map (A, Ex) — Ag.

Corollary 3.4.2. Let (A, E) = (A1, E1) xp (A, Ey) be a reduced amalgamated
free product and & : (Ag, Ex)) — D(1 —ey) @ Dey be as above. Then, AT(A, E)
is isomorphic to the reduced amalgamated free product of ({(A1, E1)), &) and
({(Ag, Eu)), &) over DB D, where ey is identified with 1—ey. Moreover, the canon-
ical surjection from the full amalgamated free product of (A1, E1)) *pap (As, Es))
onto AT(A, F) is a *-isomorphism.

Proof. By the previous corollary, (A1, E1))*pep((As, Es)) is isomorphic to AT(A, E)
naturally. Thus it suffices to show that this isomorphism factors through the re-
duced amalgamated free product. We may identify (A, Ey)) with C*(Ag, 1 —
P.). Let o: AT(A,E) — L(X®) be as in Eq. and set 0 := id ® o1 @
oy: AT(AE) — L(Y B XM @B X®). Define the projection f, € L(Y B
XU EX®) by P, ® (ep + Péz)) @ P(j’Q) and put fo = 1 — fi. We prove
that f160(x)f1 = 0(&E1(x)) f1 for x € (Ay, Ey)). For any x € (A1, E1)), it is clear
that Pox Py = & (x)P,. By Eq. , we have

(ep + P(Jé,z))ffl (z)(ep + P(JZ,Q))

= epoi(x)ep + epoy (m)P(tQ) + P(tQ)O'l (x)ep + Pég)al(x)Pé’Q)
=epo(PixP)ep + epo1(PiaPs) 4+ o1(PyxPy)ep + o1 (Pex Py)
= 01(&1(2))ep + 01(E1(2)) Py

= o1& (@)(ep + Py

Here in the third equality we used that epoy(PixPy) = o1(PexP)ep = 0. This
follows from the fact that o(PixP,) is a norm limit of “creation operators”
P1yan Py gy With a, € Af. Similarly, one has Py, 02(2) Py, = 02(E1(2)) Py
Combing these we obtain that f10(z)f; = 0(&€1(z))f1. By the same argument,
we have fof(y)fo = 0(E2(y)) fo for y € ((As, Es)). Thus, the previous corollary
implies that 6 factors through the reduced amalgamated free product. Since @ is
injective, we are done. O]

Our next goal is to characterize when AT(A, E) is nuclear or exact. We say
that a linear map from the algebraic tensor product of two C*-algebras into a
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C*-algebra is min-bounded if it is bounded with respect to the minimal tensor
norm.

Theorem 3.4.3. Let (A, E) = % p(Ag, Ex) be a reduced amalgamated free prod-
uct, P,Q be any unital C*-algebras, and ¢: AT(A,E) — P be any unital *-
homomorphism. If (pla, @ id): Ay © Q — P Qumax @ is min-bounded for each
keZ, then p ®id: AT(A,E) ® Q = P @max @ is min-bounded.

Proof. Thanks to Proposition [3.3.3] (iv) it suffices to construct a suitable *-
homomorphism from AT(A ® @, E ® id) to P Quax Q. For each k € Z, let
Ui A ® Q — P ®@max @ be the bounded extension of (¢|4,) ®id. Then, we have
(p(1 — Pp) @ DY) (o(1 — P) ® 1) = Yy (Er ®id(z)) for k € Z. Thus, thanks
to Corollary y’s extend to a s-homomorphism from AT(A® @, E®id) to
P @max Q. O

Corollary 3.4.4. Let () be one of the following properties: nuclearity, exact-
ness, WEP, and LLP. If Ay has the property (x) for every k € Z, then so does
AT(AE).

Proof. For the nuclearity, set P = AT(A, E) and ¢ = id. If Ay is nuclear for
every k € Z, then the embedding Ay ® @ — AT(A, F) Quax @ is min-bounded
for any C*-algebra (). The previous theorem then implies that AT(A, E) ® Q =
AT(A, E) @max Q. Since Q is arbitrary, AT(A, E) is nuclear.

The assertion for the exactness can be shown in the same manner by using
some faithful representation ¢: AT(A, E) — P := B(H). By Kirchberg’s result
[32] (see also [43]), AT (A, E) has WEP (resp. LLP) if and only if AT(A, F) ®
C*(Fy) = AT(A, E) Qpax C*(Fs) (resp. AT(A, E) @ B(f?) = AT(A, E) @max
B(¢?)). Thus, the proof for nuclearity works as well. O

Since exactness passes to subalgebras, the next result due to Dykema [14] (see
[16), [44] for alternative proofs) is an immediate consequence of Corollary [3.4.4]
Note that our proof also says that any reduced amalgamated free product of
nuclear C*-algebras is a subalgebra of a nuclear C*-algebra. Also, our result does
not relay on the facts that exactness and nuclearity pass to quotients [8], 33] 34].

Corollary 3.4.5 (Dykema [14]). Reduced amalgamated free products of eract
C*-algebras are exact.

