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Abstract

A rattleback is a rigid, semi-elliptic toy which exhibits unintuitive spinning
behavior; when it is spun in one direction, it soon begins pitching and stops
spinning, then it starts to spin in the opposite direction, but in the other
direction, it seems to spin just steadily. This puzzling behavior results from
the slight misalignment between the principal axes for the inertia and those
for the curvature; the misalignment couples the spinning motion with the
pitching and rolling oscillations.

In this thesis, we reformulate the rattleback dynamics under the no-slip
condition and without dissipation by Garcia and Hubbard [Proc. R. Soc.
Lond. A 418, 165 (1988)]. In the small spin and small oscillation regime,
we reduce the dynamics to that of three variables, i.e. the spin, the pitching
energy and the rolling energy, and they are coupled by the two coefficients
called asymmetric torque coefficients. It has been shown that the spin can
reverse in both directions, and using the simplified dynamics, we derive the
formula for the time required for the spin reversal tr, which has been orig-
inally obtained by Garcia and Hubbard. We show that (i) Garcia-Hubbard
formula can be expressed in a simple form consisting of four factors, i.e. the
misalignment angle, the difference in the inverses of inertia moment for the
two oscillations, that in the radii for the two principal curvatures, and the
squared frequency of the oscillation, and that (ii) the averaged torque gen-
erated by the pitching and that by the rolling always have opposite signs to
each other. We then show that the ratio of the asymmetric torque coeffi-
cients, which determines the ratio of the times for reversal in the spinning
direction, is simply given by the ratio of the squared oscillation frequencies.
For a typical rattleback, the pitch frequency is significantly faster than the
roll frequency, therefore the time for reversal in one direction is much shorter
than that in the other spinning direction.

We also perform extensive numerical simulations to examine validity and
limitation of Garcia-Hubbard formula for the time for spin reversal tr. We
find that (i) Garcia-Hubbard formula for tr is good for both the spinning
directions in the small spin and small oscillation regime, and that (ii) in the
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fast spin regime especially for the steady direction, the rattleback may not
reverse and shows a rich variety of dynamics including steady spinning, spin
wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

Despite the fact that the simplified dynamics leads to the periodic be-
havior, after the first spin reversal time, our simulation results demonstrate
that the system shows quite rich dynamics: quasi-periodic behavior, chaotic
behavior, and quasi-periodic yet the periods being significantly shorter than
the first one. We discuss this breakdown of periodicity in connection with
breakdown of approximations/assumptions used in deriving the simplified
dynamics.
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Chapter 1

Introduction

1.1 What is rattleback?

A rattleback, also called as a celt, celtic stone, or wobble stone, is a spinning
toy which exhibits unintuitive dynamical behavior. Commercially available
rattlebacks are mostly (but not always) boat-shaped, semi-elliptic rigid ob-
jects made of plastic or wood (Fig.1.1). It spins smoothly when spun in one
direction, however, when spun in the other direction, it soon starts wobbling
or rattling about its short axis and stops spinning, then it starts to rotate
in the opposite direction. One who has studied classical mechanics must
be amazed by this reversal in spinning, because it apparently seems to vi-
olate the angular momentum conservation and the chirality emerges from a
seemingly symmetrical object.

Although rattlebacks are often classified as spinning tops [1, 2, 3], there
is a big difference between them, i.e., rattlebacks do not need to be spun
fast. For a familiar top to keep spinning, fast spin is necessary to generate
the gyroscopic effect, which keeps it from falling. Also, the torque due to slip
at the contact point lifts up the center of mass [4]. By contrast, a rattleback
is statically stable, and only one or two revolutions per second is enough to
observe the spin reversal. Therefore, we can guess that the gyroscopic effect
and the torque due to slip are not crucial for the spin reversal behavior.

Historically, stones with this reversal effect, especially ones found in an-
cient remains, are called as celts (Fig.1.1). The name has nothing to do with
the Celts, an ancient tribe in Europe. The word “celte” in the Latin Bible
was interpreted as a chisel, and then the word has become the name of chiral
stones [5]. After a physicist Jeal Walker introduced celts under the name of
rattleback in Scientific American in 1979, “rattleback” has become a popular
name [2]. We use the name rattleback throughout this thesis.
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Figure 1.1: (left) A commercially available rattleback made of plastic. (right)
A celt stone, from the book on spinning tops, written in 1909 [3].

Figure 1.2: A schematic illustration of pitching, rolling and spinning.

There are three requirements for a rattleback to show this reversal of rota-
tion; (i) the two principal curvatures of the lower surface should be different,
(ii) the two horizontal principal moments of inertia should also be different,
and (iii) the principal axes of inertia should be misaligned to the principal
directions of curvature. These characteristics induce the coupling between
the spinning motion and the two oscillations: the pitching about the short
horizontal axis and the rolling about the long horizontal axis (Fig. 1.2). The
coupling is asymmetric, i.e., the oscillations cause torque around the spin
axis and the signs of the torque are opposite to each other. This also means
that either the pitching or the rolling is excited depending on the direction
of the spinning. We will see that the spinning motion couples with the pitch-
ing much stronger than that with the rolling, therefore, it takes much longer
time for spin reversal in one direction than in the other direction; that is why
most rattlebacks reverse only for one way before they stop by dissipation.

Objects which satisfy these requirements are not rare at all. In fact,
we can make rattlebacks by bending a spoon, putting some weights on a
classic phone receiver, and so on (Fig. 1.3). Various photos and movies
of rattlebacks can be found on the Internet. Among them, we mention a
rattleback made of a wine bottle, which was made by Pippard, a prominent
physicist [6]. He cut gently tapered part of a wine bottle and glued a heavy
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Figure 1.3: A bended spoon (left) and a phone receiver with two weights
(right) that show reversals of rotation.

brass bar on it. This rattleback reverses its spin several times when it is
spun at about one revolution per second. He noted that to make a “good”
rattleback, two radii of curvature should differ significantly (3.5 cm and 25 cm
in his case), the friction between a horizontal surface and a rattleback should
be large so that it rolls on the surface rather than slips, a long inertia bar
is desirable, and a contact area (ideally a point) should be small to prevent
dumping. These know-hows are examined later in the thesis.

1.2 An overview of the literature

1.2.1 On rattleback dynamics

In the 1890s, a meteorologist Walker performed the first quantitative anal-
ysis of the rattleback motion [7, 1]. He is most known today for Walker
Circulation, i.e., an atmospheric circulation on the Pacific Ocean. His works
were performed at Cambridge before he moved to India, where he published
pioneering works on the modern meteorology [8]. In [1], he linearized the
equations of motion under the assumptions that the rattleback does not slip
at the contact point and that the rate of spinning speed changes much slower
than other time scales, and showed that either the pitching or the rolling
becomes unstable depending on the direction of the spin.

More rigorous conditions under which the instabilities develop were deter-
mined by Bondi [9], who is known for the steady state universe, and recently
by Wakasugi [10]. Case and Jalal [11] derived the growth rate of instability
at small rotational speed based on Bondi’s formulation. Markeev [12], Pascal
[13], and Blackowiak et al. [14] obtained equations including the spin mode,
namely the equations which show the reversal of rotation, by extracting the
slowly varying amplitudes of the fast oscillations (pitching and rolling). Mof-
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fatt and Tokieda [15] derived similar equations to those of [12] and [13], and
pointed out the analogy to the αω-dynamo theory, which explains the dy-
namo action in the inner earth; in fact, the geomagnetic field is also known
to change its direction. Garcia and Hubbard [16] obtained the analytical
formulae of the averaged torques induced by pure pitching and rolling, which
are then used to describe the spin evolution. In the next chapter, we review
Bondi [9], Case and Jalal [11], and Moffatt and Tokieda [15], and compare
these works with our theory, which is based on Garcia and Hubbard [16].

In the 1980s, as the first numerical study, Kane and Levinson [17] simu-
lated the energy-conserving equations and showed that the rattleback changes
its spinning direction indefinitely for certain parameter values and initial
conditions. They also showed that it starts to rotate when begun with only
pure pitching or rolling, but the direction of the rotation is different between
pitching and rolling. Similar simulations were performed by Lindberg Jr.
and Longman independently [18]. Nanda et al. recently simulated the spin
resonance of the rattleback on a vibrating base [19].

Energy conserving dynamical systems usually conserve the phase volume,
but the present rattleback dynamics does not explore the whole phase volume
with a given energy because of the no-slip condition, which is a non-holonomic
constraint. Therefore, Liouville theorem does not hold, and such a system has
been shown to behave much like dissipative systems. Borisov and Mamaev in
fact reported the existence of “strange attractor” for certain parameter values
in the present system [20]. The no-slip rattleback system has been actively
studied in the context of chaotic dynamics during the last decade [21, 22,
23, 24, 25]. We will also encounter chaotic behaviors in our simulations in
Chapter 3.

Effects of dissipation at the contact point have been investigated in sev-
eral works. Magnus [26] and Karapetyan [27] incorporated a viscous type of
friction to the equations. Takano [28] determined the conditions under which
the reversal of rotation occurs with the viscous dissipation. Garcia and Hub-
bard [16] simulated equations with aerodynamic force, Coulomb friction due
to spinning, and dissipation due to slippage; then they compared the results
with a real rattleback. The dissipative rattleback models based on the con-
tact mechanics with Coulomb friction have been developed by Zhuravlev et
al. [29], Kudra and Awrejcewicz [30, 31, 32].

1.2.2 Related topics in physics

Spinning motions of rigid bodies have been studied for centuries, from the ro-
taion of the earth to the exactly solvable spinning tops, and still are drawing
interest in recent years. Moffatt investigated the dynamics of a heavy thick
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disk called Euler’s disk [33]. During the spinning process, the disk makes
a noise with its frequency increasing, then it abruptly stops. He made a
simple model of Euler’s disk by simply incorporating no-slip dynamics with
aerodynamic dissipation, and showed the divergence of the frequency and
the breakdown of the theory just before it stops. Recently, an interesting
dynamics of rolling rings [34] was investigated. Unlike Euler’s disk, air can
move freely through the hole of the ring, and under the aerodynamic dissi-
pation, this makes the sign of ring’s orbital angular momentum changes just
before it stops. Moffatt and Shimomura revisited a well known phenomena of
spinning eggs [35, 36]. They explained why an egg rises when it is spun fast,
and they found that an egg can even jump [37, 38]. In this case, dissipation
due to slip plays a crucial role as classical tippe tops. For all these works,
the spinning speed needs to be fast enough and dissipation mechanism is es-
sentially required, in contrast to the rattleback dynamics we will investigate
in the present thesis.