Recall that a C*-algebra A is said to have the completely bounded approzi-
mation property (CBAP) if there exist a constant C' > 0 and a net of finite rank
CB maps ¢; on A such that ||g;|le, < C and lim; ||p;(z) — z|| = 0 for x € A.
The Haagerup constant Aq,(A) is the infimum of those C' for which (;); exists.
When A does not have the CBAP, we set Ag,(A) = oo.
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Lemma 3.4.6. Let D C A be a unital inclusion with conditional expectation
E:A— D and (X, ¢x,&) be the associated GNS-representation. Consider the
embedding maps K(X°) — K(X) and D — Dep C K(X) into corners. Then,
we have Ap(K(X°)) < Aap(D).

Proof. Since K(X°) is a hereditary subalgebra of K(X), we have A, (K(X?)) <
Ao (K(X)). Take an approximate unit (a; ® p;) of K(X) @ K. It suffices to show
that for any 7 and any € > 0, there exist CP contractions ¢;: K(X)®K — DK
and ¢;: D @ K — K(X) ® K such that [|(a; @ p;)x(a; @ p;) — s o pi(x)]] < |||
for v € K(X) ® K. For each i, by [3I, Lemma B.2] we find a separable closed
subspace X; C X with & € X; which naturally forms a Hilbert C*-module over
a separable C*-subalgebra D; C D such that a; € K(X;). Since D;ep ® K is
a full corner of K(X;) ® K, it follows from [45, Lemma 2.5] that there exists
d; € K(X;) ® K such that ||dfd; — a; ® p;|| < € and d;d} € Dep ® K. Then, CP
contractions ¢;(x) = d;zd; and ;(x) = dfzd; are the desired ones. O

Corollary 3.4.7. It follows that A, (AT (A, E)) = sup,{Ae,(Ax) | k € Z}.

Proof. Since D is the range of the conditional expectation Fy, we have Ay, (D) <
Aep(Ay). By [I7] and Lemma [3.4.6] we obtain Ac,(Bi) = Acy(Ag). When T is
finite, B = @, 7 By; otherwise B is a split extension of D by @), By. Therefore,
A (T (X)) = supy, Aeb(Ax) by [17] again. Since AT(A, F) = O(X) is a quotient
of T(X) with UCP cross section, we obtain A, (AT (A4, E)) < supy, Aep(Ag). The
opposite implication follows from Proposition [3.3.3] (iii). O

The following generalizes Ozawa’s result [38] for nuclearity.

Theorem 3.4.8. Let (A, E) = (A, E1) xp (Ag, E2) be a reduced amalgamated
free product and assume that E1 and Es are nondegenerate and the image of the
GNS representation of Ey contains the Jones projection. Then, the following
hold true:

(i) Let (x) be as in Corollary|3.4.4. Then, A has the property (x) if and only
if so do both Ay and A,.

(ii) One has Ae,(A) = max{Ae (A1), Acb(A2)}.

Proof. Let p € A; be a projection such that ¢x,(p) is the Jones projection
of Ey. A direct computation shows that p = pes, + P, in AT(A, E). Set
I := ¢ (K(X1)). Then, K(Y11;) is the ideal of AT(A, E) generated by I1eq,.
Since E; and Ej, are nondegenerate, the restriction of go: AT(A, E) — X® to
A is faithful. Thus, we have K(Y;;) N A = {0} because [1e4, C keroy (see
Remark [3.3.2). Since P, € A+ K(Y11;), we have AT(A,E) = A+ K(Y11;) and
the split exact sequence

0 —KWY1i) — A+KWY L) — A—0.
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Thus, the assertion follows from Corollary and Corollary [3.4.7] O

Recall that the cb distance of two finite dimensional operator spaces E and
F' is defined by

dep(E, F) = inf{||¢|lev|lo " ||leb | ¢: E — F linear bijection}.

When E and F are not isomorphic, we set do,(E, F) = oco. For any finite
dimensional operator space F, Junge and Pisier introduced in [30] the following
quantity

ds(E) = inf{dw(E,F) | F C C*(Fy)}.
If Ais a C*-algebra, we define d;(A) by the supremum of d;(E) taken over all
finite dimensional operator subspaces E of A.

Theorem 3.4.9. For any reduced amalgamated free product (A, E) = Y p(Ax, Ex),
if de(Ax) =1 holds for all k € I, then we have df(AT(A,E)) = ds(A) = 1.

Proof. Let F' C AT(A, E) be any finite dimensional operator subspace. Take a
unital faithful representation AT (A, E) C B(H). Then, it was shown by Junge
and Pisier [30] that

ds(F) = sup { ||x”B|(|’;)|fWW) EXao B(ﬁ)} .
Thus, it suffices to show that for any unital *-homomorphism 7 x p: B(H) ®
B(¢?) — B(K), the restriction m|ara,g) X p: AT(A, E) @ B(H) — B(K) is min-
bounded. Since d;(Ax) =1 holds, 7|4, x p: Ay © B(¢?) = B(K) is min-bounded
for each k € Z. Denote its bounded extension by 7. Then 7;’s induce a *-
representation of the full amalgamated free product % pgm)(Ar @ B(H)), and
the projections 7(Px)’s satisfy the assumption of Corollary [3.4.1] Hence, the
assertion follows from the isomorphism AT (A, F) @ B(H) 2 AT(AQB(H), E®
id). O
Theorem 3.4.10 (Blanchard—Dykema [3]). Let (A, E) = % p(Ax, Ey) and (A, E) =
* p( Ay, E) be reduced amalgamated free products.

(i) For any unital x-homomorphisms my: Ay — Ag, k € I such that & o
Ty = T o Ey, there exists a unique x-homomorphism ©w: A — A of which
restriction to Ay equals my, for every k € Z. Moreover, if m is injective for
every k € Z, then so is 7.

(ii) Assume that D = D and Ey and & are nondegenerate for k € Z. For any
UCP maps pi: Ay — Ay such that oi|p = id, there exists a unique UCP
map ¢: A — A such that

plarag -+~ an) = oy 1)(a1)pu2) (a2) - Qun) (an)

for any reduced word a; - - - a, with a; € Af(j) and ¢ € 1,
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Proof. We prove (i): By Corollary the x-homomorphisms 7, k € Z induce
p: AT(A, E) — AT(A,E). The covariant representation of X corresponding to
p admits a gauge action since AT(A,E) admits a gauge action, and is injective
whenever 7, is injective for £ € Z. The restriction of p to A is the desired one.

We prove (ii): The argument here is essentially same as the proof of [7|
Proposition 2.1]. Thus, we give only a sketch of the proof. Let (X, dx,. &)
and (X, ¢x, &) be the GNS representation of & and &, respectively. For each
k € Z, by the Stinespring construction, there exists an A,-D C*-correspondence
(Zy, ) and an isometry wy: Xy — Zj such that wim(¢x, (a))wp = ¢, (pr(a))
for a € Ay. Let Ej: L(Z;) — D be the conditional expectation given by the
compression onto wié},. Consider the reduce amalgamated free product (£, E') =
* p(L(Z), E},) and denote the GNS Hilbert C*-module associated with E’ by
X'. Then, there exists an isometry w: X — X’ such that

w((1® Q) = w,n)O® QWG for n>1,0 €L, G € Xy (L <k <n).

By (i) there exists a *-homomorphism 7: A — £ induced from 7y, k € Z. Then,
a direct computation shows that the UCP ¢: A 5 a — w*n(a)w € L(X) is the
desired one. 0
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4 K K-theory of amalgamated free products

4.1 K K-equivalences

Theorem 4.1.1. Let {(D C Ay, Ex)}kez be any countable family of unital in-
clusions of separable C*-algebras with conditional expectations and (A, E) =
* p(Ax, Ex) and A := % pAy be the reduced and full amalgamated free products.
Then, the canonical surjection A: A — A is a KK -equivalence.

We first deal with the case when Z = {1,2}. Consider two A-2 C*-correspondences
(2°,7°) = @I, (Y @4, A ¢y, ® 1) and (Z',7') == (X @p A, ¢x @ 1). Let
Sk: X(r,k)®p A — Y be as in Lemma and define the isometry S : Z' —
Z° by
{Sl®1:X(r,1)®DQl—>Y1®A19l; 1)

So®@1:X(r,2)°p A — Yy R4, 2.
We set 7, =1, @ 1o € V3, @4, A C Z° for k = 1,2.

Lemma 4.1.2 (cf. [52] Theorem 3.3 (2)]). The operator S satisfies that ker S* =
m2A and 7°(a)S — Swl(a) is compact for all a € A. Consequently, the triplet
(2@ Z 7@ n' [%5]) is a Kasparov A bimodule.

Proof. The first assertion is obvious. Thus, it suffices to show 7°(x)S — S7!(z) is
compact for all x € A; U A,y. In fact, since each x € Ay enjoys z X (r, 1) C X(r, 1)
and zX(r,2)° C X(r,2)°, one has 7'(z)S = S7'(x) for z € Ay. If we define
S Z% — Z by S'& ® a = 1pa for a € A and by S on X° ®p A, then S
intertwines the actions of A; by the above argument. Since S is a compact
perturbation of S’, we are done. n

Remark 4.1.3. The construction of the above Kasparov bimodule is based on
Julg and Valette’s work [29] and its quantum analogue by Vergnioux [52]. Let
us explain a “geometric” meaning of the operator 5.

Let T be a locally compact second countable group action on a tree T and fix
a base point o € V. For any x € V\ {z} we denote by S(x) the unique edge in
E relating x and some vertex in [zg, z]. We define the co-isometry V: (2(V) —
>(E) by Vé,, = 0 and Vi, = ) for © # xo. Julg and Valette proved in
[29] that the triplet (¢*(V),¢*(E),V) implements the K-homology class of the
trivial character. Now assume that I' is discrete and all the stabilizer subgroups
of the action I' ~ T are amenable. Since the unitary representations of I" on
(*(V) and (*(E) are weakly contained in the regular representation, the above
triplet defines an element « in K*(C!4(T")) = KK (C:4(T),C). Let d: Cr4(T') —
Cr () ®C*(T") be the *-homomorphism given by d(A(g)) = A(g) ®u(g), where u
denotes the universal representation of I'. Then, the Kasparov product of d and
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y®id € KK(C! (') @ C*(T"), C*(I")) gives the inverse of the canonical quotient
C*(I") — Cry(I') (see [10] for details).