Rattleback dynamics can also be viewed as a mechanical system which
converts oscillation to rotation and vise versa. Not to mention that such a
system is important for engineering purposes, this coupling has also been
studied in various contexts in physics such as a circular granular ratchet [39],
and bouncing dumbbells, which shows a cascade of bifurcations [40].

1.3 Motivation and outline of this thesis

Although the previous works we have briefly reviewed can answer the gen-
eral mechanism of the spin reversal behavior, differences of motions among
various rattlebacks have not been sufficiently investigated. In fact, some
rattlebacks such as Pippard’s rattleback we have mentioned show relatively
strong coupling between spinning and rolling than that of Fig. 1.1; what
factors create the difference among them has not been fully explained.

In addition to that, recent developments in 3D printing technology have
paved a way to make complicated 3D-objects with controlled mass distribu-
tions. Bächer et al. [41] proposed a novel algorithm to make a complicated
3D object which spins stably by optimizing the mass distribution inside it.
Understanding the effects of inertial and shape factors on the rattleback mo-
tion may enable us to create new rattleback designs by using such technology.

Based on these motivations, in the present thesis, we study the minimal
model for the rattleback dynamics, i.e., a spinning rigid body with a no-slip
contact ignoring any form of dissipation.

This thesis is organized as follows. Theoretical part is given in the next
chapter. We reformulate Garcia and Hubbard’s theory [16] of rattleback
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dynamics under the no-slip and no-dissipation conditions, and reduced it to
that of three variables, i.e. the spin, the pitching energy and the rolling
energy, in the small spin and small oscillation regime. We then focus on
the time required for reversal, or what we call the time for reversal, which
is the most evident quantity that characterizes rattlebacks, and obtain a
concise expression for Garcia-Hubbard formula for the time for reversal [16].
Related works are reviewed and compared with our theory. In Chapter 3
we give simulation results for the time for reversal. After we show typical
simulated spin behaviors, we investigate how the time for reversal depends on
the various model parameters and initial conditions by numerical simulations
to examine the validity and the limitation of the theory. Summary and
discussion are given in Chapter 4.
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Chapter 2

Theory

In the first section of this chapter, we formulate the equations of motion
of the rattleback and the constraints we investigate throughout this thesis.
After linearizing the equations in the small oscillations under the zero-spin
regime in Section 2.2, we reformulate Garcia and Hubbard’s theory for the
time for reversal [16] in Section 2.3. We then review related works by Bondi
[9] and Case and Jalal [11] in Section 2.4 and 2.5, respectively. Comparison
of our theory with related works is presented in the last section.

2.1 Model equations

2.1.1 Equations of motion

We consider a rattleback as a rigid body, whose configuration can be repre-
sented by the position of the center of mass G and the Euler angles; both
of them are obtained by integrating the velocity of the center of mass v and
the angular velocity ω around it [42].

We investigate the rattleback motion on a horizontal plane, assuming
that it is always in contact with the plane at a single point C without slip-
ping. We ignore dissipation, then all the forces that act on the rattleback
are the contact force F exerted by the plane at C and the gravitational
force −Mgu, where u represents the unit vertical vector pointing upward
(Fig. 2.1). Therefore, the equations of motion are given by

d(Mv)

dt
= F −Mgu, (2.1)

d(Îω)

dt
= r × F , (2.2)
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C

G

Figure 2.1: Notations of the rattleback.

where M and Î are the mass and the inertia tensor around G, respectively,
and r is the vector from G to the contact point C.

The contact force F is determined by the conditions of the contact point;
our assumptions are that (i) the rattleback is always in contact at a point
with the plane, and (ii) there is no-slip at the contact point. The second
constraint is represented by the relation by which v is related with ω as

v = r × ω. (2.3)

Before formulating the constraint (i), we specify the co-ordinate system.
We employ the body-fixed co-ordinate with the origin being the center of
mass G, and the axes being the principal axes of inertia; the z-axis is the
one close to the spinning axis pointing downward, and the x and y axes are
taken to be Ixx > Iyy (Fig. 2.2).

In this co-ordinate, the lower surface function of the rattleback is assumed
to be given by

f(x, y, z) = 0, (2.4)

where

f(x, y, z) ≡ z

a
− 1 +

1

2a2
(x, y)R̂(ξ)Θ̂R̂−1(ξ)

(
x
y

)
, (2.5)

with

R̂(ξ) ≡
(
cos ξ, − sin ξ
sin ξ, cos ξ

)
, Θ̂ ≡

(
θ, 0
0 ϕ

)
. (2.6)

Here a is the distance between G and the surface at x = y = 0, and ξ is the
skew angle by which the principal directions of curvature are rotated from
the x-y axes, which we choose as the principal axes of inertia (Fig. 2.2). θ/a
and ϕ/a are the principal curvatures at the bottom, namely at (0, 0, a)t.
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Now, we can formulate the contact point condition (i); the components
of the contact point vector r should satisfy Eq. (2.4), and the normal vector
of the surface at C should be parallel to the vertical vector u. Thus we have

u ∥ ∇f, (2.7)

which gives the relation

r⊥
a

=
1

uz
R̂(ξ)Θ̂−1R̂−1(ξ)u⊥, (2.8)

where a⊥ represents the x and y components of a vector a in the body-fixed
co-ordinate.

Before we proceed, we introduce a dotted derivative ȧ of a vector a
defined as the time derivative of the vector components in the body-fixed
co-ordinate. This is related to the time derivative by

da

dt
= ȧ+ ω × a. (2.9)

Note that the vertical vector u does not depend on time, thus we have

du

dt
= u̇+ ω × u = 0. (2.10)

These conditions, i.e., the no-slip condition Eq. (2.3), the conditions of the
contact point Eqs. (2.4) and (2.8), and the vertical vector condition Eq. (2.10)
close the equations of motion Eqs. (2.1) and (2.2).

We remark two properties of the present system. First, there exists the
energy integral:

E =
1

2
ω · (Iω) +

1

2
Mv2 +Mgu · r = const. (2.11)

Second, the equations are invariant under time reversal, i.e. the equations
are unchanged under the transformation t→ −t and ω → −ω.

Following Garcia and Hubbard [16], we describe the rattleback dynamics
by u and ω. The evolution of ω is obtained as

Îω̇ −Mr × (r × ω̇) = −ω × (Îω)

+Mr × (ṙ × ω + ω × (r × ω)) +Mgr × u (2.12)

by eliminating the contact force F from the equations of motion (2.1) and
(2.2), and using the no-slip condition (2.3). The state variables u and ω can
be determined by Eqs. (2.10) and (2.12) with the contact point conditions
Eqs. (2.4) and (2.8). Since u is a unit vector, the present system has five
degrees of freedom.
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2.1.2 Rattleback parameters

The rattleback is characterized by the inertial parameters M , Ixx, Iyy, Izz,
the geometrical parameters θ, ϕ, a, and the skew angle ξ. For the stability
of the rattleback, both of the dimensionless curvatures θ and ϕ should be
smaller than 1; without loss of generality, we assume

0 < ϕ < θ < 1, (2.13)

then, it is enough to consider

−π
2
< ξ < 0, (2.14)

for the range of the skew angle ξ. The positive ξ case can be obtained by the
reflection with respect to the x-z plane.

At this stage, we introduce the dimensionless inertial parameters α, β,
and γ for later use after Bondi [9] as

α ≡ Ixx
Ma2

+ 1, β ≡ Iyy
Ma2

+ 1, γ ≡ Izz
Ma2

, (2.15)

which are dimensionless inertial moments at the contact point C. Note that

α > β > 1, (2.16)

because we have assumed Ixx > Iyy.

2.1.3 On averaged torque and chirality

A big surprise of the rattleback motion is its apparent violation of the con-
servation law of the vertical angular momentum. The torque around the
vertical axis, which is responsible for the reversal, is given by

u · (r × F ) =M(u× r) · dv
dt
. (2.17)

Note that the contact point vector r is generally not parallel to u because
the bottom surface is not spherical, thus the torque around the vertical axis
does not need to be zero on average. We estimate this averaged torque later
in this chapter.

Another surprise is its chiral behavior, namely the apparently symmetri-
cal rattleback shows different behaviors depending on the spinning directions.
This chiral behavior results from the skew angle ξ, and |ξ| ≪ 1 for typical
rattlebacks; the chiral symmetry breaking is ingeniously hidden in the rat-
tleback, which makes the motion counterintuitive.
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Figure 2.2: A body-fixed co-ordinate viewed from below. The dashed lines
indicate the principal directions of curvature, rotated by ξ from the principal
axes of inertia (x-y axes).

2.2 Small amplitude approximation of oscil-

lations under ωz = 0

In this section, we consider the oscillation modes in the case of no spinning
ωz = 0 in the small amplitude approximation, namely, in the linear approxi-
mation in |ωx|, |ωy| ≪

√
g/a, which leads to |x|, |y| ≪ a, |ux|, |uy| ≪ 1, and

uz ≈ −1.
In this regime, the x and y components of Eq. (2.10) can be linearized as

u̇⊥ ≈ ε̂ω⊥, ε̂ ≡
(

0, 1
−1, 0

)
= R̂(−π/2). (2.18)

By using Eq. (2.8) with uz ≈ −1, Eq. (2.12) can be linearized as

Ĵ ω̇⊥ ≈ g

a2
(r × u)⊥

= −g
a
ε̂ [−R̂(ξ)Θ̂−1R̂−1(ξ) + 1]u⊥, (2.19)

with the inertial matrix

Ĵ ≡
(
α, 0
0, β

)
. (2.20)

From the linearized equations (2.18) and (2.19), we obtain

Ĵω̈⊥ = −g
a
(Γ̂− 1)ω⊥, (2.21)
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where

Γ̂ ≡ R̂(ξ + π/2)Θ̂−1R̂−1(ξ + π/2)

=

(
θ−1 sin2 ξ + ϕ−1 cos2 ξ, (ϕ−1 − θ−1) sin ξ cos ξ
(ϕ−1 − θ−1) sin ξ cos ξ, ϕ−1 sin2 ξ + θ−1 cos2 ξ

)
. (2.22)

At this point, it is convenient to introduce the bra-ket notation for the row
and column vector of ω⊥ as ⟨ω⊥| and |ω⊥⟩, respectively. With this notation,
Eq. (2.21) can be put in the form of

| ¨̃ω⊥⟩ = −Ĥ |ω̃⊥⟩ , (2.23)

with

|ω̃⊥⟩ ≡ Ĵ1/2 |ω⊥⟩ (2.24)

and

Ĥ ≡ g

a
Ĵ−1/2(Γ̂− 1)Ĵ−1/2

=
g

a

(
(Γ11 − 1)/α, Γ12/

√
αβ

Γ12/
√
αβ, (Γ22 − 1)/β

)
, (2.25)

where Γij denotes the ij component of Γ̂. Note that Ĥ is symmetric.
The eigenvalue equation