If I is an amalgamated free product of amenable groups I'; and I'y over A and
the base point x is el';, then one can check that the Kasparov bimodule repre-
senting this inverse element coincides with that we constructed in the previous
lemma.

Theorem 4.1.4. With the notation above, let o be the element in KK (A,2l)
implemented by (Z° @ Z1, 7% @ 7,[%5]). Then, we have A @4 a = idy and
(6% ®Q[ )\ = ldA

Proof. We first prove that A ® 4 a = idy following the proof of [52, Theorem 3.3
(3)]. Set p° := 70 X and p' := 7! o \. Define the unitary U : Z* & A — Z° by
S on Z! and by U(0® a) := 7sa for a € 2. Since S is a compact perturbation of
U, A ®4 a — idg is implemented by

(Z°® (Z' o), 0" ® (p' & La), [0 %))

(see §§2.5). Take a norm continuous path (v;)o<i<i of unitaries in My(C) such
that vg = 1 and v; = [{ }]. With the natural identification My(C) C My (C)®@2 =
L(72 & 7o2) we define the unitary u; € L(Z') by v; on 7124 & 722 and by the
identity operator on Z16 (A ®7,2). Since the restriction of (D) to 7, A DA
is just C1 ® D C M(C) ® A with the above identification, the family (u:)o<i<1
forms a norm continuous path of unitaries in 7%(D) N (C1 + K(Z°)) satisfying
that uy = 1 and w; switches n1a and 7a for each a € A. Let jx : A — A be
the inclusion map for k = 1,2. Since Adwu, o 7° o j; agrees with 7% 0 j, on D, we
have the natural *-homomorphism ¢; := (Adu; o 7° 0 j;) % (7% 0 j5) : A — L(Z°)
thanks to the universality of 2. Then, the Kasparov bimodules

(2@ (Z' o), 60 (0" La). [§5]), t€[0,1]

satisfy conditions (i), (ii) and (iii) in Lemma (with P = @ = ), and
its evaluation at ¢ = 0 implements A ® 4 &« — idg. Thus, we need to show that
(Z°® (Z'®A), 1 D (p* ® La), [J T ]) is degenerate, that is,

é1(2)U = U(p*(z) @ Ly(z)) for z € 2A. (4.2)

Since U is unitary, we may assume that z is in A} U A;. When x is in As,
the above equation is trivial because S intertwines w!(x) and 7%(z). Let S’ be
as in the proof of the previous lemma. Then, we have w;U = S" on Z° and
wU(0 @ a) = ma for a € A. Since S’ intertwines the actions of A;, we have
U(r'(z) ® Ly(z)) = wyn®(z)uiU for every z € A;. Thus we obtain equation
(4.2), and hence Lemma shows A ®4 a = idy.
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We next prove that o ®g A = idy in KK (A, A). Note that a ®g A — idy is
implemented by the Kasparov A-A bimodule

(Z°@y A) @ (Z'onADA),(T°@14) @ (7' @ 1a @ La), [ V' &'])
(see §8§2.5). We observe that the family of Kasparov 2-A bimodules
(Z°@nA) e (Z'er A A), (P @14) @ (G @140 ) [2, U6 ]), te[0,1]

satisfies the conditions (i), (i) and (iii) in Lemma[2.5.3 (with P = 2 and Q = A)
and its evaluations at endpoints implement (o ®y A — id4) o A and 0. Thus,
by Lemma and the fact that ¢y : A — L(Y) is faithful, it suffices to
show that ¢, ® 1 : A — L(Z° ®4,.x Y) factors through A : A — A for every
t € [0,1]. We observe that Z° ®4,00 Y =2 YV @4 Y. Thus, if we set ¢/ :=
by ®1: ALY ®4Y)and wy :=u, @1 € L(Y ®4Y), then ¢, ® 1y coincides
with ¢y := (Adw; o ¢ 0 11) x (¢ 0 13). Based on the decomposition ¥ @4 Y =
Dimi oA @4, Y © D, )" ®a, Y, we define the projection By € L(Y ®4Y)
by
Ri(YeaY)= P meoPYe @ PV oY
k=12 1=1,2

and set Ry := 1 — R;. We observe that w commutes with R;. Indeed, it follows
from the definition of w; = u; ® 1 that w(n, ® Pi€) is a linear combination of
m ® P& and ny ® P& for € € Y and wy is identical on @l:m PY°®4, Y. Thus,
by Corollary it suffices to show that Ri¢'(a) R = ¢'(Ex(a)) Ry for a € A,
and k£ = 1,2. By symmetry, we may assume that k = 2 and a € Ay. Since R;
commutes with ¢'(D), we also assume that a € A3. Then, for any (;, ¢/ € Y and
¢; € Y we have

Ri¢'(a) (m @ Pi61) @ (2 @ PiGe) ® (PG ®¢) @ (Pigs ®E3))
=R (0D (2 ® aP1(2) @ (am @ P1Cy + aPi( @ () @ (aP1(s ® ()
=0 (ne ® PraPi() @ (Pram @ Pi(y + PraPi(y ® () @ (PiaPi(y @ ¢Y)
=0

by Proposition [3.3.3] ]

Let 7 be a general countable set and let A = s p Ay and (A, E) = % p(Ax, Ex)
be as in Theorem [1.1.1] We set ¢y := ¢y(Z) and K := K(¢*(Z)).

Let {eg }rier be the system of matrix units for the canonical basis {0y} ez
of (*(Z), and set fj, := ex,. We realize Y, Ay and ¢p ® D inside K ® A as

Y A=C{fivalkeTac A} and ¢®D=C{fiod|keT,de D}
k
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Consider two conditional expectations ), Ej : >, Ay = ¢o® D and E,, ®idp :
KD — 00®D defined by (Zk Ek)(fl®a) = fl®El(CL) and (E60®idD>(€kl®d) =
Spife @dfor kil € I, a € Ay and d € D. Set € := (D, o1 An) *¢ep (K ® D)
and (C, E¢) == (3, Ak, Y1 Er) *eoop (K ® D, E., ® idp) and denote by A :
¢ — C the canonical surjection. Here, when 7 is infinite, we define (C, E¢) by
the C*-subalgebras of the reduced amalgamated free product (C' + C1, E) of
> A +C1,(3, Ey)~) and (K® D +C1, E7) over ¢ ® D + Cl1.

Proposition 4.1.5. With the notation above, there exist isomorphisms m : € —
KA and meq : C — K ® A such that the following diagram

¢ s KU

Al lid;c @A

C = Ko A

commutes.

Proof. Tf T is finite, we assume that Z = {1,2,...,|Z|}; otherwise we set Z =
N. The inclusion maps >, Ay = K@ ~A and L ® D — K ® 2 induce a *-
homomorphism 7 : € = K ® . For any k,%,j € Z, a € A, one has e;; ® a =
(e @) (fr®a)m(ex;®1) € m(C). Hence, 7 is surjective. Define oy, : Ay — € by
or(a) = (e1x®1)(fr®a)(ex1®1) for a € Ay. We then obtain o = Ykpezoyr : A — €.
Define 7 : K @A — € by d(e;; ® a) = (e @ 1)o(a)(er; ® 1) for a € A. Then, it
is easy to see that o o m = idg, and hence 7 is bijective.

We next show that (idg ®) o w factors through A : € — C. By adding
infinitely many copies of (A;, F1) to {(Ak, Ex) }rer we may assume that Z = N.
Take a unital faithful representation AT (A, E) C B(H). We may assume that
K@A C ’C@AT(A, E) C B(€2<I)®H) and set QE = Zk ekk®Pk S B(€2(I)®H)
and Qx =1 — Qyx. For any ey, ® a € Cep, ® Ay, we have

(1 - Qs)(er ®a)(1—Qx)

(exk ® a) — Qx(exr ® a) — (exr ® a)Qx, + OQx (e, ® a)Qx,
(exk ® a) — (exx ® Pra) — (e @ aPy) + (ep ® PraPy)
ek @ (1 — Prla(l — Py) = exr ® Ex(a).

Also, for any e;; ®d € K® D we have (1 —Qx)(e;; ®d)(1 — Qx) = e;; ® P,dP; =
9, j(es; @ dP;). Hence, applying Corollary to the unitizations of ), Aj and
K ® D, we conclude that (idge ®\) o 7 factors through A : € — C.

Finally, we show that A o ¢ factors through idx @A : K@ A - K ® A. It is
enough to show that A o o factors through A. We assume that C ¢ AT(C +
Cl,E5) = C(1,C, Pg, Px). Set e = e;1 ® 1 and pp = (enx ® 1)Py(epn ® 1) in
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eAT(C + C1, Ex)e. We then have pgp; = 0k pr and e — pp = (e ® 1)(1 —
Ps)(ex1 ® 1). Hence, for any a € Ay we have

(e —pr)or(a)(e —pr) = (e @ 1)(fr ® (1 = Px)a(l — Px))(ern ® 1)
= (eix @ 1)(fx ® Ex(a)(1 — Px))(er1 @ 1)
= 0i(Ex(a))(e — pr)-

Thus, A o ¢ factors through A by Corollary H
The following general fact is well-known (see, e.g. [2, Proposition 17.8.7]).

Proposition 4.1.6. Let K be as above and let v : K < B((*(Z)) be the inclusion
map. Fiz a minimal projection e € K. For any separable C*-algebras A and B,
the mapping E(A,B) 5 (X, ¢, F) — (K@ X, Lk ®¢,1x @ F) e E(K® A KR B)
induces an isomorphism 7 : KK(A,B) - KK(K® A, K ® B). The inverse of
T is given by the mapping E(K @ A, K @ B) 3 (Y,¥,G) = (Y Quur, (*(Z) ®
B), (Y @uars 1) 00,G @51, 1) € E(A, B), where 0(a) =e® a fora € A.