Ĥ |ω̃j⟩ = ω2
j |ω̃j⟩ (2.26)

determines the two oscillation modes with j = p or r, whose frequencies are
given by

ω2
p,r =

1

2

[
(H11 +H22)±

√
(H11 −H22)2 + 4H2

12

]
(2.27)

with
ωp ≥ ωr. (2.28)

The orthogonal condition for |ω̃j⟩ can be written using ε̂ as

|ω̃p⟩ = ε̂ |ω̃r⟩ , |ω̃r⟩ = −ε̂ |ω̃p⟩ , (2.29)

⟨ω̃r| = ⟨ω̃p| ε̂, ⟨ω̃p| = −⟨ω̃r| ε̂. (2.30)

In the case of zero skew angle, ξ = 0, we have

ω2
p =

(g
a

) 1/ϕ− 1

α
≡ ω2

p0, (2.31)

ω2
r =

(g
a

) 1/θ − 1

β
≡ ω2

r0, (2.32)
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and the eigenvectors |ωp⟩ and |ωr⟩ are parallel to the x and the y axis, thus
these modes correspond to the pitching and the rolling oscillations, respec-
tively. This correspondence holds for |ξ| ≪ 1 and ωp0 > ωr0 as for a typical
rattleback parameter, on which case we will discuss mostly in the following.

2.3 Garcia and Hubbard’s theory for the time

for reversal

Based on our formalism, it is quite straightforward to derive Garcia and
Hubbard’s formula for the reversal time of rotation.

2.3.1 Asymmetric torque coefficients

Due to the skewness, the pitching and the rolling are coupled with the spin-
ning motion. We examine this coupling in the case of ωz = 0 by estimat-
ing the averaged torques around the vertical axis caused by the pitching
and rolling oscillations. From Eqs. (2.1) and (2.2) and the no-slip condition
Eq. (2.3), the torque around u is given by

T ≡ u · (r × F ) ≈ −Ma2[ω̇⊥ · ε̂(Γ̂− 1)ε̂u⊥ ], (2.33)

within the linear approximation in ω⊥, u⊥, and r⊥ discussed in the previous
section.

We define the asymmetric torque coefficients Kp and Kr for each mode
by

−Kp ≡
T p

Ep

, Kr ≡
T r

Er

, (2.34)

where T j (j = p or r) is the averaged torque over the oscillation period　
generated by each mode, and Ej is the corresponding averaged oscillation
energy which can be estimated within the linear approximation as

E ≈Ma2(αω2
x + βω2

y). (2.35)

The minus sign for the definition of Kp is inserted in order that both Kp

and Kr should be positive as can be seen below. Note that the asymmetric
torque coefficients are dimensionless.
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From Eqs. (2.33) and (2.35), −Kp is given by

−Kp =
⟨ωp| ε̂(Γ̂− 1)ε̂ε̂ |ωp⟩

⟨ωp|Ĵ |ωp⟩

= −(a/g) ⟨ω̃p| Ĵ−1/2ε̂Ĵ1/2Ĥ |ω̃p⟩
⟨ω̃p|ω̃p⟩

(2.36)

= −ω2
p

(a/g) ⟨ω̃p| Ĵ−1/2ε̂Ĵ1/2 |ω̃p⟩
⟨ω̃p|ω̃p⟩

, (2.37)

with

Ĵ−1/2ε̂Ĵ1/2 =

(
0,

√
β/α

−
√
α/β, 0

)
. (2.38)

In the same way, Kr is given by

Kr = −(a/g) ⟨ω̃r|Ĵ−1/2ε̂Ĵ1/2Ĥ|ω̃r⟩
⟨ω̃r|ω̃r⟩

(2.39)

= ω2
r

(a/g) ⟨ω̃p|ε̂(Ĵ−1/2ε̂Ĵ1/2)ε̂|ω̃p⟩
⟨ω̃p|ω̃p⟩

, (2.40)

with

ε̂(Ĵ−1/2ε̂Ĵ1/2)ε̂ =

(
0, −

√
α/β√

β/α, 0

)
. (2.41)

Eqs. (2.36)–(2.41) yield simple relations for Kp and Kr as

Kp

Kr

=
ω2
p

ω2
r

(2.42)

and

Kp −Kr =
(a/g)

⟨ω̃p|ω̃p⟩
Tr

[
Ĵ−1/2ε̂Ĵ−1/2Ĥ

]
= −1

2
sin(2ξ)

(
1

β
− 1

α

)(
1

ϕ
− 1

θ

)
. (2.43)

Eqs. (2.42) and (2.43) are enough to determine

Kp = −1

2
sin(2ξ)

(
1

β
− 1

α

)(
1

ϕ
− 1

θ

)
ω2
p

ω2
p − ω2

r

, (2.44)

Kr = −1

2
sin(2ξ)

(
1

β
− 1

α

)(
1

ϕ
− 1

θ

)
ω2
r

ω2
p − ω2

r

. (2.45)
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Note that Eqs. (2.44) and (2.45) are consistent with the three require-
ments of rattlebacks: ξ ̸= 0, α ̸= β, and θ ̸= ϕ. Eqs. (2.44) and (2.45) are
shown to be equivalent to the corresponding expressions Eq. (42a,b) in Gar-
cia and Hubbard [16], although their expressions look quite involved. The
proof is given in the appendix.

These results also show that

KpKr > 0 and hence T pT r < 0, (2.46)

namely, the torques generated by the pitching and the rolling have always
opposite signs to each other.

2.3.2 Typical rattleback parameters

Typical rattleback parameters fall in the region that satisfies the following
two conditions: (i) the skew angle is small,

|ξ| ≪ 1, (2.47)

and (ii) the pitch frequency is higher than the roll frequency. Under these
conditions, the modes p and r of Eq. (2.26) correspond to the pitching and
the rolling oscillations respectively, and

ω2
p ≈ ω2

p0, ω2
r ≈ ω2

r0 (2.48)

in accord with the inequality Eq. (2.28). From Eqs. (2.34), (2.44) and (2.45),
the signs of the asymmetric torque coefficients and the averaged torques for
typical rattlebacks are given by

Kp > 0 and Kr > 0, (2.49)

and
T p < 0 and T r > 0, (2.50)

by noting ξ < 0, α > β, θ > ϕ.
The fact that ωp0 > ωr0 for a typical rattleback means that the shape

factor, 1/ϕ − 1 or 1/θ − 1, contributes much more than the inertial factor,
1/α or 1/β, in Eqs. (2.31) and (2.32) although these two factors compete, i.e.
1/ϕ−1 > 1/θ−1 and 1/α < 1/β. This is a typical situation because the two
curvatures of usual rattlebacks are markedly different, i.e., ϕ≪ θ < 1 as can
be seen in Fig. 1.1. Moreover, we can show that the pitch frequency is always
higher than the roll frequency for an ellipsoid with a uniform mass density
whose surface is given by x2/c2 + y2/b2 + z2/a2 = 1 (b2 > c2 > a2). This
also holds for a semi-ellipsoid for b2 > c2 > (5/8)a2, where the co-ordinate
system is the same as the ellipsoid. The proofs are given in the appendix.
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Figure 2.3: An example of the simplified dynamics Eqs. (2.52)–(2.54). n(0) =
0.1, Ep(0) = 10−3, Er(0) = 10−4, Kp = 0.5, Kr = 0.1, and Ieff = 10.

2.3.3 Time for reversal

Now we study the time evolution of the spin n defined as the vertical com-
ponent of the angular velocity

n ≡ u · ω, (2.51)

assuming that the expressions for the asymmetric torque coefficients, Kp and
Kr, obtained above are valid even when ωz ̸= 0. We consider the quantities
n, Ep, and Er, averaged over the time scale much longer than the oscillation
periods, yet much shorter than the time scale for spin change. Then, these
averaged quantities should follow the evolution equations,

Ieff
dn(t)

dt
= −KpEp(t) +KrEr(t), (2.52)

dEp(t)

dt
= Kpn(t)Ep(t), (2.53)

dEr(t)

dt
= −Krn(t)Er(t). (2.54)

Here, Ieff is the effective moment of inertia around u under the existence of the
oscillations, and is assumed to be constant; it should be close to Izz. Note
that the dynamics shows chiral behavior for typical rattleback parameters
because Kp/Kr = ω2

p/ω
2
r ≫ 1 with Kp, Kr > 0 as argued in Sec. 2.3.2.
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As can be seen easily, the total energy Etot defined by

Etot ≡
1

2
Ieffn(t)

2 + Ep(t) + Er(t) (2.55)

is conserved. It can be seen that there is another invariant

C ≡ 1

Kp

lnEp +
1

Kr

lnEr, (2.56)

which has been discussed in connection with a Casimir invariant [15, 43].
With these two conservative quantities, general solutions of the three-variable
system (2.52)–(2.54) should be periodic as shown in Fig. 2.3.

Let us consider the case where the spin is positive at t = 0 and the sum
of the oscillation energies are small compared to the spinning energy, i.e.

n(0) ≡ ni > 0, Ep(0) + Er(0) ≪
1

2
Ieffn

2
i . (2.57)

For a typical rattleback, the pitching develops and the rolling decays as long
as n > 0 as can be seen from Eqs. (2.49), (2.53) and (2.54). Thus the rolling
is irrelevant and can be ignored, i.e. Er(t) = 0, to estimate the time for
reversal. Then we can derive the equation

dn(t)

dt
= −Kp

2

(
n2
0 − n(t)2

)
, (2.58)

where the constant n0 > 0 is defined by

1

2
Ieffn

2
0 ≡ Etot. (2.59)

This can be easily solved as

n(t) = n0
(n0 + ni) exp(−n0Kpt)− (n0 − ni)

(n0 + ni) exp(−n0Kpt) + (n0 − ni)
(2.60)

and we obtain the time for reversal trGH+ for the ni > 0 case as

trGH+ =
1

n0Kp

ln

(
n0 + ni

n0 − ni

)
, (2.61)

by just setting n = 0 in Eq. (2.60).
Similarly, in the case of ni < 0, only the rolling develops and the pitching

is irrelevant, thus we obtain n(t) and the time for reversal trGH− as

n(t) = −n0
(n0 + |ni|) exp(−n0Krt)− (n0 − |ni|)
(n0 + |ni|) exp(−n0Krt) + (n0 − |ni|)

(2.62)
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and

trGH− =
1

n0Kr

ln

(
n0 + |ni|
n0 − |ni|

)
. (2.63)

Eqs. (2.61) and (2.63) are Garcia-Hubbard formulae for the times for reversal
[16].