We are now ready to prove Theorem {4.1.1].

Proof of Theorem [{.1.1. We use the notation in the proof of Proposition {.1.5
Applying Theorem to the unitizations € + C1 and C' + C1 together with
Proposition there exists f € KK(K® A, K ®2) such that (idx ®\) @xga
B = idkga and f Qrgy (ide ®\) = idgga. Let 7 be as in Proposition m
We then have idy = 77 (idkga) = 7 ((idc @A) Qxea ) = A @4 771(B) and
idy = 77 idkga) = 7B Qkeu (dxe ®A)) = 771(8) @y A\. Thus, A\ gives a
K K-equivalence. O

4.2 Six-term exact sequences

In this subsection, we give a new proof of the next theorem due to Fima and
Germain [19]. Key ingredients of our proof are the right invertibility of the
embedding A — AT(A, E) in KK-theory and exact sequences of K K-groups
for Cuntz—Pimsner algebras [41].

Theorem 4.2.1 (Fima-Germain). Let (A, E) = (Ay, E1)*p(As, Es) be a reduced
amalgamated free product of unital separable C*-algebras and i,: D — Ay and
Jr: Ag — A be inclusion maps for k = 1,2. Then, there are two cyclic exact
sequences for any separable C*-algebra P:

KK(P,D) ™2 k(P A) @ KK(P,A) 2272 KK(P,A)

T !

KEKNP,A) 572 KKV (P, A) @ KK'(P,Ay) &) KKY(P, D)
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and

e x
117

KK(D, P) KK(ALP)® KK(A, P) <2 KA, P)

| I

KKY (A, P) Y9 ki1 (A, P) @ KK (A, P) 2% KK\(D, P).

Let ¢ = ¢y: A — AT(A, E) be the inclusion map and set p, = 7o
Uylp: D — DP, C AT(A,E). For each k € {1,2}, we denote by k the
unique element in {1,2} \ {k}. We first show the right invertibility of ¢ €
KK(A AT(AE)).

Lemma 4.2.2. There exist f € KK(AT(A,E),A) and § € KK(AT(A,E), D)
such that (¢ ® p1) @ara,e) (8@ ) =ida ®idp.

Proof. Let (Z,¢z) and ®5: AT(A,E) — L(Z) be as in Eq. (2.1)). Let S: X ®p

A — Z beasin Eq. (4.1)). It follows from Lemmal4.1.2that S(¢x(a)®1)—¢z(a)S
is compact for a € A. Since ®4(P;)S = S(o1(P;) ® 1) holds, the triplet

(Z®(X®pA), ez & (01 ®@1),[&5])

isa AT (A, F)-A Kasparov bimodule and defines an element § € K K(AT(A, E), A).
Since ¢ ®ar(a,p) B is implemented by the A-A Kasparov bimodule

(Z® (X ®pA),d7® (px @ 1),[ & 5]),

we have ¢ ®ar,p) f = ida € KK(A, A) by Theorem Since ®z(P) =
S(o1(P1)®1)S* holds, we have p; ®ar(am) B = 0. Let o, AT(A, E) — L(X®)
be as in Remark . Since 01 = 09 = ¢x on A and o1(P;) —o02(P;) = ep hold,
the triplet (XM @ X® o) @ ay,[91]) is a AT(A, E)-D Kasparov bimodule and
the corresponding element § € KK(AT(A, E), D) satisfies that py @ ar(a,p) 0 =
idp and ¢ OAT(A,E) 0=0. ]

To compute the K-theory of AT(A, E) = O(X), we need to compute the
K-theory of Jy. Thanks to the next technical lemma, we can assume that X7
and X5 are full, i.e., Span{ E(a*b) | a,b € Ay} = D holds for each k = 1,2. Note
that X is full whenever D is simple (e.g. D = C).

Lemma 4.2.3. Let ¢ be a nondegenerate state on D and set oy, := @ o By, for
k=1,2, (T,w) be the Toeplitz algebra with the vacuum state, and (Ay, Pr) =
(Ag, o) * (T,w) be the reduced free product. Denote by Fy.: Ay — D the compo-
sition of the canonical conditional expectation A, — Ay and Ey: Ay — D and by
Xy, the GNS Hilbert C*-module of F,. Set (A, F) = (Ay, F1)*p(As, Fy). Then X
is full and the embedding maps Ax — Ay and A — A induce K K -equivalences.
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Proof. Let s be the unilateral shift generating 7. Then, one has Fi(s) = 0 and
Fy(s*s) =1, and thus A} is full. Let H;, and H be the C*-correspondences over
Ag and A associated with the UCP maps ¢x(-)1 and ¢(-)1 on A; and A (see
e.g. [6l Example 4.6.11]), respectively. It follows from [47, Theorem 2.3] that
(T (Hi), ox © Ey,) = (Ax, ¢x) * (T,w) (this can be shown for degenerate condi-
tional expectations). Thus, the embedding Ay — Ay induces a K K-equivalence
by [41]. Similarly, by a result due to Speicher [50], we have

(A, po F)

I

(A, 90 E) % (T, w) + (T, w)
(T(H), E3) %a (T(H), Ex)
(T(H ©® H)? EHEBH)?

Il

2

and thus A — A gives a K K-equivalence by [41] again. ]

We may identify ((Ag, Ex)) with C*(Ag, Py). If X7 and X3 are full, then
K(X;) € K(X) and By, C ((Ag, Ex)) are full corners, and thus all the horizontal
embedding maps in the next commuting diagram induce K K-equivalences by
[5].

K(xg)¢) K(Xk) ~*  >5p

TV

By—— (A, E))

Here the embedding ¢,: D — K(X}) is given by d — dep. We set (X}) =
Kk Qr(xy) (66)F € KK(K(XY), D). Since the inclusion map py: Ay, — (A, Ex))
gives a cross section of of the split extension 0 — K(X) — (A, Ex)) —
A — 0 (see §, the above commuting diagram implies that pu © pp €
KK(Ay & D, (Ag, Ex))) is a K K-equivalence.

By Theoremand Theoremwe may use the identifications AT(A, E) =
O(X) and C*(I1, T) = T (X). Recall that the kernel of the quotient map p: T (%) —
O(X) is isomorphic to K(F(X)Jx), and that II: B — T(X) and 1q := (II —
Yr o ¢x)| s Jx = K(F(X)Jx) induce K K-equivalences (see [41, 31]). By these
K K-equivalences, one can rewrite the six-term exact sequence induced from the
Toeplitz extension as

KK(P Jx) — KK(P.B) —— KK(P,0(X))

T l (4.4)

KE'(P,0(X)) «=— KK'(P,B) & KK'(P,Jy)

for any separable C*-algebra P (see [41,[31]). Here ¢ is the inclusion map Jx < B
and [X] is induced from [(X, ¢x|s,0)] € KK(Jx,B). Let §, be the element
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corresponding in K K'(O(X),K(F(X)Jx)) to the Toeplitz extension (see [48,
§1]). Then, the connecting map KK (P,O(X)) — KK'(P,Jx) in the above
exact sequence is given by 6, ®xFx)s) (to) ' € KK'(O(X), Jx). Note that
(X7)® (X3) € KK(Jx,D & D) is a K K-equivalence.

Lemma 4.2.4. Assume that X7 and X3 are full. Then there is a cyclic exact
sequence

KK(P.D®D) —— KK(P.A®A4oDoD) —— KK(PO(X)
n

[ |
KKYP,0(%X)) +2— KKYP,A,® Ay ® D& D) «+— KK'P,D& D),

where §(x,y) = (=i1(y), —i2.(2), 2 + 4,2 +y) and n = ¢ © jiu + ¢ © Jou +
prs + pax. The map 9 is induced from 8, Qg(Fx)s) (o) Q1 (X7) ® (X3)) €
KK'(O(X),D @ D).

Proof. The proof proceeds by rewriting the exact sequence in Eq. . Since
X¢ is full, By is a full corner of (A, E%)), and thus the inclusion By < (A, Ex))
induces a K K-equivalence. Then, the next diagram commutes and all vertical
arrows are isomorphisms:

KK?(P,K(X)) KK?(P, By) KK?(P,0(%))

(KK )«

KK?(P,K(X})) KKP(P,0(X))

KKP(P, (A, Ex)))

(er)= (k1) ()«

(0,1) GxOJ kst PR,

KK?(P,D)

KK?(P, A, & D) KK?(P,0(X)).

We next observe that [X] is the direct sum of two maps (¥ o i), o (X}). from
KKP(P,K(Xy)) to KK?(P, By), k = 1,2. Thus, the assertion follows from next
commuting diagram:

(Urotig)«0(X5)«

KK?(P,K(X?)) KKP(P, By)

X2)x
()/

KK?(P, D) g KK"(P Az @ D).

(4.5)
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We are now ready to prove Theorem 4.2.1]
Proof of Theorem [{.2.1. We first show the exactness at KK?(P, A; @ As). By

the previous lemma, we have Imd o ¢, C ker{ = {(x,—x) | v € ker(i14, 12.) }
Via the isomorphism ker¢ > (z,—xz) — x € ker(iys, i) C KKP(P, D), we
obtain a connecting map &': KK?(P,A) — KKP*'(P,D). By Lemma [4.2.2]
¢ KKP(P,A) - KKP(P,O(X)) is injective. Thus, ji.(z) — jex(y) = 0 if and
only if n(z, —y,0,0) = 0 if and only if (z, —y,0,0) = (i1.(2), —i2.(2)) for some
z € KKP?(P, D), and hence we obtain Im(7y,, i2.) = ker(ji1. — jox). Also, since ¢.
is injective, we have ker & = kerd o ¢, = Im(j1« + jou), and thus the exactness
at K KP(P, A) holds.