2.3.4 Parameter dependences of the time for reversal

From the expressions of Kp and Kr given by Eqs. (2.44) and (2.45), we
immediately notice that (i) the time for reversal is inversely proportional to
the skew angle ξ in the small skewness regime, and (ii) the ratio of the time
for reversal trGH−/trGH+ is simply given by the squared ratio of the pitch
frequency to the roll frequency ω2

p/ω
2
r , provided initial values n0 and ni are

the same except their signs.
For a typical rattleback, ω2

p ≫ ω2
r , thus trGH+ ≪ trGH−, i.e. the time for

reversal is much shorter in the case of ni > 0 than in the case of ni < 0. Thus
we call the spin direction of ni > 0 the unsteady direction [16], and that of
ni < 0 the steady direction.

In the small skewness regime, this ratio of the squared frequencies is
estimated as

ω2
p

ω2
r

≈
ω2
p0

ω2
r0

=
β

α

1/ϕ− 1

1/θ − 1
. (2.64)

This becomes especially large as θ approaches 1 or as ϕ approaches 0, namely,
as the smaller radius of principal curvature approaches a, or as the larger ra-
dius of principal curvature becomes much larger than a. We remark that both
of the inertial parameters α and β are larger than 1 by definition Eq. (2.15),
and cannot be arbitrarily large for a typical rattleback.

Let us consider these two limiting cases: ϕ→ 0 and θ → 1 with |ξ| ≪ 1.
In the case of ϕ→ 0,

Kp → ∞, Kr → (−ξ)
(
1

β
− 1

α

)
α

β

(
1

θ
− 1

)
, (2.65)

thus the time for reversal trGH− remains constant while trGH+ approaches 0.
In the case of θ → 1,

Kp → (−ξ)
(
1

β
− 1

α

)(
1

ϕ
− 1

)
, Kr → 0, (2.66)

thus trGH+ remains constant while trGH− diverges to infinity, i.e. the negative
spin rotation never reverses.
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2.4 Three zones of the parameter space

In this section, we briefly review Bondi’s work [9], which applies to the small
oscillation regime yet the spin n is not necessary small.

There always exists a steady solution of the equations of motion Eqs. (2.10)
and (2.12),

ω(0) = (0, 0, const.)t and u(0) = (0, 0,−1)t, (2.67)

namely, constant vertical spinning at the bottom r = (0, 0, a)t. Since the
spin n changes in much slower times scale than the pitching and the rolling,
he assumed it as a constant when considering the instability of the oscilla-
tions. By examining the roots of the characteristic equation in the linear
stability analysis of the oscillations under the constant spin, Bondi classified
the six-dimensional parameter space (α, β, γ, θ, ϕ, ξ) into 3 “zones”. We call
them Zone 0, Zone I and Zone II after Bondi (Zone 0 was named by Garcia
and Hubbard [16]). These zones are classified using following two auxiliary
variables µB and κB:

µB = 2− (θ + ϕ)− (α + β − γ)(θ + ϕ− 2θϕ), (2.68)

κB = 1− 1

2
(α + β − 2γ)(θ + ϕ)

+ (α− γ)(β − γ)θϕ− 1

2
(α− β)(θ − ϕ) cos(2ξ). (2.69)

It can be shown that κB > µB.
We call the subspace where µB > 0 Zone 0. In this zone, either the

pitching or the rolling grows for arbitrary n. We call the subspace where
µB < 0 and κB > 0 Zone I. In this zone, there exists the threshold spin value
nc1 such that the spin reversal due to rolling does not occur where |n| > |nc1|.
In this case, the motion asymptotically approaches vertical steady spinning,
i.e., the steady solution is linearly stable. If |n| < |nc1|, the behavior is the
same as Zone 0 rattleback, i.e., either the pitching or the rolling is unstable
depending on a spinning direction. Lastly, the subspace where µB < 0 and
κB < 0 is called Zone II. In this zone, the second threshold nc2 can be
defined. While Bondi did not show the asymptotic motion which corresponds
to |n| > |nc2|, Gracia and Hubbard numerically showed that unlike Zone I
motion, the body-fixed z-axis forms a certain angle to the vertical vector u
asymptotically. For |nc1| < |n| < |nc2|, the motion asymptotically approaches
vertical steady spinning motion as in Zone I, and for |n| < |nc1|, either the
pitching or the rolling is unstable as in Zone 0.
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The expressions of nc1 and nc2 are given by

nc1 = −
(
g

a

−νB
µB

)1/2

(2.70)

nc2 = −
(g
a

)1/2
(

2νB
[(λB + µB)2 − 4νBκB]1/2 − (λB + µB)]

)1/2

, (2.71)

where

λB =
1

2
(α + β)(θ + ϕ− 2θϕ)− 1

2
(α− β)(θ − ϕ) cos(2ξ), (2.72)

νB = (1− θ)(1− ϕ). (2.73)

Note that nc1 does not depend on ξ.
Linderg and Longman [18] performed simulations for a rattleback with

a parameter set which corresponds to Zone I with |nc1| = 31.7/sec. They
observed instability for both spinning directions when |ni| = 1/sec, which is
consistent with the Bondi’s theory. In the next chapter we investigate the
simulation results of Zone 0 and Zone I rattlebacks with the initial spin |ni|
larger than |nc1|.

Bondi has shown that Zone II does not exist if

Ixx < Izz, or equivalently (α− 1)− γ < 0. (2.74)

For an ellipsoid x2/c2+y2/b2+ z2/a2 = 1 (b2 > c2 > a2) with a uniform mass
density,

α− γ =
1

5

[
6−

( c
a

)2
]
< 1, (2.75)

thus Zone II does not exist. This holds for a semi-ellipsoid as shown in the
appendix. In addition to that, a simple rattleback model we introduce in
the next chapter also can not have Zone II. Detailed analysis of the Zone II
rattleback is beyond the scope of this thesis.

2.5 Oscillations with a small constant spin

In this section we review Case and Jalal [11], which shows that either the
pitching or the rolling grows depending on the spinning direction when we
start with a small constant spin. This corresponds to a special case of Bondi’s
work.
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We consider small deviations |ux|, |uy| ≪ 1, |ωx|, |ωy| ≪
√
g/a around

the steady solution Eq. (2.67) under the small constant spin |n| ≪
√
g/a,

and examine the linear stability of this solution, i.e., ω(t) = (0, 0,−n)t and
u(t) = (0, 0,−1)t.

First, Eq. (2.18) is linearized in the presence of the small spin as

u̇⊥ ≈ ε̂(ω⊥ − nu⊥). (2.76)

Next we linearize Eq. (2.12). To this end, we linearize Eqs. (2.8) using Γ̂
defined in Eq. (2.22) as

r⊥
a

≈ ε̂Γ̂ε̂u⊥ =

(
−Γ22, Γ12

Γ12, −Γ11

)
u⊥, (2.77)

with z ≈ a. Note that Γ12 = Γ21 because Γ̂ is symmetric. Then, (r × u)⊥
can be written using Γ̂ as,

(r × u)⊥ ≈ aŜu⊥, Ŝ =

(
−Γ12, Γ11 − 1

−Γ22 + 1, Γ12

)
. (2.78)

In addition to the terms in the case of ωz = 0, following terms are added to
the linearized equation of Eq. (2.12):

[ω × (Îω)]⊥ ≈ n

(
(−Iz + Iyy)ωy

(−Ix + Iz)ωx

)
, (2.79)

[ṙ · (r · ω)]⊥ ≈ −na2
(
−Γ22, Γ12

Γ12, −Γ11

)
u̇⊥, (2.80)

and
(r × ω)(r · ω) ≈ −na2(−ωy, ωx, 0)

t. (2.81)

By collecting the terms of Eq. (2.12) with non-zero components, we obtain

Îω̇ +Mr2ω̇ = −ω × (Îω) +M [ṙ(r ·ω)− (r ×ω)(r ·ω) + gr × u]. (2.82)

After some manipulations, its x and y components become

αω̇x = n(γ − β)ωy + n(Γ22u̇x − Γ12u̇y) +
g

a
[−Γ12ux + (Γ11 − 1)uy], (2.83)

and

βω̇y = n(α− γ)ωx + n(−Γ12u̇x +Γ11u̇y) +
g

a
[−(Γ22 − 1)ux +Γ12uy]. (2.84)
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Figure 2.4: A schematic illustration of the loci of the roots when the spin n
departs slightly from 0.

Eqs. (2.83) and (2.84) can be written in the matrix form as

Ĵω̇⊥ = nX̂0ω⊥ + nX̂1u̇⊥ +
g

a
Ŝu⊥, (2.85)

where

X̂0 =

(
0, (γ − β)

(α− γ), 0

)
, X̂1 =

(
Γ22, −Γ12

−Γ12, Γ11

)
. (2.86)

With the notation δ ≡ g/a, Eqs. (2.76) and (2.85) lead to

Ĵω̇⊥ = nX̂0ω⊥ + nX̂1ε̂(ω⊥ − nu⊥) + δŜu⊥

≈ n(X̂0 + X̂1ε̂)ω⊥ + δŜu⊥, (2.87)

then the differential equations for ω⊥ and u⊥ can be put in the form of(
ω̇⊥
u̇⊥

)
= Â

(
ω⊥
u⊥

)
, (2.88)

where

Â =


n
Γ12

α
,

n

α
(Γ22 + (γ − β)), −δΓ12

α
,

δ

α
(Γ11 − 1)

n

β
(−Γ11 + (α− γ)), n

−Γ12

β
, − δ

β
(Γ22 − 1), δ

Γ12

β
0, 1, 0, −n
−1, 0, n, 0

 .

(2.89)
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Its characteristic equation |Â− λcÎ4| = 0 is given by

λ4c + λ3cnΓ12

(
1

β
− 1

α

)
+ λ2c

[
δ

α
(Γ11 − 1) +

δ

β
(Γ22 − 1)

]
+
δ2

αβ

[
(Γ11 − 1)(Γ22 − 1)− Γ2

12

]
= 0. (2.90)

Here we have dropped O(n2) terms. Note that the first order term in λc
vanishes. When n = 0, the eigenvalues become ±iωp,±iωr. In the presence
of the small third order term, the roots depart from the imaginary axis
(Fig. 2.4). The characteristic equation can be rearranged as

(λ2c + ω2
p)(λ

2
c + ω2

r) = −λ3cnΓ12(1/β − 1/α). (2.91)

By substituting λc = iωp + σp, iωr + σr into the equation and collecting the
lowest order terms in σp and σr, we obtain

σp = −nΓ12

2

(1/β − 1/α)ω2
p

(ω2
p − ω2

r)
σr =

nΓ12

2

(1/β − 1/α)ω2
r

(ω2
p − ω2

r)
. (2.92)

Eq. (2.92) is equivalent to that by Case and Jalal [11]. Note that Γ12 < 0
since ξ < 0. For typical rattlebacks with ωp ≈ ωp0 > ωr0 ≈ ωr, the pitching
develops if n > 0, while the rolling develops if n < 0; this is consistent with
our theory.

2.6 Comparison of our theory with related

works

The simplified dynamics in Section 2.3 can be compared with some related
works. We have reviewed Case and Jalal’s calculation of the growth rates
[11] in the previous section. Their results can be expressed as

σp =
n

2
Kp, σr = −n

2
Kr. (2.93)

The factor 1/2 comes from the choice of the variables; they chose the contact
point co-ordinates, while we choose the oscillation energies, which are second
order quantities of their variables.

Moffatt and Tokieda [15] obtained equations for the oscillation amplitudes
of pitching and rolling, P and R, and the spinning S as

d

dτ

PR
S

 =

 R
λP
0

×

PR
S

 =

 λPS
−RS

R2 − λP 2

 , (2.94)
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where τ is rescaled time, and λ is the squared ratio of the pitch frequency to
the roll frequency. Their assumptions are that (i) the rattleback is an oblong,
mass-uniform ellipsoidal one with a small skew angle, and (ii) the spin and
the oscillations are small.

By changing variables of our simplified dynamics Eqs. (2.52)–(2.54) as

Ep =
P 2
s

2
, Er =

R2
s

2
, n = Ss, (2.95)

we obtain

Ṗs =
Kp

2
PsSs, Ṙs = −Kr

2
RsSs, Ieff Ṡs =

Kr

2
R2

s −
Kp

2
P 2
s , (2.96)

which are equivalent to Eq. (2.94) because Kp/Kr = λ.
The mathematical structure of Eq. (2.94) was investigated recently in

more detail by Yoshida et al. [43]. They found that Eq. (2.94) can be
reformulated as

Ẋ = {X, H}, where X ≡ (P,R, S)t and H ≡ 1

2
(P 2 +R2 + S2). (2.97)

Here {A,B} is the Poisson bracket defined as

{A,B} ≡ (∂iA)Jij(∂jB), with Ĵ =

 0, 0, λP
0, 0, −R

−λP, R, 0

 . (2.98)

Such a system is called Lie-Poisson system [43], and is known to have an
invariant called Casimir invariant CI , which satisfies

(∂iCI)Jij = 0. (2.99)

In their case, this invariant is given by

CI = PRλ. (2.100)

CI corresponds to the invariant C in Eq. (2.56), because

2e(CKp)/2 = PsR
λ
s . (2.101)
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Chapter 3

Simulation

In this chapter, we present numerical simulations of the equations of motion
and compare them with Garcia-Hubbard formulae Eqs. (2.61) and (2.63)
reformulated in the previous chapter.

3.1 Shell-dumbbell model

To consider a rattleback whose inertial and geometrical parameters can be
set separately, we construct a simple model of the rattleback, or the shell-
dumbbell model, which consists of a light shell and two dumbbells: the light
shell defines the shape of the lower part of the rattleback and the dumbbells
represent the masses and the moments of inertia. The shell is a paraboloid
given by Eq. (2.4). The dumbbells consist of couples of weights, mx/2 and
my/2, fixed at (±rx, 0, 0) and (0,±ry, 0) in the body-fixed co-ordinate, re-
spectively (Fig. 3.1). Then the total mass is

M = mx +my (3.1)

and the inertia tensor is diagonal with its principal moments

Ixx = myr
2
y, Iyy = mxr

2
x, (3.2)

Izz = myr
2
y +mxr

2
x. (3.3)

Note that the simple relation

Izz = Ixx + Iyy (3.4)

holds for the shell-dumbbell model. We define

fsd ≡ Iyy/Izz, (3.5)
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rx

Figure 3.1: A schematic illustration of the shell-dumbbell model.

then the dimensionless parameters α, β, and γ defined by Eq. (2.15) are given
by,

γ = Izz/Ma2, α = (1− fsd)γ + 1, β = fsdγ + 1. (3.6)

The parameter fsd satisfies 0 < fsd < 0.5, since we have assumed α > β.
As stated in the previous chapter, Zone II does not exist if (α−1)−γ < 0

(Eq. (2.74)). As for the shell-dumbbell model,

(α− 1)− γ = −fsdγ < 0. (3.7)

It satisfies the relation (2.74), thus there is no Zone II rattleback for the
shell-dumbbell model.

The shell-dumbbell model makes it easier to visualize an actual object
represented by the model with a set of parameters, and is used in the following
simulations for determining the parameter ranges.

3.2 Simulation methods

The equations of motion (2.10) and (2.12) with the contact point conditions
(2.4) and (2.8) are numerically integrated by the fourth-order Runge-Kutta
method with an initial condition ω(0) and u(0). In the simulations, we take

u(0) = (0, 0,−1)t (3.8)

and specify ω(0) as

ω(0) = (|ωxy0| cosψ, |ωxy0| sinψ, −ni) (3.9)

in terms of |ωxy0|, ψ, and ni. According to the simplified dynamics Eqs. (2.52)–
(2.54), the irrelevant mode of oscillation does not affect the dynamics sensi-
tively as long as the relevant mode exists and the initial spin energy is much
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Table 3.1: Two sets of parameters used in the simulations: GH used by
Garcia and Hubbard [16] and SD for the present shell-dumbbell model. For
SD, the parameter values are chosen randomly from the ranges shown in the
table, and averages and/or distributions of simulation results are presented.

γ fsd α, β θ ϕ −ξ (deg)

GH 12.28 — 13.04, 1.522 0.6429 0.0360 1.72
SD [5, 15] [0.05, 0.15] — [0.6, 0.95] [0.01,0.1] (0,6]

larger than the initial oscillation energy. Thus we choose |ω(0)⟩ = (ωx0, ωy0)
t

in the direction of the relevant eigenmode, i.e.

ψ = ψp for ni > 0, and ψ = ψr for ni < 0, (3.10)

where ψp and ψr are the angles of the eigenvectors |ωp⟩ and |ωr⟩ from the
x-axis, respectively.

Numerical results are presented in the unit system where M , a, and

t̃ ≡ 1/ω̃ ≡
√
a/g (3.11)

as units of mass, length, and time. The size of the time step for the numerical
integration is taken to be 0.002 t̃. In numerics, we determine the time for
reversal tr by the time at which n = ω · u becomes zero for the first time,
and they are compared with Garcia-Hubbard formulae (2.61) and (2.63); n0

is determined as
γn2

0

2
=

1

2
(αω2

x0 + βω2
y0 + γω2

z0), (3.12)

assuming Ieff = Izz at t = 0. Here the potential energy U(u) is set to zero
where u(0) = (0, 0,−1)t.

The parameters used in the simulations are listed in Table 3.1. For the
parameter set SD, the ranges are shown. When numerical results are plotted
against Kp or Kr, given by Eqs. (2.44) or (2.45) respectively, sets of parame-
ters are chosen randomly from the ranges until resultingKp orKr falls within
the range of ±0.1% of a target value. The ranges of SD are chosen to meet
the following two conditions: (i) 0 < ϕ≪ θ < 1, β < α, and |ξ| ≪ 1 and (ii)
the pitch frequency should be higher than the roll frequency. As argued in
Section 2.3, usual rattlebacks such as one in Fig. 1.1 satisfy these two con-
ditions. Fig. 3.2 shows the cumulative distributions for the eigenfrequencies
ωp and ωr, and their approximate expressions ωp0 and ωr0 for the parameter
set SD; it shows (ωp/ωr) > 1.3 in accordance with the condition (ii).

The parameter set GH gives Kp = 0.553 and Kr = 0.0967, and the
distributions of Kp and Kr for SD are shown in Fig. 3.3, where one can see
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Figure 3.2: (a) Cumulative distributions of the pitch and the roll frequencies
for the parameter set SD in Table 3.1; ωp and ωr of Eq. (2.26) and their 0-th
order approximation ωp0 and ωr0 by Eqs. (2.31) and (2.32) are shown. The
inset shows the cumulative distribution of ωp/ωr. The number of samples is
106.

Kp ≫ Kr. From Eq. (2.42), this corresponds to ω2
p ≫ ω2

r , i.e., the pitch
frequency is significantly faster than the roll frequency. Consequently, the
time for reversal is much shorter for the unsteady direction ni > 0, where the
pitching is induced, than for the steady direction ni < 0, where the rolling
is induced. We denote the time for reversal for the unsteady direction as tru
and that for the steady direction as trs when we consider a specific spinning
direction.

3.3 Simulation results for the parameter set

GH

3.3.1 General behavior for the parameter set GH

In Fig. 3.4 we show a typical simulation result of the time evolution of the
spin n(t) along with the angular velocities ωx(t) and ωy(t) for the parameter
set GH (Table 3.1) in the case of the unsteady direction ni > 0 (a), and the
steady direction ni < 0 (b).

Fig. 3.4(a-1) shows that the spin n changes its sign from positive to neg-
ative at tru ≈ 112 t̃, and Fig. 3.4(b-1) shows the spin n changes its sign from
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Figure 3.3: (a) Cumulative distributions of the asymmetric torque coef-
ficients Kp and Kr for SD (Table 3.1). The number of samples is 105.
(b) A 2-d color plot for the distribution of (Kp,Kr). The color code
shown is in the logarithmic scale for the relative frequency P (Kp, Kr), i.e.,
−9 ≤ log10 P (Kp, Kr) ≤ 0. The number of samples is 108.

negative to positive at trs ≈ 810 t̃. Garcia and Hubbard’s solution n(t) of
Eqs. (2.60) and (2.62) are shown by the dashed lines in Fig. 3.4(a-1) and (b-
1), respectively; they are in good agreement with the numerical simulations.