To see Im @ = ker(iys, 2. ), it is enough to see Imd o ¢, D ker& = {(z, —x) |
& € ker(iy.,i2.)}. By the definition of 0, this is equivalent to Im(¢ ®o(x) dp)«
contains (1q). o ((X7) & (X3)); (z, —x) for x € ker(iy.,42.). Let ©: O(X) —
T (X) be as in Theorem and put A := C*(O(A)) + K(F(X)Jx). The next
commuting diagram

0—K(F(X)Jx) —T(X) —=0(X) —=0

p

¢

0 —=K(F(X)Jx) Z A—L = A 0

and [48, Lemma 1.5] imply that ¢ ®o(x) 0, € KK'(A,K(F(X)Jx)) is the element
corresponding to the semisplit extension 2 of A. Hence it follows from the six-
term exact sequence for  that Im(¢ ®o(x) dp)« = kerv,. Therefore, it suffices
to show that v, o (1q). o (X7) @ (X3)): (z, —x) = 0 for & € ker(iy,, i2.). Let
O By — C*(Ox(Ax)) be the inverse of the isomorphism in Remark [3.3.8 Note
that 1o @k ()i V = t®p (01462) in KK (Jx,2A). Also, it follows from the proof
of the previous lemma that ((X7) @ (X3)), ' (z, —z) € (X7) ® (X3)); ' (ker &) =
ker(c, — [X]). Since 0; o Uy 04y = 05 0 ¥y 04y, we have

v o (1) o ((X7) ® (X3)), (2, —x)

— (64 62). 012 0 ((XD) ® (X9)): (2, —2)

= (01 + 60), o (—[X]) o ((X7) ® (X3)) ' (z, —2)

= (61 +02)s 0 (Vg 04y, ¥y 01y),(—x,2)

= —(91 e} \Pl @) 21)*<l') + (QQ e} \112 @) 22)*<I')

=0.
Here the third equality follows from the commuting diagram (4.5). Thus, we
obtain the exact sequence for K KP(P,—).

For the exact sequence for K K?(—P), it is enough to show that ¢ @ p; is a
K K-equivalnce. Let n be as in Lemma [4.2.4] Since p; + po = j; 041 holds in
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KK(D,O(X)), a simple diagram chasing shows that ¢. + p1.: KK(O(X), A ®
D) - KK(O(X),O(X)) is surjective. We show that ¢+ p; is a K K-equivalence
by the following trick from [40]: Take v € KK (O(X), A® D) such that 1ox) —
(BB0)Raap (@B p1) = 7YRaep (0@ p1). Since the left hand side is an idempotent
in the ring KK (O(X), O(%)), it follows from Lemma that

Y ®aep (¢ ® p1)
=7 ®aep (0D p1) — 7 Ragp (¢ ® p1) Qo) (8D 06) ®agp (¢ D p1)
=7 ®a0p (@D p1) — 7 Raep (¢ @ p1) = 0.

]

Remark 4.2.5. Our proof shows that if X7 and X3 are full, then the com-
position of the connecting map &': KK(P,A) — KK'(P,D), the diagonal
embedding D — D @ D, and the KK-equivalence (X7 @ X3) ™! ®y, 1o €
KK(D & D,K(F(%X)Jx)) is given by the semisplit extension

0 — K(F(X)Jx) — C(O(A)) + K(F(X)Jx) — A — 0.

In the original proof in [19], it was shown that a natural embedding of the
mapping cone C; of the diagonal embedding D — A; & A, into the suspension
SA has an inverse © € KK (SA,C;). Then, the connecting map is given by the
Kasparov product of x and the evaluation map C; — D. It might be interesting
to compare these two maps.

As a by-product, we obtain the following theorem:

Theorem 4.2.6. The element ¢®p,: KK(A®D, AT (A, E)) is a K K -equivalence.
Therefore, the KK-class of AT(A, E) does not depend on the choice of condi-
tional expectations Ey, k =1,2.

Proof. When X7 and X3 are full, the assertion follows from the last paragraph of
the proof of Theorem In the general case, one can check the surjectivity of
@« + p1x« by applying Theorem to the reduced amalgamated free products A
and AT(A, E) (cf. Corollary [3.4.2)). The second assertion follows from Theorem

. m

We close this paper by the following corollary about K-nuclearity introduced
by Skandalis [49]. Note that this corollary also follows from the original proof
in [19] since the mapping cone of the diagonal embedding i: D — A; & Ay is a
semisplit extension of D by SA; & SA,.

Corollary 4.2.7. Reduced amalgamated free products of K-nuclear C*-algebras
are K-nuclear.
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Proof. Assume that A;, Ay and D are K-nuclear. We may assume that X7 and
X5 are full by Lemma [4.2.3] Then, K(X}) and D are K K-equivalent, and thus
K(Xy), Jx and K(F(X)Jx) are K-nuclear. It follows from [49, Proposition 3.8]
that By has the same property. Since II induces a K K-equivalence, T (X) is
K-nuclear, and thus so is AT(A, E) = O(X) by [49, Proposition 3.8|. Therefore,
¢ @ar(a,p) B is implemented by some nuclear Kasparov bimodule, and hence the
K-nuclearity of A follows from Lemma [4.2.2] m
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