The angular velocities ωx and ωy oscillate in much shorter time scale,
and their amplitudes evolve differently depending on the spin direction. In
the case of Fig. 3.4(a), where the positive initial spin reverses to negative,
the amplitude of ωx becomes large and reaches its maximum around tru; the
amplitude of ωy also becomes large around both sides of tru but shows the
local minimum at tru. Both of ωx and ωy oscillate at the pitch frequency
ωp ≈ 1.44 ω̃. In the case of Fig. 3.4(b) where the negative spin reverses to
positive, the situation is similar but the amplitude of ωy reaches its maximum
around trs, and ωx and ωy oscillate at the roll frequency ωr ≈ 0.602 ω̃.

These features can be understood based on the analysis in the previous
chapter as follows. The positive spin induces the pitching, which is mainly
represented by ωx because eigenvector of the pitching |ωp⟩ are nearly parallel
to the x-axis, i.e., ψp ≈ −17◦. Likewise, the negative spin induces the rolling,
mainly represented by ωy because ψr ≈ 88◦. The local minima of the ampli-
tude for ωy in Fig. 3.4(a-3), or ωx in Fig. 3.4(b-2), at the times for reversal are
tricky; it might mean that the eigenvector of the pitching (rolling) deviates
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Figure 3.4: A typical spin evolution and the corresponding ωx and ωy for
GH (Table 3.1). (a) The case of the initial spin in the unsteady direction.
The initial condition is specified by Eqs. (3.8)–(3.10) with ni = 0.1 ω̃ and
|ωxy0| = 0.01 ω̃. (b) The case of the initial spin in the steady direction
with ni = −0.1 ω̃ and |ωxy0| = 0.01 ω̃. The dashed lines in (a-1) and (b-1)
show Garcia and Hubbard’s solution n(t) given by Eqs. (2.60) and (2.62),
respectively.

more from the x-axis (y-axis) for ωz ̸= 0 than that for ωz = 0, as a result,
the pitching (rolling) mode has larger projection on the y-axis (x-axis) for
ωz ̸= 0.

Note that for given |ni|, the maximum value of ωy in Fig. 3.4(b-3) is larger
than that of ωx in (a-2). This is due to α ≫ β; the oscillation energy around
zero spin for the both cases should be the same, which gives αω2

x ≈ βω2
y thus√

ω2
x <

√
ω2
y .

3.3.2 Comparison with Garcia-Hubbard formulae

Garcia and Hubbard [16] simulated the equations of motion for several n0

between 0.021 ω̃ and 0.13 ω̃ (6 data points for the unsteady direction and 4
for the steady direction) with fixed n2

i /n
2
0 (0.95 for the unsteady direction,

0.75 for the steady direction) and obtained good agreement with trGH±. In
this subsection, we present similar simulations but for wider range of ni and
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|ωxy0|.
The times for reversal tru and trs as functions of initial spin ni are shown

in Fig. 3.5. The simulation data is fitted well to trGH+ for the unsteady
direction where ni is small, but tru deviates drastically from trGH+ beyond
ni ≃ 0.3 ω̃ for |ωxy0| = 0.001 ω̃ and beyond ni ≃ 0.1 ω̃ for |ωxy0| = 0.1 ω̃.
As |ωxy0| becomes larger, the spin value at which tru starts to deviate from
trGH+ becomes smaller. As for the ni dependence, tru starts to increase
around ni ≈ 0.4 ω̃ and appears to converge to the value 30 t̃ irrespective of
|ωxy0|. Fig. 3.5(c) shows a spin evolution with ni = 0.6 ω̃. The spin oscillates
widely at the pitch frequency, and the spin behavior is qualitatively different
from typical behaviors at small ni and from Garcia and Hubbard’s solution
n(t) of Eq. (2.60).

For the steady direction, the simulation data is fitted well to trGH− for
small |ni|, but when |ni| ≳ 0.6 ω̃, the rattleback does not reverse its spin and
wobbles “chaotically” between ni < n(t) < 0, as shown in Fig. 3.5(d) for the
case ni = −0.7 ω̃.

As we have argued in the previous chapter, there always exists a steady
solution, ω(0) = (0, 0, const.)t and u(0) = (0, 0,−1)t, and Bondi [9] has
shown that for the steady direction, this is linearly stable for n < nc1 < 0,
where nc1(< 0) is given by

n2
c1 ≡

g

a

−(1− θ)(1− ϕ)

2− (θ + ϕ)− (α + β − γ)(θ + ϕ− 2θϕ)
. (3.13)

|nc1| of the parameter set GH is 1.68ω̃. As we have pointed out above, the spin
does not reverse at ni = 0.7ω̃ already. However, this does not contradict with
Bondi’s theory, because the spin actually deviates from the steady solution.

For larger ni, trGH+ tends to underestimate tru, as already noted by Garcia
and Hubbard [16] for the parameter set GH. This tendency can be also seen
in Fig. 3.4(a-1), where one can see that Garcia and Hubbard’s solution n(t)
of Eq. (2.60) changes its sign earlier than the simulation. On the other
hand, trGH− tends to overestimate trs, in contrast to the case of the unsteady
direction, where trGH+ underestimates tru. This has also been noted by
Garcia and Hubbard for the parameter set GH, and can be seen by Garcia
and Hubbard’s solution n(t) in Fig. 3.4(b-1).

3.4 Simulation with the parameter set SD

We present detailed results of the simulations for the ranges of the parameters
given by SD in Table 3.1.
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Figure 3.5: Times for reversal tru and trs (marks) as functions of initial spin
ni for GH (Table 3.1), along with the Garcia-Hubbard formula trGH± given
by Eqs. (2.61) and (2.63) (solid lines). (a) The case of the initial spin in the
unsteady direction (ni > 0). (b) The case of the initial spin in the steady
direction (ni < 0). (c) A spin evolution with high unsteady initial spin
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32



10
1

10
2

10
3

ni =0.1ω
~

slope = -1

t r
u
 /
 t~

ni = 0.2ω
~

0.1 1

ni = 0.3ω
~

|ωxy0| =0.001ω
~

 |ωxy0| =0.01ω
~

 |ωxy0| =0.1ω
~

10
1

10
2

10
3

0.1 1

ni =0.4ω
~

t r
u
 /
 t~

0.1 1

ni = 0.5ω
~

Kp 

Figure 3.6: Time for reversal of the unsteady direction tru for the parameter
set SD (Table 3.1) as a function of the asymmetric torque coefficient Kp in
the logarithmic scale. The error bars indicate one standard deviation of 1000
samples for each data point. The solid lines are trGH+ given by Eq. (2.61),
calculated using the mean values of n0.

33



3.4.1 Unsteady initial spin direction (ni > 0)

In this case, the system behaves basically as we expect from Garcia-Hubbard
formula unless the initial spin or oscillation is too large. Fig. 3.6 shows the
time for reversal tru as a function of Kp when spun in the unsteady direction.
The results are plotted against Kp by the procedure described in Sec. 3.2.

When the initial spin ni is ni ≲ 0.2 ω̃ with |ωxy0| = 0.001ω̃, 0.01ω̃, tru is
in good agreement with Garcia-Hubbard formula trGH+ of Eq. (2.61), i.e. al-
most inversely proportional to Kp with small scatter around the average. For
a given ni, as the initial oscillation amplitude |ωxy0| becomes large, the stan-
dard deviations of tru become large, and the average of tru deviates upward
from the Garcia-Hubbard formula trGH+, which is derived with the small am-
plitude approximation of ωx and ωy. For larger ni, trGH+ also underestimates
tru, as in the case of GH.

For ni ≳ 0.4 ω̃, tru deviates notably upward from Garcia-Hubbard for-
mula trGH+. As ni increases, the average of tru increases and the standard
deviations become large. The spin oscillates widely at the pitch frequency as
in the case of GH, which is qualitatively different from typical spin behaviors
at small ni and from Garcia and Hubbard’s solution n(t) of Eq. (2.60) as in
Fig. 3.4(a-1). In this region, Garcia-Hubbard formula is no longer valid.

3.4.2 Steady initial spin direction (ni < 0)

Much more complicated phenomena are observed when spun in the steady
direction. When the initial spin |ni| is small enough, the spin simply reverses
as shown in Fig. 3.4(b-1). We call this simple reversal behavior Type R. For
larger |ni|, however, there appear some cases where the spin never reverses;
in such cases there are two types of behaviors: steady spinning at nss (Type
SS), and spin wobbling around nw (nss < nw < 0, Type SW). For Type
SS samples, nss is slightly less than ni, i.e. nss < ni < 0, because small
initial rolling decays and its energy is converted to the spin energy. Typical
spin evolutions of a Type SS sample and a Type SW sample are shown in
Fig. 3.7(b-1) and (b-2).

Fig. 3.7(a) shows the Kr dependence of the fractions of Types R, SS, and
SW for various initial conditions given by ni and |ωxy0|. For each sample,
we wait up to t = 5trGH−; the spin evolution is classified as Type R if it
reverses. If it does not, the spin evolution is classified as Type SS if the
initial rolling amplitude decays monotonously, and classified as Type SW if
the spin n starts wobbling by the time 5trGH−. The other samples, in which
the rolling grows slowly yet shows no visible spin change by the time 5trGH−,
are labeled “unclassified” in Fig. 3.7. Such samples may show spin reversal or
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Figure 3.7: (a) Fractions of Types R, SS, and SW for the steady direction
for 8 values of Kr with various initial conditions |ωxy0| and ni. Parameters
are randomly chosen from SD (Table 3.1). The number of the samples is
1000 for each Kr. Filled triangles show the fractions of samples whose |nc1|
is smaller than |ni|. (b) Typical spin evolutions of a Type SS sample and a
Type SW sample, along with an example of “chaotic” oscillation found for
Kr = 0.0041 with ni = −0.5 ω̃.
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spin wobbling if we take much longer simulation time. Type SS appears for
|ni| ≳ 0.3 ω̃ and its fraction increases as |ni| increases. The fraction is larger
for smaller Kr and smaller |ωxy0|, i.e., |ωxy0| = 0.001 ω̃. Type SW appears
for |ni| ≳ 0.1 ω̃ and its fraction is also larger for smaller Kr, but stays around
0.2 for |ni| ≳ 0.4 ω̃.

Fig. 3.8 shows the Kr dependence of trs only for the samples of Type R,
which shows a spin reversal behavior. For small |ni| ≲ 0.2 ω̃ with |ωxy0| =
0.01 ω̃, 0.001 ω̃, trs is in good agreement with Garcia-Hubbard formula trGH−
of Eq. (2.63), and the average of tru is almost inversely proportional toKr. As
in the case of the unsteady direction, the standard deviations of trs become
large and the average of trs deviates downward from trGH− as initial oscilla-
tion amplitude |ωxy0| becomes large. Note that trGH− tends to overestimate
trs, in contrast to the case of the unsteady direction, where trGH+ underesti-
mates tru as we have shown for the parameter set GH. For |ni| ≳ 0.3 ω̃, one
may notice the standard deviations are large for Kr ≪ 0.1. In these cases,
we find that some samples appear to spin stably for quite a long time, i.e.,
several times of trGH−, and then abruptly starts to reverse its sign. During
the time period t < trs, the rolling grows much more slowly than it should as
predicted by the theory in Section 2.3. Such samples make both the average
and standard deviation large as shown in Fig. 3.8.

Next we consider the Type SS (steady spinning) samples. In our case of
the parameter set SD, nc1(< 0) is given by

n2
c1 =

g

a

1

(1− ϕ)−1 + (1− θ)−1 − 4
. (3.14)

Note that α + β − γ = 2 in our case of the shell-dumbbell model. We recall
that when the denominator of Eq. (3.14) is negative, such a threshold does
not actually exit, and the steady solution is always unstable. Note also that
nc1 does not depend on ξ. In Fig. 3.9 we show Zone 0 and Zone I of the
parameter space projected in the θ − ϕ plane. As we have shown in Section
3.1, there is no Zone II rattleback for the present model. For our choice of
parameters where ϕ≪ θ, most rattlebacks are in Zone I.

In Fig. 3.7, filled triangles show the fraction of samples whose |nc1| is
smaller than |ni|, which should correspond with the ratio of Type SS. For
|ωxy0| = 0.001 ω̃, all samples whose |nc1| is smaller than |ni| actually show
Type SS behaviors and vice versa. On the other hand, for |ωxy0| = 0.1 ω̃,
there are some samples whose |nc1| is smaller than |ni| yet do not show Type
SS behavior; for ni = −0.3 ω̃, there are only several Type SS samples out of
8000 samples, which cannot be seen in Fig. 3.7(a), and for |ni| ≳ 0.4 ω̃, the
fractions of Type SS for |ωxy0| = 0.1 ω̃ are smaller than those for |ωxy0| =
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Figure 3.8: Time for reversal trs for the steady direction as a function of
Kr in the logarithmic scale. Each data point represents the average with
the standard deviation of Type R samples out of 1000 simulations from the
parameter set SD (Table 3.1).

37



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

zone 0

zone 1φ

θ

Figure 3.9: Zone 0 and I projected in the ϕ − θ plane. The dashed line
ϕ(θ) = (2 − 3θ)/(3 − 4θ) separates the two zones. The enclosed region
indicates the range of the parameter set GH.

0.001 ω̃. This may be because |ωxy0| = 0.1 ω̃ is not small perturbation, and
the spin might have escaped from the basin of attracter of Type SS behavior.

Lastly we consider the Type SW (spin wobbling) samples. The time when
the spin starts to wobble roughly corresponds with trs of Type R in Fig. 3.8;
the center of wobbling nw and its amplitude vary from sample to sample. As
in the case of Type R, there are some samples which start to wobble after
several times of trGH− where Kr ≪ 0.1. Wobbling behaviors of such samples
are similar to those which start wobbling around trGH−. We remark that
there are two qualitatively different Type SW behaviors. When |ni| ≲ 0.4 ω̃,
the spin of Type SW sample oscillates almost periodically. However, when
ni = −0.5 ω̃ and Kr ≪ 0.1, we find some samples that show “chaotic”
oscillations as an example shown in Fig 3.7(b-3), which is similar to that
observed in Fig 3.5(d).
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Chapter 4

Summary and Discussion

4.1 Summary of our work

We have performed the theoretical analysis and numerical simulations on
the minimal model of rattleback. By reformulating Garcia and Hubbard’s
theory [16], we obtained the concise expressions for the asymmetric torque
coefficients, Eqs. (2.44) and (2.45), gave the compact proof to the fact that
the pitching and the rolling generate the torques with the opposite sign, and
reduced the original dynamics to the three-variable dynamics by a physically
transparent procedure.

Our expressions for the asymmetric torque coefficients are equivalent to
those by Garcia and Hubbard, but we explicitly elucidate that the ratio of
the two coefficient for the pitching and the rolling oscillation is proportional
to the squared ratio of those frequencies. Since the pitching frequency is
significantly higher than that of the rolling for a typical rattleback, the time
for reversal to one spin direction (or unsteady direction) is much shorter
than that to the other direction (or steady direction); the spin reversal for the
latter direction is not usually observed in a real rattleback due to dissipation.

The simulations on the original dynamics for various parameter sets
demonstrate that Garcia-Hubbard formulae for the first spin reversal time
Eqs. (2.61) and (2.63) are good in the case of small initial spin and small
oscillation for both the unsteady and the steady directions. The deviation
from the formula is especially large for the steady direction in the fast initial
spin and small Kr regime, where the rattleback may not reverse and shows
a variety of dynamics, that includes steady spinning, periodic and chaotic
wobbling.
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Figure 4.1: Three types of spin behaviors after the first reversal period in the
small spin regime with ni = 0.1ω̃, |ωxy0| = 0.01ω̃ for three different values of
θ, i.e. the curvature in the rolling direction. (a) A quasi-periodic behavior
with θ = 0.6429 (the same with GH), (b) a chaotic behavior with θ = 0.82,
(c) a quasi-periodic behavior with a period shorter than the first one with
θ = 0.9. All the other parameters are the same as GH. The dashed lines
show the spin evolutions for the corresponding simplified dynamics, where
Ep(0) =Ma2[α(|ωxy0| cosψp)

2+β(|ωxy0| sinψp)
2]/2, Er(0) = 3×10−5Ma2ω̃2,

and n(0) = ni.

4.2 Discussions

4.2.1 After the first round of spin reversals

In the present work, we study the minimal model for the rattleback dynamics,
i.e., a spinning rigid body with a no-slip contact ignoring any form of dissi-
pation. We have reduced the original dynamics to the simplified dynamics
Eqs. (2.52)–(2.54) with the three variables. The assumptions and/or approx-
imations used in the derivation are (i) the amplitudes of the oscillations are
small, (ii) the coupling between the spin and the oscillations does not de-
pend on the spin, and (iii) the time scale for the spin change is much longer
than the oscillation periods. It is interesting to note that the last assump-
tion is apparently analogous to that used in the derivation of an adiabatic
invariant for some systems under slow change of an external parameter if the
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spin variable is regarded as a slow parameter. In the present case with this
separation of time scales, the dynamics conserves the “Casimir invariant” C
of Eq. (2.56).

After the first round of spin reversals, our simplified dynamics Eqs. (2.52)–
(2.54) repeats itself and shows periodic behavior as well as the dynamics
studied by Moffatt and Tokieda Eq. (2.94) because the system with only
three variables has two conservative quantities, i.e., the total energy and the
Casimir invariant. However, the Casimir invariant is an approximate one in
the original dynamics, and invariant only under the approximations given at
the beginning of this section. The Casimir “invariant” actually varies and
the original system shows aperiodic behaviors.

A few examples for longer time evolutions of spin n(t) are given in Fig. 4.1
for the system with the parameter set GH except for the curvature in the
rolling direction θ = 0.6429 (GH, a), 0.82 (b) and 0.9 (c) along with those by
the corresponding simplified dynamics. The first example (a) almost shows
a periodic spin reversal behavior as is expected by the simplified dynamics.
It is, however, only quasi-periodic with fluctuating periodicity. The second
example (b) does not show a periodic behavior; the initial spin reversal till
t/t̃ ≈ 100 is nearly the same with (a), but after the time of the second spin
reversal around t/t̃ ≈ 3000, it turns into chaotic, deviating from the simplified
dynamics. The third example (c) may look similar to (a) but is peculiar; it
shows a quasi-periodic behavior after the initial round of spin reversals, and
its periodicity is much shorter than that by the simplified dynamics.

The simplified dynamics seems to work reasonably well for the case of
smaller θ in (a) but fails for larger θ close to 1 in (b) and (c). This indicates
that the approximations or assumptions used to derive the simplified dy-
namics are not valid for the larger curvature in the rolling direction θ; as the
radius of curvature 1/θ becomes small and close to 1, i.e., the height of the
center of mass, the restoration force for the rolling oscillation becomes weak.
This should result in the rolling oscillation with the larger amplitude and the
slower frequency, thus the assumptions (i) and (iii) given at the beginning of
this section may not be good enough.

The fact that the system shows a different behavior after the first round
of spin reversals is reminiscent of the existence of attractors, which is nor-
mally prohibited in an energy-conserving system by Liouville theorem. In the
present system, however, the theorem is invalidated by the non-holonomic
constraint due to the no-slip condition Eq. (2.3). As mentioned already, the
existence of strange attractors in an energy-conserving system with a non-
holonomic constraint has been studied by Borizov et al. [24], and chaotic
behavior in the rattleback system has been discussed in connection with the
Casimir invariant by Yoshida et al. [43]. Yoshida et al. extended the 3-d
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dynamics by Moffatt and Tokieda Eq. (2.94) to a 4-d dynamics, where the
Casimir “invariant” Eq. (2.100) slowly varies, and numerically observed the
chaotic behavior. This may be related to the case of Fig. 4.1(b); for this
case, the approximations that used in deriving the simplified dynamics are
not valid, thus C of Eq. (2.56) is not invariant anymore.

4.2.2 Pippard’s rattleback revisited

Now let us revisit Pippard’s rattleback in [6] we have introduced in Chapter
1, which shows more than one reversal before it stops. Assuming the long
heavy bar determines the mass and the moments of inertia, the rattleback
parameters are estimated as α = 11.7, β = 1.04, γ = 10.8, θ = 0.67, ϕ =
0.092, and ξ = 6◦. The corresponding asymmetric torque coefficients are
Kp ≈ 1.42 and Kr ≈ 0.56; large Kp and relatively large Kr are consistent
with his observation. Relatively large Kr is attributed to θ = 0.67, which is
significantly smaller than 1, and small β; these two factors give fast rolling
oscillation, which leads to relatively strong coupling between the rolling and
the spinning.

4.2.3 On elliptic and semi-elliptic rattlebacks

We have shown in Section 2.3 that for typical rattlebacks time for reversal
trGH− diverges to infinity as θ → 1. For an ellipsoid or a semi-ellipsoid whose
lower surface is given by x2/c2 + y2/b2 + z2/a2 = 1, θ is a2/c2 or (5a2)/(8c2),
respectively. Therefore, trGH− is very sensitive to a/c where the smaller
radius of principal curvature c2/a is close to the height of the center of mass
a or (5a)/8. This shows that changing the height of the center of mass, for
example by placing a weight somewhere at z-axis, can readily change the
motion of the steady spinning direction.

We also remark that similar (semi-)elliptic rattlebacks have the same
asymmetric coefficients. Garcia-Hubbard formulae Eqs. (2.61) and (2.63)
indicate that the time for reversals are the same for such rattlebacks when
initial spinning conditions ni and n0 are the same. On the other hand,
as a rattleback becomes larger, namely as the static height of the center
of mass a becomes larger, the pitch and roll periods become longer as can
be seen from Eqs. (2.31) and (2.32). These unintuitive two results stem
from the separation of the time scales between the time for reversal and the
oscillation periods. As the rattleback size becomes larger, the assumption
of the timescale separation becomes invalid at some point, thus the time for
reversal changes.

42



-0.1

 0

 0.1

n
 /
 ω~

-0.2

 0

 0.2

ω
x
 /
 ω~

-0.2

 0

 0.2

0 1000 2000 3000

ω
y
 /
 ω~

 

t / t
~

Figure 4.2: A spin evolution and the corresponding ωx and ωy for ωp0 < ωr0.
The parameter values are α = 12, β = 1.5, γ = 12, θ = 0.5, ϕ = 0.2, and
ξ = −3◦, which gives ω2

p0/ω
2
r0 ≈ 1/2.

4.2.4 Atypical choices of parameters

In this thesis, we have mainly considered the case where |ξ| ≪ 1 with the
pitch frequency being higher than the roll frequency, as in the case of usual
rattlebacks. In this subsection, we briefly argue how the dynamics is modified
if these restrictions are eased.

The expressions of the asymmetric torque coefficients Eqs. (2.44) and
(2.45) are valid for “atypical” cases unless ωp ≈ ωr. Therefore, the rattle-
back dynamics can be systematically studied by (i) specifying two oscillation
modes, i.e., the eigenfrequencies and eigenvectors, and (ii) calculating the
corresponding asymmetric torque coefficients. We remark that KpKr > 0
holds for atypical choices of parameters, thus the averaged torques generated
by the two oscillation modes always have opposite signs to each other.

As an example of atypical rattlebacks, let us consider the case of ωp0 < ωr0

with |ξ| ≪ 1, i.e., the pitching is slower than the rolling. In this case, ωp ≈ ωr0

and ωr ≈ ωp0 correspond to the rolling and the pitching modes, respectively,
because ωp > ωr by Eq. (2.28). Therefore, the spinning direction for which
the pitching or the rolling is excited is changed, and the time for reversal due
to the pitching becomes longer than that due to the rolling. A simulation
result for the ω2

p0/ω
2
r0 ≈ 1/2 case is shown in Fig. 4.2, which should be

compared with Fig. 3.4. As expected, the pitching develops when ni < 0 and
the rolling develops when ni > 0, while the time for reversal is longer for the
ni < 0 case than that for the ni > 0 case as in the case of ωp0 > ωr0.
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Figure 4.3: A spin evolution and the corresponding ωx and ωy for the skew
angle ξ = −85◦, with initial spinning direction (a) ni > 0 and (b) ni < 0. All
the other parameters are the same as GH. The directions of the eigenvectors
are ψp ≈ −89.4◦ and ψr ≈ 4.9◦, and the corresponding asymmetric torque
coefficients are Kp ≈ 1.3 and Kr ≈ 0.003.

As |ξ| increases, the pitching and the rolling become ambiguous be-
cause the eigenvectors are not close to the geometrical axes anymore. As
|ξ| approaches π/2, the two eigenvalues approach

√
(g/a)(1/ϕ− 1)/β and√

(g/a)(1/θ − 1)/α, because exchanging ϕ and θ, or α and β, corresponds
to changing the skew angle by π/2. Jeal Walker questioned what happens if
the moment of inertia for the rolling becomes larger than that for the pitch-
ing, keeping the shape unchanged [2]; this corresponds to this “another small
skewness” case, i.e., |ξ| ≈ π/2.

In Fig. 4.3 we show the simulation result for ξ = −85◦. The eigenvectors
|ωp⟩ and |ωr⟩ are now close to the y-axis and x-axis, respectively, with

ω2
p ≈

(g
a

) (1/ϕ− 1)

β
and ω2

r ≈
(g
a

) (1/θ − 1)

α
. (4.1)

Thus the theory predicts that the pitching, mainly represented by ωy, devel-
ops when ni > 0, which is indeed observed in the simulation in Fig. 4.3. Note
that Kr is so small that the corresponding time for reversal is quite long, and
it does not show a periodic behavior after the first reversal for ni < 0.

4.2.5 On initial conditions

When comparing the simulations with Garcia-Hubbard formulae, we have
only considered the initial condition u(0) = (0, 0,−1)t with relevant oscil-
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lation. Treating other initial conditions, for example setting ωx0 = ωy0 = 0
and giving u(0) and ωz0, is remained for future work.

4.3 Concluding remarks

In conclusion, the rattleback dynamics is fascinating not only because it
produces torques in an intriguing way, but also its non-holonomic nature
shows surprisingly rich dynamics when dissipation is neglected. We believe
that the rattleback system will keep on attracting physicist’s attention.
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Appendix A

Rattleback parameters for
semi-ellipsoids

For an ellipsoid with a uniform mass density whose surface is given by

x2

c2
+
y2

b2
+
z2

a2
= 1 (b > c > a), (A.1)

it can be shown that the pitch frequency is always higher than the roll fre-
quency as follows.

One can readily show that

Ixx =
M(b2 + a2)

5
, Iyy =

M(c2 + a2)

5
, Izz =

M(c2 + b2)

5
, (A.2)

thus, the inertial parameters α and β of the ellipsoid are given by

α =
b2 + 6a2

5a2
, β =

c2 + 6a2

5a2
. (A.3)

The lower surface around (0, 0, a)t can be approximated as

z

a
≈ 1− x2

2c2
− y2

2b2
, (A.4)

therefore θ and ϕ are given by

θ = a2/c2, ϕ = a2/b2. (A.5)

From Eqs. (A.3) and (A.5), we have

ω2
p0 =

g

a

1/ϕ− 1

α
=

5g

a

(b/a)2 − 1

(b/a)2 + 6
, (A.6)

ω2
r0 =

g

a

1/θ − 1

β
=

5g

a

(c/a)2 − 1

(c/a)2 + 6
. (A.7)
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Since b/a > c/a > 1 and f(x) = (x2−1)/(x2+6) is a monotonously increasing
function where x > 1, ω2

p0 > ω2
r0 is shown.

For a semi-ellipsoid whose lower surface is described by Eq. (A.1) with
the origin being the same as the ellipsoid, the height of the center of mass is
(5/8)a.

The radii of principal curvature are the same as the ellipsoid, thus we
have

θ =
5a

8

a

c2
=

5a2

8c2
, ϕ =

5a2

8b2
, (A.8)

where b2 > c2 > 5a2/8. The expressions of the moments of inertia about the
axes of symmetry I

′
xx, I

′
yy, and I

′
zz are the same as the ellipsoid if we use M

as the total mass. By using the parallel axis theorem, we obtain

Ixx = I ′xx −M

(
3a

8

)2

=
Mb2

5
+

19

320
Ma2, Iyy =

Mc2

5
+

19

320
Ma2. (A.9)

Then α, β are given by

α =
b2

5(5a/8)2
+

19

320(5/8)2
+ 1 =

b2

Aa2
+B, β =

c2

Aa2
+B, (A.10)

where A = 53/82, B = (19 + 53)/53. Note that AB = 9/4.
From Eqs. (A.8) and (A.10), ωp0 and ωy0 are given by，

ω2
p0 =

g

a

1/ϕ− 1

α
=
g

a

8b2

5a2
− 1

1
A

(
b2

a2
+ AB

) =
g

a

25

8

b2

a2
− 5

8
b2

a2
+ 9

4

, (A.11)

ω2
r0 =

g

a

1/θ − 1

β
=
g

a

25

8

c2

a2
− 5

8
c2

a2
+ 9

4

. (A.12)

Since f(x) ≡ (x2−5/8)/(x2+9/4) is a monotonously increasing function for
x2 > 5/8, ω2

p0 > ω2
r0 is shown.

As stated in Section 2.4, Zone II does not exist if Izz − Ixx > 0. In the
case of semi-ellipsoids,

Izz − Ixx =Ma2
(
1

5

c2

a2
− 19

320

)
> 0, (A.13)

thus Zone II also does not exist for semi-ellipsoidal rattlebacks.
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Appendix B

Equivalence of Kp and Kr with
the original expressions

Garcia and Hubbard [16] calculated the asymmetric torque coefficients using
the eigenvalue equation in |ω⊥⟩-space, i.e.,

|ω̈⊥⟩ = −g
a
Ĵ−1(Γ̂− 1) |ω⊥⟩

= −g
a

(
(Γ11 − 1)/α, Γ12/α

Γ12/β, (Γ22 − 1)/β

)
|ω⊥⟩

≡ −
(
Λ11, Λ12

Λ21, Λ22

)
|ω⊥⟩ . (B.1)

The eigenvalues ωp and ωr are the same as those of Eq. (2.26), and are given
by

ω2
p,r =

1

2

[
(Λ11 + Λ22)±

√
(Λ11 − Λ22)2 + 4Λ12Λ21

]
. (B.2)

The original expressions of asymmetric torque coefficients by Garcia and
Hubbard can be written in our notation as

KpGH =
Γ12(1/β − 1/α)ω2

p(ω
2
p − Λ22)

(ω2
p − Λ22)2 + Λ12Λ21

, (B.3)

KrGH =
Γ12(1/β − 1/α)ω2

r(Λ11 − ω2
r)

(Λ11 − ω2
r)

2 + Λ12Λ21

. (B.4)

From Eq. (B.2), following relations hold:

ω2
p − Λ22 = Λ11 − ω2

r =
1

2

[
(ω2

p − ω2
r) + (Λ11 − Λ22)

]
, (B.5)

Λ12Λ21 =
1

4

[
(ω2

p − ω2
r)

2 − (Λ11 − Λ22)
2
]
, (B.6)
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which gives

(ω2
p − Λ22)

2 + Λ12Λ21 =
1

2
(ω2

p − ω2
r)
[
(ω2

p − ω2
r) + (Λ11 − Λ22)

]
. (B.7)

Eqs. (B.3)–(B.7) immediately give our expressions of the asymmetric torque
coefficients Kp and Kr by Eqs. (2.44) and (2.45).
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